Deep water island wakes

Transcrição

Deep water island wakes
Deep water island wakes
Baroclinic case
Rui Caldeira
1
Model configuration
ROMS – Regional Ocean Modeling System
Analytical prescribed conditions
http://www.myroms.org/
Hyperbolic function incoming flow:
um1 −surface current
um2−bottom current
h s−shear layer thickness
hd −central layer thickness
Upstream density:
 −1/2 density difference hc −thermoclinecentral depth
ht −thermoclinethickness
Surface elevation:
Rui Caldeira
Geostrophic balance
2
Baseline experiment
x=180km; y=80km
➔
Island => x=45; y=40
➔
D=20 km
➔
Hmax=k=500m
➔
Coriolis=K=10^-4
➔
Eddy viscosity=0
➔
Umax=0.2; Umin=0.1 m/s
➔
Ro=0.1
➔
N~2Coriolis
➔
Rd=20km
➔Bu~1
➔Ri=0.25
➔
Rui Caldeira
3
Baseline experiment
Eddies life cycles:
Asymmetry @ N-S edge
➔
S => wavy cyclonic eddy pattern
➔
N => small extrema + noise
➔
Anticyclonic instability => centrifugal
➔
Rui Caldeira
4
Baseline experiment
Weak flow @ depth
➔
10m
Wake 2D @ 300m
➔
Cyclonic vort. max @ 10m => 0-150m
➔
100m
Anticyclonic vort. Max 130m
➔
200m
300m
Rui Caldeira
5
Wake vertical structure
9 day average => full A-C cycle
(a) South (left) wake
deflection
Assymetry C-A
Rui Caldeira
6
Island vorticity generation
Volume integrated vorticity (from vertical vorticity equation):
VG => steady in time
VG => ~symmetric C-A
Rui Caldeira
7
Wake instability
Types of instabilities:
lateral shear
asymmetry C-A => centrifugal instability
PE => baroclinic instability (L>>Rd)
Eddy evolution:
f
Centrifugal instability => Changes +/- f
ening
rapid weak
Rui Caldeira
8
Wake instability
Volume integrated
mean Ke
eddy Ke > 1
mean Pe
eddy Ke
>1
=> barotropic instability
=> baroclinic instability
Vertical integrated KE & PE conversions:
Max barotropic conversion @ L (max KE)
Max. (-ive) baroclinic conversion
=>Dominant Cyclonic region
max KE > max PE => barotropic conversion!
Eddy
gen
Rui Caldeira
9
Re study
Implicit viscosity
Re=20
Re=800
Re=20 symmetric eddies
Re~100 detachment
Re=30
Re=1600
Re=30
Re=3200
Re=40
Re=100
Rui Caldeira
Re=6400
Re=inf.
10
Re study
Lateral boundary layer thickness
−
Power law Re
Island
Rui Caldeira
11
Bu study
2
 
Rd
Bu=
L
 
NH
Bu=
f
N=

−g ∂ 
0 ∂ z
Baroclinic instability theory:
L>>Rd => Eddy size >>Rd
Weakens anticyclonic eddies
Rui Caldeira
12
Ro/Bu study
Symmetry
Asymmetry
Re=400
Anticyclones
dominate
Centrifugal instability
Re=∞
Rui Caldeira
Cyclones
dominate
13
Southern California Bight study
Rui Caldeira
14
Model configuration
ROMS – Regional Ocean Modeling System
http://www.myroms.org/
ROMS setup:
Numerical experiments:
dx=dy=1km
40 z levels
Orlanski =>tangential flow
Flather=>normal flow
To=>nudging 1996-2003 ROMS
MM5 wind forcing (54/18/6/2km)
Rui Caldeira
15
Island induced vorticity
Decrease eddy activities
2
28.9% decrease in enstrophy 
Upwelling event
Rui Caldeira
16
Channel Island wakes
Island - gaps
Large current shear
Eddy shedding
Rui Caldeira
17
Velocity profile
Rui Caldeira
18
San Nicolas Island wake
Wake asymmetry
Centrifugal instability
Rui Caldeira
19
Santa Catalina Island wake
Rui Caldeira
20

Documentos relacionados