Presentation

Transcrição

Presentation
6th Indo – German Winter Academy 2007
Piezo Transformers
Holger Schwarzmann
Holger Schwarzmann
University
Erlangen-Nuremberg
Piezo Transformers - Outline
1.
Introduction
2.
Piezo Transformer Technology
3.
Transfer Characteristic and Control Method
4.
Applications
5.
Summary
Holger Schwarzmann
University
Erlangen-Nuremberg
2
Piezo Transformer - Introduction
Magnetic Transformer Compared to Piezo Transformer (PT)
Source:http://en.wikipedia.org
Electromagnetic coupling
Design parameter, e.g.,
Turns ratio (number of windings)
Transformer core material
Control method
Amplitude of primary voltage VP
Electromechanical coupling
Design parameter, e.g.,
Turns ratio (aspect ratio, number of layers)
Piezoelectric ceramic
Control method
Amplitude and/or frequency of primary voltage Vin
Holger Schwarzmann
University
Erlangen-Nuremberg
3
Piezo Transformer - Introduction
Properties of PT
Advantages
Small volume (small size, low weight)
Less electromagnetic noise than ‘conventional’ transformer
High efficiency (up to 98%)
High power density (up to 50W/cm³)
High isolation voltage
Short-circuit-proof
Disadvantages
Limited temperature range
(< 50% of Curie-temperature: typical between 150°C and 350°C)
Heat dissipation only through contact area (restriction of power transfer)
Increase of temperature or load cycle depend on frequency tracking
Holger Schwarzmann
University
Erlangen-Nuremberg
4
Piezo Transformer - Technology
Rosen Transformer (I)
Single rectangular piece of piezoelectric ceramic
One half polarized in thickness direction (input - piezoelectric actor)
Other half polarized in length direction (output – piezoelectric transducer)
Single or multilayer design possible
Vibration direction transversal
Holger Schwarzmann
University
Erlangen-Nuremberg
5
Piezo Transformer - Technology
Rosen Transformer (II)
6
Fundamental
T S
Fundamental and harmonics
For less damping, contact only
at vibration nodes / planes
1/4
T: stress
S: strain
1st Harmonic
1/2
3/4
L
2nd Harmonic
L
Holger Schwarzmann
University
Erlangen-Nuremberg
Vibration node
Piezo Transformer - Technology
Rosen Transformer (III)
4
l (mm)
w (mm)
2
0
1
0
t (mm)
x-strain (nm)
x-stress (MPa)
x-strain (nm)
x-strain
x-stress
20
10
0
l (mm)
Holger Schwarzmann
University
Erlangen-Nuremberg
7
Piezo Transformer - Technology
Rosen Transformer (IV)
Step-up topology
High gain
High output impedance
High output voltages possible,
but only low currents
Resonant frequency: in order of 100 kHz
Source: http://www.prestostore.com
Output power: 5 to 8 W
Power density: 5 to 10 W/cm³
Applications: drive cold cathode fluorescent lamps (CCFL), backlighting for
liquid crystal displays (LCD)
Holger Schwarzmann
University
Erlangen-Nuremberg
8
Piezo Transformer – Transfer Characteristic
Equivalent Circuit of PT (I)
Equivalent circuit only valid near resonant frequency
Cin, Cout: capacitances of input respectively output layers
Lm, Cm: set resonant frequency
Rm: combine losses (dielectric, vibration, heat, etc.)
Ideal transformer
Holger Schwarzmann
University
Erlangen-Nuremberg
9
Piezo Transformer – Transfer Characteristic
Equivalent Circuit of PT (II)
Transformation equation
R ' 'L =
R 'L
2
1 + (ω ⋅ C 'out ⋅R 'L )
1 + (ω ⋅ C 'out ⋅R 'L )
C ' 'out = C 'out ⋅
(ω ⋅ C 'out ⋅R 'L )2
V
V ' 'out = out2
N
2
with
ω = 2 ⋅π ⋅ f
R 'L =
RL
N2
C 'out = N 2 ⋅ Cout
Holger Schwarzmann
University
Erlangen-Nuremberg
10
Piezo Transformer – Transfer Characteristic
PT Transfer Characteristic (I)
Constant frequency
k 21 =
c=
V ' 'out
Vin
C 'out
Cm
Q = ω ⋅ Cout ⋅ RL
Qm =
1
ω ⋅ Cm ⋅ Rm
Source: G. Ivensky, Generic Operational Characteristics of Piezoelectric Transformers,
IEEE Transactions on Power Electronics 17, 1049 (2002)
Holger Schwarzmann
University
Erlangen-Nuremberg
11
Piezo Transformer – Transfer Characteristic
PT Transfer Characteristic (II)
Constant load
2nd Harmonic
1st Harmonic
3rd Harmonic
Fundamental Mode
Holger Schwarzmann
University
Erlangen-Nuremberg
12
Piezo Transformer – Transfer Characteristic
Operating Point
Constant load
OP 2
OP 3
OP 4
OP 1
Holger Schwarzmann
University
Erlangen-Nuremberg
13
Piezo Transformer – Control Method
Input Waveforms
Square waveform
Easy to generate
Simple circuits (commercial devices available)
Only the fundamental is used for driving PT (rest
losses)
Sinusoidal waveform
Driving the PT with fundamental, no extra losses
Resonant driving concepts
Complex driving circuit
Holger Schwarzmann
University
Erlangen-Nuremberg
14
Piezo Transformer – Control Method
Bridge Converter
Full-bridge converter
Half-bridge converter
Q1, Q4: clk
Q2, Q3: clk
Q1: clk
Q2: clk
Holger Schwarzmann
University
Erlangen-Nuremberg
15
Piezo Transformer – Control Method
16
Resonant Push-Pull Converter
Generate sinusoidal waveform to drive PT
V+
L1
L2
Equivalent Ciruit of Piezo Transformer
Lm
Cin
Rm
Cm
Cout
Q1
Dual Low-Side
Driver
Cds1
Q2
Cds2
Holger Schwarzmann
University
Erlangen-Nuremberg
RL
Piezo Transformer – Control Method
V
I
II
III
17
I
Resonant Push-Pull Converter
Vg1
Interval I: Q1 on, Q2 off
V
V+
Vg2
IL1
L1
L2
Vout
V1
Lm
Vg1
Rm
Cm
Cin
Dual Low- Q1
Side Driver
A
1:N
Cout
Cds1
RL
IL1
V
Cds2
V1
Q2
Vg2
200n
400n
600n
800n
Time (s)
Holger Schwarzmann
University
Erlangen-Nuremberg
Piezo Transformer – Control Method
V
I
II
III
18
I
Resonant Push-Pull Converter
Vg1
Interval II: Q1 off, Q2 on
V
Vg2
A
IL1
V
V1
200n
400n
600n
800n
Time (s)
Holger Schwarzmann
University
Erlangen-Nuremberg
Piezo Transformer – Control Method
V
I
II
III
19
I
Resonant Push-Pull Converter
Vg1
Interval III: Q1 off, Q2 on
V
Vg2
A
IL1
V
V1
200n
400n
600n
800n
Time (s)
Holger Schwarzmann
University
Erlangen-Nuremberg
Piezo Transformer – Control Method
I
V
II
III
20
I
Resonant Push-Pull Converter
Vg1
Interval I: Q1 on, Q2 off
V
Vg2
V+
V
IL1
V1
L1
L2
Vout
V1
Lm
Vg1
V2
Rm
Cm
V
V2
1:N
Cin
Cout
RL V
V1 - V2
Dual Low- Q1
Side Driver
Cds1
V
Cds2
Q2
Vout
Vg2
200n
400n
600n
800n
Time (s)
Holger Schwarzmann
University
Erlangen-Nuremberg
Piezo Transformer – Application
21
Main Application: Inverter for CCFL (Rosen)
4 Watt converter with conventional transformer
dimension: LxWxT: 55 x 20.5 x 14mm³
4 Watt converter with PT
dimension: 95 x 15 x 5.5mm³
4x4 Watt converter with PT
dimension: 160 x 33 x 5.5mm³
Source: http://newyah.diytrade.com
Holger Schwarzmann
University
Erlangen-Nuremberg
Piezo Transformer – Application
Prototype of an AC-DC Converter (Noliac)
Input
< 130 V AC
Output
12 V DC
Output Power
Up to 15 W
Efficiency
Up to 98%
Power density
40 W/cm³
Frequency
400 kHz
Source: http://www.noliac.com
Isolation Voltage Above 5 kV DC
Holger Schwarzmann
University
Erlangen-Nuremberg
22
Piezo Transformer – Application
PTs Manufactured at IISB
Focused on thickness extension PT (high resonant frequency)
Possibility to transfer energy and information with one PT
High- and Low-Side driver for power applications
e.g., frequency inverter
Holger Schwarzmann
University
Erlangen-Nuremberg
23
Piezo Transformer – Summary
Four technologies of PT described by their vibration mode
Equivalent circuit describes electrical behavior of PT
PT transfer characteristic mainly depends of the resonant frequency
PTs are controlled by frequency
Output voltage
Load changes
Temperature changes
Resonant converter topologies
Take parasitic devices into account
Drive PT with sinusoidal input voltage
Holger Schwarzmann
University
Erlangen-Nuremberg
24
25
Thank You for Your Attention
Holger Schwarzmann
University
Erlangen-Nuremberg

Documentos relacionados