dark matter constraints from gamma-ray boxes

Transcrição

dark matter constraints from gamma-ray boxes
dark matter constraints
from gamma-ray boxes
Miguel Pato
Physik-Department T30d, TU Munich
with Alejandro Ibarra, Hyun Min Lee, Sergio Lopez Gehler and Wan-Il Park
[JCAP07(2012)043, arXiv:1205.0007] [JCAP05(2013)016, arXiv:1303.6632]
NWPAC 2014, Braga, 29 Jan 2014
1. the quest for wimps
long-awaited data are being collected as we speak...
direct searches
indirect searches
wimp scattering o nuclei underground
yields of wimp annihilation or decay
wimp production in the lab
collider searches
complementarity and uncertainty are key for wimp identication
miguel pato (tu munich)
1. the quest for wimps
long-awaited data are being collected as we speak...
direct searches
indirect searches
wimp scattering o nuclei underground
yields of wimp annihilation or decay
{ gamma rays {
wimp production in the lab
collider searches
complementarity and uncertainty are key for wimp identication
miguel pato (tu munich)
2. indirect dark matter searches
Milky Way
edge−on
dark halo
bulge/bar
Sun
Galactic Centre
thin disk
thick disk
not to scale!
0=
@ fp
= r (K (T ; ~r )rfp )
@t
r (V~c (~r )fp )
2h (z )
ann fp + Q (T ; ~r )
solar modulation F = 500 MV
miguel pato (tu munich)
2. indirect dark matter searches
Milky Way
edge−on
dark halo
111
000
000
111
000
111
Sun
not to scale!
0=
@ fp
= r (K (T ; ~r )rfp )
@t
r (V~c (~r )fp )
2h (z )
ann fp + Q (T ; ~r )
solar modulation F = 500 MV
miguel pato (tu munich)
2. indirect dark matter searches
Milky Way
edge−on
dark halo
111
000
000
111
000
111
p e q
p e q
Sun
not to scale!
0=
@ fp
= r (K (T ; ~r )rfp )
@t
r (V~c (~r )fp )
2h (z )
ann fp + Q (T ; ~r )
solar modulation F = 500 MV
miguel pato (tu munich)
2. indirect dark matter searches
Milky Way
edge−on
dark halo
111
000
000
111
000
111
p
Vc
p
Sun
diffusive halo
not to scale!
0=
@ fp
= r (K (T ; ~r )rfp )
@t
r (V~c (~r )fp )
2h (z )
ann fp + Q (T ; ~r )
solar modulation F = 500 MV
miguel pato (tu munich)
2. indirect searches via gamma rays
Milky Way
edge−on
dark halo
111
000
000
111
000
111
Sun
not to scale!
gamma-ray \propagation"
bkg
! e +e
bkg
! e
! e
open window for . 10 Mpc sources of < 100 TeV or > 1020 eV photons
! no attenuation, no shift in energy nor direction
miguel pato (tu munich)
2. indirect searches via gamma rays
Milky Way
edge−on
dark halo
111
000
000
111
000
111
Sun
not to scale!
gamma-ray \propagation"
bkg
! e +e
bkg
! e
! e
open window for . 10 Mpc sources of < 100 TeV or > 1020 eV photons
! no attenuation, no shift in energyZnor direction
1 hv i dN 1
=
4 m2 dE d Jann
miguel pato (tu munich)
2. indirect searches via gamma rays
the paradigmatic case of gamma rays
100 MeV { 100 GeV
100 GeV { 100 TeV
miguel pato (tu munich)
widely-used data but not fully explored yet
need to make the best of the available data
2. indirect searches via gamma rays
the paradigmatic case of gamma rays
100 MeV { 100 GeV
100 GeV { 100 TeV
miguel pato (tu munich)
widely-used data but not fully explored yet
need to make the best of the available data
2. indirect searches via gamma rays
dwarf galaxies galaxy clusters clumps galactic centre
extragalactic
halo
anisotropies
miguel pato (tu munich)
2. indirect searches via gamma rays
anisotropies
extragalactic
diuse
galaxy clusters
galactic centre
dwarfs
target/constraint misc
miguel pato (tu munich)
1e−23
1e−22
NFW,bb
e
us
i
rm
1e−24
1e−25
Ferm
agal
tr
i ex
ff
di
Fe
ax
Ferm
rn
i Fo
c
acti
nt
ic
ce
re
t
ac
l
Fermi anisotropies
SS
fs
i
rm
ga
HE
ar
dw
Fe
thermal
1e−26
sigma*v [cm3/s]
2. indirect searches via gamma rays
1
10
100
m [GeV]
miguel pato (tu munich)
1e3
1e4
1e−23
1e−22
NFW,bb
e
us
i
rm
1e−24
1e−25
Ferm
agal
tr
i ex
ff
di
Fe
ax
Ferm
rn
i Fo
c
acti
nt
ic
ce
re
t
ac
l
Fermi anisotropies
SS
fs
i
rm
ga
HE
ar
dw
Fe
thermal
1e−26
sigma*v [cm3/s]
2. indirect searches via gamma rays
1
10
100
1e3
1e4
m [GeV]
... but these are all for integrated uxes
miguel pato (tu munich)
2. indirect searches via gamma rays
1 hv i dN 1 Z d Jann
= 4
m 2 dE for sources in the open window, we can pinpoint injection spectrum
#
look for spectral features
miguel pato (tu munich)
2. indirect searches via gamma rays
1 hv i dN 1 Z d Jann
= 4
m 2 dE for sources in the open window, we can pinpoint injection spectrum
#
look for spectral features
astrophysical backgrounds at high energies
nuclear lines
inverse Compton
synchrotron
bremsstrahlung
pion decay
MeV
/ E (p+1)=2
/ E (p+1)=2
/ E p
/ E p
(caveat: monoen e in KN)
p&2
anything harder than E 2 and at high energies will stick out
and can be cleanly looked for
miguel pato (tu munich)
2. gamma-ray spectral features
1 lines
dN
dE
/ (E m )
dNg/dEg
11111
00000
00000
11111
00000
11111
00000
11111
[Srednicki+ '86, Rudaz+ '86, Bergstrom & Snellman '88]
convoluted
m
miguel pato (tu munich)
Eg
2. gamma-ray spectral features
1 lines
dN
dE
/ (E m )
dNg/dEg
11111
00000
00000
11111
00000
11111
00000
11111
[Srednicki+ '86, Rudaz+ '86, Bergstrom & Snellman '88]
convoluted
m
2 internal bremsstrahlung
dN
dE
/ E 1
\hard" in astroph
dNg/dEg
11111
00000
00000
11111
00000
11111
00000
11111
m
miguel pato (tu munich)
Eg
[Bergstrom '89, Flores+ '89, Bringmann+ '07]
Eg
2. gamma-ray spectral features
1 lines
dN
dE
/ (E m )
dNg/dEg
11111
00000
00000
11111
00000
11111
00000
11111
[Srednicki+ '86, Rudaz+ '86, Bergstrom & Snellman '88]
convoluted
m
dN
dE
/ E 1
\hard" in astroph
dNg/dEg
11111
00000
00000
11111
00000
11111
00000
11111
m
3 boxes
miguel pato (tu munich)
Eg
[Ibarra, Lopez Gehler & MP '12]
dN
dE
/ const
dNg/dEg
11111
00000
00000
11111
00000
11111
00000
11111
Eg
[Bergstrom '89, Flores+ '89, Bringmann+ '07]
m
Eg
hardness
2 internal bremsstrahlung
2. gamma-ray spectral features
1 lines
dN
dE
/ (E m )
Eg 2 dNg/dEg
11111
00000
00000
11111
00000
11111
00000
11111
[Srednicki+ '86, Rudaz+ '86, Bergstrom & Snellman '88]
convoluted
m
dN
dE
/ E 1
\hard" in astroph
Eg 2 dNg/dEg
11111
00000
00000
11111
00000
11111
00000
11111
m
3 boxes
miguel pato (tu munich)
Eg
[Ibarra, Lopez Gehler & MP '12]
dN
dE
/ const
Eg 2 dNg/dEg
11111
00000
00000
11111
00000
11111
00000
11111
Eg
[Bergstrom '89, Flores+ '89, Bringmann+ '07]
m
Eg
hardness
2 internal bremsstrahlung
2. gamma-ray spectral features
1 lines
dN
dE
/ (E m )
Eg 2 dNg/dEg
11111
00000
00000
11111
00000
11111
00000
11111
[Srednicki+ '86, Rudaz+ '86, Bergstrom & Snellman '88]
convoluted
m
dN
dE
Eg 2 dNg/dEg
11111
00000
00000
11111
00000
11111
00000
11111
/ const
m
3 internal bremsstrahlung
miguel pato (tu munich)
dN
dE
Eg
[Bergstrom '89, Flores+ '89, Bringmann+ '07]
/ E 1
\hard" in astroph
Eg 2 dNg/dEg
11111
00000
00000
11111
00000
11111
00000
11111
Eg
[Ibarra, Lopez Gehler & MP '12]
m
Eg
hardness
2 boxes
2. gamma-ray spectral features
1 lines
dN
dE
/ (E m )
Eg 2 dNg/dEg
[Srednicki+ '86, Rudaz+ '86, Bergstrom & Snellman '88]
convoluted
m
dN
dE
Eg 2 dNg/dEg
11111
00000
00000
11111
00000
11111
00000
11111
/ const
m
3 internal bremsstrahlung
Eg
[Bergstrom '89, Flores+ '89, Bringmann+ '07]
/ E 1
\hard" in astroph
Eg 2 dNg/dEg
dN
dE
miguel pato (tu munich)
Eg
[Ibarra, Lopez Gehler & MP '12]
m
Eg
hardness
2 boxes
2. gamma-ray spectral features
1 lines
dN
dE
/ (E m )
dNg/dEg
[Srednicki+ '86, Rudaz+ '86, Bergstrom & Snellman '88]
convoluted
m
hard and up to HE
dN / const
dE
dNg/dEg
11111
00000
00000
11111
00000
11111
00000
11111
−2.x
Eg
m
3 internal bremsstrahlung
Eg
[Bergstrom '89, Flores+ '89, Bringmann+ '07]
/ E 1
\hard" in astroph
dNg/dEg
dN
dE
miguel pato (tu munich)
Eg
[Ibarra, Lopez Gehler & MP '12]
m
Eg
hardness
2 boxes
2. gamma-ray spectral features
1 lines
dN
dE
/ (E m )
dNg/dEg
[Srednicki+ '86, Rudaz+ '86, Bergstrom & Snellman '88]
convoluted
m
hard and up to HE
dN / const
dE
dNg/dEg
11111
00000
00000
11111
00000
11111
00000
11111
−2.x
Eg
alternative signature with implications for a new class of models
3 internal bremsstrahlung
m
Eg
[Bergstrom '89, Flores+ '89, Bringmann+ '07]
/ E 1
\hard" in astroph
dNg/dEg
dN
dE
miguel pato (tu munich)
Eg
[Ibarra, Lopez Gehler & MP '12]
m
Eg
hardness
2 boxes
3. box phenomenology
1-step cascades
1
X
3
...
11111
00000
00000
11111
00000
11111
00000
11111
...
2
= 3 (EX0 + 3 pX0 cos 0 )
Z
Z
Z
dN
dN 1 d cos 0
EX
X
dEX
dE3 dE3
3 1 2
F [E0 3 (1
= 23AB
3 E0 box
=
miguel pato (tu munich)
X
0
dEX0 dN
dEX0 f ( ) (EX
3 ); E0 3 (1 + 3 )]
3 (EX0
+ 3 pX0 cos 0 ))
dN3 =dE3 = A(E3 E3 )
dNX =dEX0 = B (EX0 E0 )
3. box phenomenology
1-step cascades
1
X
3
...
11111
00000
00000
11111
00000
11111
00000
11111
...
2
= 3 (EX0 + 3 pX0 cos 0 )
Z
Z
Z
dN
dN 1 d cos 0
EX
X
dEX
dE3 dE3
3 1 2
= 23AB
F [E0 3 (1
3 E0 box
=
1
2
lab
miguel pato (tu munich)
(...)
3
cm
X
0
dEX0 dN
dEX0 f ( ) (EX
3 ); E0 3 (1 + 3 )]
3 (EX0
+ 3 pX0 cos 0 ))
dN3 =dE3 = A(E3 E3 )
dNX =dEX0 = B (EX0 E0 )
3. box phenomenology
1
X
dNX/dEX
1-step cascades
3
...
11111
00000
00000
11111
00000
11111
00000
11111
...
2
E−
EX = 3 (EX0
dNX
dEX
Z1
Z
d cos 0 dE 0 dNX f (0 ) (E
3
dE3 dN
X
X dE 0
dE3 1 2
X
= 23AB
F [E0 3 (1 3 ); E0 3 (1 + 3 )]
3 E0 box
Z
=
X
1
2
(...)
3
(...)
lab
miguel pato (tu munich)
E
3 0
E+
EX
+ 3 pX0 cos 0 )
cm
cm3
3 (EX0
+ 3 pX0 cos 0 ))
dN3 =dE3 = A(E3 E3 )
dNX =dEX0 = B (EX0 E0 )
3. box phenomenology
1
X
dNX/dEX
1-step cascades
3
...
11111
00000
00000
11111
00000
11111
00000
11111
...
2
E−
EX = 3 (EX0
dNX
dEX
Z1
Z
d cos 0 dE 0 dNX f (0 ) (E
3
dE3 dN
X
X dE 0
dE3 1 2
X
= 23AB
F [E0 3 (1 3 ); E0 3 (1 + 3 )]
3 E0 box
Z
=
1
2
lab
miguel pato (tu munich)
E
3 0
E+
EX
+ 3 pX0 cos 0 )
(...)
3
cm
X
cm3
3 (EX0
+ 3 pX0 cos 0 ))
dN3 =dE3 = A(E3 E3 )
dNX =dEX0 = B (EX0 E0 )
3. box phenomenology
1
X
dNX/dEX
1-step cascades
3
...
11111
00000
00000
11111
00000
11111
00000
11111
...
2
E−
EX = 3 (EX0
dNX
dEX
Z1
Z
d cos 0 dE 0 dNX f (0 ) (E
3
dE3 dN
X
X dE 0
dE3 1 2
X
= 23AB
F [E0 3 (1 3 ); E0 3 (1 + 3 )]
3 E0 box
Z
=
1
2
lab
miguel pato (tu munich)
E
3 0
E+
EX
+ 3 pX0 cos 0 )
(...)
3
cm
X
cm3
3 (EX0
+ 3 pX0 cos 0 ))
dN3 =dE3 = A(E3 E3 )
dNX =dEX0 = B (EX0 E0 )
3. box phenomenology
1
X
dNX/dEX
1-step cascades
3
...
11111
00000
00000
11111
00000
11111
00000
11111
...
2
E−
EX = 3 (EX0
Z1
Z
d cos 0 dE 0 dNX f (0 ) (E
3
dE3 dN
X
X dE 0
dE3 1 2
X
= 23AB
F [E0 3 (1 3 ); E0 3 (1 + 3 )]
3 E0 box
Z
=
E+
3 (EX0
1
2
(...)
3
no spin
−1
lab
miguel pato (tu munich)
EX
cm
cm3
+ 3 pX0 cos 0 ))
dN3 =dE3 = A(E3 E3 )
dNX =dEX0 = B (EX0 E0 )
f
dNX
dEX
E
3 0
+ 3 pX0 cos 0 )
1
cos
3. box phenomenology
1
X
dNX/dEX
1-step cascades
3
...
11111
00000
00000
11111
00000
11111
00000
11111
...
2
E−
EX = 3 (EX0
E+
EX
(isotropic emission)
Z1
Z
d cos 0 dE 0 dNX f (0 ) (E (E 0 + p 0 cos 0 ))
3
=
dE3 dN
3 X 3 X
X
X dE 0
dE3 1 2
X
dN3 =dE3 = A(E3 E3 )
= 23AB
F
box [E0 3 (1 3 ); E0 3 (1 + 3 )]
dNX =dEX0 = B (EX0 E0 )
3 E0
Z
f
dNX
dEX
E
3 0
+ 3 pX0 cos 0 )
1
2
(...)
3
no spin
−1
lab
miguel pato (tu munich)
cm
cm3
1
cos
3. box phenomenology
1
X
dNX/dEX
1-step cascades
3
...
11111
00000
00000
11111
00000
11111
00000
11111
...
2
E−
EX = 3 (EX0
Z1
Z
d cos 0 dE 0 dNX f (0 ) (E
3
dE3 dN
X
X dE 0
dE3 1 2
X
= 23AB
F [E0 3 (1 3 ); E0 3 (1 + 3 )]
3 E0 box
Z
=
E+
3 (EX0
1
2
(...)
3
spin
−1
lab
miguel pato (tu munich)
EX
cm
cm3
+ 3 pX0 cos 0 ))
dN3 =dE3 = A(E3 E3 )
dNX =dEX0 = B (EX0 E0 )
f
dNX
dEX
E
3 0
+ 3 pX0 cos 0 )
1
cos
3. box phenomenology
1
X
dNX/dEX
1-step cascades
3
...
11111
00000
00000
11111
00000
11111
00000
11111
...
2
E−
EX = 3 (EX0
E+
EX
(isotropic emission)
Z1
Z
d cos 0 dE 0 dNX f (0 ) (E (E 0 + p 0 cos 0 ))
3
=
dE3 dN
3 X 3 X
X
X dE 0
dE3 1 2
X
dN3 =dE3 = A(E3 E3 )
= 23AB
F
box [E0 3 (1 3 ); E0 3 (1 + 3 )]
dNX =dEX0 = B (EX0 E0 )
3 E0
Z
f
dNX
dEX
E
3 0
+ 3 pX0 cos 0 )
1
2
(...)
3
no spin
−1
lab
miguel pato (tu munich)
cm
cm3
1
cos
3. box phenomenology
boxes are realised in nature!p
p
11111
00000
00000
11111
00000
11111
00000
11111
p
...
= E0 (1 + cos 0 )
Z
dN
2 Fbox [m (1
dN
=
dE
dE
dE 2 m =2
p
E
if E m =2
/
p if E m =2
E
E
miguel pato (tu munich)
)=2; m (1 + )=2]
dN =dE / E p
dN =dE0 = 2(E0 m =2)
3. box phenomenology
boxes are realised in nature!p
p
11111
00000
00000
11111
00000
11111
00000
11111
p
...
= E0 (1 + cos 0 )
Z
dN
2 Fbox [m (1
dN
=
dE
dE
dE 2 m =2
p
E
if E m =2
/
p if E m =2
E
E
miguel pato (tu munich)
)=2; m (1 + )=2]
dN =dE / E p
dN =dE0 = 2(E0 m =2)
3. box phenomenology
[Ibarra, Gehler & MP '12; Ibarra, Lee, Gehler, Park & MP '13]
dNg/dEg
gamma-ray boxesp
a
11111
00000
00000
11111
00000
11111
00000
11111
a
E
E−
= E0 a (1 + a cos 0 )
dN
dE
= 4E Fbox [E
r
E =
2 1 1
m
ma2
; E+ ]
m2
E+
Eg
dNa =dEa = 2(Ea m )
dN =dE0 = 2(E0 ma =2)
.. as ma ! m : a 0, E+ E , E 0
.. as ma ! 0: a 1, E+ m , E 0
miguel pato (tu munich)
Ec
Ec
= m2
line at m =2
box ending at m
3. box phenomenology
[Ibarra, Gehler & MP '12; Ibarra, Lee, Gehler, Park & MP '13]
dNg/dEg
gamma-ray boxesp
a
11111
00000
00000
11111
00000
11111
00000
11111
a
E
E−
= E0 a (1 + a cos 0 )
dN
dE
= 4E Fbox [E
r
E =
2 1 1
m
ma2
; E+ ]
m2
E+
Eg
dNa =dEa = 2(Ea m )
dN =dE0 = 2(E0 ma =2)
.. as ma ! m : a 0, E+ E , E 0
.. as ma ! 0: a 1, E+ m , E 0
miguel pato (tu munich)
Ec
Ec
= m2
line at m =2
box ending at m
3. methodology
10
[Ibarra, Gehler & MP '12; Ibarra, Lee, Gehler, Park & MP '13]
-6
centre region
ΦΓ @GeV -1cm -2s -1sr -1D
10 -7
10
mDM = 100 GeV
<Σv> = 3 ‰ 10 -26cm 3s -1
-8
10 -9
10 -10
99.9
mΦ = 10 GeV
40
60
m ' m : moderate ne-tuning
line at m =2 with 4
(usual line is at m with 2 )
wide box
95
m : no ne-tuning at all
high-energy shoulder at m
amplitude saturation as m ! 0
m
10 -11
2
narrow box
5
10
20
50
EΓ @GeV D
100
200
.. narrow box is harder, but wide box extends to higher energies
! similar constraints (!)
.. sub-thermal constraints in both cases (!)
miguel pato (tu munich)
3. methodology
10
[Ibarra, Gehler & MP '12; Ibarra, Lee, Gehler, Park & MP '13]
-6
centre region
ΦΓ @GeV -1cm -2s -1sr -1D
10 -7
10
mDM = 100 GeV
<Σv> = 3 ‰ 10 -26cm 3s -1
-8
10 -9
99.9
mΦ = 10 GeV
10 -10
40
60
m ' m : moderate ne-tuning
line at m =2 with 4
(usual line is at m with 2 )
wide box
95
m : no ne-tuning at all
high-energy shoulder at m
amplitude saturation as m ! 0
m
10 -11
2
narrow box
5
10
20
50
EΓ @GeV D
100
200
.. narrow box is harder, but wide box extends to higher energies
! similar constraints (!)
.. sub-thermal constraints in both cases (!)
derivation of constraints
conservative: no background, ;b = 0
intermediate: scaled-down background t ;b / E (iii) aggressive: background meets measurements, error-dominated
(i)
(ii)
miguel pato (tu munich)
4. results: constraints
target: jl j 2 [0; 36] , jb j 2 [5; 36] ; jl j 2 [0; 7] , jb j 2 [0; 5]
(Fermi-LAT centre region; Vertongen & Weniger '11)
! ! 4
10 -25
10 -25
centre region
intermediate approach
<Σv> @cm3s -1D
10 -28
..
..
..
..
10
20
50 100
mDM @GeV D
D m mDM = 0.001
D m mDM = 0.05
D m mDM = 0.4
D m mDM = 0.9
200
500 1000
ediate
interm
essiv
aggr
10 -28
10 -29
5
e
rvativ
conse
10 -27
10 -27
10 -29
5
<Σv> @cm 3s -1D
10 -26
10 -26
centre region
D m mDM = 0.001
10
20
e
Vertongen & Weniger H2011L
50 100
mDM @GeVD
200
500 1000
[Ibarra, Gehler & MP '12]
saturation of constraints as m ! 0
constraints across parameter space, not only in ne-tuned regions
background modelling important at small m
no direct comparison to usual lines, but similar results
miguel pato (tu munich)
4. results: constraints
target:
Region 3 (Fermi-LAT; Weniger '12)
jl j < 0:8 , jb j < 0:3 (H.E.S.S. '06)
! aa
10 - 23
narrow box
m a  m Χ = 0.999
! 4
10 - 23
10 2
10 - 24
wide box
m a  m Χ = 0.1
10 - 24
thermal
10 - 26
1
10 -1
AT
L
i-
3
10 - 25
10 - 26
10 - 2
S.
S.
AT
10 2
m Χ @GeVD
10 3
10 4
1
10 -1
rm
10 - 27
10 - 2
conservative
aggressive
10 - 28
10
thermal
L
i-
Fe
m
r
Fe
E.
H.
XΣv\ aa XΣv\ th
.
.S
S
E.
H.
XΣv\ aa XΣv\ th
10 - 25
10
XΣv\ aa @cm  sD
3
XΣv\ aa @cm  sD
10
10 - 27
10 2
conservative
aggressive
10 - 28
10
10 2
m Χ @GeVD
10 3
10 4
[Ibarra, Lee, Gehler, Park & MP '13]
.. H.E.S.S. meets Fermi-LAT and extends to multi-TeV
.. rst ever gamma-ray box constraints at TeV energies
.. thermal x-sec probed for m ' 10 GeV few TeV
future ACTs can probe boxes from thermal x-sec above 10 TeV,
a region hardly accessible to direct, collider and other indirect searches
miguel pato (tu munich)
4. results: constraints
target:
Region 3 (Fermi-LAT; Weniger '12)
jl j < 0:8 , jb j < 0:3 (H.E.S.S. '06)
! aa
! 4
10 - 23
narrow box
m a  m Χ = 0.999
10 2
10 - 24
10 - 25
E.
H.
10 - 26
S.
S.
thermal
1
10 -1
AT
-L
mi
10 - 27
XΣv\ aa XΣv\ th
3
XΣv\ aa @cm  sD
10
r
Fe
10 - 2
conservative
aggressive
10 - 28
10
10 2
m Χ @GeVD
10 3
10 4
[Ibarra, Lee, Gehler, Park & MP '13]
.. H.E.S.S. meets Fermi-LAT and extends to multi-TeV
.. rst ever gamma-ray box constraints at TeV energies
.. thermal x-sec probed for m ' 10 GeV few TeV
future ACTs can probe boxes from thermal x-sec above 10 TeV,
a region hardly accessible to direct, collider and other indirect searches
miguel pato (tu munich)
4. results: constraints
Region 3 (Fermi-LAT; Weniger '12)
jl j < 0:8 , jb j < 0:3 (H.E.S.S. '06)
! aa
! 4
10 - 23
narrow box
m a  m Χ = 0.999
3
direct
XΣv\ aa @cm  sD
10 - 24
10 - 25
10
E.
H.
10 - 26
S.
S.
thermal
1
10 -1
AT
-L
mi
10 - 27
10 2
XΣv\ aa XΣv\ th
target:
r
Fe
10 - 2
conservative
aggressive
10 - 28
10
10 2
m Χ @GeVD
10 3
10 4
[Ibarra, Lee, Gehler, Park & MP '13]
.. H.E.S.S. meets Fermi-LAT and extends to multi-TeV
.. rst ever gamma-ray box constraints at TeV energies
.. thermal x-sec probed for m ' 10 GeV few TeV
future ACTs can probe boxes from thermal x-sec above 10 TeV,
a region hardly accessible to direct, collider and other indirect searches
miguel pato (tu munich)
4. results: constraints
Region 3 (Fermi-LAT; Weniger '12)
jl j < 0:8 , jb j < 0:3 (H.E.S.S. '06)
! aa
! 4
10 - 23
3
direct
XΣv\ aa @cm  sD
10 - 24
collider
narrow box
m a  m Χ = 0.999
10 - 25
E.
H.
10 - 26
S.
S.
10
thermal
1
10 -1
AT
-L
mi
10 - 27
10 2
XΣv\ aa XΣv\ th
target:
r
Fe
10 - 2
conservative
aggressive
10 - 28
10
10 2
m Χ @GeVD
10 3
10 4
[Ibarra, Lee, Gehler, Park & MP '13]
.. H.E.S.S. meets Fermi-LAT and extends to multi-TeV
.. rst ever gamma-ray box constraints at TeV energies
.. thermal x-sec probed for m ' 10 GeV few TeV
future ACTs can probe boxes from thermal x-sec above 10 TeV,
a region hardly accessible to direct, collider and other indirect searches
miguel pato (tu munich)
4. results: constraints
Region 3 (Fermi-LAT; Weniger '12)
jl j < 0:8 , jb j < 0:3 (H.E.S.S. '06)
! aa
! 4
10 - 23
3
XΣv\ aa @cm  sD
10 - 24
10 - 25
collider
direct
indirect
narrow box
m a  m Χ = 0.999
E.
H.
10 - 26
S.
S.
10
thermal
1
10 -1
AT
-L
mi
10 - 27
10 2
XΣv\ aa XΣv\ th
target:
r
Fe
10 - 2
conservative
aggressive
10 - 28
10
10 2
m Χ @GeVD
10 3
10 4
[Ibarra, Lee, Gehler, Park & MP '13]
.. H.E.S.S. meets Fermi-LAT and extends to multi-TeV
.. rst ever gamma-ray box constraints at TeV energies
.. thermal x-sec probed for m ' 10 GeV few TeV
future ACTs can probe boxes from thermal x-sec above 10 TeV,
a region hardly accessible to direct, collider and other indirect searches
miguel pato (tu munich)
4. results: constraints
Region 3 (Fermi-LAT; Weniger '12)
jl j < 0:8 , jb j < 0:3 (H.E.S.S. '06)
! aa
! 4
10 - 23
3
XΣv\ aa @cm  sD
10 - 24
10 - 25
collider
direct
indirect
narrow box
m a  m Χ = 0.999
#
E.
H.
10 - 26
S.
r
Fe
10
thermal
1
cta
10 -1
"
AT
-L
mi
10 - 27
S.
10 2
XΣv\ aa XΣv\ th
target:
!
10 - 2
conservative
aggressive
10 - 28
10
10 2
m Χ @GeVD
10 3
10 4
[Ibarra, Lee, Gehler, Park & MP '13]
.. H.E.S.S. meets Fermi-LAT and extends to multi-TeV
.. rst ever gamma-ray box constraints at TeV energies
.. thermal x-sec probed for m ' 10 GeV few TeV
future ACTs can probe boxes from thermal x-sec above 10 TeV,
a region hardly accessible to direct, collider and other indirect searches
miguel pato (tu munich)
4. results: constraints
target:
Region 3 (Fermi-LAT; Weniger '12)
jl j < 0:8 , jb j < 0:3 (H.E.S.S. '06)
! aa
10 - 23
narrow box
m a  m Χ = 0.999
! 4
10 - 23
10 2
10 - 24
wide box
m a  m Χ = 0.1
10 - 24
thermal
10 - 26
1
10 -1
AT
L
i-
3
10 - 25
10 - 2
E.
H.
10 - 26
S.
S.
AT
10 2
m Χ @GeVD
10 3
10 4
1
10 -1
rm
10 - 27
10 - 2
conservative
aggressive
10 - 28
10
thermal
L
i-
Fe
m
r
Fe
XΣv\ aa XΣv\ th
.
.S
S
E.
H.
XΣv\ aa XΣv\ th
10 - 25
10
XΣv\ aa @cm  sD
3
XΣv\ aa @cm  sD
10
10 - 27
10 2
conservative
aggressive
10 - 28
10
10 2
m Χ @GeVD
10 3
10 4
[Ibarra, Lee, Gehler, Park & MP '13]
BR( ! aa ! 4 ) . 0:02 1 for m = O(10) GeV few TeV (wrt thermal)
BR( ! aa ! 4 ) . 10 3 for m TeV (wrt PAMELA/AMS-02/Fermi-LAT)
if the e excess is due to cascade annihilations, we should either see a
gamma-ray box or else the decay to photons must be heavily suppressed
miguel pato (tu munich)
4. results: constraints
target:
Region 3 (Fermi-LAT; Weniger '12)
jl j < 0:8 , jb j < 0:3 (H.E.S.S. '06)
! aa
! 4
10 - 23
wide box
m a  m Χ = 0.1
10 2
10 - 24
XΣv\ aa XΣv\ th
3
XΣv\ aa @cm  sD
10
10 - 25
E.
H.
10 - 26
S.
S.
thermal
AT
10 -1
L
i-
Fe
1
rm
10 - 27
10 - 2
conservative
aggressive
10 - 28
10
10 2
m Χ @GeVD
10 3
10 4
[Ibarra, Lee, Gehler, Park & MP '13]
BR( ! aa ! 4 ) . 0:02 1 for m = O(10) GeV few TeV (wrt thermal)
BR( ! aa ! 4 ) . 10 2 for m TeV (wrt PAMELA/AMS-02/Fermi-LAT)
if the e excess is due to cascade annihilations, we should either see a
gamma-ray box or else the decay to photons must be heavily suppressed
miguel pato (tu munich)
5. conclusions
.. alternative feature with unique phenomenology
.. strong constraints with present observations
.. golden opportunity for CTA
dNg/dEg
gamma-ray boxes
−2.x
Eg
E−
miguel pato (tu munich)
Ec
E+
Eg
5. conclusions
.. alternative feature with unique phenomenology
.. strong constraints with present observations
.. golden opportunity for CTA
dNg/dEg
gamma-ray boxes
−2.x
Eg
E−
the way forward in dark matter searches
where? accurate description of dark matter distribution
what? search for smoking guns
how? interplay direct+indirect+collider searches
miguel pato (tu munich)
Ec
E+
Eg
5. conclusions
.. alternative feature with unique phenomenology
.. strong constraints with present observations
.. golden opportunity for CTA
dNg/dEg
gamma-ray boxes
−2.x
Eg
E−
the way forward in dark matter searches
where? accurate description of dark matter distribution
what? search for smoking guns
how? interplay direct+indirect+collider searches
{ fully explore all available data {
miguel pato (tu munich)
Ec
E+
Eg

Documentos relacionados

Grafika w LaTeXu

Grafika w LaTeXu Przenosi to obowiązek rozmieszczania ich w dokumencie na LaTeXa. Może to spowodować, że zostaną one umieszczone w nieco innym miejscu niżbyśmy chcieli. Możemy jednak dać LaTeXowi pewne wskazówki po...

Leia mais