Combustion

Transcrição

Combustion
Focus on W-t-E
Processes
Bourgoin Jalieu
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
1
Incineration : an industrial process
Chaudière
Steam boiler
de
récupération
Flue
Traitement
gas cleaning
des
fumées
system
Refuse
Trémiefeed
et goulotte
hopper
d’introduction
Salle
Control
de contrôle
room
etand
poste
crane
pontonnier
driver
Turbinegenerator set
Stockage
Not prepared
en fosse
waste
des
déchets
storage
sans bunker
préparation
Tipping hall
Hubert de Chefdebien,
Alimentateur Combustion
Grille de
Waste
à poussoir Combustion
grate
feeder
Bottom
Extraction
ash
des
discharger
mâchefers
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
2
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
3
Technique - Basic
FUNCTIONS
Storage
Handling
Preparation
A
5
Storage
z Tipping Hall / Bunker
¾ n tipping bays
¾ Capacity: 2 or 3 days of
collection
¾ Waste: raw / sorting residues
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
6
Odours destruction
z Odours
¾ Tipping hall depressurized
¾ Combustion air drawn up
above the bunker
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
7
Fire protection
z Fire
¾ Detectors
¾ Extinguishers
everywhere
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
8
Handling
1 – HOMOGENISATION
¾ Essential function
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
9
Handling
2 – FEEDING
¾ Semi-automatic
¾ 1 crane in duty / 1 stand-by
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
10
Waste to incinerate?
z Dirty waste
z Sorting refuses
from
¾ Material
recycling
¾ Composting
¾ Raw waste
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
11
Waste preparation is optional
z Required only for bulk
waste
z Any refuse from 1st phase
process possible
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
12
Combustion
A
13
Integrated Furnace and boiler
z Furnace main functions
¾ Waste feed
¾ Combustion of
solid and gases
¾ Cooling
Superheated
steam
Superheater
Economiser
Waste input
™ Bottom ash
Feed water
z Boiler main functions
¾ Cooling
™ Flue gases
¾ Energy recovery
Combustion
air
™ Steam generation
Evaporator
Bottom ash
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
14
Grate and furnace
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
15
The processes in use
z Combustion
¾ On Grates: Most W-t-E in EU (≃ 95%)
™ Reliable and Well proven
™ Good performances
™ Very flexible (accept various unprepared waste, including all kinds of
residual waste resulting from 1st phase treatment modes)
¾ Fluidised beds: A few
™ Work well on homogeneous well prepared waste
™ Not beneficial for Municipal waste (except if energy delivery seasoning is required)
¾ Pyrolysis: A few prototypes
™ Many failures (plants stopped and dismantled)
™ Not beneficial for Municipal waste
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
16
Operational ranges
z Capacity range (by line)
ts
n
Pla 1 to
ve es
a
h lin
5
¾ Large :
12 to 30 t/hr
Max 50 t/hr (Ivry plant 2 x 50 t/hr)
¾ Medium size :
¾ Small plants :
6
3
to 12 t/hr
to 6 t/hr
If < 3 t/hr : not industrial
z NCV, Net Calorific Value
¾ 1.400 to 3.000 kcal/kg (RDF, Refuse Derived Fuel: up to 4500)
¾ Typically : 1800 – 2000 (raw MSW, Municipal Solid Waste)
2200 – 2400 (sorting refuse)
1 cal = 4,1868 J
Hubert de Chefdebien,
2000 kcal/kg = 8373,6 kJ/kg
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
17
Combustion Zones
Drying
Ignition
Combustion
Ending
and cooling
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
18
Primary air
z Different in each zone
z Cools the grate bars
(zigzag labyrinth)
z Provides air evenly in the
waste (high pressure
drop in the bars)
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
19
Secondary air
¾ Distributed as a zip fastener
™ Homogenizes
™ Burns volatile gases
Decreases of :
™ CO,
™ NOx,
™ Dioxins,
™ Flying dust,
etc.
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
20
Combustion diagram
Grates are very versatile, typically:
- 60% to 100% in mass flow
- 60% to 100% in energy input
- 60% to 130% in calorific value
NOMINAL POINT
30
l / kg
a
c
k kg
28
00 kJ/
3.0 2.560
26
g
al/k
c
k
kg
00
2.2 211 kJ/
9.
ENERGY INPUT , Gcal/h
1
24
22 Gcal/h
22
20
g
cal/k
k
0
0
1 .4
J/kg
18
k
5.861
16
14
12
10
5
(1 kcal = 4,1868 kJ
1 Gcal = 109 cal)
Hubert de Chefdebien,
6
7
8
9
1010t/h
12
WASTE FLOW RATE, t/h
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
21
Energy recovery
(2nd step:
valorisation)
A
22
Heat
z Heating (& cooling):
network in the vicinity?
z Industrial demand?
z Low steam pressure if
large demand
Up to
1800 – 2000
kWhth/tMSW
Échangeurs réseau, Lyon-Sud
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
23
Electricity only
z In general, all the production can
be exported
z High pressure
z Efficiency 15 to 25%
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
24
Combined Heat and Power
(Cogeneration)
+
=
Significant
improvement of the
efficiency :
up to 75 %
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
25
Energy recovery
(1st step)
A
26
Boiler type according to the use
of recovered energy
ηη ≈≈ 80
80––84
84%
%
z Hot water
z Steam
Heat only
(and cold)
¾ Saturated
¾ Superheated
Hubert de Chefdebien,
Electricity only
or coeéneration
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
27
Membrane walls
z Walls are made from
water tubes
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
28
Fins and cooling of the tubes
Ailette soudée
Ailette étirée
70
70 kW/m
kW/m22
70
70 kW/m
kW/m22
273
273 °C
°C
274
274 °C
°C
Zone non soudée
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
29
Refractory
z Brick shaped ES 30
Silicon carbide
¾ Good resistance to fire
and to chemical
aggression
¾ Easy to maintain
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
30
Temperatures and residence time
¾ Gas: a few seconds
¾ Waste (around 1 hr)
850°C,
2s
200°C
1200°C
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
31
Opportunity to burn
sewage sludge
z Combustion of sewage sludge
¾ Fresh (typic. if < 10%)
¾ Dried
(typic up to 20%)
z Some references
¾
¾
¾
¾
Nice
Rennes
Thiverval
Thumaide
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
32
Flue gas cleaning
A
33
Pollutants
Combustion
Gas
:
• CO2
• H2O
• N2
• CO
• N2O
Heavy metals:
• gaseous (Hg, Cd)
• particulates :
•(Pb, Cu, Cr, Co, etc…)
MSW & similar
Azote
Oxygen
Sulphur POP, dioxins
Carbone
Chlorine
Bio Pollutants
Fluor
Heavy metals
Hydrogen
Water
Acid gases:
• HCl
• HF
• SOx (SO3,SO2)
• NOx (NO,NO2)
Persistent Organic
Pollutants
(POPs) :
• Dioxins (PCDD/F)
• …
Ash and bottom ash
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
34
The main types of processes
z 3 families according to
the anti acidic system
¾ Wet
re
u
t
a
All m ery
¾ Semi-dry
v
¾ Dry
and rming
o
perf sses z 2 kinds of dedusters
e
c
o
r
¾ (Multi-cyclone)
p
¾ Electrostatic Precipitator
(ESP)
¾ Baghouse filter
Wet system
Hubert de Chefdebien,
Semi-dry system
z 2 kinds of de-NOx
¾ SNCR (Selective Non
Catalytic Reduction)
¾ SCR (Selective
Catalytic Reduction)
z 2 kinds of de-diox
¾ Activated carbon
¾ SCR
Dry system
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
35
Wet process
From boiler
ESP
(Electrostatic
Precipitator)
To water treatment
Hubert de Chefdebien,
HCl
scrubber
SOx
scrubber
ID Fan
(Induce draught fan)
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
36
Semi-dry
Reagent (most often lime milk)
Activated carbon injection
Baghouse filter
Reactor
From boiler
Fly ash and reaction
products 2/2
Fly ash and reaction products 1/2
Hubert de Chefdebien,
ID Fan
(Induce draught fan)
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
37
Dry
Reagent (dry lime or
sodium bicarbonate)
Activated carbon injection
Baghouse filter
Reactor
From boiler
Fly ash and
reaction products
Hubert de Chefdebien,
ID Fan
(Induce draught fan)
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
38
How works lime
Réactivité
Réactivité de
de la
la chaux
chaux
Suspension
Ca++
HCl
-
+
H
+
C
l
GRAIN de
CHAUX
CaCl2
Ca(OH) 2 en excès
Phase humide
- diamètre pores Ò
- diffusion Ò
Hubert de Chefdebien,
Phase sèche
- diamètre pores Ô
- diffusion Ô
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
39
Baghouse filter de-duster
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
40
Cake work
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
41
Baghouse online cleaning
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
42
Which process is it?
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
43
Activated carbon injection
Dioxine, la
3,4,7,8-TCDD
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
44
Adsorption on activated carbon
(700 m2/g)
GRAINS DE CHARBON ACTIF
VISUALISATION PAR MICROSCOPIE
A BALAYAGE E LECTRONIQUE
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
45
Auxiliary burner
z To avoid burning waste in non optimal conditions
¾ Start-up
¾ Shut down
z 850°C, 2s
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
46
SNCR De-NOx, urea
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
47
Catalytic reactor
Honeycomb stitch
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
48
SCR De-NOx, Tail-end
From Flue gas cleaning system
From Flue gas cleaning system
Catalytic
reactor
Cold/Warmed Flue
gas exchanger
Heater (burner
or using steam)
Ammonia
injection
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
49
Measured values << ELVs
(Emission Limit Values)
Guaranteed val.
Legislation
10
10
8
8
Operation values
1
50
200
0,8
40
195
0,6
30
6
6
4
4
0,4
20
2
2
0,2
10
0
0
0
0
190
185
180
Dust
HCl
175
170
NO2
SO2
HF
0,1
0,5
0,05
0,08
0,4
0,04
0,3
0,03
0,04
0,2
0,02
0,02
0,1
0,01
0
0
0
Heavy metals
0,06
Hg
Dioxins
FGC
(Flue gas cleaning)
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
50
Emission Limit Values (ELVs) to air according to IED 2010/75/EU
(Industrial Emission Directive of 24/11/2010 ) for different industrial activities using solid fuels
SUBSTANCES
ELVs in mg/Nm3,
ACTIVITY
except dioxins
& furans
in ng/Nm3
Waste
incineration
& coincineration
Combustion
plants
(coal and
lignite and
other solid
fuels)
at 11% O2 Existing & New
> 3 t/h
dry
at 6% O2
dry
at 6% O2
dry
(Equiv.
to
around
7)
Dust
TOC
CO
HCl
HF
SO2
10
10
50
10
1
50
NOx
200
Dioxins Cd
+ Tl
and
furans
0.1
Hg
0.05 0.05
Heavy metals
(Sb + As + Pb
+ Cr +Co + Cu
+ Mn + Ni + V)
0.5
(expressed as
NO2)
Existing & New
< 50
-
-
-
-
-
-
300
-
-
-
-
Existing (started
operation no later
than 7/01/2014)
50-100
30
-
-
-
-
400
[450
pulverised
lignite
combustion]
-
-
-
-
100-300
> 300
25
20
-
-
-
-
250
200
200
200
300
-
-
-
-
50-100
20
-
-
-
-
400
[400
pulverised
lignite
combustion]
-
-
-
-
100-300
20
-
-
-
-
200
150
200
150
-
-
-
-
> 300
10
-
-
-
-
[200
circulating/
pressurised
fluidised bed
combustion]
[200
pulverised
lignite
combustion]
-
-
-
-
50-100
100-300
> 300
50-100
100-300
> 300
30
20
20
20
20
20
-
-
-
-
200
200
200
200
200
150
300
250
200
250
200
150
-
-
-
-
New
Combustion
plants
(biomass)
Thermal
input
(MWth)
Existing (started
operation no later
than 7/01/2014)
New
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
51
Emission Limit Values (ELVs) to air according to IED 2010/75/EU
(Industrial Emission Directive of 24/11/2010 ) for different industrial activities using solid fuels
SUBSTANCES
ELVs in mg/Nm3,
ACTIVITY
except dioxins
& furans
in ng/Nm3
Waste
incineration
& coincineration
at 11% O2 Existing & New
> 3 t/h
dry
Existing & New
Combustion
plants
(coal and
lignite and
other solid
fuels)
at 6% O2
dry
Existing (started
operation no later
(converted than 7/01/2014)
at 11% O2
dry)*
Thermal
input
(MWth)
(Equiv.
to
around
7)
Dust
TOC
CO
HCl
HF
SO2
10
10
50
10
1
50
NOx
200
Dioxins Cd
+ Tl
and
furans
0.1
Hg
Heavy metals
(Sb + As + Pb
+ Cr +Co + Cu
+ Mn + Ni + V)
0.05 0.05
< 50
-
-
-
-
-
-
300 (200)
-
-
-
-
50-100
30 (20)
-
-
-
-
400 (267)
(450 (300)
pulverised
lignite
combustion]
-
-
-
-
100-300
> 300
25 (17)
20 (13)
-
-
-
-
250 (167)
200 (133)
200 (133)
200 (133)
300 (200)
-
-
-
-
50-100
20 (13)
-
-
-
-
400 (267)
[400 (267)
pulverised
lignite
combustion]
-
-
-
-
100-300
20 (13)
-
-
-
-
200 (133)
150 (100)
200 (133)
150 (100)
-
-
-
-
> 300
10 (7)
-
-
-
-
[200 (133)
circulating/
pressurised
fluidised bed
combustion]
[(200 (133)
pulverised
lignite
combustion]
-
-
-
-
50-100
100-300
> 300
50-100
100-300
> 300
30 (20)
20 (13)
20 (13)
20 (13)
20 (13)
20 (13)
-
-
-
-
200 (133)
200 (133)
200 (133)
200 (133)
200 (133)
150 (100)
300 (200)
250 (167)
200 (133)
250 (167)
200 (133)
150 (100)
-
-
-
-
T
N
E
G
N
I
R
T
S
n
t
o
s
i
o
t
a
l
m
s
i
e
g
h
e
l
T
l
:
a
’
t
n
W
e
f
m
n
‘E
o
r
i
v
n
E
n
a
e
Europ
* multiplied New
by 10/15
= (21-11) /
(21-6)
Combustion
plants
(biomass)
at 6% O2
dry
Existing (started
operation no later
than 7/01/2014)
New
LCP: higher ELVs
and
only onFederal
3 pollutants
W-t-E,
Universidade
do Rio Grande do Sul,
Hubert de Chefdebien,
0.5
(expressed as
NO2)
Porto Alegre June 14th, 2012
52
Traitement des
résidus solides
A
53
Bottom ash
Bottom ash discharger
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
54
Bottom ash treatment
z Take off ferrous and
non ferrous metals
z Remove bulky objects
z Ageing in dedicated platforms
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
55
Flue gas cleaning residues
z Landfill for hazardous
waste after stabilisation
treatment or salt mines
Groupe Séché
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
56
Liquid effluents
A
57
All process waters
z More and more plants
without liquid effluents
z If any, classical water
treatment system
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
58
Control – Monitoring
Operation
A
59
In real time
¾ 2 people permanently
¾ Others on daytime
z 20 to 50 people
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
60
Prevention,
Maintenance preparation
z 24hr/24, 7d/7,
8000 hr/an
z 1 or 2
scheduled
shut down a
year
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
61
A solution for shut-down periods
z Baling
¾ No alternative route needed
during shut down periods
¾ For small plants, allows to
have a single line
¾ Solves the saisonnier
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
62
Site insertion
Impact studies
A
63
Site, Implantation
z 3 ha mini
z Less is possible
¾ See besides
z More is better
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
64
Site Insertion, Architecture
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
65
Impact studies
of all kinds
Hubert de Chefdebien,
W-t-E, Universidade Federal do Rio Grande do Sul,
Porto Alegre June 14th, 2012
66
Questions ?
Cliché Jack VARLET
/ Ville de Lons
67

Documentos relacionados