Filipa Alexandra de Abreu Paulos

Transcrição

Filipa Alexandra de Abreu Paulos
FILIPA ALEXANDRA DE ABREU PAULOS
ECOLOGIA COMPORTAMENTAL DE Callithrix jacchus (PRIMATES,
CALLITRICHIDAE) EM AMBIENTE DE CAATINGA
RECIFE, 2015
i
FILIPA ALEXANDRA DE ABREU PAULOS
ECOLOGIA COMPORTAMENTAL DE Callithrix jacchus (PRIMATES,
CALLITRICHIDAE) EM AMBIENTE DE CAATINGA
Dissertação
de
mestrado
apresentada
ao
Programa de Pós-Graduação em Ecologia
(PPGE) da Universidade Federal Rural de
Pernambuco (UFRPE) como parte dos requisitos
necessários para obtenção do título de mestre em
Ecologia.
Orientadora: Dra. Nicola Schiel
(Universidade Federal Rural de Pernambuco)
Co-orientadores:
Dr. Daniel Pessoa
(Universidade Federal do Rio Grande Do Norte)
Dr. Antonio Souto
(Universidade Federal de Pernambuco)
RECIFE, 2015
ii
ECOLOGIA COMPORTAMENTAL DE Callithrix jacchus (PRIMATES,
CALLITRICHIDAE) EM AMBIENTE DE CAATINGA
FILIPA ALEXANDRA DE ABREU PAULOS
Dissertação de mestrado apresentada ao Programa de
Pós-Graduação em Ecologia (PPGE) da Universidade
Federal Rural de Pernambuco (UFRPE) como parte
dos requisitos necessários para obtenção do título de
mestre em Ecologia.
Dissertação apresentada e ________________________ em _____/_____/_____
Orientadora
_____________________________________
Profa Dra. Nicola Schiel – UFRPE
Examinadores
_____________________________________
Dra. Tacyana Oliveira – UEPB
_____________________________________
Dra. Danise Alves – UFRPE
_____________________________________
Dr. Thiago Gonçalves-Souza – UFRPE
Suplente:
_____________________________________
Dr. Pabyton Cadena – UFRPE
iii
Ficha Catalográfica
P331e
Paulos, Filipa Alexandra de Abreu
Ecologia comportamental de Callithrix jacchus (Primates,
Callitrichidae) em ambiente de Caatinga / Filipa Alexandra de
Abreu Paulos. -- Recife, 2015.
85f. : il.
Orientadora : Nicola Schiel.
Dissertação (Mestrado em Ecologia) – Universidade Federal
Rural de Pernambuco, Departamento de Biologia, Recife, 2015.
Inclui referência(s) e anexo.
1. Comportamento 2. Semiárido 3. Sagui-comum
4. Polimorfismo visual I. Schiel, Nicola, orientadora II. Título
CDD 574.5
iv
DEDICATÓRIA
Dedico esta dissertação à kitty,
e a todos os saguis que acompanhei nesta jornada
v
EPÍGRAFE
“A grandeza de uma nação pode ser julgada
pelo modo que seus animais são tratados”
- Mahatma Gandhi
vi
AGRADECIMENTOS
Agradeço primeiramente á minha mãe, por sempre acreditar em mim e apoiar
minhas decisões mesmo não concordando com elas. Sem o seu apoio eu não estaria aqui
defendendo esta dissertação. Ao meu irmão, pois apesar de ser desmiolado, também
sempre me incentivou a ir mais longe e seguir o meu sonho. Agradeço à minha familia,
em geral. Meus avós, tios, primos, e claro kitty de quem tanto sinto falta.
À minha orientadora, Dra. Nicola Schiel, por apesar de não me conhecer me ter
aceito orientar mesmo eu estando ainda do outro lado do oceano. Por todos os
ensinamentos, ajudas, contribuições, paciência e sermões durante todo o processo, que
me ajudaram a crescer tanto profissionalmente como pessoalmente. Aos meus coorientadores, Dr. Daniel Pessoa e Dr. António Souto, pelas suas contribuições valiosas
no trabalho.
À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela
concessão da bolsa de estudos.
Ao Dr. Geraldo Baracuhy por nos ceder nosso local de estudo. E a todas as
pessoas envolvidas naquela fazenda, pois foram um apoio bastante importante durante
todo o tempo passado lá.
À coordenadora do curso de Pós-Graduação em Ecologia (PPGE), Paula Braga,
por toda a ajuda prestada no momento da inscrição e matricula no curso, assim como
pela disponibilidade total, quando eu ainda lá de Portugal enviava milhoes de e-mails
com as minhas dúvidas e problemas. Muito obrigada! A todos os colegas da turma
2013.2, pelo companheirismo e ajuda inicial quando ainda me encontrava perdida pelo
Brasil. Um especial obrigado á Joanny Martins, que foi a minha guia quando não sabia
nem para onde ia e tinha um monte de burocracia para tratar. Problema de ser
estrangeira!
A todos os meus colegas e amigos do Laboratório de Etologia Teórica e Aplicada
(LETA). Obrigada pela amizade, pelas mesas redondas, pelas confraternizações e por
toda a ajuda durante estes dois anos. Foi muito bom ter conhecido todos vocês! Um
especial obrigado à Natasha Bittencourt, Shalana Castro, Fernanda de la Fuente,
Marilian Boachá, Danise Alves e Rafaela Souza pela amizade que apesar de não ser de
sempre, tenho a certeza que será para sempre, e por me fazerem sentir em casa mesmo
vii
estando a milhares de km da minha cidade natal. Obrigada pelas conversas, apoio,
carinho, e aprendizagens. Parece que terão de me aturar por mais uns anos.
Ao Mauro Vilar e mais uma vez à Rafaela Souza, por me mostrarem Recife, por
me darem a conhecer esta cidade e todas as outras (principalmente Pipa). Por sempre
me incluirem em todas as vossas saídas, mesmo eu negando, ahaha! Por todas as novas
amizades que fiz à vossa conta, e por serem o meu pilar aqui no Brasil. Aprendi muito
com vocês. Espero um dia poder retribuir toda a vossa hospitalidade =)
Por último, mas não menos importante, obrigada a todos os amigos de Portugal,
pela amizade verdadeira que não muda apesar da distância. Um especial obrigado à
Vânia Baptista, que para além de amiga é como um irmã e que mesmo longe continua
perto, ajudando de todas as maneiras possiveis e imaginárias, ouvindo meus problemas
e dúvidas existênciais e dando sempre suas contribuições para a melhoria deste trabalho.
Não poderia deixar de agradecer à parte mais importante desta dissertação, aos
saguis. Eles que foram parte essencial deste estudo, pois sem a sua facil habituação à
minha presença nada disto teria sido possível.
viii
SUMÁRIO
RESUMO .....................................................................................................................................xi
ABSTRACT ............................................................................................................................... xiii
1.
INTRODUÇÃO GERAL .................................................................................................. 14
2.
FUNDAMENTAÇÃO TEÓRICA ................................................................................... 16
2.1
Caatinga ..................................................................................................................... 16
2.1.1
Fauna .................................................................................................................. 16
2.2 Visão em primatas ........................................................................................................... 17
2.3 Espécie em estudo: Callithrix jacchus ............................................................................ 20
REFERÊNCIAS BIBLIOGRÁFICAS .................................................................................... 22
Artigo 1....................................................................................................................................... 32
Feeding ecology and behavioral adjustments: flexibility of a small neotropical primate
(Callithrix jacchus) to survive in a semiarid environment ..................................................... 32
Abstract ...................................................................................................................................... 33
Introduction ............................................................................................................................... 34
Materials and Methods ............................................................................................................. 35
Study area ............................................................................................................................... 35
Data collection ........................................................................................................................ 36
Statistical analysis .................................................................................................................. 37
Results ........................................................................................................................................ 37
Behavioral time budget .......................................................................................................... 37
Consumed food items ............................................................................................................. 38
Description of the consume of plant items ............................................................................ 39
Discussion ................................................................................................................................... 41
References .................................................................................................................................. 43
Artigo 2....................................................................................................................................... 47
Comportamento de forrageio por insetos por Callithrix jacchus (PRIMATES,
CALLITRICHIDAE) de vida livre: uma abordagem o polimorfismo visual ...................... 47
Resumo ....................................................................................................................................... 49
Introdução.................................................................................................................................. 50
Métodos ...................................................................................................................................... 52
Coleta de dados comportamentais .......................................................................................... 53
Coleta de insetos ..................................................................................................................... 55
Análise estatística.................................................................................................................... 55
ix
Resultados .................................................................................................................................. 56
Discussão .................................................................................................................................... 59
Agradecimentos ......................................................................................................................... 62
Referências Bibliográficas ........................................................................................................ 62
ANEXO III. NORMAS PARA SUBMISSÃO NA REVISTA MAMMAL RESEARCH ..... 71
ANEXO III. NORMAS PARA SUBMISSÃO NA REVISTA AMERICAN JOURNAL OF
PRIMATOLOGY ........................................................................................................................ 81
x
Abreu, Filipa Alexandra de (MSc Ecologia) Universidade Federal Rural de
Pernambuco. Julho de 2015. Ecologia comportamental de Callithrix jacchus
(PRIMATES, CALLITRICHIDAE) em ambiente de Caatinga. Nicola Schiel
(Orientadora); Daniel Pessoa e Antônio da Silva Souto (Co-orientadores).
RESUMO
Callithirx jacchus é um primata do Novo Mundo, com uma grande adaptabilidade a
diversos ambientes, habitando desde Mata Atlântica à Caatinga. Este pequeno primata
possui uma dieta onívoria e uma visão polimórfica, com dois fenótipos na população
(tricromatas e dicromatas). A Caatinga é um ambiente semiárido que apresenta
condições extremas, como altas temperaturas e baixas precipitações, impondo vários
desafios aos animais que a habitam. Devido a estas condições ambientais, existe uma
elevada escassez de recursos vegetais, estando estes disponíveis apenas em alguns
períodos do ano. Por outro lado, há disponibilidade de insetos durante todo o ano. Dessa
forma, o presente estudo tem como objetivo geral analisar a ecologia comportamental
do
sagui-comum
de
vida
livre.
Primeiramente
investigamos
os
padrões
comportamentais e a ecologia alimentar destes primatas nas estações chuvosa e seca.
Posteriormente, comparamos o forrageio por insetos entre fêmeas e machos,
investigando o efeito que os fenótipos têm nestas capturas. O estudo foi realizado na
Fazenda Marimbondo, situada no munícipio de Cabaceiras, Paraíba. Durante 6 meses de
estudo, observamos 19 indivíduos (5 grupos), através do método de observação
comportamental animal focal associado ao método de ad libitum. Adicionalmente,
registramos todos os eventos de exploração de recursos vegetais, assim como, todas as
capturas de insetos. Com relação aos padrões comportamentais, observamos uma
diferença significativa no tempo de descanso entre as duas estações, com aumento deste
comportamento na estação seca. A respeito da ecologia alimentar, constatamos o
consumo de alimentos alternativos tais como cladódio e flores de cactáceas entre outros.
Ainda, observamos um consumo de várias presas animais, nomedamente presas
insectívoras. Dentro deste consumo, observamos um maior número de capturas por
parte de fêmeas, existindo apenas diferença significativa nas capturas de insetos totais e
de coloração conspícua quando fêmeas lactantes estavam presentes na amostra. Por fim,
verificamos um efeito do tamanho do inseto aliado à sua coloração nas capturas por
machos dicromatas. Estes resultados sugerem que C. jacchus possui estratégias
comportamentais ajustadas para sobreviver num ambiente como a Caatinga. Além
xi
disso, as capturas de insetos parecem ser influenciadas tanto pela lactação como pelo
fenótipo, sugerindo que na população em estudo este polimorfismo seja mantido por
vantagem heterozigótica.
Palavras-chaves: sagui comum; padrões comportamentais; polimorfismo visual;
semiárido.
xii
Abreu, Filipa Alexandra de (MSc Ecologia). Federal Rural University of Permanbuco.
July
2015.
Behavioral
ecology
of
Callithrix
jacchus
(PRIMATES,
CALLITRICHIDAE) in Caatinga environment. Nicola Schiel (Supervisor); Daniel
Pessoa e Antônio da Silva Souto (Co-supervisors).
ABSTRACT
Callithrix jacchus is a Neotropical primate, with a high adaptability to different
environments, occuring in Atlantic Forest and Caatinga. These primates have an
omnivorous diet and a polymorphic vision, with two phenotypes in the population
(trichromatic and dichromatic). The Caatinga is a semiarid environment that presents
extreme conditions such as high temperature and low rainfall, imposing several
challenges to animals. Due to these conditions, plant resources are scarce and available
only in certain periods of the year. Nonetheless, insects are available during all year.
This study aimed to analyze the behavioral ecology of free-living commom marmosets
in a Caatinga environment. First, we investigated the behavioral patterns and feeding
ecology of these primates in the rainy and dry season. Later, we compared how colour
vision affect insect prey capture between females and males. The study was conduted in
the Fazenda Marimbondo, located near to Cabaceiras, Paraíba. During 6 months of
study, we observed 19 individuals (5 groups), throught the focal animal sampling
method associated with ad libitium method. Additionally, we recorded all the consumed
plant items and animal prey captures. We observed a significant difference in the resting
time between the two seasons, with an increase of this behavior during the dry season.
Insectivorous preys were the most explored item by common marmosets, and
alternative plant resources such as cactu’s cladode were also consumed. Overall, within
the insect consumption, we observed a significant higher number of captures performed
by females and a significant higher number in conspicuous insects captures when
lactating females were present. Finally, we found a size-coloration effect in the insect
captures performed by males (dichromats). These results suggest that Callithrix jacchus
adjust their behavioral patterns and feeding ecology to survive in a semiarid
environment. Futhermore, the insects captures appear to be influenced by both lactation
and colour vision, suggesting that the polymorphism in our population is maintained by
heterozygous advantage.
Key-words: common marmoset; time budget; visual polymorphism; semiarid.
xiii
1.
INTRODUÇÃO GERAL
Na Caatinga, um ambiente semiárido com altas temperaturas e baixa pluviometria
(LEAL et al., 2003), a escassez de recursos podem ser extremas. Sugere-se que
mamíferos que nela habitam tendem a adquirir estratégias comportamentais de maneira
a sobreviver a estas condições tão adversas (e.g. STREILEIN, 1982; ALBUQUERQUE
et al., 2012). Alguns estudos neste ambiente semiárido têm sido direcionados para
primatas, devido à variação nas suas características morfológicas, ecológicas e
comportamentais (EISENBERG & REDFORD, 1999). Assim, alguns autores revelam
que estas estratégias comportamentais podem ser observadas nas mudanças temporais
dos padrões comportamentais, como o caso de DE LA FUENTE et al. (2014), em que
os primatas ajustaram seus comportamentos de acordo com a temperatura ao longo do
dia. Outros mostram que estas estratégias são feitas quanto à alimentação, modificando
a sua dieta (AMORA et al., 2013) ou utilizando de ferramentas para obter o alimento
(MOURA & LEE, 2004; MORAES et al., 2014). No estudo conduzido por AMORA et
al. (2013), os autores observaram um consumo de itens alimentares peculiares por parte
de primatas, tal como folhas e frutas de cactáceas, enquanto os estudos de MOURA &
LEE (2004) e MORAES et al. (2014) observaram o uso de ferramentas para obter
alimento de espécies vegetais protegidas por espinhos ou de difícil acesso.
Com relação a dieta de primatas, estudos que tratem da visão de cores são de
grande contribuição para a compreensão das técnicas de forrageio utilizadas por este
grupo, visto que a seleção natural favoreceu a visão como principal meio de percepção
do ambiente (KLEBER et al., 2003). Os primatas do Novo Mundo possuem um tipo de
visão característico em que machos e fêmeas homozigóticas possuem visão dicromática
e que fêmeas heterozigóticas apresentam visão tricromática (JACOBS & NEITZ, 1987).
As únicas exceções são os bugios (Alouatta sp.) e os macacos-da-noite (Aotus sp.), que
são tricromáticos e monocromáticos, respetivamente (JACOBS et al., 1996a; JACOBS
et al., 1996b). Relativamente a esta área, já foram realizados vários estudos (e.g.
OSORIO & VOROBYEV, 1996; REGAN et al., 2001; CAINE et al., 2003, 2010;
DOMINY et al., 2003; SMITH et al., 2003; OSORIO et al., 2004; SAITO et al., 2005;
VOGEL et al., 2007; MELIN et al., 2007, 2012; PERINI et al., 2009; FEDIGAN et al.,
2014) revelando que a maior vantagem do tricromatismo é a detecção de itens de
coloração conspícua (OSORIO & VOROBYEV, 1996; CAINE & MUNDY, 2000;
SMITH et al., 2003). Por outro lado, os dicromatas têm vantagem no forrageio em
locais com pouca luminosidade, possuem uma melhor visão espacial e têm uma maior
14
facilidade em detectar alimentos crípticos ou camuflados (REGAN et al., 2001; CAINE
et al., 2003, 2010; SAITO et al., 2005; MELIN et al., 2007; FREITAG & PESSOA,
2012; SMITH et al., 2012). MORGAN et al. (1992) referem que estes indivíduos
utilizam outras pistas acromáticas tal como brilho, forma ou textura ao invés da cor para
detectar os objetos. No entanto, apesar da grande variedade de estudos a maioria é
realizada em cativeiro, sendo poucos estudos direcionados para o gênero Callithrix.
Callithrix jacchus é um pequeno primata neotropical com visão polimórfica,
possuindo uma grande distribuição geográfica (PONTES & CRUZ, 1995), destacandose por conseguir sobreviver em uma grande variedade de ambientes, desde a Mata
Atlântica à Caatinga (MODESTO & BERGALLO, 2008). O sagui-comum é uma
espécie diurna, arborícola e que possui em seu grupo, normalmente apenas um par
reprodutor (AURICCHIO, 1995). Alimentam-se de insetos durante todo o ano,
particularmente de grilos, gafanhotos, cigarras, formigas e térmitas (STEVENSON &
RYLANDS, 1988). Visto habitarem também a Caatinga, alguns estudos já foram
realizados focando em partes distintas da sua ecologia (MOURA, 2007; AMORA et al.,
2012; DE La FUENTE et al., 2014). Com relação ao seu polimorfismo visual, foram
realizados alguns trabalhos nesta área, mas todos eles em cativeiro (TRAVIS et al.,
1988; TOVÉE et al., 1992; WILLIAMS et al., 1992; HUNT et al., 1993; SHYUE et al.,
1998; KAWAMURA et al., 2001; SURRIDGE & MUNDY, 2002). No entanto, estudos
comportamentais são ainda bastante escassos (FREITAG & PESSOA, 2012;
MOREIRA et al., 2015).
Assim, devido tanto à certa facilidade de habituação aos observadores, como à sua
grande adaptabilidade a diversos ambientes e aos seus padrões de atividade diurnos, esta
espécie foi utilizada como modelo para estudos ecológicos e comportamentais. O
presente estudo foca na ecologia comportamental da espécie Callithrix jacchus em
ambiente de Caatinga, tendo como objetivos: (1) Verificar como um primata sem
aparente adaptação fisiológica consegue sobreviver em um ambiente semiárido como a
Caatinga, observando para isso o “time-budget” de indivíduos nas duas estações
(chuvosa e seca), assim como, a sua dieta ao longo de todo o estudo; (2) Observar o
comportamento de forrageio por insetos de fêmeas e machos, tentando verificar de que
forma esta captura é afetada pelos dois fenótipos existentes na população.
15
2. FUNDAMENTAÇÃO TEÓRICA
2.1
Caatinga
A Caatinga é o único domínio morfoclimático restrito ao território brasileiro
compreendendo uma área de aproximadamente 800.000 km2, representando 70% da
região do Nordeste e 11% do território nacional (ANDRADE-LIMA, 1981). Este
ambiente apresenta características climáticas extremas tais como alta radiação solar,
baixa nebulosidade, alta temperatura média anual, umidade relativa baixa e
precipitações baixas (LEAL et al., 2003). A temperatura média anual varia entre 24 a
28º C e a precipitação média anual varia entre 240 e 1.500 mm (PRADO, 2003). Esta
precipitação é bastante invulgar/sazonal, sendo reduzida a períodos curtos do ano,
normalmente três meses (NIMER, 1979).
Considerada como “Floresta Branca” (PRADO, 2003), este ambiente é composto
predominantemente por florestas arbóreas ou arbustivas baixas de espécies vegetais
decíduas apresentando espinhos, microfilia e características xerofíticas. Estas
características permitem às plantas sobreviverem em períodos longos de estiagem,
quando a umidade do solo é extremamente baixa (LEAL et al., 2003; ANDRADE et al.,
2005; ALBUQUERQUE et al., 2012). A Caatinga possui cerca de 1500 espécies de
plantas diferentes (ALBUQUERQUE et al., 2012), sendo as famílias mais
representativas desta região: Fabaceae/Leguminosae, Cactaceae, Bromelacieae,
Euphorbaceae (LEAL et al., 2003). Entres estas, as mais representadas e também
endêmicas deste ambiente são Fabaceae/Leguminosae (QUEIROZ, 2002) e Cactaceae
(TAYLOR & ZAPPY, 2002). No entanto, a composição florística das caatingas não é
uniforme e varia de acordo com o volume das precipitações, da qualidade dos solos
entre outros fatores (BARBOSA et al., 2003), podendo ser observadas variações
fisionômicas a distâncias relativamente curtas (escala local) (AMORIM et al., 2005).
2.1.1 Fauna
Estudos com invertebrados são escassos neste ambiente. Entre esta fauna, a classe
Insecta é uma das que contêm maior número de espécies, estando dividida em 26 ordens
(GULLAN & CRANSTON, 2005). Neste ambiente, são poucos os estudos sobre
sazonalidade e abundância desta classe, sendo que os realizados apresentam resultados
bastante semelhantes, relatando que os insetos são mais abundantes em épocas chuvosas
e próximo a açudes, onde a vegetação é mais verde (VASCONCELLOS et al., 2010;
16
SILVA & LIMA, no prelo). Segundo vários autores as ordens mais comuns em
ambientes na Caatinga são Diptera, Hymenoptera e Coleoptera (VASCONCELLOS et
al., 2010; OLIVEIRA et al., 2013; SILVA & LIMA, no prelo). Tal como a maioria dos
animais, estes insetos possuem estratégias de fuga a predação, sendo estas, camuflagem
e apresentação de coloração críptica, mimetismo (coloração aposemática) ou
procurando locais de difícil acesso para predadores (EDMUNDS, 1974).
Relativamente á fauna vertebrada, os estudos têm crescido nos últimos anos.
Desta forma, aves, repteis, peixes e mamíferos têm sido alvo de vários estudos em
ambiente semiárido, aumentando assim o conhecimento sobre a sua diversidade neste
tipo de ambiente (ALBUQUERQUE et al., 2012). Dentro deste sub-filo, os mamíferos
são os que apresentam uma menor diversidade (ALBUQUERQUE et al., 2012), sendo
conhecidas cerca de 156 espécies, 12 destas endêmicas do semiárido brasileiro
(ALBUQUERQUE et al., 2012). Pelo facto de a Caatinga ser geologicamente recente
(AB'SÁBER, 1974), este grupo não possui adaptações fisiológicas para viver em
ambientes de condições tão severas (STREILEIN, 1982). Contudo vários autores têm
demonstrado o desenvolvimento de estratégias comportamentais possibilitando a sua
existência em ambiente semiárido (e.g. STREILEIN, 1982; MENDES et al., 2004;
FREITAS et al., 2005). Estes estudos mostram, em geral, que as estratégias utilizadas
pelos animais são através de mudanças no seu “time-budget”, isto é, evitando as horas
de maior temperatura e calor para realizar as suas atividades diárias (ROCHA, 1995; DE
LA FUENTE et al., 2014), ou mudanças na sua dieta, visto a escassez de recursos ser
bastante comum no semiárido (e.g. MOURA & LEE, 2004; AMORA et al., 2013;
MORAES et al., 2014). Com relação aos primatas, são conhecidas algumas espécies
que habitam a Caatinga (e.g. Callithrix jacchus, Callithrix pennicillata, Sapajus
libidinosus, Sapajus flavius, Alouatta ululata) havendo consequentemente, estudos
direcionados para a sua ecologia nestas condições (e.g. MOURA & LEE, 2004;
MOURA, 2007; FERREIRA et al., 2009; MORAES et al., 2014, AMORA et al., 2013,
DE LA FUENTE et al., 2014).
2.2 Visão em primatas
A visão dos vertebrados requer a presença de fotorreceptores, bastonetes e cones,
e de mecanismos neurais que descodificam os sinais visuais (JACOBS et al., 1996a,b).
O tipo de visão está relacionada com o número de cones existentes na retina e o seu pico
de absorção (DOMINY et al., 2003; FREITAG & PESSOA, 2012). Desta forma, um
17
organismo tricromático possui três tipos de cones, sendo cada um sensível a
determinado tipo de comprimento de onda (JACOBS, 1994). Os cones S (do inglês
“short”) possuem pigmentos com pico de sensibilidade para a cor azul, isto é,
comprimentos de onda curtos (CAINE et al., 2003). Os cones M e L (do inglês
“middle” e “long”) apresentam os seus picos de sensibilidade para a cor verde
(comprimentos de onda médios) e cor vermelha (comprimentos de onda longos),
respetivamente (CAINE et al., 2003; SURRIDGE et al., 2003). Os indivíduos de visão
dicromata, pelo contrário, possuem apenas dois tipos de cones. O cone sensível ao
comprimento de onda curto (cone S) e o cone sensível ao comprimento de onda médio
ou longo (M ou L) (GOSH et al., 1997).
Entre os primatas, os primatas do Velho Mundo possuem tricromacia uniforme
com visão similar à dos seres humanos (ONISHI et al., 1999). Já nos Platyrhini
(Primatas do Novo Mundo) existe polimorfismo visual, em que os machos são
obrigatoriamente dicromatas e as fêmeas podem apresentar dicromatismo ou
tricromatismo (JACOBS & NEITZ, 1987). Isto acontece, pois a codificação dos
comprimentos de onda médio e longo se dá no mesmo locus do cromossomo X
(MOLLON et al., 1984), ao contrário do que acontece em Primatas do Velho Mundo,
em que a codificação se processa em diferentes loci. Já o comprimento de onda mais
curto (S) é codificado no autossoma 7, estando presente em todos os primatas (HUNT et
al., 1993). Assim, as fêmeas heterozigóticas para esse gene irão possuir visão
tricromática enquanto que as fêmeas homozigóticas são dicromatas (MOLLON et al.,
1984; JACOBS & NEITZ, 1987; TRAVIS et al., 1988). De acordo com JACOBS &
DEEGAN (2005) 60% das fêmeas apresentam tricromatismo e apenas 40% apresentam
dicromatismo. Ainda, em cada tipo de visão podem ser encontrados até seis diferentes
fenótipos dentro de uma mesma população, isto é, três tipos de dicromatas e três tipos
de tricromatas com picos de absorção diferenciados (OSORIO et al., 2004; PESSOA et
al., 2012). Porém, dentro da mesma infraordem existe o gênero Alouatta, nos quais
todos os indivíduos são tricromatas, e o gênero Aotus em que só existe
monocromatismo, isto é, todos os animais possuem apenas o comprimento de onda mais
curto (JACOBS et al., 1996a; JACOBS et al., 1996b).
A visão polimórfica nos primatas do Novo Mundo é ainda uma incógnita. O seu
surgimento levanta várias hipóteses (JACOBS et al., 1996a; GILAD et al., 2004;
MATSUI et al., 2010), sendo as mais aceitas a hipótese da frugivoria e a hipótese da
folivoria. A primeira defende que a tricromacia se mantêm devido ao fato de esta
18
conseguir discriminar frutas maduras entre as folhagens verdes das árvores (OSORIO &
VOROBYEV, 1996; REGAN et al., 2001). Já a hipótese da folivoria refere que a
tricromacia é favorecida devido a discriminação de folhas maduras sob uma folhagem
velha e castanha (KREMERS et al., 1999) e de folhas jovens e de tom avermelhado
entre as folhagens verdes (DOMINY & LUCAS, 2001; DOMINY et al., 2003). Assim,
é considerada como principal vantagem dos indivíduos tricromatas a discriminação de
objetos de cores conspícuas (e.g. CAINE & MUNDY, 2000; SMITH et al., 2003). Em
contrapartida, estudos recentes realizados por CAINE et al. (2003, 2010), SAITO et al.
(2005), MELIN et al. (2007) e SMITH et al. (2012) relatam vantagens dos dicromatas
sobre os indivíduos tricromatas. Estes estudos mostram que este fenótipo tem facilidade
em forragear em locais de baixa luminosidade, tem uma melhor visão espacial e detetam
com mais facilidade itens camuflados ou com coloração críptica, já que utilizam outras
pistas, como brilho, textura e forma (MORGAN et al.,1992).
Relativamente à permanência deste polimorfismo em primatas do Novo Mundo,
apenas recentemente se tem debatido sobre essa questão. O fato deste polimorfismo se
manter ao longo de 14 milhões de anos sugere que haja uma vantagem adaptativa para
indivíduos com visão tricromática. São conhecidas duas hipóteses gerais: a hipótese da
vantagem heterozigótica e a hipótese da seleção por frequência negativa (MOLLON et
al., 1984). Estas hipóteses tentam explicar como o balanço da seleção afeta a frequência
dos dois fenótipos (BOISSINOT et al., 1998; SURRIDGE et al., 2003). A hipótese da
vantagem heterozigótica sugere que fêmeas tricromatas tenham um “fitness” mais
elevado que as fêmeas dicromatas e por isso este polimorfismo se mantêm (SURRIDGE
& MUNDY, 2002). Já a segunda hipótese indica que este polimorfismo se mantém, pois
a seleção favorece o fenótipo com menor frequência, no caso o tricromatismo. Ainda,
este tipo de seleção pode ser dividido em divergência de nicho e associação por
benefício mútuo. A divergência de nicho sugere que estes dois fenótipos ocupam
diferentes nichos, aumentando assim o “fitness” tanto dos dicromatas como dos
tricromatas, enquanto que a associação por benefício mútuo refere que o aumento na
diversidade de fenótipos, aumenta o “fitness” dos dois (BUNCE, 2015). No entanto,
estudos mostrando o efeito que estas duas hipóteses têm no polimorfismo em primatas
são ainda escassos e sem resultados concretos (DOMINY et al., 2003; SMITH et al.,
2003; VOGEL et al., 2007; HIWATASHI et al., 2010; FEDIGAN et al., 2014).
19
2.3 Espécie em estudo: Callithrix jacchus
Callithrix jacchus é um primata do Novo Mundo da família Callitrichidae
(HERSHKOVITZ, 1977), sendo popularmente conhecido como sagui-comum, saguide-tufo-branco ou sagui-estrela (AURICHIO, 1995). Habitam naturalmente no Nordeste
do Brasil (SOUSA & PONTES, 2008), possuindo uma grande adaptabilidade a
diferentes ambientes podendo ser encontrados desde a Mata Atlântica a Caatinga
(PONTES & CRUZ, 1995). São animais sociais, vivendo em grupos de 3 a 15
indivíduos, formados por adultos, juvenis e infantes (STEVENSON & RYLANDS,
1988). A reprodução deste primata neotropical é típica dos callithriquideos, existindo
normalmente apenas um par reprodutor, com uma fêmea e macho dominantes em cada
grupo, gerando filhotes gêmeos duas vezes por ano (AURICCHIO, 1995). Isto acontece,
pois tanto a fêmea reprodutora como o macho reprodutor suprimem a fertilidade dos
outros indivíduos (fêmeas e machos) do grupo (STEVENSON & RYLANDS, 1988).
No entanto, poliandria e poliginia podem ocorrer nesta espécie (FERRARI & LOPES
FERRARI, 1989). A gestação dos filhotes é de 140 a 150 dias, nascendo com cerca de
10 a 15% do tamanho da progenitora (TARDIF et al., 2001). Além disso, estas fêmeas
possuem estro logo após o parto (ABBOTT et al., 1993). Todos estes fatores levam a
que a gestação, assim como a lactação, exijam da fêmea reprodutora um grande gasto
energético (NIEVERGELT & MARTIN, 1999; TARDIF et al., 2004). Normalmente, o
cuidado parental é dividido pelos membros do grupo (FAULKES et al., 2009), no
entanto, durante as primeiras semanas de vida dos infantes a fêmea é a mais presente
neste cuidado (FERRARI & LOPES FERRARI, 1989).
O padrão de atividades da espécie é vasto, tendo sido descrito por STEVENSON
& POOLE (1976). De acordo com MAIER et al. (1982), estes primatas têm um período
de atividade de cerca de 12 horas, sendo os comportamentos de deslocamento, interação
com outros membros do grupo e forrageio os mais comuns realizados durante o dia
(ALONSO & LANGUUTH, 1989). Os saguis-comuns são onívoros (STEVENSON &
RYLANDS, 1988) e a sua dieta é variada, alimentando-se de frutas, folhas, sementes,
insetos, aracnídeos, pequenos lagartos, sapos, filhotes e ovos de aves (RYLANDS & de
FARIA, 1993). Apesar da sua falta de dimorfismo sexual, estes animais apresentam
algumas diferenças sexuais no que diz respeito ao forrageio por alimento (e.g.
MICHELS, 1998; BOX et al., 1999; YAMAMOTO et al., 2004). Estudos indicam que
fêmeas não só têm mais sucesso na procura, detecção e captura de alimento (e.g.
MICHELES, 1998; YAMAMOTO et al., 2004), como também têm prioridade no
20
acesso a este alimento (e.g. TARDIF & RICHTER, 1981; LOPES et al., 1997). No
geral, esta espécie passa boa parte do seu tempo procurando por presas, sendo
ortópteros (grilos e gafanhotos), himenópteras (formigas), isópteros (térmitas),
hemípteras (cigarras) e lepidópteras (normalmente, larvas de borboletas e mariposas) as
presas insetívoras mais consumidas (STEVENSON & RYLANDS, 1988). A estratégia
de forrageio destes animais é considerada vantajosa visto que normalmente os insetos
capturados têm coloração críptica, ficando camuflados sob o substrato (STEVENSON
& RYLANDS, 1988; SCHIEL et al., 2010). Estes insetos além de se camuflarem,
evitam a predação colocando-se em locais de difícil acesso como buracos ou possuindo
mimetismo, com colorações aposemáticas (EDMUNDS, 1974).
Assim como nos demais primatas do Novo Mundo, Callithrix jacchus também
possui dimorfismo visual. Para esta espécie foram realizados estudos genéticos
(WILLIAMS et al., 1992; HUNT et al., 1993), microespectofotometricos e
comportamentais (TOVÉE et al., 1992), comprovando assim que este polimorfismo
existe tal como na maioria das espécies desta infraordem. Outros estudos mostraram que
os picos de absorção destes animais são de 430 nm, 543 nm, 556 nm e 563 nm
(SURRIGDE & MUNDY, 2002). Trabalhos mais antigos foram também realizados
nesta área, no entanto todos mostraram valores de picos de absorção próximos aos
descritos (TRAVIS et al., 1988; SHYUE et al., 1998; KAWAMURA et al., 2001). Em
um estudo mais recente realizado por FREITAG & PESSOA (2012), focou-se nos
efeitos da luminosidade na detecção de itens alimentares de diferentes cores sob um
substrato verde por machos dicromatas. Estes chegaram a conclusão que em uma
luminosidade intermediária, os dicromatas conseguiam identificar mais facilmente itens
de cor laranja. Recentemente, MOREIRA e colaboradores (2015), mostraram que
fêmeas reprodutoras utilizam pistas visuais da pele da zona sexual (sinais
acromáticos/cromáticos e luminosidade) para indicar a altura do parto para os outros
indivíduos do grupo. No entanto, são inexistentes os estudos em ambiente natural para
esta espécie. A dificuldade de se controlar todas as variáveis faz com que a grande
maioria destes estudos seja feita em laboratório.
Estudos que visem ecologia comportamental em ambiente semiárido ou a forma
como o polimorfismo visual afeta o forrageio de insetos são ainda escassos no gênero
Callithrix, e consequentemente, em saguis-comuns. Assim, devido à alta facilidade com
que C. jacchus se habitua à presença humana, à sua ampla distribuição além da sua
atividade diurna, este pequeno primata neotropical foi utilizado como modelo de estudo.
21
REFERÊNCIAS BIBLIOGRÁFICAS
ABBOTT, D. H., BARRET, J., GEORGE, L. M. Comparative aspects of the social
suppression of reproduction in female marmosets and tamarins. 1993. In: Rylands,
A. B. (ed.) Marmosets and Tamarins. Systematics, Behaviour, and Ecology.
Oxford University Press, Oxford, pp. 152–163.
AB’SABER, A. N. O domínio morfoclimático semiárido das caatingas brasileiras.
Universidade de São Paulo, Instituto de geografia, São Paulo, 1974.
ALBUQUERQUE, U. L., ARAÚJO, E. L., EL-DEIR, A. C. A., LIMA, A. L. A.,
SOUTO, A., BEZERRA, B. M., FERRAZ, E. M. N., FREIRE, E. M. X., et al.
Caatinga revisited: Ecology and conservation of an important seasonal dry forest.
The Scientific World Journal, 2012. doi:10.1100/2012/205182.
ALONSO, C., LANGGUTH, A. Ecologia e comportamento de Callitrhix jacchus
(Primates: Callitrichidae) numa ilha de floresta atlântica. Revista Nordestina de
Biologia, 6(2):105-137, 1989.
AMORA, T. D., BELTRÃO-MENDES, R. & FERRARI, S. F. Use of alternative plant
resources by common marmoset (Callithrix jacchus) the semi-arid Caatinga scrub
forests of Northeastern Brazil. American Journal of Primatology, 75: 333-341,
2013.
AMORIM, I. S., SAMPAIO, E. V. S. B., ARAÚJO, E. L. Flora e estrutura da vegetação
arbustivo-arbórea de uma área de caatinga do Seridó, RN, Brasil. Acta Botânica
Brasiliensis, 19 (3): 615-623, 2005.
ANDRADE-LIMA, D. The caatingas dominium. Revista Brasileira de Botânica, 4:
149-163, 1981.
ANDRADE, L. A., PEREIRA, I. M., LEITE, U. T. & BARBOSA, M. R. V. Análise da
cobertura de duas fitofisionomias de caatinga, com diferentes históricos de uso, no
município de São João do Cariri, Estado da Paraíba. Revista Cerne, v.11, n.3, p.
253-262, 2005.
AURICCHIO, P. Primatas do Brasil. São Paulo: Ed. Terra Brasilis. pp.168, 1995.
BARBOSA, D., BARBOSA, M., LIMA, L. Fenologia de espécies lenhosas da
Caatinga. 2003. In: LEAL, I. R., TABARELLI, M., SILVA, J. M. C. (Eds)
Ecologia e conservação da Caatinga, Universidade Federal de Pernambuco
(UFPE), Recife, Brazil, pp. 657–693.
22
BOISSINOT, S., TAN, Y., SHYUE, S., SCHNEIDER, H., SAMPAIO, I.,
NEISWANGER, K., HEWETT-EMMETT, D. & LI, W. Origins and antiquity of
x-linked triallelic color vision systems in New World monkeys. Proceedings of
the National Academy of Science USA, 95: 13749-13754, 1998.
BOX, H., YAMAMOTO, M. E., LOPES, F. A. Gender differences in marmosets and
tamarins: responses to food tasks. International Journal of Comparative
Psychology, 12 (2): 59-70, 1999.
BUNCE, J. A. Incorporating ecology and social system into formal hypothesis to guide
field studies of color vision in primates. American Journal of Primatology, 77:
516-526, 2015.
CAINE, N. G. & MUNDY, N. I. Demonstration of a foraging advantage for
trichromatic marmosets (Callithrix geoffroyi) dependent on food color.
Proceedings of a Royal Society of London B, 267: 439-444, 2000.
CAINE, N. G., SURRIDGE, A. L. & MUNDY, N. I. Dichromatic and trichromatic
Callithrix geoffroyi differ in relative foraging ability for red-green colorcamouflaged and non-camouflaged food. International Journal of Primatology,
24 (6): 1163-1175, 2003.
CAINE, N. G., OSORIO, D. & MUNDY, N. I. A foraging advantage for dichromatic
marmosets (Callithrix geoffroyi) at low light intensity. Biology Letters, 6: 36-38,
2010.
DE LA FUENTE, M. F. C., SOUTO, A., SAMPAIO, B. & SCHIEL, N. Behavioral
adjustments by a small neotropical primate (Callithrix jacchus) in a semiarid
Caatinga
environment.
The
Scientific
World
Journal,
2014.
doi:10.1155/2014/326524.
DOMINY, N. J. & LUCAS, P. W. Ecological importance of trichromatic vision to
primates. Nature, 410: 363-366, 2001.
DOMINY, N. J., GARBER, P. A., BICCA-MARQUES, J. C. & AZEVEDO-LOPES,
M. A. Do female tamarins use visual cues to detect fruit rewards more
successfully than do males? Animal Behaviour, 66: 829-837, 2003.
EDUMUNDS, M. Defense in animals: a survey of antipredator defenses. Harlow,
Longman Group Limited, 357pp, 1974.
EISENBERG, J.F.; REDFORD, K.H. Mammals of the Neotropics: The Central
Neotropics. Ecuador, Peru, Bolivia, Brazil. Chicago: University of Chicago Press.
v. 3, p. 624, 1999.
23
FAULKES, C. G., ARRUDA, M. F., MONTEIRO DA CRUZ, M. A. O. Genetic
structure within and among populations of common marmoset, Callithrix jacchus:
Implications for cooperative breeding. In: FORD, S. M., PORTER L. M., DAVIS,
L. C. (Ed.) The smallest anthropoids. The marmoset/callimico radiation. Springer.
p. 486, 2009.
FEDIGAN, L. M., MELIN, A. D., ADDICOTT, J. F., KAWAMURA, S. The
heterozygote superiority hypothesis for polymorphic color vision is not supported
by long-term fitness data from wild neotropical monkeys. PLoS ONE, 9(1):
e84872, 2014.
FREITAG, F. B. & PESSOA, D. M. A. Effect of luminosity on color discrimination of
dichromatic marmosets (Callithrix jacchus). Journal of Optical Society of
America, 29 (2), 2012.
FREITAS, R. R., ROCHA, P. L. B., SIMÕES-LOPES, P. C.Habitat structure and small
mammals abundance in one semiarid landscape in the Brazilian Caatinga. Revista
Brasileira de Zoologia, 22 (1): 119-129, 2005.
FERRARI, S. F., LOPES FERRARI, M. A. A re-evaluation of the social organization
of the Callitrichidae, with reference to the ecological differences between genera.
Folia Primatologica, 52: 132 – 147, 1989.
FERREIRA, R. G., JERUSALINSKY, L., SILVA, T. C. F., FIALHO, M. S., ROQUE,
A. A., FERNANDES, A., ARRUDA, A. On the occurrence of Cabus flavius
(Schreber 1774) in the Caatinga, and the use of semi-arid environments by Cebus
species in the Brazilian state of Rio Grande do Norte. Primates, 2009. doi:
10.1007/s10329-009-0156-z.
GILAD, Y., WIEBE, V., PRZEWORSKI, M., LANCET, D. & PAABO, S. Loss of
olfactory receptor genes with the acquisition of the full trichromatic vision in
primates. Plos Biology, 2 (1): 0120-0125, 2004.
GOSH, K. K., MARTIN, P. R. & GRUNERT, U. Morphological analysis of the blue
cone pathway in the retina of the new world monkey, the marmoset Callithrix
jacchus. The Journal of Comparative Neurology, 379: 211-225, 1997.
GULLAN, P. J. & CRANSTON, P. S. The insects: an outline of entomology. Blackwell
Publishing Ltd (Third Eds), 2005.
HIWATASHI, T., OKABE, Y., TSUTSUI, T., HIRAMATSU, C., MELIN, A. D.,
OOTA, H., SCHAFFNER, C. M., AURELI, F., FEDIGAN, L. M., INNAN, H. &
KAWAMURA, S. An explicit signature of balancing selection of color-vision
24
variation in New World monkeys. Molecular Biological Evolution, 27: 453-464,
2010.
HERSHKOVITZ, P. Living New World monkeys (Platyrrhini), with an introduction to
primates, vol. 1. Chicago University Press, Chicago, 1977.
HUNT, D. V., WILLIAMS, A. J., BOWMAKER, J. K. & MOLLON, J. D. Structure
and evolution of the polymorphic photopigment gene of the marmoset. Vision
Research, 33 (2): 147-154, 1993.
JACOBS, G. H. Variations in primate color vision: mechanisms and utility.
Evolutionary Anthropology, 3: 196-205, 1994.
JACOBS, G. H. & NEITZ, J. Inheritance of color vision in a New World monkey
(Saimiri sciureus). Proceedings of the National Academy of Science, 84: 25452549, 1987.
JACOBS, G. H., NEITZ, M., DEEGAN, F. & NEITZ, J. Trichromatic colour vision in
new world monkey. Nature, 382, 1996A.
JACOBS, G. H., NEITZ, M. & NEITZ, J. Mutations in S-cone pigment genes and the
absence of colour vision in two species of nocturnal primates. Proceedings of the
Royal Society of London B, 263: 705-710, 1996B.
JACOBS G.H. & DEEGAN II, J.F. Polymorphic New World monkeys with more than
three M/L cone types. Journal of Optical Society of America A, 22(10): 20722080, 2005.
KAWAMURA, S., HIRAI, M., TAKENAKA, O., RADLWIMMER, F. B. &
YOKOYAMA, S. Genomic and spectral analyses of long to middle wavelengthsensitive visual pigments of common marmoset (Callithrix jacchus). Gene, 269:
45-51, 2001.
KLEBER, A., VOROBYEV, M., OSORIO, D. Animal colour vision-behavioural tests
and physiological concepts. Biological Reviews, 78: 81-118, 2003.
KREMERS, J., SILVEIRA, L. C. L., YAMADA, E. S. & LEE, B. B. The ecology and
evolution of primate colour vision. 1999. In: GEGENFURTNER, K. R. &
SHARPE, L. T. (Eds.). Color vision: from genes to perception. Cambridge,
England: Cambridge University Press, 123-142pp.
LEAL, I., TABARELLI, M. & SILVA, J. M. C. Ecologia e conservação da Caatinga.
Edição Universitária da UFPE: 822pp, 2003.
25
LOPES, F. A., YAMAMOTO, M. E., MEDEIROS, I. S., DELGADO, K. V. C. A
influência do estado reprodutivo da fêmea na competição por alimento no sagüí
comum (Callithrix jacchus). Anais de Etologia, 15:35-46, 1997.
MAIER, W., ALONSO, C., LANGGUTH, A. Field observations on Callithrix jacchus
jacchus. L. Z. Saugetierkunde, 47: 334-346, 1982.
MATSUI, A., GO, Y. & NIIMURA, Y. Degeneration of olfactory receptor gene
repertories in Primates: No direct link to full trichromatic vision. Molecular
Biological Evolution, 27(5): 1192-1200, 2010.
MELIN, A. D., FEDIGAN, L. M., HIRAMATSU, C., SENDALL, C. L. &
KAWAMURA, S. Effects of colour vision phenotype on insect capture by a freeranging population of white-faced capuchins, Cebus capuchins. Animal
Behaviour, 73: 205-214, 2007.
MELIN, A. D., FEDIGAN, L. M., HIRAMATSU, C. & KAWAMURA, S.
Polymorphic color vision in white-faced capuchins (Cebus capucinus): Is there
foraging niche divergence among phenotypes? Behavioral Ecology and
Sociobiology, 62: 659-670, 2008.
MELIN, A. D., FEDIGAN, L. M., HIRAMATSU, C., HIWATASHI, T., PARR, N. &
KAWAMURA, S. Fig foraging by dichromatic and trichromatic Cebus capucinus
in a tropical dry forest. International Journal of Primatology, 30: 753-775, 2009.
MELIN, A. D., FEDIGAN, L. M., YOUNG, H. C. & KAWAMURA, S. Can color
vision variation explain sex differences in invertebrate foraging by capuchin
monkeys? Current Zoology, 56: 300-312, 2010.
MELIN, A. D., HIRAMATSU, C., FEDIGAN, L. M., SCHAFFNER, C. M., AURELI,
F., KAWAMURA, S. Polymorphism and adaptation of primate colour vision.
2012. In: PONTAROTTI, P. (Ed.). Evolutionary Biology: mechanisms and trends.
Springer-Verlab, Berlin.
MENDES, L., ROCHA, P., RIBEIRO, M., PERRY, S., OLIVEIRA, E. Differences in
ingestive balance of two populations of Neotropical Thrichomys apereoides
(Rodentia, Echimyidae), Comparative Biochemistry and Physiology A, vol. 138,
pp. 327–332, 2004.
MICHELS, A. N. Sex differences in food acquisition and aggression in captive
commom marmosets (Callithrix jacchus). Primates, 39(4): 549-556, 1988.
MODESTO, T. C., BERGALLO, H. G. Ambientes diferentes, diferentes gastos do
tempo entre atividades: o caso de dois grupos mistos do exótico Callithrix spp. na
26
Ilha Grande, RJ, Brasil. Neotropical Biology and Conservation, v. 3, n. 3, p. 112118, 2008.
MOLLON, J. D., BOWMAKER, J. K. & JACOBS, G. H. Variations of colour vision in
a new world primate can be explained by polymorphism of retinal photopigments.
Proceedings of the Royal Society of London B, 222: 373-399, 1984.
MORGAN, M. J., ADAM, A. & MOLLON, J .D. Dichrimats detect colourcamouflaged objects that are not detected by trichromats. Proceedings of the
Royal Society of London B, 248: 291-295, 1992.
MORAES, B. L. C, SOUTO, A., SCHIEL, N. Adaptability in stone use by capuchin
monkeys (Sapajus libidinosus). American Journal of Primatology, 76: 967-977,
2014. doi:10.1002/ajp.22286.
MOREIRA, L. A. O., OLIVERIA, D. G. R, SOUSA, M. B. C, PESSOA, D. M. A.
Parturition signaling by visual cues in female marmosets (Callithrix jacchus).
PLos ONE: e0129319, 2015. doi: 10.1371/journal.pone.0129319.
MOURA, A. C., LEE, P. Capuchin stone tool use in Caatinga dry forest. Science, 306:
1909, 2004. doi:10.1126/science.1102558
MOURA, A. Primate group size and abundance in the Caatinga Dry Forest,
Northeastern Brazil. International Journal of Primatology, 28: 1279-1297, 2007.
NIMER, E. Climatologia do Brasil. IBGE, 421 p. Paraíba, Governo do Estado. Atlas
Geográfico da Paraíba. Secretaria de Educação, UFPB. João Pessoa, p.100, 1979.
NIEVERGELT, C. M., MARTIN, R. D. Energy intake during reproduction in captive
common marmosets (Callithrix jacchus). Physiology & Behavior, 65 (4/5):849854, 1999.
OLIVEIRA, I. B. R., MOURA, J. Z., MOURA, S. G., BRITO, W. C., SOUSA, A. A.,
SANTANA, J. D. P. & MAGGIONI, K. Diversidade da entomofauna em uma
área de caatinga no município de Bom Jesus-PI, Brasil. Cientifica, 41 (2): 150155, 2013.
ONISHI, A., KOIKE, S., IDA, M., IMAI, H., SHICHIDA, Y., TAKENAKA, O.,
HANAZAWA, A., KONATSU, H., MIKAMI, A., GOTO, S., SURYOBROTO,
B., KITAHARA, K. & YAMAMORI, T. Dichromatism in macaque monkeys.
Nature, 402: 139-140, 1999.
OSORIO, D. & VOROBYEV, M. Colour vision as an adaptation to frugivory in
primates. Proceedings of the Royal Society of London, 263: 593-599, 1996.
27
OSORIO, D., SMITH, A. C., VOROBYEV, M. & BUCHANAN-SMITH, H. M.
Detection of fruit and selection of primate visual pigments for color vision. The
American Naturalistic, 164 (6): 696-708, 2004.
PERINI, E. S., PESSOA, V. F. & PESSOA, D. M. A. Detection of fruit by cerrado’s
marmoset (Callithrix penicillata): modeling color signals for different background
scenarios and ambient light intensities. Journal of Experimental Zoology, 311A:
289-302, 2009.
PESSOA, D.M.A, PERINI, E. S., PESSOA, V. F. Deteção de alvos naturais pelo saguido-cerrado (Callithrix penicillata): avaliação do papel da visão de cores. A
primatologia no Brasil. In: A Primatologia no Brasil, Vol. 11, Belo Horizonte,
Anais do Congresso Brasileiro de Primatologia, 2012, pp. 01-18.
PONTES, A. & CRUZ, M. Home range, intergroup transfers, and reproductive status of
common marmosets Callithrix jacchus in a forest fragment in North-eastern
Brazil. Primates, 36 (3): 335-347, 1995.
PRADO, D. As caatingas da América do Sul. In: LEAL, I.R.; TABARELLI, M.;
SILVA. J.M.C. (eds.), Ecologia e conservação da caatinga. Recife, Brasil: Editora
Universitária, Universidade Federal de Pernambuco, p 3–73, 2003.
QUEIROZ, L.P.. Distribuição das espécies de Leguminoseae na caatinga. 2002. In:
SAMPAIO, E. V. S. B., GIULIETTI, A. M., VIRGÍNIO, J. & GAMARRAROJAS, C. F. L. (ed.) Vegetação e flora das caatingas. APNE / CNIP, Recife, PE.
pp141-153.
REGAN, B. C., JULLIOT, C., SIMMEN, B., VIÉNOT, F., CHARLES-DOMINIQUE,
P. & MOLLON, J. D. Fruits, foliage and the evolution of primate colour vision.
Philosophical Transactions of the Royal Society B, 356: 229-283, 2001.
ROCHA, P. L. B. Proechimys yonenagae, a new species of spiny rat (Rodentia:
Echimyidae) from fossil sand dunes in the Brazilian Caatinga. Mammalian, 59
(4): 537– 549, 1995.
RYLANDS, A. B. & de FARIA, D. S. Habitats, feeding ecology, and home range size
in the genus Callithrix, 1993. In: RYLANDS, A. B., editor. Marmosets and
tamarins: systematic, behaviour and ecolgy. New York: Oxford University Press,
p.262-272.
SAITO, A., MIKAMI, A., KAWAMURA, S., UENO, Y., HIRAMATSU, C.,
WIDAYATI, K. A., SURYOBROTO, B., TERATOMO, M., MORI, Y.,
NAGANO, K., FUJITA, K., KUROSHIMA, H. & HASEGAWA, T. Advantage
28
of dichromats over trichromats in discrimination of color-camouflaged stimuli in
nonhuman primates. American Journal of Primatology, 67: 425-436, 2005.
SCHIEL, N., SOUTO, A., HUBER, L. & BEZERRA, B. Hunting strategies in wild
common marmosets are prey and age dependent. American Journal of
Primatology, 71: 1-8, 2010.
SHYUE, S., BOISSINOT, S., SCHNEIDER, H., SAMPAIO, I., SCHNEIDER, M. P.,
ABEE, C. R., WILLIAMS, L., HEWETT-EMMETT, D., SPERLING, H. G.,
COWING, J. A., DULAI, K. S., HUNT, D. M. & LI, W. Molecular genetics of
spectral tuning in new world monkey color vision. Journal of Molecular
Evolution, 46: 697-702, 1988.
SILVA, J. K. S. M. & LIMA, A. D. A. Entomofauna e sazonalidade de insetos em
vegetação de caatinga e floresta ciliar no semi-árido Paraibano. Scientia Plena, in
press.
SMITH, A. C., BUCHANAN-SMITH, H. M., SURRIDGE, A. K., OSORIO, D. &
MUNDY, N. I. The effect of color vision status on the detection and selection of
fruits by tamarins (Saguinus spp.). Journal of Experimental Biology, 206: 31593165, 2003.
SMITH, A. C., SURRIDGE, A. K., PRESCOTT, M. J., OSORIO, D., MUNDY, N. I. &
BUCHANAN-SMITH, H. M. Effect of colour vision status on insect prey capture
efficiency of captive and wild tamarins (Saguinus spp.). Animal Behaviour, 83:
479-486, 2012.
SOUSA, M. & PONTES, M. Variação temporal diurna de comportamentos afiliativos
de sagui comum (Callithrix jacchus) machos vivendo em ambiente natural.
Revista Brasileira de Zoociências, 10(1): 7-12, 2008.
STEVENSON, M. F. & POOLE, T. B. An ethogram of the commom marmoset
(Callitrhix jacchus jachhus): general behavior repertoire. Animal Behavior, 24:
428-451.
STEVENSON, M. F. & RYLANDS, A. B. 1988. The marmosets, Genus Callithrix. In:
Mittermeier RA, Rylands AB, Coimbra-Filho AF, Da Fonseca GAB. (Ed.) 1988.
Ecology and behavior of Neotropical primates. Washington DC: World Wildlife
Foundation. 2:131-222.
STREILEIN, K. E. Ecology of small mammals in the semiarid Brazilian Caatinga. II.
Water relations. Annual Carnegie Musuem, 51(6): 109–126, 1982.
29
SURRIDGE, A. K. & MUNDY, N. I. Trans-specific evolution of opsin alleles and the
maintenance of trichromatic colour vision in Callitrichine primates. Molecular
Ecology, 11: 2157-2169, 2002.
SURRIDGE, A. K., OSORIO, D. & MUNDY, N. I. Evolution and selection of
trichromatic vision in primates. Elsevier, 18 (4), 2003.
TARDIF, S.D., RICHTER, C. B. Competition for a desired food in family groups of the
common marmoset (Callithrix jacchus) and the cotton-top tamarin (Saguinus
oedipus). Laboratory Animal Science, 1(31): 52-55, 1981.
TARDIF, S. D., POWER, M., OFTEDAL, O. T., POWER, R. A., LAYNE, D. G.
Lactation, maternal behavior and infant growth in common marmoset monkeys
(Callithrix jacchus): effects of maternal size and litter size. Behavioral Ecology
Sociobiology, 51: 17-25, 2001.
TARDIF, S. D., POWER, M., LAYNE, D., SMUCNY, D., ZIEGLER, T. Energy
restriction initiated at different gestational ages has varying effects on maternal
weight gain and pregnancy outcome in common marmosets monkeys (Callithrix
jacchus). British Journal of Nutrition, 92: 841-849, 2004.
TAYLOR, N.P. & D. ZAPPI. Distribuição das espécies de Cactaceae na caatinga. 2002.
In: SAMPAIO, E. V. S. B., GIULIETTI, A. M., VIRGÍNIO J. & GAMARRAROJAS, C. F. L. (ed.) Vegetação e flora das caatingas. APNE / CNIP, Recife, PE.
pp123-125.
TOVÉE, M. J., BOWMAKER, J. K. & MOLLON, J. D. The relationship between cone
pigments and behavioural sensitivity in a new world monkey (Callithrix jacchus
jacchus). Vision Research, 32 (5): 867-878, 1992.
TRAVIS, D. S., BOWMAKER, J. K. & MOLLON, J. D. Polymorphism of visual
pigments in a callitrichid monkey. Vision Research, 28 (4): 481-490, 1988.
VASCONCELLOS, A., ANDREAZZE, R., ALMEIDA, A. M., ARAUJO, H. F. P.,
OLIVEIRA, E. S. & OLIVEIRA, U. Seasonality of insects in the semi-arid
caatinga of northeastern of Brazil. Revista Brasileira de Entomologia, 54 (3): 471476, 2010.
VOGEL, E. R., NEITZ, M. & DOMINY, N. J. Effect of color vision phenotype on the
foraging of wild-faced capuchins, Cebus capuchins. Behavioral Ecology, 18: 292297, 2007.
30
WILLIAMS, A. J., HUNT, D. M., BOWMAKER, J. K. & MOLLON, J. The
polymorphic photopigments of the marmoset: spectral tuning and genetic basis.
The EMBO Journal, 11 (6): 2039-2045, 1992.
YAMAMOTO, M. E., DOMENICONI, C., BOX, H. Sex differences in commom
marmosets (Callithrix jacchus) in response to an unfamiliar food task. Primates,
45: 249-254, 2004.
31
Artigo 1
Feeding ecology and behavioral adjustments: flexibility of a small neotropical
primate (Callithrix jacchus) to survive in a semiarid environment
Artigo submetido à Mammal Research – fator de impacto: 1.20
(Normas para publicação Anexo I)
32
Feeding ecology and behavioral adjustments: flexibility of a small neotropical primate (Callithrix
jacchus) to survive in a semiarid environment
Filipa Abreu1; María Fernanda Castellón De la Fuente1; Nicola Schiel1; Antonio Souto2*
1
Department of Biology, Federal Rural University of Pernambuco, Recife, Brazil.
2
Department of Zoology, Federal University of Pernambuco, Recife, Brazil.
*Corresponding author:
Antonio Souto
Department of Zoology
Federal University of Pernambuco
Avenida Professor Morais Rego, 1235
CEP: 50670-901. Cidade Universitária
Recife, Pernambuco, Brasil
E-mail: [email protected]
Phone number: 0055 81 21268353
Acknowledgments The authors thank Dr. Geraldo Baracuhy for providing the Fazenda Marimbondo to
conduct the research. We thank the valuable contributions and suggestions of Dr. Elcida de Lima Araújo.
The present study was founded by a master Grant from the Coordination for the Improvement of Higher
Education Personnel (CAPES) awarded to Filipa Abreu.
Abstract
We aimed to investigate how a small neotropical primate (Callithrix jacchus; the common marmoset)
manages to survive under the harsh conditions that a semiarid environment imposes. The study was
carried out in a 400 ha-area of Caatinga in the Northeast of Brazil. During a six-month period we
collected data on the diet of 19 individuals of common marmosets (distributed in five groups) and
estimated their behavioral time budget during both the dry and rainy seasons. Resting significantly
increased during the dry season. No significant differences were detected regarding to the other
behaviors. In relation to the diet, we recorded the consumption of prey items like insects, spiders and
small vertebrates. We also observed the consumption of plant items, including prickly cladodes, which is
something new for this species. Cladode exploitation required perceptual and motor skills to safely access
the food resource. Our findings show that common marmosets can survive under challenging conditions
in part because of adjustments in its behavior, and in part because of changes in their diet. It is also worth
pointing out that the common marmoset is diurnal and relatively easy to accustom to human presence,
which makes it a good model to better understand how a mammal without unique physiological
adaptations can survive in a semiarid environment.
Keywords: Behavior, Time budget, Caatinga, Diet, Cacti
33
Introduction
The Caatinga, a Brazilian savanna, is a semiarid region localized in the Northeast of Brazil and occupies
an area of approximately 800,000 km2 (Araújo et al. 2007). This type of environment is characterized by
a climate with high solar radiation, high temperatures, low humidity rates and irregular precipitation
limited to a few months of the year (three to six consecutive months), which results in periodic and severe
droughts (Prado 2003; Araújo et al. 2007; Albuquerque et al. 2012). The woody vegetation is low and
present deciduous trees with thorns, microphyll leaves and xerophytic characteristics, as well as cacti,
bromeliads and a rich diversity of herbaceous species (Prado 2003; Araújo et al. 2007; Albuquerque et al.
2012). According to Barbosa et al. (2003), the phenology of many plant species in the Caatinga is
controlled by precipitations. Therefore, due to both climatic seasonality and rain distribution, fleshy fruit
represents a relatively scarce resource throughout the dry season (Barbosa et al. 2003; Amorim et al.
2009).
The harsh conditions of semiarid environments, in general, impose significant challenges for
mammals in terms of heat stress, thermoregulation, available water, and limited resource availability
(Diaz and Ojeda 1999; Albuquerque et al. 2012). In spite of that, at least 156 species of mammals, 12 of
which endemic, inhabit the Caatinga (Albuquerque et al. 2012). The recent geological origin of this
environment (Ab'Sáber 1974) may have prevented pronounced physiological adaptations in mammals, as
found in other dry regions (Streilein 1982). Behavioral adaptations have been suggested to be crucial to
overcome the constraints and limitations of this environment (Streilein 1982; Albuquerque et al. 2012; De
la Fuente et al. 2014); nevertheless, the potential behavioral adjustments that mammals exhibit to survive
in the Caatinga are still poorly known. To this regard, Rocha (1995) reported that the endemic rodent
Trinomys yonenagae digs holes in dunes during the hottest hours of the day. Moura and Lee (2004) and
Moraes et al. (2014) suggested that harsh environmental conditions can be a factor leading capuchin
monkeys to use tools to gain access to hard-to-obtain and hard-to-process food. Besides these aspects,
feeding ecology may be adjusted as a strategy to survive in environments (or during seasons) with limited
resources (Marshall and Wrangham 2007). Therefore, some mammals inhabiting the Caatinga include
uncommon food items in their diets (cacti by capuchin monkeys: Moraes et al. 2014; fruit, flower of cacti
and leaves by common marmoset: Amora et al. 2013).
The relatively low number of behavioral and ecological studies focused on mammals in the
extended Caatinga may be due to its adverse environmental conditions, which usually involves physical
hardship and endurance. Difficulties also derive from the elusive nature and/or night habits of many
animals inhabiting this environment (e.g. wild cats, rodents, bats, etc.). However, a small primate such as
the common marmoset (Callithrix jacchus) presents characteristics, which make it a viable alternative to
these kinds of studies in semiarid environments.
Common marmoset is native to different environments in the Northeast of Brazil, including the
Caatinga (Stevenson and Rylands 1988; Rylands and Faria 1993). It has an omnivorous diet, which
consists mainly of fruit, insects, gum and small vertebrates (Rylands and Faria 1993; Schiel et al. 2010),
and may even include mollusc in the humid Atlantic Forest (Souto et al. 2007) and leaves in the Caatinga
(Amora et al. 2013). Moreover, it is worth pointing out that teeth and ceca of the common marmoset are
adapted for the exploitation of exudates (Nash 1986; Stevenson and Rylands 1988), which is a food
34
resource available throughout the year since it can be found in the stems of trees (Araújo et al. 2007).
Besides, common marmoset is a diurnal animal able to get used to human presence, a factor that
facilitates its study, as documented in several studies conducted in the Atlantic Forest in the last few
decades (Maier et al. 1982; Alonso and Langguth 1989; Souto et al. 2007; Bezerra and Souto 2008;
Pesendorfer et al. 2009; Schiel et al. 2010; Gunhold et al. 2014)
Nevertheless, despite these advantages, scarce is the information about how these small mammals
cope with the difficult conditions of the Caatinga. In fact, although the only two studies on the common
marmoset in a semiarid environment are certainly important, they have some limitations. The research
conducted by Amora et al. (2013) was restricted to the use of alternative plants as food resources.
Furthermore, the sample ranged “from two to four individuals”, which may limit the generalization of the
findings. De la Fuente et al. (2014) investigated the adjustments of some behavioral patterns of 12
individuals in response to temperature fluctuation throughout the day. Unfortunately, this study does not
provide information on the behavioral time budget of the animals under study.
Hence, the two main objectives of the present study were: (i) to investigate the diet of 19
individuals of common marmosets (distributed in five groups), and (ii) to estimate the behavioral time
budget of these animals during both the dry and rainy seasons of the Caatinga. Moreover, we described
the behavioral strategies used by common marmosets to achieve their goals. Lastly, but not less
important, we compared our data with those obtained in previous studies conducted in the humid
environment of the Atlantic Forest (Maier et al. 1982; Alonso and Langguth 1989; Souto et al. 2007;
Schiel et al. 2010). With our research we intend to contribute to a better understanding of the importance
of behavioral adjustments for the survival of mammals in semiarid environments.
Materials and Methods
Study area
This study was carried out in the Caatinga at the Fazenda Marimbondo (7º31’42” S – 36º17’50” W),
localized in state of Paraíba, Northeast of Brazil. This place features the typical vegetation of semiarid
environments, high temperatures and the lowest rainfall index of the Brazilian semiarid region (for further
information please see: Nascimento and Alves 2008; De la Fuente et al. 2014). During the study period,
the mean precipitation in the rainy season (May to July) was 61.8 mm, whereas the mean precipitation in
the dry season (September to November) was 13.6 mm (Fig. 1) (INMET 2015).
35
Fig. 1 Mean precipitation (mm) and mean temperature (°C) during the study months in Cabaceiras,
Paraíba, Northeast Brazil (INMET 2015)
Data collection
Behavioral observations were performed 10 days per month, from May to November 2014, for a total of
263 hours of direct observation. Data were collected in the most representative months of each season of
the year (dry season: May–July; rainy season: September–November) (Medeiros et al. 2012). We
monitored five groups of Callithrix jacchus with 19 individuals in total: 14 adults, 2 juveniles and 3
infants (Table 1). Behavioral data were collected according to the focal animal observation method
(Altmann 1974; Lehner 1996) with 10 minutes sessions of continuous observation for each individual
throughout all the period of activity of these animals (5 am to 5 pm) (De la Fuente et al. 2014). Moreover,
ab libitum observations (Altmann 1974; Lehner 1996) were conducted to record off-session feeding
events.
In the present study we reported foraging, gummivory, resting, grooming and locomotion
behaviors (please see description available in De la Fuente et al. 2014). “Play” (De la Fuente et al. 2014)
and “stationary” behaviors (the individual stay still and performs no activity for less than 1 min) were
referred to as “others”.
36
Table 1 Composition of the studied groups of Callithrix jacchus in the semiarid Caatinga
G1
G2
G3
G4
G5
Age (month)
♀
♂
♀
♂
♀
♂
♀
♂
♀
♂
Infant (1-4)
-
1a
-
-
-
-
-
2a
-
-
Juvenile (5-10)
-
-
-
-
2
-
-
-
-
-
Adult (>11)
1
1
1
1
2
3
1
1
1 (1a)
1
G=group; aIndividuals not included in the analyses
Whenever possible we recorded and collected the remains of insects captured by the animals.
Moreover, all the eaten plant items were recorded. Plant items were collected and subsequently identified
at the Botany Lab of the Federal Rural University of Pernambuco, while the insects were identified at the
order level at the Entomology Lab of the Federal Rural University of Pernambuco.
Statistical analysis
Data from 15 individuals were used (a total of 215 hours of direct observation), discarding those from an
adult female which disappeared during the study and those from infants younger than five months (a total
of 48 hours of direct observation). These infants were excluded because their behaviors are not fully
developed yet (Schiel et al. 2010).
Time budget was calculated according to the duration of each behavior, including “others”, for
each season of the year. Since data were not normally distributed the Wilcoxon’s test (Lehner 1996) was
used to check behavioral differences between each season of the year. Due to the reduced frequency we
did not include those behaviors referred to as “others” in the statistical analysis. Wilcoxon’s test was also
used to check the differences between the number of insects captured in the dry and rainy season. Results
at p≤0.05 (bilateral) were considered significant. All the data were analyzed with the software Instat 3.0
(GraphPad Software, Inc.) and Excel (Microsoft Corporation).
Results
Behavioral time budget
In general, the animals dedicated most of their time to foraging (rainy season: 30.7 %; dry season: 25.6
%) and resting (rainy season: 18.6 %; dry season: 27.8 %). There was a significant increase in the time
spent in resting behavior from the rainy season to the dry season (n=15, W=-92.0, p=0.006) (Table 2). All
other behavioral patterns did not reveal a significant difference between the two seasons.
37
Table 2 Comparison of the behavioral time budget of Callithrix jacchus in the semiarid Caatinga,
between the dry and rainy seasons
Rainy season
Total sample time %
(total sample time hours)
30.7 % (29.31 hr)
Dry season
Total sample time %
(total sample time hours)
25.6 % (30.39 hr)
W
p value
46
0.21
Gummivory
17.7 % (16.90 hr)
15.8 % (18.81 hr)
36
0.33
Resting
18.6 % (17.77 hr)
27.8 % (33.04 hr)
-92
0.006
Locomotion
8.3 % (7.93 hr)
8.8 % (10.48 hr)
16
0.68
Gromming
12.1 % (11.53 hr)
14.6 % (17.34 hr)
-64
0.07
Othersa
12.5 % (11.91 hr)
7.3 % (8.66 hr)
100
0.002
Total in percentage
(Total in hours)b
100 % (95.37 hr)
100 % (118,74 hr)
_
_
Behavior
Foraging
a
Behaviors not included in the statistical analysis (stationary and play behavior); btotal hours of
observations of the 15 individuals used for statistical analysis; statistics: Wilcoxon's test (W); values of
p≤0.05 are significant
Consumed food items
In total, we reported 940 feeding events, wherein 850 involved animal items and 90 involved plant
items. As for feeding events on animal items, 797 events were directed to the capture and consumption
of insects (Table 3) and the remaining 53 to the exploitation of lizards (n=32), earthworms (n=14),
arachnids (n=6) and bird eggs (n=1). Common marmosets caught a significantly higher amount of
insects during the rainy season than during the dry one (n=11, W=66.0, p=0.001).
Table 3 Insects eaten by Callithrix jacchus throughout the study period during the dry and rainy seasons
in the semiarid Caatinga
Rainy season
Percentage of captures
(absolute value)
Dry season
Percentage of captures
(absolute value)
Orthoptera
44.5 % (254)
35.8 % (80)
Hymenoptera
11.8 % (74)
7.4 % (27)
Coleoptera
7.4 % (39)
5.9 % (14)
Lepidoptera
5.3 % (30)
0.5 % (2)
Hemiptera
2.1 % (13)
2.5 % (8)
Mantodea
2.1 % (13)
1.5 % (4)
Isoptera
1.5 % (11)
0.0 % (0)
Blatodea
1.0 % (6)
2.5 % (4)
Odonata
0.4 % (2)
0.0 % (0)
Diptera
0.2 % (1)
0.0 % (0)
Unidentified
23.8 % (125)
44.1 % (90)
Order
38
Total of captures
568
229
For what concerns plant items, six species were consumed: three belonging to the family
Cactacea, two to the family Leguminosae/Fabaceae and one to the family Malvaceae (Table 4).
Table 4 Plant items eaten by Callithrix jacchus in the semiarid Caatinga
Family
Scientific name
Part consumed
Events
3
16
7
3
10
2
2
35
Number of individuals
that consumed a plant item
3
8
4
3
9
1
2
8
Leguminosae/
Fabaceae
Prosopis julifloraa
Fruit
Cladode
Fruit
Flower
Fruit
Flower
Cladode
Fruit
Tamarindus indicaa
Fruit
4
2
Malvaceae
Herissantia tiubae
Flower
8
3
Pilosocereus pachycladus
Cactaceae
Pilosocereus gounellei
Cereus jamacaru
a
Alien plant
Description of the consume of plant items
Pilosocereus pachycladus – Plant description: cactus up to 10 m tall. It has columnar cladodes presenting
areoles with numerous, small and thin spines of 1.8 cm in length and sub-globose red to purple fruit
(Menezes et al. 2013). Description of the feeding behavior: cladode - the marmoset reached a tree close to
the cactus and stood on a branch close (approximately 10 cm) to the tallest cladode. With its hind limbs
grabbing the branch, the individual reached out and held carefully the cactus spines with both hands, bit
directly the upper area of the cladode (apparently by choosing the best suitable region to start biting, i.e.,
damaged areas without, or with few or broken spines), pulling small pieces which were then ingested.
This procedure occurred several times (Fig. 2a). Then, one by one all the members of the group
performed the same procedure consecutively, alternately eating a portion of the cladode; fruit: the
individual reached a branch close to the fruit, grabbed the fruit with both forelimbs and ingested small
pieces at a time.
Cereus jamacaru – Plant description: Cactus up to 6 m tall. It has upright cladodes presenting
areoles 2-4 cm apart from each other with up to 6 cm long prickly cylindrical spines; it also has ellipsoid
red to magenta fruit and harmless white flowers (Rocha and Agra 2002; Menezes et al. 2013). Description
of the feeding behavior: cladode - the individual stood with both hind limbs on the cactus, in the upper
area of the cladode, among the spines. Afterwards, the animal placed the forelimbs on the cladode biting
the spot with no spines and eating it immediately; fruit: the individual stood on the cladode among the
spines close to the fruit. In order to eat it, the animal bit the outer portion of the fruit, exposing its pulp
and discarding the outer portion; and then, with one of the forelimbs, it took the inner portion of the fruit
and put it in its mouth. The procedure is performed repeatedly (Fig. 2b); flower - the individual stood
39
among the spines of the cladode close to the flower and, holding it with both forelimbs, it removed a
piece with its mouth and moved away to eat it.
Pilosocereus gounellei – Plant description: Cactus up to 4 m tall. Its areoles are 1 cm apart from
each other and present up to 15 cm long cylindrical and rigid spines with a central and bigger acicular
spine; The plant has 17 cm long white tubular flowers, succulent, sub-globose and laterally dehiscent fruit
(Rocha and Agra 2002; Menezes et al. 2013). Description of the feeding behavior: fruit - the individual
stood on a branch close to the fruit, grabbed the fruit with both forelimbs and ingested small pieces at a
time; flower - the marmoset stood on a branch close to the flower and proceeded as described for the
consumption of the flower of Cereus jamacaru. Afterwards, the other individuals approached the flower
and proceeded alternately in the same way (Fig. 2c).
Prosopis juliflora (alien plant) – Plant description: Thorny tree up to 15 m tall. Its fruit does not
open spontaneously, has an elongated shape and is divided into compartments each containing a seed
(Bukhart 1976). Description of the feeding behavior: fruit - the animal stood on a branch in order to reach
the pod vertically hanging therefrom, and it ate the fruit in two ways: (1) the animal ate the pod without
pulling it away from the branch; (2) the animal pulled the pod away from the branch and bit it, removing
a piece for consumption. Both procedures were conducted several times for the same fruit.
Tamarindus indica (alien plant) – Plant description: Tree native to Africa about 25 m tall. It
produces brown indehiscent and woody fruit measuring from 5 to 15 cm in length (Sousa et al. 2010).
Description of the feeding behavior: fruit - the individual reached a spot close to the fruit, grabbed the
fruit with both forelimbs without pulling it away from the tree, bit it directly and ingested small pieces at
a time. Feeding was observed only on unripe fruit.
Herissantia tiubae – Plant description: Perennial plant, with flowers having white petals, yellow
anthers and grandular-viscous trichomes (Silva et al. 2013). Description of the feeding behavior: flowers:
the individual reached a spot close to the flower and grabbed it by the peduncle with both forelimbs,
eating all the petals at once and discarding the calyx.
40
Fig. 2 Some of the plant items consumed by Callithrix jacchus in the study site (a) Cladode of P.
pachycladus (b) Fruit of C. jamacaru (c) Flower of P. gounellei
Discussion
The main activity conducted by common marmosets (Calithrix jacchus) observed during the day in the
Caatinga was foraging. Despite the clear environmental differences, this result was similar to that
obtained in two studies developed in the Atlantic Forest (Maier et al. 1982; Alonso and Langguth 1989).
We believe that it is a consequence of thermoregulation costs in mammals, which requires a constant food
intake (Schmidt-Nielsen 1997; Passamani 1998; Ménard et al. 2013). This behavioral consistency is
further supported by the lack of differences in time budget for foraging and locomotion between the dry
and rainy seasons in Caatinga.
As for the consumption of stem exudates in the dry and rainy seasons, our findings reported no
seasonal differences, supporting a previous study conducted by Amora et al. (2013). This is an interesting
phenomenon whose verification is important as this food resource is available throughout the year
(Araújo et al. 2007). Accordingly, we expected that common marmosets would exhibit gummivory
behavior more frequently during the dry season, in response to the depletion of other food resources in
this period (Amorim et al. 2009). The results obtained both in our study and in that conducted by Amora
et al. (2013) can be related to the hydric stress which would interfere in exudate composition of tannins,
among other compounds (Pizzi and Cameron 1986). Tannins are known to adversely affect palatability
and to reduce herbivore predation rate (Monteiro et al. 2005). This phenomenon might well affect
marmosets, keeping gum consumption relatively constant even during the more challenging dry season.
For what concerns resting, the effect of the dry season on the behavior of the common
marmosets was clear: a significant increase of resting occurred during this season. To this regard, a
comparison with the Atlantic Forest is more difficult since the study conducted by Alonso and Langguth
41
(1989) did not present a seasonal analysis. Nonetheless, our percentage data of the Caatinga for the rainy
season are similar to those obtained in the Atlantic Forest by Alonso and Langguth (1989), while for the
other climate extreme, the dry season, the results are different. Similarly, grooming, a behavior that often
interchangeably accompanies resting behavior (Maier et al. 1982; Alonso and Langguth 1989),
approached Alonsos’ and Langguths’ (1989) findings. Undoubtedly, pronounced changes in common
marmosets’ time budget for resting are required to face the critical phase of the dry season in the
Caatinga. This result complements the study conducted by De la Fuente et al. (2014), which showed that
common marmosets in the Caatinga environment reduce their activity during the hottest hours of the day.
Thus, the differences in the adjustments for resting occur both within the same day and between the two
different seasons of the Caatinga.
The diet of common marmosets in the Caatinga showed to be comprehensive, reflecting the idea
of a generalist animal, as documented in the Atlantic Forest (Rylands and Faria 1993; Stevenson and
Rylands 1988; Schiel et al. 2010). In fact, these small mammals fed on insects, fruit and flowers,
corroborating the findings of Amora et al. (2014) for the Caatinga, as well as spiders, small lizards and
bird eggs, also reported by Rylands and Faria (1993) and Schiel et al. (2010) for the Atlantic Forest.
However, cladode consumption is described here for the first time, which enhances the adaptability and
flexibility of common marmosets living in this environment. The limited consumption of insect during
the dry period was probably due to the decrease of this resource in semiarid environments in this season
(Vasconcellos et al. 2010). The most important adjustment was undoubtedly the use of cacti, common
plants in the area. Their inclusion in the diet of an animal is extremely important, as it provides not only
water for thermoregulation but also energy for daily activities (Arnold and Drawe 1979; Mellink and
Riojas-López 2002).
Nevertheless, cactus consumption is not easy since these plants are usually protected by many
spines which can hurt the animal (Theimer and Bateman 1992; Rangel and Mellink 1993). Overcoming
this challenge requires a perception of the problem as well as proper body dexterity to reach the goal
without getting hurt. The works carried on in the Atlantic Forest on wild common marmosets documented
that these small primates possess both cognitive capacities (Halsey et al. 2006; Gunhold et al. 2014) and
motor skills (Souto et al. 2007; Schiel et al. 2010). Our results suggest that these two qualities were
important for the success of this species in obtaining a crucial amount of food and water in such a
semiarid environment. Of course, common marmoset is not the only animal which successfully exploits
these plants; however a few mammals are able to do it so easily. For instance, cattle breeders based in
semiarid environments are aware of this issue and know that the livestock usually rejects these plants
because of the spines; thus, they have to eliminate the spiny protection before feeding their animals with
the cladode (Mizhari et al. 1996). On the other hand, some mammals such as the collared peccary (Pecari
tajacu) and some rodents (e.g. Neotoma albigula) inhabiting semiarid regions also feed on cacti, avoiding
the spiniest species (Theimer and Bateman 1992; Rangel and Mellink 1993). This limitation is absent in
common marmosets which, in this, resemble another primate, the capuchin monkey (Sapajus sp.: Moraes
et al. 2014).
Since the Caatinga is a geologically recent environment, Streilein (1982) suggested that
behavioral adaptability is the way to explain the presence of mammals in the extensive Brazilian semiarid
42
region. Common marmosets do not dig holes to escape the heat, nor use tools to gain access to food
items, but they do show a number of clear behavioral adjustments to cope with the semiarid conditions.
Most importantly, and unlike many other animals, common marmoset gets used to human presence
relatively easily, is diurnal and inhabits utterly different habitats. Thus, it represents a good model to
better understand how a mammal without unique physiological adaptations to semiarid conditions can
survive in such an environment.
Conflict of interest: The authors declare that they have no conflict of interests regarding the publication
of this paper.
Ethical approval: All applicable international, national, and/or institutional guidelines for the care and
use of animals were followed. All procedures performed in studies involving animals were in accordance
with the ethical standards of the institution or practice at which the studies were conducted. The study
was approved by the Ethics Committee for Animals Use (CEUA) of the Federal Rural University of
Pernambuco (license number 135/2014).
Informed consent: Informed consent was obtained from all individuals participants included in the
study.
References
Ab’Saber AN (1974) O domínio morfoclimático semiárido das caatingas brasileiras. Universidade de São
Paulo, Instituto de geografia, São Paulo
Albuquerque UP, Araújo EL, El-Deir ACA et al (2012) Caatinga revisited: ecology and conservation of
an important seasonal dry forest. Scientific World J. doi:10.1100/2012/205182
Altmann J (1974) Observational study of behaviour: sampling methods. Behav 49:277-267
Alonso C, Langguth A (1989) Ecologia e comportamento de Callitrhix jacchus (Primates: Callitrichidae)
numa ilha de floresta atlântica. Rev Nordestina Biol 6(2):105-137
Amora TD, Beltrão-Mendes R, Ferrari SF (2013) Use of alternative plant resources by common
marmosets (Callithrix jacchus) in the semi-arid Caatinga scrub forests of northeastern Brazil.
Am J Primatol 75(4):333–341. doi:10.1002/ajp.22110
Amorim IR, Sampaio EVSB, Araújo LE (2009) Fenologia das espécies lenhosas da caatinga do Seridó,
RN. R Árvore 33:491–499
Araújo EL, Castro EC, Albuquerque UP (2007) Dynamic of brazilian Caatinga – a review concerning
plants, environment and people. Funct Ecosyst Communities 1(1):15-28
Arnold LA, Drawe DL (1979) Seasonal food habits of white-tailed deer in the south Texas plains. J
Range Manage 32:175–176
Barbosa D, Barbosa M, Lima L (2003) Fenologia de espécies lenhosas da Caatinga. In: Leal IR, Tabarelli
M, Silva JMC (Eds) Ecologia e conservação da Caatinga, Universidade Federal de Pernambuco
(UFPE), Recife, Brazil, pp 657–693
43
Bezerra BM, Souto A (2008) Structure and usage of the vocal repertoire of Callithrix jacchus. Int J
Primatol 29:671-701. doi:10.1007/s10764-008-9250-0
Burkhart A (1976) A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae). J Arnold
Arbor 57(4):450-525
De la Fuente MFC, Souto A, Boachá M, Schiel N (2014) Behavioral adjustments by a small neotropical
primate (Callithrix jacchus) in a semiarid Caatinga environment. Scientific World J.
doi:10.1155/2014/326524
Diaz GB, Ojeda RA (1999) Kidney structure and allometry of Argentine desert rodents. J Arid Environ
41:453–461
Hasley LG, Bezerra BM, Souto AS (2006) Can wild common marmosets (Callithrix jacchus) solve the
parallel problem strings task? Anim Cogn 9:229-233. doi:10.1007/s10071-006-0016-9
INMET (2015) Instituto Nacional de Meteorologia. Ministério da Agricultura, Pecuária e
Abastecimento/MAPA. http//www.inmet.gov.br. Accessed 20 April 2015
Gunhold T, Massen JJM, Schiel N, Souto A, Bugnyar T (2014) Memory, transmission and persistence of
alternative foraging techniques in wild common marmosets. Anim Behav 91:79-91.
doi:10.1016/j.anbehav.2014.02.023
Lehner PN (1996) Handbook of ethological methods. Cambridge University Press, Cambridge, UK, 2nd
edition
Maier W, Alonso C, Langguth A (1982) Field observations on Callithrix jacchus jacchus. L. Z.
Saugetierkunde 47: 334-346
Marshall AJ, Wrangham RW (2007) Evolutionary consequences of fallback foods. Int J Primatol
28:1219–1235. doi:10.1007/s10764-007-9218-5
Medeiros RM, Brito JIB, Borges CK (2012) Análise hidroclimático do município de Cabaceiras, PB. Rev
Bras de Geogr Fis 5(5):1174-1190
Mellink E, Riojas-López ME (2002) Consumption of Platyopuntias by wild vertebrates. In: Nobel, PS
(Ed) Cacti biology and uses, University of California Press, Berkeley and Los Angeles, California,
pp 109-123
Menárd N, Motsch P, Delahaye A, Saintvanne A, Flohic GL, Dupé S, Vallet D, Qarro M, Pierre J (2013)
Effect of habitat quality on the ecological behaviour of a temperate-living primate: time-budget
adjustments. Primates 54(3):217-228. doi:10.1007/s10329-013-0350-x
Menezes MOT, Taylor NP, Loiola MIB (2013) Flora do Ceará, Brasil: Cactaceae. Rodriguésia 64(4):757774
Mizrahi Y, Nerd A, Nobel PS (1996) Cacti as crops. In: Janick J (Ed) Horticultural reviews, Volume 18,
John Wiley & Sons, Inc, Oxford, UK. doi:10.1002/9780470650608.ch6
Monteiro JM, Neto EM, Amorim ELC, Strattmann RR, Araújo EL, Albuquerque UP (2005) Teor de
taninos em três espécies medicinais arbóreas simpátricas da Caatinga. R Árvore, 29(6):999-1005
Moraes BLC, Souto A, Schiel, N (2014) Adaptability in stone use by capuchin monkeys (Sapajus
libidinosus). Am J Primatol 76:967-977. doi:10.1002/ajp.22286
Moura AC, Lee P (2004) Capuchin stone tool use in Caatinga dry forest. Science 306:1909.
doi:10.1126/science.1102558
44
Nascimento SS, Alves JJA (2008) Ecoclimatology of the Cariri Paraibano. Rev Geogr Acad 2(3):28-41
Nash LT (1986) Dietary, behavioral, and morphological aspects of gummivory in primates. Am J Phys
Anthropol 29:113–137. doi:10.1002/ajpa.1330290505
Passamani M (1998) Activity budget of geoffroy’s marmoset (Callithrix geoffroyi) in an Atlantic forest in
southeastern
Brazil.
Am
J
Primatol
46:333-340.
doi:10.1002/(SICI)1098-
2345(1998)46:4<333::AID-AJP5>3.0.CO;2-7
Pesendorfer MB, Gunhold T, Schiel N, Souto A, Huber L, Range F (2009) The maintenance of traditions
in marmosets: individual habit, not social conformity? A field experiment. PLoS ONE 4(2):e4472.
doi:10.1371/journal.pone.0004472
Pizzi A, Cameron, FA (1986) Flavonoid tannins: structural wood components for drought-resistance
mechanisms of plants. Wood Sci Technol 20 (2):119-124
Prado D (2003) As caatingas da América do Sul. In: Leal IR, Tabarelli M, Silva JMC (Eds) Ecologia e
conservação da Caatinga, Editora Universitária, Universidade Federal de Pernambuco, Recife,
Brazil, pp 3–74
Rangel MG, Mellink E (1993) Historia natural de la rata magueyera en el Altiplano Mexicano. In:
Medellín RA, Ceballos G (Eds) Avances en el estudio de los mamíferos de México, Asociación
Mexicana de Mastozoología, México City, pp 173–183
Rocha PLB (1995) Proechimys yonenagae, a new species of spiny rat (Rodentia: Echimyidae) from fossil
sand dunes in the Brazilian Caatinga. Mamm 59(4):537– 549
Rocha EA, Agra MF (2002) Flora do Pico do Jabre, Paraíba, Brasil: Cactaceae Juss. Acta Bot Bras
16(1):15-21. doi:10.1590/S0102-33062002000100004
Rylands AB, Faria DS (1993) Habitats, feeding ecology, and home range size in the genus Callithrix. In:
Rylands AB (Ed) Marmosets and tamarins: systematics, behaviour, and ecology, Oxford: Oxford
University Press, pp 262-272
Schiel N, Souto A, Huber L, and Bezerra BM (2010) Hunting strategies in wild common marmosets are
prey and age dependent. Am J Primatol 72(12):1039–1046. doi:10.1002/ajp.20860
Schmidt-Nielsen K (1997) Animal physiology: adaptation and environment. Cambridge University Press,
UK, 5th edition
Silva PPF, Oliveira PAB, Baracho GS, Agra MF (2013) O gênero Herissantia Medik. (Malvoide,
Malvaceae) no nordeste do Brasil. 64º Congresso Nacional de Botânica, Belo Horizonte
Sousa DMM, Bruno RLA, Dornelas CSM, Alves EU, Andrade AP, Nascimento LC (2010)
Caracterização morfológica de frutos e sementes e desenvolvimento pós-seminal de Tamarinus
indica L.- Leguminosae: Caesalpinioideae. R. Árvore 34(6):1009/1015
Souto A, Bezerra BM, Schiel N, Huber L (2007) Saltatory search in free-living Callithrix jacchus:
environmental and ages influences. Int J Primatol 28:881-89. doi:10.1007/s10764-007-9165-1
Stevenson MF, Rylands AB (1988) The marmosets, genus Callithrix. In: Mittermeier RA, Rylands AB,
Coimbra-Filho AF, Da Fonseca GAB (Eds) Ecology and behavior of neotropical primates,
Washington DC: World Wildlife Foundation, 2:131-222
Theimer TC, Bateman GC (1992) Patterns of prickly-pear herbivory by collared peccaries. J Wildl Manag
56:234–240. doi:10.2307/3808817
45
Vasconcellos A, Andreazze R, Almeida AM, Araujo AMA, Oliveira ES, Oliveira U (2010) Seasonality of
insects in the semi-arid Caatinga of northeastern Brazil. Rev Bras Entomol 54(3):471-476.
doi:10.1590/S0085-56262010000300019
46
Artigo 2
Comportamento de forrageio por insetos por Callithrix jacchus (PRIMATES,
CALLITRICHIDAE) de vida livre: uma abordagem o polimorfismo visual
Artigo a ser submetido à American Journal of Primatology – fator de impacto: 2.43
(Normas para publicação Anexo II)
47
1
Comportamento de forrageio por insetos por Callithrix jacchus (PRIMATES,
2
CALLITRICHIDAE) de vida livre: um viés ao polimorfismo visual
3
4
Filipa Abreu1, Antonio Souto2, Daniel M. A. Pessoa3, Nicola Schiel1*
5
6
1
Departamento de Biologia, Universidade Federal Rural de Pernambuco, Recife, Brasil.
7
2
Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Brasil.
8
3
Departamento de Fisiologia, Universidade Federal do Rio Grande do Norte, Natal,
9
Brasil.
10
11
Short title: Captura de insetos por saguis comuns
12
13
*Autor de correspondência:
14
Nicola Schiel
15
Universidade Federal Rural de Pernambuco,
16
Rua Dom Manuel Medeiros, s/n
17
Dois Irmãos, Recife
18
CEP: 52171-900
19
E-mail: [email protected]
20
Telefone: (81) 99499-7271
21
22
23
24
48
25
Resumo
26
O polimorfismo visual está presente em primatas do Novo Mundo, em que machos e
27
fêmeas homozigóticas possuem dicromatismo e fêmeas heterozigóticas têm visão
28
tricromática. Enquanto dicromatas são mais eficazes na detecção e captura de insetos de
29
coloração críptica, a principal vantagem dos indíviduos tricromatas é a detecção de
30
itens de coloração conspícua. Estudos nesta área têm sido realizados principalmente em
31
cativeiro, e até a data apenas dois estudos focaram nesta temática em ambiente natural
32
mas apenas no gênero Cebus e Saguinus. Assim, este estudo objetivou uma comparação
33
do comportamento de forrageio por insetos de 15 saguis-comuns (Callithrix jacchus)
34
em ambiente natural, de forma a relacionar o efeito dos fenótipos nestas capturas. Os
35
indivíduos foram observados utilizando o método de animal focal associado ao método
36
ad libitum, e sempre que havia eventos de predação por parte destes eram registradas as
37
colorações dos insetos capturados assim como o seu local de captura. Os resultados
38
mostram que a lactação exerce um papel importante nas capturas, uma vez que esta
39
demanda um grande gasto energético e consequentemente, uma alta necessidade
40
nutricional. Por outro lado, não foram observadas diferenças entre fêmeas e machos na
41
captura de insetos crípticos, sugerindo que não só o polimorfismo afeta as capturas, mas
42
também as diferenças sexuais, como por exemplo, prioridade no acesso ao alimento por
43
parte de fêmeas. Mostramos também neste estudo que o tamanho associado á coloração
44
do inseto possui um efeito na captura de insetos por machos (dicromatas), mostrando
45
que nesta população machos possuem “tricromatismo de campo grande”. Por fim,
46
acreditamos que nesta população haja uma vantagem para fêmeas (que possuem
47
majoritariamente tricromatismo), e que esta seja mantida por dominância heterozigótica.
49
48
Palavras-chave: visão de cores; lactantes; primata neotropical; tricromatismo; vantagem
49
heterozigótica
50
51
Introdução
52
Primatas do Novo Mundo (Platyrrhini) são conhecidos pelo seu peculiar
53
polimorfismo visual [Mollon et al., 1984]. Os machos sempre são dicromatas
54
(homozigóticos), enquanto que as fêmeas podem ser dicromatas (homozigóticas) ou
55
tricromatas (heterozigóticas) [Jacobs, 1983; Jacobs & Neitz, 1987]. De acordo com
56
Jacobs & Deegan II [2005], 40% das fêmeas apresentam dicromatismo, enquanto 60%
57
tricromatismo. No entanto, duas exceções são conhecidas: Aotus spp. (macacos-da-
58
noite) que são monocromáticos, e Allouata spp. (bugios) que são tricromáticos [Jacobs
59
et al., 1996a,b].
60
A presença do polimorfismo nos Platyrrhini há 14 milhões de anos sugere uma
61
adaptação evolutiva desta característica [Surridge & Mundy, 2002]. Existem duas
62
hipóteses levantadas para a permanência deste polimorfismo: (i) Hipóteseda dominância
63
heterozigótica, que refere que fêmeas heterozigóticas teriam um “fitness” mais elevado
64
que os restantes indivíduos e (ii) hipótese da seleção dependente de frequência negativa,
65
que por sua vez refere que os dois fenótipos são mantidos pois a seleção favorece o
66
fenótipo com menor frequência na população, que neste caso seria o tricromatismo
67
[Boissinot et al., 1998; Mollon et al., 1984].
68
Mais recentemente, pesquisadores têm tentado entender as vantagens e
69
desvantagens de cada fenótipo, através de estudos relacionados com a busca por
70
alimentos. Em geral, os resultados apontam que indivíduos tricromatas têm mais
71
facilidade em distinguir objetos de cor conspícua [e.g. Bompas et al., 2013; Caine &
50
72
Mundy, 2000; Dominy & Lucas, 2001; Osorio & Vorobyev, 1996; Perini et al., 2009;
73
Regan et al., 2001; Smith et al., 2003].
74
Por outro lado, indivíduos dicromatas são mais eficazes no forrageio em áreas de
75
pouca luminosidade [Caine et al., 2010; Freitag & Pessoa, 2012; Perini et al., 2009],
76
possuem uma melhor visão espacial e detectam com mais facilidade organismos
77
crípticos e camuflados [e.g. Melin et al., 2007; Morgan et al., 1992; Saito et al., 2005;
78
Smith et al., 2012]. Melin et al. [2007] e Smith et al. [2012] que trabalharam com as
79
espécies Cebus capucinus e Saguinus spp., respectivamente, verificaram que dicromatas
80
seriam mais eficientes na captura de insetos com coloração críptica ou que fiquem
81
camuflados em relação ao substrato. Enquanto Dominy et al. [2003] não observaram
82
vantagem de fêmeas (dicromatas e tricromatas) sobre machos (exclusivamente
83
dicromatas) no forrageio por alimento, Smith et al. [2012] mostraram que tricromatas
84
capturam, em geral, mais insetos do que dicromatas, indicando uma vantagem de
85
tricromatas no forrageio por insetos. Smith et al. [2012] afirmam ainda que o
86
polimorfismo não se apresenta vantajoso quando o tamanho do inseto a ser capturado
87
varia. Ainda, no estudo de Melin et al. [2007], os autores mostraram que tricromatas
88
capturam em maior número insetos conspícuos de superfície do que dicromatas.
89
Estudos que visem o efeito do polimorfismo no comportamento de forrageio do
90
gênero Callithrix na natureza ainda são inexistentes. Até o presente momento, pesquisas
91
de laboratório focaram em estudos genéticos [e.g. Hunt et al., 1993; Shyue et al., 1998
92
Surridge & Mundy, 2002], microespectofotométricos [e.g. Kawamura et al., 2001;
93
Tovée et al., 1992; Travis et al., 1988; Williams et al., 1992] e comportamentais [e.g.
94
Caine & Mundy, 2000; Caine et al., 2003, 2010; Freitag & Pessoa, 2012; Moreira et al.,
95
2015; Pessoa et al., 2005a,b]. No presente estudo, investigamos a hipótese da vantagem
51
96
de fêmeas de Callithrix jacchus na detecção de insetos na natureza. Saguis são pequenos
97
primatas neotropicais da família Callithrichidae e, normalmente, possuem em seu grupo
98
apenas uma fêmea reprodutora [Auricchio, 1995; Yamamoto, 1991]. Apesar da
99
ausência de dimorfismo sexual, estudos apontam para uma maior vantagem de fêmeas
100
no forrageio por alimento [e.g. Box et al., 1999]. A alimentação destes primatas é
101
essencialmente composta por frutos, insetos e goma [Rylands & de Faria, 1993; Souto
102
et al., 2007]. Entre os insetos mais consumidos encontram-se grilos, gafanhotos,
103
cigarras, formigas e cupins [Schiel et al., 2010; Souto et al., 2007]. Estes possuem
104
elaboradas estratégias para evitar a predação [Edmunds, 1974; Poulton, 1980]. Quando
105
não utilizam a estratégia de se esconderem entre frestas, a maioria encontra-se de forma
106
críptica sob o substrato, ou apresentam cores conspícuas [Edmunds, 1974; Poulton,
107
1980].
108
Deste modo, este estudo aborda uma comparação do comportamento de forrageio
109
por insetos entre fêmeas e machos de saguis. Ao se observar a taxa de captura de insetos
110
por sexo, espera-se que fêmeas capturem significativamente mais insetos do que os
111
machos, assim como capturem significativamente mais insetos de cor conspícua do que
112
os machos. Relativamente à captura de insetos crípticos, espera-se que haja uma maior
113
captura destes insetos por parte dos machos.
114
115
Métodos
116
Área de estudo e composição dos grupos
117
O estudo foi conduzido na Fazenda Marimbondo, uma área privada com cerca de
118
400 ha (7º31’42”S – 36º17’50”W), situada próxima ao município de Cabaceiras, no
119
estado da Paraíba, Nordeste do Brasil (Fig. 1). Esta região está inserida no Cariri
52
120
Paraibano, apresentando vegetação típica de Caatinga e condições climáticas únicas
121
[para mais detalhes ver De La Fuente et al., 2014].
122
Foram observados cinco grupos (G1 – G5) da espécie Callithrix jacchus, em um
123
total de 19 indivíduos (Tabela I). Os indivíduos foram identificados de acordo com
124
marcas naturais ou cicatrizes, sexo e idade [De La Fuente et al., 2014; Schiel et al.,
125
2008; Schiel et al., 2010].
126
127
128
129
130
131
Fig. 1. Área de estudo na fazenda Marimbondo em ambiente semiárido, Paraíba, Brasil
(Fonte: Javiera De la Fuente).
Tabela I – Composição dos grupos de estudo em ambiente semiárido
G1
G2
G3
G4
Idade (meses)
♀
♂
♀
♂
♀
♂
♀
♂
G5
♀
♂
Infante (1-4)
-
1*
-
-
-
-
-
2*
-
-
Juvenil (5 – 10)
-
-
-
-
2
-
-
-
-
-
Adulto (> 11)
1
1
1
1
2
3
1
1
1 (1*)
1
G=grupo. *Indivíduos que desapareceram durante o estudo. Estes não foram incluídos nas análises.
132
133
Coleta de dados comportamentais
134
Após quatro meses de habituação dos animais e do observador, deu-se início às
135
observações sistemáticas que foram realizadas por F. Abreu. Os dados sistemáticos
53
136
foram coletados de maio a julho e de setembro a novembro de 2014 (meses mais
137
representativos da estação chuvosa e seca, respectivamente) [Medeiros et al., 2012]. A
138
coleta ocorreu durante 10 dias por mês, totalizando 263 horas de observação direta.
139
O método de amostragem utilizado foi animal focal, com sessões de 10 minutos
140
contínuos [Altmann, 1974]. Utilizou-se o método ad libitum [Altmann, 1974] ao se
141
observar algum indivíduo consumindo uma presa. Sempre que um animal ficava “fora
142
de visão” por mais de 60 segundos, a sessão era descartada [Schiel & Huber, 2006]. A
143
coleta de dados comportamentais foi realizada com auxílio de um gravador digital
144
(Olympus VN-702PC).
145
Cada grupo foi seguido durante o seu principal período de atividade (5:00 até
146
17:00) [De La Fuente et al., 2014]. Ao início de cada sessão, escolhia-se ao acaso qual
147
indivíduo seria observado. A coleta dos dados comportamentais para cada indivíduo foi
148
igualmente distribuída ao longo do dia. Obtiveram-se, aproximadamente, 80 sessões por
149
indivíduo, totalizando 1.581 sessões. Nas observações foram anotados: (i) eventos de
150
predação realizados pelos saguis de acordo com o sexo; (ii) coloração e taxonomia do
151
inseto; e (iii) substrato e cor do substrato em que o inseto foi capturado. A identificação
152
dos insetos foi feita a nível de ordem, sendo classificados em crípticos (insetos que se
153
encontravam camuflados em relação ao substrato no momento da captura) ou
154
conspícuos (insetos de coloração chamativa ou visíveis sob o substrato) de acordo com
155
Melin et al., [2007]. Além da coloração, dividimos os insetos em categorias de acordo
156
com o seu tamanho: insetos crípticos pequenos (insetos ≤ 2 cm); insetos crípticos
157
grandes (insetos > 2 cm); insetos conspícuos pequenos (insetos ≤ 2 cm); insetos
158
conspícuos grandes (insetos > 2 cm) [modificado de Schiel et al. (2010)]. O estudo foi
159
não invasivo e está de acordo com as leis brasileiras, tendo sido aprovado pelo Comité
54
160
de Ética para Uso de Animais da Universidade Federal Rural de Pernambuco (CEUA nº
161
135/2014).
162
163
Coleta de insetos
164
A coleta de insetos visou a identificação e a medição do tamanho da ordem de
165
presas que observamos os animais consumirem. Para a coleta foram usados três tipos de
166
armadilhas: rede entomológica (insetos voadores), guarda-chuva entomológico (insetos
167
que se situam em galhos ou folhas de árvores), e armadilha de queda (insetos terrestres)
168
[Paulson, 2005]. As coletas foram feitas em julho e novembro de 2014 e o esforço
169
amostral foi de 12 horas por dia, totalizando 120 horas.
170
171
Análise estatística
172
Para a análise estatística foram utilizados 15 indivíduos. Retiramos das análises
173
todos os animais que desapareceram durante o período de observações (N = 1) e aqueles
174
com idade inferior a 5 meses (N = 3). A exclusão dos indivíduos mais jovens visou
175
evitar um efeito da inexperiência dos mesmos na captura de insetos [De La Fuente et al.,
176
2014; Schiel et al., 2010]. Para verificarmos se a lactação tem algum efeito na eficiência
177
de captura, foram realizadas análises (i) com as fêmeas lactantes (N = 8) e (ii) sem as
178
fêmeas lactantes (N = 6). Verificou-se também se haveria algum efeito retirando outras
179
duas fêmeas não lactantes das análises estatísticas.
180
Para a análise estatística utilizamos a média do número total de presas capturadas
181
divididas pelo número total de sessões para cada indivíduo. Devido à não normalidade
182
dos dados assim como a heterogeneidade das variâncias, utilizamos o teste não
183
paramétrico U de Mann-Whitney [Siegel, 1956]. Este teste foi utilizado para
55
184
verificarmos qual dos sexos (fêmeas ou machos): (i) capturou mais insetos; (ii) capturou
185
mais insetos conspícuos ou crípticos; (iii) capturou mais insetos de acordo com suas
186
categorias.
187
Para todas as análises considerou-se P≤0.05 como significativo. Todos os dados
188
foram analisados com o GraphPad Instat3 (GraphPad Software, Inc.) e Excel (Microsoft
189
Corporation).
190
191
Resultados
192
No total, registraramos 797 eventos direcionados à captura de insetos. Foram
193
identificados 582 insetos a nível de ordem, havendo capturas de insetos de 10 ordens
194
distintas
195
Quando comparamos as fêmeas e machos, incluindo nesta análise todas as fêmeas
196
observadas, foram observadas diferenças significativas tanto na captura de insetos totais
197
(U = 47; P ≤ 0.05) como na de insetos de coloração conspícua (U = 47.5, P ≤ 0.05),
198
sendo as fêmeas mais eficazes nestas duas categorias. Por sua vez, na captura de insetos
199
crípticos não observamos diferenças entre sexos (U = 42, P = 0.12) (Fig. 2).
200
56
201
202
203
Fig. 2. Comparação da porcentagem de insetos capturados entre fêmeas (N = 8) e
machos (N = 7) de Callithrix jacchus. *P ≤ 0.05.
204
205
Em relação às análises de categorias de insetos, apenas observamos diferenças
206
significativas na captura de insetos conspícuos pequenos (U = 49, P ≤ 0.01), com uma
207
maior captura destes insetos por parte de fêmeas. Nas capturas de insetos crípticos
208
pequenos (U = 41, P = 0.15), insetos crípticos grandes (U = 41, P = 0.15) e insetos
209
conspícuos grandes (U = 30, P = 0.81) não foram observadas diferenças significativas
210
entre sexos (Fig. 3).
211
57
212
213
214
215
216
217
Fig. 3. Comparação da porcentagem de capturas nas diferentes categorias de tamanho e
coloração de insetos entre fêmeas (N = 8) e machos (N = 7) de Callithrix jacchus. **P ≤
0.01.
Com a retirada das fêmeas que estavam lactantes durante o período de estudo (N =
218
2), nenhuma diferença significativa entre sexos foi observada nas capturas totais (U =
219
33, P = 0.10), capturas de insetos de coloração conspícua (U = 33.5, P = 0.08) e de
220
insetos de coloração críptica (U = 31, P = 0.18) (Fig. 4).
221
222
223
224
Fig. 4. Comparação da porcentagem de insetos capturados entre fêmeas (N = 6) e
machos (N = 7) de Callithrix jacchus, sem a presença de fêmeas lactantes.
58
225
Na análise por categorias de insetos (excluindo as fêmeas lactantes) apenas foi
226
observada diferença significativa na captura de insetos conspícuos pequenos (U = 33.5;
227
P ≤ 0.05), com fêmeas capturando um maior número de insetos desta categoria do que
228
machos. Nas demais análises não foram encontradas diferenças significativas entre
229
sexos (insetos crípticos pequenos: U = 30, P = 0.23; insetos crípticos grandes: U = 31, P
230
= 0.18; insetos conspícuos grandes: U = 23, P = 0.83) (Fig. 5).
231
232
233
234
235
Fig. 5. Comparação da porcentagem de capturas nas diferentes categorias de tamanho e
coloração de insetos entre fêmeas (N = 6) e machos (N = 7) de Callithrix jacchus, sem a
presença de fêmeas lactantes. *P ≤ 0.05.
236
Discussão
237
Os resultados obtidos corroboram algumas das nossas hipóteses iniciais,
238
indicando que fêmeas capturam um maior número de insetos em geral, assim como
239
insetos de coloração conspícua. Nossos dados também revelaram que, além do efeito do
240
polimorfismo, parece também existir um efeito da lactação no sucesso de capturas por
241
parte das fêmeas. Sabendo-se que fêmeas deste gênero têm uma maior probabilidade de
242
possuírem o tricromatismo (66%) ao invés do dicromatismo (34%) [Rowe & Jacobs,
243
2004; Surridge et al., 2005], poderia se esperar uma vantagem para as fêmeas aqui
59
244
estudadas nas capturas de insetos totais [Smith et al. 2012], assim como de insetos de
245
coloração conspícua [Melin et al., 2007; Smith et al., 2012], tanto na presença como na
246
ausência de fêmeas lactantes. Contudo, apenas foi verificada uma vantagem de fêmeas
247
sobre machos nas capturas referidas acima quando as fêmeas lactantes estavam inclusas
248
nas análises. Isto sugere que a lactação parece exercer um efeito nestas capturas,
249
possivelmente porque há uma maior demanda energética por parte das fêmeas
250
[Gittleman & Thompson, 1988, Nievergelt & Martin, 1999; Araújo et al., 2000; Tardif
251
et al., 2001, 2004]. Assim, as fêmeas podem compensar essa necessidade nutricional
252
através do aumento do consumo de insetos que são ricos em proteínas [Garber, 1987].
253
Considerando-se que estas fêmeas possam ser tricromatas, estudos anteriores afirmam
254
que além da vantagem na discriminação de itens conspícuos, o tricromatismo é também
255
vantajoso na procura de alimento nutritivo [e.g. Lucas et al., 1998, 2003; Dominy &
256
Lucas, 2001, 2004; Riba-Hernandez et al., 2005], o que apoiaria os resultados aqui
257
apresentados.
258
Com relação às capturas de insetos de coloração críptica não foram observadas
259
diferenças significativas entre os dois sexos. Este resultado não era previsto, uma vez
260
que a captura de insetos com este tipo de coloração é referida como uma das vantagens
261
dos indivíduos com visão dicromata (principalmente os machos) [Morgan et al., 1992;
262
Saito et al., 2005; Melin et al., 2007; Smith et al., 2012]. Porém, alguns estudos indicam
263
que fêmeas têm prioridade no acesso ao alimento [Tardif & Richter, 1981; Lopes et al.,
264
1997], assim como obtêm mais alimento do que os machos [e.g. Michels, 1988;
265
Yamamoto et al., 2004], indicando que o sexo possa ter ocasionado um efeito neste
266
resultado.
60
267
Relativamente aos resultados nas diferentes categorias de tamanho e coloração,
268
observamos um possível efeito da visão na categoria de insetos conspícuos pequenos. O
269
fato de fêmeas capturarem um maior número de insetos nesta categoria do que machos
270
corrobora resultados de estudos anteriores, mostrando uma vez mais que fêmeas têm
271
uma facilidade maior para capturar insetos de colorações mais chamativas [Melin et al.,
272
2007; Smith et al., 2012] e de menor tamanho que os machos.
273
Observamos, ainda, uma relação interessante entre o tamanho do inseto capturado
274
e o polimorfismo visual. A vantagem das fêmeas desaparece quando se trata de insetos
275
conspícuos grandes sugerindo que, após certo comprimento (>2 cm) a desvantagem dos
276
machos (dicromatas) em capturar itens alimentares de colorações conspícuas é
277
superada. Este fato já foi discutido e observado em primatas humanos dicromatas [e.g.
278
Breton & Tansley, 1985], sendo conhecido como “tricromacia de campo grande” em
279
que dicromatas conseguem discriminar objetos que seriam apenas detectados por
280
indivíduos com tricromacia. Esta discriminação é facilitada quando os objetos são de
281
maior tamanho, no entanto, nem todos os dicromatas a possuem [Sharpe et al., 1999].
282
Por exemplo, Smith et al. [2012] não encontraram efeito do tamanho nas capturas de
283
insetos por Saguinus spp. O mesmo resultado foi observado num estudo experimental
284
realizado por Gomes et al. [2005], em que os autores observaram que a espécie Cebus
285
apella não melhorava sua discriminação de objetos de cores conspícuas com a alteração
286
do tamanho destes, sugerindo que os sujeitos do seu estudo não apresentavam
287
“interação de campo grande”.
288
Em conclusão, nossos dados sugerem que o polimorfismo visual nesta população
289
seja mantido por vantagem heterozigótica, uma vez que as fêmeas apresentaram uma
290
maior captura de insetos totais e de insetos conspícuos. Ressaltamos que esta vantagem
61
291
pode ser atribuída ao polimorfismo visual, no entanto, a lactação é uma varíavel
292
importante e que deve ser considerada. Da mesma forma, destacamos a importância do
293
tamanho do inseto capturado, já que machos passaram a ter sucesso em suas capturas
294
por insetos conspícuos quando os mesmos apresetavam um tamanho acima de 2 cm.
295
296
Agradecimentos
297
Os autores agradecem ao Dr. Geraldo Baracuhy por nos facultar a Fazenda
298
Marimbondo para conduzirmos a nossa pesquisa. O presente estudo foi financiado por
299
uma bolsa de mestrado Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
300
(CAPES) atribuída a Filipa Abreu.
301
302
Referências Bibliográficas
303
Altmann J, 1974. Observational study of behavior: sampling methods. Behaviour 49:
304
227-265.
305
Araújo M, Arruda MF, Alencar AI, et al. 2000. Body weight of wild and captive
306
common marmosets (Callithrix jacchus). International Journal of Primatology 21
307
(2): 317-324.
308
Auricchio P. 1995. Primatas do Brasil. São Paulo, Editora Terra Brasilis, 168p.
309
Boissinot S, Tan Y, Shyue S, et al. 1998. Origins and antiquity of x-linked triallelic
310
color vision systems in New World monkeys. Proceedings of the National
311
Academy of Science USA 95: 13749-13754.
312
313
Bompas A, Kendall G, Sumner P. 2013. Spotting fruit versus picking fruit as the
selective advantage of human color vision. i-Perception 4: 84-94.
62
314
Box H, Yamamoto ME, Lopes FA. 1999. Gender differences in marmosets and
315
tamarins: responses to food tasks. International Journal of Comparative
316
Psychology 12(2): 59-70.
317
318
Breton ME, Tansley BW. 1985. Improved color test results with large-field viewing in
dichromats. Archives Ophthalmology 103: 1490–1495.
319
Bunce JA. 2015. Incorporating ecology and social system into formal hypothesis to
320
guide field studies of color vision in primates. American Journal of Primatology
321
77: 516-526.
322
Caine NG & Mundy NI. 2000. Demonstration of a foraging advantage for trichromatic
323
marmosets (Callithrix geoffroyi) dependent on food color. Proceedings of a Royal
324
Society of London B 267: 439-444.
325
Caine NG, Surridge AL, Mundy NI. 2003. Dichromatic and trichromatic Callithrix
326
geoffroyi differ in relative foraging ability for red-green color-camouflaged and
327
non-camouflaged food. International Journal of Primatology 24 (6): 1163-1175.
328
329
Caine NG, Osorio D, Mundy NI. 2010. A foraging advantage for dichromatic
marmosets (Callithrix geoffroyi) at low light intensity. Biology Letters 6: 36-38.
330
De la Fuente MFC, Souto A, Sampaio B, Schiel N. 2014. Behavioral adjustments by a
331
small Neotropical primate (Callithrix jacchus) in a semiarid Caatinga
332
environment. The Scientific World Journal. doi:10.1155/2014/326524.
333
Dominy NJ, Garber PA, Bicca-marques JC, Azevedo-lopes MA. 2003. Do female
334
tamarins use visual cues to detect fruit rewards more successfully than do males?
335
Animal Behaviour 66: 829-837.
336
337
Dominy NJ, Lucas PW. 2001. Ecological importance of trichromatic vision to primates.
Nature 410: 363-366.
63
338
339
340
341
Dominy NJ, Lucas PW. 2004. Significance of color, calories, and climate to the visual
ecology of catarrhines. American Journal of Primatology 66: 189-207.
Edmunds, M. 1974. Defense in animals: a survey of antipredator defenses. Harlow,
Longman Group Limited, 357pp.
342
Freitag FB, Pessoa DMA. 2012. Effect of luminosity on color discrimination of
343
dichromatic marmosets (Callithrix jacchus). Journal of Optical Society of
344
America 29 (2): 216-222.
345
346
347
348
Garber PA. 1987. Foraging living strategies among living primates. Annual Review of
Anthropology 16: 339-364.
Gittleman JL, Thompson SD. 1988. Energy allocation in mammalian reproduction.
American Zoologist 28: 863–875.
349
Gomes UR, Pessoa DMA, Suganuma E, Tomaz C, Pessoa VF. 2005. Influence of
350
stimuli size on color discrimonation in capuchin monkeys. American Journal of
351
Primatology 67: 437-446.
352
Hunt DV, Williams AJ, Bowmaker JK, Mollon, JD. 1993. Structure and evolution of
353
the polymorphic photopigment gene of the marmoset. Vision Research 33 (2):
354
147-154.
355
Jacobs, GH. 1983. Colour vision in animals. Endeavour 7 (3): 137-140.
356
Jacobs GH, Neitz J. 1987. Inheritance of color vision in a New World monkey (Saimiri
357
sciureus). Proceedings of the National Academy of Science, 84: 2545-2549.
358
Jacobs GH, Neitz M, Deegan F, Neitz J. 1996A. Trichromatic colour vision in new
359
world monkey. Nature 382: 156-158.
64
360
Jacobs GH, Neitz M, Neitz J. 1996B. Mutations in S-cone pigment genes and the
361
absence of colour vision in two species of nocturnal primates. Proceedings of the
362
Royal Society of London B 263: 705-710.
363
Jacobs GH, Deegan II JF. 2005. Polymorphic New World monkeys with more than
364
three M/L cone types. Journal of Optical Society of America A 22(10): 2072-
365
2080.
366
Kawamura S, Hirai M, Takenaka O, Radlwimmer FB, Yokoyama S. 2001. Genomic
367
and spectral analyses of long to middle wavelength-sensitive visual pigments of
368
common marmoset (Callithrix jacchus). Gene 269: 45-51.
369
Lopes FA, Yamamoto ME, Medeiros IS, Delgado KVC. 1997. A influência do estado
370
reprodutivo da fêmea na competição por alimento no sagüí comum (Callithrix
371
jacchus). Anais de Etologia 15:35-46.
372
Lucas PW, Darvell BW, Lee PKD, Yuen TDB, Choong MF. 1998. Colour cues of leaf
373
food selection by long-tailed macaques (Macaca fascicularis) with a new
374
suggestion for the evolution of trichromatic vision. Folia Primatológica 69: 139-
375
154.
376
377
378
379
Lucas PW, Dominy NJ, Riba-Hernádez P, et al. 2003. Evolution and function of routine
trichromatic vision in primates. Evolution 57(11): 2636-2643.
Medeiros RM, Brito JIB, Borges CK. 2012. Análise hidroclimático do município de
Cabaceiras, PB. Revista Brasileirade Geografia Fisíca 5(5):1174-1190.
380
Melin AD, Fedigan LM, Hiramatsu C, Sendall CL, Kawamura S. 2007. Effects of
381
colour vision phenotype on insect capture by a free-ranging population of white-
382
faced capuchins, Cebus capuchins. Animal Behaviour 73: 205-214.
65
383
384
Michels AN. 1988. Sex differences in food acquisition and aggression in captive
commom marmosets (Callithrix jacchus). Primates 39(4): 549-556.
385
Mollon JD, Bowmaker JK, Jacobs GH. 1984. Variations of colour vision in a new world
386
primate can be explained by polymorphism of retinal photopigments. Proceedings
387
of the Royal Society of London B 222: 373-399.
388
Moreira LAO, Oliveira DGR, Sousa MBC, Pessoa DMA. 2015. Parturition signaling by
389
visual cues in female marmosets (Callithrix jacchus). PLos ONE e0129319. doi:
390
10.1371/journal.pone.0129319.
391
Morgan MJ, Adam A, Mollon JD. 1992. Dichrimats detect colour-camouflaged objects
392
that are not detected by trichromats. Proceedings of the Royal Society of London
393
B 248: 291-295.
394
Nievergelt CM, Martin RD. 1999. Energy intake during reproduction in captive
395
common marmosets (Callithrix jacchus). Physiology & Behavior 65 (4/5):849-
396
854.
397
398
Osorio D, Vorobyev M. 1996. Colour vision as an adaptation to frugivory in primates.
Proceedings of the Royal Society of London 263: 593-599.
399
Paulson GS. 2005. Handbook to the construction and use of insect collection and
400
rearing devices: A guide for teachers with suggested classroom applications.
401
Springer Science & Business Media, 121pp.
402
Perini ES, Pessoa VF, Pessoa DMA. 2009. Detection of fruit by cerrado’s marmoset
403
(Callithrix penicillata): modeling color signals for different background scenarios
404
and ambient light intensities. Journal of Experimental Zoology 311A: 289-302.
405
406
Pessoa DMA, Tomaz C, Pessoa VF. 2005a. Color vision in marmosets and tamarins:
Behavioral evidence. American Journal of Primatology 67: 487-495.
66
407
Pessoa DMA, Cunha JF, Tomaz C, Pessoa VF. 2005b. Colour discrimination in the
408
Black-tufted-ear marmoset (Callithrix penicillata): Ecological implications. Folia
409
Primatológica 76: 125-134.
410
Poulton EB, 1980. The colours of animals: Their meaning and use, especially
411
considered in the case of insects. The internacional scientific series, New York: D.
412
Appleton and company.
413
Regan BC, Jullliot C, Simmen B, Viénot F, Charles-Dominique P, Mollon JD. 2001.
414
Fruits, foliage and the evolution of primate colour vision. Philosophical
415
Transactions of the Royal Society B 356: 229-283.
416
Riba-Hernández P, Stoner KE, Osório D. 2005. Effect of polymorphic colour vision for
417
fruit detection in the spider monkey Ateles geoffroyi, and its implications for the
418
maintenance of polymorphic colour vision in platyrrhine monkeys. The Journal of
419
Experimental Biology 207: 2465-2470.
420
Rowes MP, Jacobs GH. 2004. Cone pigment polymorphism in new world monkeys: are
421
all
422
10.10170S095252380404310X.
pigments
created
equal?
Visual
Neuroscience
21:
217-222.
doi:
423
Rylands AB, de Faria DS. 1993. Habitats, feeding ecology, and home range size in the
424
genus Callithrix. In: Rylands, AB, editor. Marmosets and tamarins: systematic,
425
behaviour and ecolgy. New York: Oxford University Press, p.262-272.
426
Saito A, Mikami A, Kawamura S, et al. 2005. Advantage of dichromats over
427
trichromats in discrimination of color-camouflaged stimuli in nonhuman primates.
428
American Journal of Primatology 67: 425-436.
67
429
Schiel N, Huber L. 2006. Social influences on the development of foraging behavior in
430
free-living common marmosets (Callithrix jacchus). American Journal of
431
Primatology 68: 1-11.
432
Schiel N, Souto A, Bezerra BM, Huber L. 2008. A stress-free method of identifying
433
common marmosets (Callithrix jacchus) in the wild. A Primatologia no Brasil,
434
Aracajú, Sociedade Brasileira de Primatologia, Biologia Geral e Experimental –
435
UFS 9: 147-153.
436
Schiel N, Souto A, Huber L, Bezerra B. 2010. Hunting strategies in wild common
437
marmosets are prey and age dependent. American Journal of Primatology 71: 1-8.
438
Shyue S, Boissinot S, Schneider H, et al. 1998. Molecular genetics of spectral tuning in
439
440
441
new world monkey color vision. Journal of Molecular Evolution, 46: 697-702.
Siegel S. 1956. Non parametric statistics for the behavioral sciences. McGraw-Hill,
New York.
442
Smith AC, Buchanan-smith HM, Surridge AK, Osorio D, Mundy NI. 2003. The effect
443
of color vision status on the detection and selection of fruits by tamarins
444
(Saguinus spp.). Journal of Experimental Biology 206: 3159-3165.
445
Smith AC, Surridge AK, Prescott MJ, et al. 2012. Effect of colour vision status on
446
insect prey capture efficiency of captive and wild tamarins (Saguinus spp.).
447
Animal Behaviour 83: 479-486.
448
Souto A, Bezerra BM, Schiel N, Huber L. 2007. Saltatory search in free-living
449
Callithrix jacchus: Environmental and age influences. International Journal of
450
Primatology 28: 881-893.
68
451
Surridge AK, Mundy NI. 2002. Trans-specific evolution of opsin alleles and the
452
maintenance of trichromatic colour vision in Callitrichine primates. Molecular
453
Ecology 11: 2157-2169.
454
Surridge AK, Suárez SS, Buchanan-Smith HM, Smith AC, Mundy NI. 2005. Color
455
vision pigment frequencies in wild tamarins (Saguinus spp.). American Journal of
456
Primatology 67: 463-470.
457
Tardif SD, Richter CB. 1981. Competition for a desired food in family groups of then
458
common marmoset (Callithrix jacchus) and the cotton top tamarin (Saguinus
459
oedipus). Laboratory of Animal Science Professional 31: 52-55.
460
Tardif SD, Power M, Oftedal OT, Power RA, Layne DG. 2001. Lactation, maternal
461
behavior and infant growth in common marmoset monkeys (Callithrix jacchus):
462
effects of maternal size and litter size. Behavioral Ecology Sociobiology 51: 17-
463
25.
464
Tardif SD, Power M, Layne D, Smucny D, Ziegler T. 2004. Energy restriction initiated
465
at different gestational ages has varying effects on maternal weight gain and
466
pregnancy outcome in common marmosets monkeys (Callithrix jacchus). British
467
Journal of Nutrition 92: 841-849.
468
Tovée MJ, Bowmaker JK, Mollon JD. 1992. The relationship between cone pigments
469
and behavioural sensitivity in a new world monkey (Callithrix jacchus jacchus).
470
Vision Research 32 (5): 867-878.
471
472
Travis DS, Bowmaker JK, Mollon JD. 1998. Polymorphism of visual pigments in a
callitrichid monkey. Vision Research 28 (4): 481-490.
69
473
Williams AJ, Hunt DM, Bowmaker JK, Mollon J. 1992. The polymorphic
474
photopigments of the marmoset: spectral tuning and genetic basis. The EMBO
475
Journal 11 (6): 2039-2045.
476
477
Yamamoto ME. 1991. Comportamento social do gênero Callithrix em cativeiro. A
primatologia no Brasil 3: 63-81.
478
Yamamoto ME, Domeniconi C, Box H. 2004. Sex differences in commom marmosets
479
(Callithrix jacchus) in response to an unfamiliar food task. Primates 45: 249-254.
70
ANEXO III. NORMAS PARA SUBMISSÃO NA REVISTA MAMMAL
RESEARCH
Instructions for Authors
Manuscript Submission
Submission of a manuscript implies: that the work described has not been published
before; that it is not under consideration for publication anywhere else; that its
publication has been approved by all coauthors, if any, as well as by the responsible
authorities – tacitly or explicitly – at the institute where the work has been carried out.
The publisher will not be held legally responsible should there be any claims for
compensation.
Permissions
Authors wishing to include figures, tables, or text passages that have already been
published elsewhere are required to obtain permission from the copyright owner(s) for
both the print and online format and to include evidence that such permission has been
granted when submitting their papers. Any material received without such evidence will
be assumed to originate from the authors.
Online Submission
Please follow the hyperlink “Submit online” on the right and upload all of your
manuscript files following the instructions given on the screen.
Costs of Color Illustrations
Online publication of color illustrations is always free of charge. For color in the print
version, authors will be expected to make a contribution towards the extra costs of EUR
950 / US$ 1150 (+ local tax) per article, irrespective of the number of figures in it.
LANGUAGE
Manuscripts that are accepted for publication will be checked by our copyeditors for
spelling and formal style. This may not be sufficient if English is not your native
language and substantial editing would be required. In that case, you may want to ask a
native speaker to help you or arrange for your manuscript to be checked by a
professional language editor prior to submission. A clear and concise language will help
editors and reviewers concentrate on the scientific content of your paper and thus
smooth the peer review process. The following editing service provides language
editing for scientific articles in medicine, biomedical and life sciences, chemistry,
physics, engineering, business/economics, and humanities. Please contact the editing
service directly to make arrangements for editing and payment. Use of an editing
service is neither a requirement nor a guarantee of acceptance for publication.
TITLE PAGE
Title Page
The title page should include:
The name(s) of the author(s)
A concise and informative title
71
The affiliation(s) and address(es) of the author(s)
The email address, telephone and fax numbers of the corresponding author
Abstract
Please provide an abstract of 150 to 250 words. The abstract should not contain any
undefined abbreviations or unspecified references.
Keywords
Please provide 4 to 6 keywords which can be used for indexing purposes.
TEXT
Text Formatting
Manuscripts should be submitted in Word.
Use a normal, plain font (e.g., 10point Times Roman) for text.
Use italics for emphasis.
Use the automatic page numbering function to number the pages.
Do not use field functions.
Use tab stops or other commands for indents, not the space bar.
Use the table function, not spreadsheets, to make tables.
Use the equation editor or MathType for equations.
Save your file in docx format (Word 2007 or higher) or doc format (older Word
versions).
Manuscripts with mathematical content can also be submitted in LaTeX.
LaTeX macro package (zip, 182 kB).
Headings
Please use no more than three levels of displayed headings.
Abbreviations
Abbreviations should be defined at first mention and used consistently thereafter.
Footnotes
Footnotes can be used to give additional information, which may include the citation of
a reference included in the reference list. They should not consist solely of a reference
citation, and they should never include the bibliographic details of a reference. They
should also not contain any figures or tables. Footnotes to the text are numbered
consecutively; those to tables should be indicated by superscript lowercase letters (or
asterisks for significance values and other statistical data). Footnotes to the title or the
authors of the article are not given reference symbols. Always use footnotes instead of
endnotes.
Acknowledgments
Acknowledgments of people, grants, funds, etc. should be placed in a separate section
on the title page. The names of funding organizations should be written in full.
REFERENCES
Citation
Cite references in the text by name and year in parentheses. Some examples:
72
Negotiation research spans many disciplines (Thompson 1990).
This result was later contradicted by Becker and Seligman (1996).
This effect has been widely studied (Abbott 1991; Barakat et al. 1995; Kelso and
Smith 1998; Medvec et al. 1999).
Reference list
The list of references should only include works that are cited in the text and that have
been published or accepted for publication. Personal communications and unpublished
works should only be mentioned in the text. Do not use footnotes or endnotes as a
substitute for a reference list.
EndNote style (zip, 2 kB)
Reference list entries should be alphabetized by the last names of the first author of each
work.
Journal article
Gamelin FX, Baquet G, Berthoin S, Thevenet D, Nourry C, Nottin S, Bosquet L (2009)
Effect of high intensity intermittent training on heart rate variability in prepubescent
children. Eur J Appl Physiol 105:731738. doi: 10.1007/s0042100809558
Ideally, the names of all authors should be provided, but the usage of “et al” in long
author lists will also be accepted:
Smith J, Jones M Jr, Houghton L et al (1999) Future of health insurance. N Engl J Med
965:325–329
Article by DOI
Slifka MK, Whitton JL (2000) Clinical implications of dysregulated cytokine
production. J Mol Med. doi:10.1007/s001090000086
Book
South J, Blass B (2001) The future of modern genomics. Blackwell, London
Book chapter
Brown B, Aaron M (2001) The politics of nature. In: Smith J (ed) The rise of modern
genomics, 3rd edn. Wiley, New York, pp 230257
Online document
Cartwright J (2007) Big stars have weather too. IOP Publishing PhysicsWeb.
http://physicsweb.org/articles/news/11/6/16/1. Accessed 26 June 2007
Dissertation
Trent JW (1975) Experimental acute renal failure. Dissertation, University of California
Always use the standard abbreviation of a journal’s name according to the ISSN List of
Title Word Abbreviations, see
ISSN.org LTWA
If you are unsure, please use the full journal title. For authors using EndNote, Springer
provides an output style that supports the formatting of intext citations and reference
list.
TABLES
All tables are to be numbered using Arabic numerals. Tables should always be cited in
text in consecutive numerical order. For each table, please supply a table caption (title)
explaining the components of the table. Identify any previously published material by
giving the original source in the form of a reference at the end of the table caption.
Footnotes to tables should be indicated by superscript lowercase letters (or asterisks for
significance values and other statistical data) and included beneath the table body.
ARTWORK AND ILLUSTRATIONS GUIDELINES
73
Electronic Figure Submission
Supply all figures electronically. Indicate what graphics program was used to create the
artwork. For vector graphics, the preferred format is EPS; for halftones, please use TIFF
format. MSOffice files are also acceptable. Vector graphics containing fonts must have
the fonts embedded in the files. Name your figure files with "Fig" and the figure
number, e.g., Fig1.eps.
Line Art
Definition: Black and white graphic with no shading. Do not use faint lines and/or
lettering and check that all lines and lettering within the figures are legible at final size.
All lines should be at least 0.1 mm (0.3 pt) wide. Scanned line drawings and line
drawings in bitmap format should have a minimum resolution of 1200 dpi. Vector
graphics containing fonts must have the fonts embedded in the files.
Halftone Art
Definition: Photographs, drawings, or paintings with fine shading, etc.
If any magnification is used in the photographs, indicate this by using scale bars
within the figures themselves. Halftones should have a minimum resolution of 300 dpi.
Combination Art
Definition: a combination of halftone and line art, e.g., halftones containing line
drawing, extensive lettering, color diagrams, etc. Combination artwork should have a
minimum resolution of 600 dpi.
Color Art
Color art is free of charge for online publication. If black and white will be shown in the
print version, make sure that the main information will still be visible. Many colors are
not distinguishable from one another when converted to black and white. A simple way
to check this is to make a xerographic copy to see if the necessary distinctions between
the different colors are still apparent. If the figures will be printed in black and white, do
not refer to color in the captions. Color illustrations should be submitted as RGB (8 bits
per channel).
Figure Lettering
To add lettering, it is best to use Helvetica or Arial (sans serif fonts). Keep lettering
consistently sized throughout your finalsized artwork, usually about 2–3 mm (8–12 pt).
Variance of type size within an illustration should be minimal, e.g., do not use 8pt type
on an axis and 20pt type for the axis label. Avoid effects such as shading, outline letters,
etc. Do not include titles or captions within your illustrations.
Figure Numbering
All figures are to be numbered using Arabic numerals. Figures should always be cited in
text in consecutive numerical order. Figure parts should be denoted by lowercase letters
(a, b, c, etc.). If an appendix appears in your article and it contains one or more figures,
continue the consecutive numbering of the main text. Do not number the appendix
figures, "A1, A2, A3, etc." Figures in online appendices (Electronic Supplementary
Material) should, however, be numbered separately.
Figure Captions
74
Each figure should have a concise caption describing accurately what the figure depicts.
Include the captions in the text file of the manuscript, not in the figure file. Figure
captions begin with the term Fig. in bold type, followed by the figure number, also in
bold type. No punctuation is to be included after the number, nor is any punctuation to
be placed at the end of the caption. Identify all elements found in the figure in the figure
caption; and use boxes, circles, etc., as coordinate points in graphs. Identify previously
published material by giving the original source in the form of a reference citation at the
end of the figure caption.
Figure Placement and Size
Figures should be submitted separately from the text, if possible. When preparing your
figures, size figures to fit in the column width. For most journals the figures should be
39 mm, 84 mm, 129 mm, or 174 mm wide and not higher than 234 mm. For books and
booksized journals, the figures should be 80 mm or 122 mm wide and not higher than
198 mm.
Permissions
If you include figures that have already been published elsewhere, you must obtain
permission from the copyright owner(s) for both the print and online format. Please be
aware that some publishers do not grant electronic rights for free and that Springer will
not be able to refund any costs that may have occurred to receive these permissions. In
such cases, material from other sources should be used.
Accessibility
In order to give people of all abilities and disabilities access to the content of your
figures, please make sure that all figures have descriptive captions (blind users could
then use a texttospeech software or a texttoBraille hardware) Patterns are used instead
of or in addition to colors for conveying information (colorblind users would then be
able to distinguish the visual elements). Any figure lettering has a contrast ratio of at
least 4.5:1.
ELECTRONIC SUPPLEMENTARY MATERIAL
Springer accepts electronic multimedia files (animations, movies, audio, etc.) and other
supplementary files to be published online along with an article or a book chapter. This
feature can add dimension to the author's article, as certain information cannot be
printed or is more convenient in electronic form.
Submission
Supply all supplementary material in standard file formats. Please include in each file
the following information: article title, journal name, author names; affiliation and email
address of the corresponding author. To accommodate user downloads, please keep in
mind that largersized files may require very long download times and that some users
may experience other problems during downloading.
Audio, Video, and Animations
Resolution: 16:9 or 4:3
Maximum file size: 25 GB
Minimum video duration: 1 sec
Supported file formats: avi, wmv, mp4, mov, m2p, mp2, mpg, mpeg, flv, mxf, mts,
m4v, 3gp
75
Text and Presentations
Submit your material in PDF format; .doc or .ppt files are not suitable for longterm
viability. A collection of figures may also be combined in a PDF file.
Spreadsheets
Spreadsheets should be converted to PDF if no interaction with the data is intended. If
the readers should be encouraged to make their own calculations, spreadsheets should
be submitted as .xls files (MS Excel).
Specialized Formats
Specialized format such as .pdb (chemical), .wrl (VRML), .nb (Mathematica notebook),
and .tex can also be supplied.
Collecting Multiple Files
It is possible to collect multiple files in a .zip or .gz file.
Numbering
If supplying any supplementary material, the text must make specific mention of the
material as a citation, similar to that of figures and tables. Refer to the supplementary
files as “Online Resource”, e.g., "... as shown in the animation (Online Resource 3)", “...
additional data are given in Online Resource 4”. Name the files consecutively, e.g.
“ESM_3.mpg”, “ESM_4.pdf”.
Captions
For each supplementary material, please supply a concise caption describing the content
of the file.
Processing of supplementary files
Electronic supplementary material will be published as received from the author
without any conversion, editing, or reformatting.
Accessibility
In order to give people of all abilities and disabilities access to the content of your
supplementary files, please make sure that the manuscript contains a descriptive caption
for each supplementary material. Video files do not contain anything that flashes more
than three times per second (so that users prone to seizures caused by such effects are
not put at risk).
SCIENTIFIC STYLE
Genus and species names should be in italics.
ETHICAL RESPONSIBILITIES OF AUTHORS
This journal is committed to upholding the integrity of the scientific record. As a
member of the Committee on Publication Ethics (COPE) the journal will follow the
COPE guidelines on how to deal with potential acts of misconduct. Authors should
refrain from misrepresenting research results which could damage the trust in the
journal, the professionalism of scientific authorship, and ultimately the entire scientific
endeavour. Maintaining integrity of the research and its presentation can be achieved by
following the rules of good scientific practice, which include: The manuscript has not
76
been submitted to more than one journal for simultaneous consideration. The
manuscript has not been published previously (partly or in full), unless the new work
concerns an expansion of previous work (please provide transparency on the reuse of
material to avoid the hint of textrecycling (“selfplagiarism”)). A single study is not split
up into several parts to increase the quantity of submissions and submitted to various
journals or to one journal over time (e.g. “salamipublishing”). No data have been
fabricated or manipulated (including images) to support your conclusions. No data, text,
or theories by others are presented as if they were the author’s own (“plagiarism”).
Proper acknowledgements to other works must be given (this includes material that is
closely copied (near verbatim), summarized and/or paraphrased), quotation marks are
used for verbatim copying of material, and permissions are secured for material that is
copyrighted. Important note: the journal may use software to screen for plagiarism.
Consent to submit has been received explicitly from all coauthors, as well as from the
responsible authorities tacitly or explicitly at the institute/organization where the work
has been carried out, before the work is submitted. Authors whose names appear on the
submission have contributed sufficiently to the scientific work and therefore share
collective responsibility and accountability for the results. In addition: Changes of
authorship or in the order of authors are not accepted after acceptance of a manuscript.
Requesting to add or delete authors at revision stage, proof stage, or after publication is
a serious matter and may be considered when justifiably warranted. Justification for
changes in authorship must be compelling and may be considered only after receipt of
written approval from all authors and a convincing, detailed explanation about the
role/deletion of the new/deleted author. In case of changes at revision stage, a letter
must accompany the revised manuscript. In case of changes after acceptance or
publication, the request and documentation must be sent via the Publisher to the
EditorinChief. In all cases, further documentation may be required to support your
request. The decision on accepting the change rests with the EditorinChief of the journal
and may be turned down. Therefore authors are strongly advised to ensure the correct
author group, corresponding author, and order of authors at submission. Upon request
authors should be prepared to send relevant documentation or data in order to verify the
validity of the results. This could be in the form of raw data, samples, records, etc. If
there is a suspicion of misconduct, the journal will carry out an investigation following
the COPE guidelines. If, after investigation, the allegation seems to raise valid concerns,
the accused author will be contacted and given an opportunity to address the issue. If
misconduct has been established beyond reasonable doubt, this may result in the
EditorinChief’s implementation of the following measures, including, but not limited to:
If the article is still under consideration, it may be rejected and returned to the author.
If the article has already been published online, depending on the nature and severity of
the infraction, either an erratum will be placed with the article or in severe cases
complete retraction of the article will occur. The reason must be given in the published
erratum or retraction note. The author’s institution may be informed.
COMPLIANCE WITH ETHICAL STANDARDS
To ensure objectivity and transparency in research and to ensure that accepted principles
of ethical and professional conduct have been followed, authors should include
information regarding sources of funding, potential conflicts of interest (financial or
nonfinancial), informed consent if the research involved human participants, and a
statement on welfare of animals if the research involved animals. Authors should
include the following statements (if applicable) in a separate section entitled
77
“Compliance with Ethical Standards” on the title page when submitting a paper:
Disclosure of potential conflicts of interest
Research involving Human Participants and/or Animals
Informed consent
Please note that standards could vary slightly per journal dependent on their peer review
policies (i.e. double blind peer review) as well as per journal subject discipline. Before
submitting your article check the Instructions for Authors carefully. The corresponding
author should be prepared to collect documentation of compliance with ethical
standards and send if requested during peer review or after publication. The Editors
reserve the right to reject manuscripts that do not comply with the abovementioned
guidelines. The author will be held responsible for false statements or failure to fulfill
the abovementioned guidelines.
DISCLOSURE OF POTENTIAL CONFLICTS OF INTEREST
Authors must disclose all relationships or interests that could have direct or potential
influence or impart bias on the work. Although an author may not feel there is any
conflict, disclosure of relationships and interests provides a more complete and
transparent process, leading to an accurate and objective assessment of the work.
Awareness of a real or perceived conflicts of interest is a perspective to which the
readers are entitled. This is not meant to imply that a financial relationship with an
organization that sponsored the research or compensation received for consultancy work
is inappropriate. Examples of potential conflicts of interests that are directly or
indirectly related to the research may include but are not limited to the following:
Research grants from funding agencies (please give the research funder and the grant
number)
Honoraria for speaking at symposia
Financial support for attending symposia
Financial support for educational programs
Employment or consultation
Support from a project sponsor
Position on advisory board or board of directors or other type of management
relationships
Multiple affiliations
Financial relationships, for example equity ownership or investment interest
Intellectual property rights (e.g. patents, copyrights and royalties from such rights)
Holdings of spouse and/or children that may have financial interest in the work
In addition, interests that go beyond financial interests and compensation (nonfinancial
interests) that may be important to readers should be disclosed. These may include but
are not limited to personal relationships or competing interests directly or indirectly tied
to this research, or professional interests or personal beliefs that may influence your
research. The corresponding author collects the conflict of interest disclosure forms
from all authors. In author collaborations where formal agreements for representation
allow it, it is sufficient for the corresponding author to sign the disclosure form on
behalf of all authors. Examples of forms can be found here:
The corresponding author will include a summary statement in the text of the
manuscript in a separate section before the reference list, that reflects what is recorded
in the potential conflict of interest disclosure form(s). See below examples of
disclosures:
Funding: This study was funded by X (grant number X).
78
Conflict of Interest: Author A has received research grants from Company A. Author B
has received a speaker honorarium from Company X and owns stock in Company Y.
Author C is a member of committee Z.
If no conflict exists, the authors should state:
Conflict of Interest: The authors declare that they have no conflict of interest.
RESEARCH INVOLVING HUMAN PARTICIPANTS AND/OR ANIMALS
1) Statement of human rights
When reporting studies that involve human participants, authors should include a
statement that the studies have been approved by the appropriate institutional and/or
national research ethics committee and have been performed in accordance with the
ethical standards as laid down in the 1964 Declaration of Helsinki and its later
amendments or comparable ethical standards. If doubt exists whether the research was
conducted in accordance with the 1964 Helsinki.
Declaration or comparable standards, the authors must explain the reasons for their
approach, and demonstrate that the independent ethics committee or institutional review
board explicitly approved the doubtful aspects of the study. The following statements
should be included in the text before the References section:
Ethical approval: “All procedures performed in studies involving human participants
were in accordance with the ethical standards of the institutional and/or national
research committee and with the 1964 Helsinki declaration and its later amendments or
comparable ethical standards.”
For retrospective studies, please add the following sentence: “For this type of study
formal consent is not required.”
2) Statement on the welfare of animals
The welfare of animals used for research must be respected. When reporting
experiments on animals, authors should indicate whether the international, national,
and/or institutional guidelines for the care and use of animals have been followed, and
that the studies have been approved by a research ethics committee at the institution or
practice at which the studies were conducted (where such a committee exists). For
studies with animals, the following statement should be included in the text before the
References section:
Ethical approval: “All applicable international, national, and/or institutional guidelines
for the
care and use of animals were followed.”
If applicable (where such a committee exists): “All procedures performed in studies
involving animals were in accordance with the ethical standards of the institution or
practice at which the studies were conducted.” If articles do not contain studies with
human participants or animals by any of the authors, please select one of the following
statements:
“This article does not contain any studies with human participants performed by any of
the authors.” “This article does not contain any studies with animals performed by any
of the authors.” “This article does not contain any studies with human participants or
animals performed by any of the authors.”
INFORMED CONSENT
79
All individuals have individual rights that are not to be infringed. Individual participants
in studies have, for example, the right to decide what happens to the (identifiable)
personal data gathered, to what they have said during a study or an interview, as well as
to any photograph that was taken. Hence it is important that all participants gave their
informed consent in writing prior to inclusion in the study. Identifying details (names,
dates of birth, identity numbers and other information) of the participants that were
studied should not be published in written descriptions, photographs, and genetic
profiles unless the information is essential for scientific purposes and the participant (or
parent or guardian if the participant is incapable) gave written informed consent for
publication. Complete anonymity is difficult to achieve in some cases, and informed
consent should be obtained if there is any doubt. For example, masking the eye region
in photographs of participants is inadequate protection of anonymity. If identifying
characteristics are altered to protect anonymity, such as in genetic profiles, authors
should provide assurance that alterations do not distort scientific meaning. The
following statement should be included:
Informed consent: “Informed consent was obtained from all individual participants
included in the study.” If identifying information about participants is available in the
article, the following statement should be included: “Additional informed consent was
obtained from all individual participants for whom identifying information is included
in this article.”
DOES SPRINGER PROVIDE ENGLISH LANGUAGE SUPPORT?
Manuscripts that are accepted for publication will be checked by our copyeditors for
spelling and formal style. This may not be sufficient if English is not your native
language and substantial editing would be required. In that case, you may want to have
your manuscript edited by a native speaker prior to submission. A clear and concise
language will help editors and reviewers concentrate on the scientific content of your
paper and thus smooth the peer review process. The following editing service provides
language editing for scientific articles in all areas Springer publishes in:
Edanz English editing for scientists
Use of an editing service is neither a requirement nor a guarantee of acceptance for
publication. Please contact the editing service directly to make arrangements for editing
and payment. Edanz English editing for scientists
80
ANEXO III. NORMAS PARA SUBMISSÃO NA REVISTA AMERICAN
JOURNAL OF PRIMATOLOGY
Manuscripts must be submitted in English (American style), and must be doublespaced with no less than 12 cpi font and 3-cm margins throughout. Lines should be
numbered consecutively from the title through the references. Number all pages in
sequence beginning with the title page, placing the first author's surname and the page
number in the upper right hand corner of each page. A Research Article should not
exceed 35 pages total, and a Review Article should not exceed 45 pages in total.
Page limits for Commentaries and New Approaches are flexible, but they should
fall in the range of 10-15 pages. Page limits include the title page, abstract, text,
acknowledgements, references, tables, figure legends, and figures.
Cover Letter. All manuscripts must be accompanied by a formal statement that
explicitly confirms the following:
 Acceptance of the provisos in the next paragraph of these Instructions (see
“Provisos” below).
 The Methods section must also include a statement that:
 the research complied with protocols approved by the appropriate Institutional
Animal Care Committee (provide the name of the committee; see iacuc.org);
 the research adhered to the legal requirements of the country in which the
research was conducted; and
 the research adhered to the American Society of Primatologists (ASP)
Principles for the Ethical Treatment of Non Human Primates
(seehttps://www.asp.org/society/resolutions/EthicalTreatmentOfNonHumanPri
mates.cfm.
 All research protocols reported in this manuscript were reviewed and approved by
an appropriate institution and/or governmental agency that regulates research with
animals.
 All research reported. in this manuscript complied with the protocols approved by
the appropriate institutional Animal Care and Use Committee (see www.iacuc.org).
Researchers outside the U.S. must confirm that their research receieved clearance
from, and complied with, the protocols approved by the equivalent institutional
animal care committees of their country.
 All research reported in this manuscript adhered to the legal requirements of the
country in which the work took place.
Provisos. All manuscripts submitted to the American Journal of Primatology (AJP)
must be submitted solely to this journal, and may not have been published in any
substantial form in any other publication, professional or lay. Submission is taken to
mean that each of the co-authors acknowledge their participation in conducting the
research leading to this manuscript and that all agree to its submission to be considered
for publication by AJP. The Editorial Office cannot be responsible for returning any
materials submitted for review. The publisher reserves copyright, and no published
material may be reproduced or published elsewhere without the written permission of
the publisher and the author. The journal will not be responsible for the loss of
manuscripts at any time. All statements in, or omissions from, published manuscripts
are the responsibility of the authors who will assist the editors by reviewing proofs
81
before
publication.
Reprints
may
be
ordered
from https://caesar.sheridan.com/reprints/redir.php?pub=10089&acro=AJP No
page
charges will be levied against authors or their institutions for publication in the journal.
Conflict of Interest. AJP requires that all authors disclose any potential sources of
conflict of interest. Any interest or relationship, financial or otherwise, that might be
perceived as influencing an author’s objectivity is considered a potential source of
conflict of interest. These must be disclosed when directly relevant or indirectly related
to the work that the authors describe in their manuscript. Potential sources of conflict of
interest include but are not limited to patent or stock ownership, membership of a
company board of directors, membership of an advisory board or committee for a
company, and consultancy for or receipt of speaker’s fees from a company. The
existence of a conflict of interest does not preclude publication in this journal.
If the authors have no conflict of interest to declare, they must also state this at
submission. It is the responsibility of the corresponding author to review this policy
with all authors and to collectively list in the cover letter (if applicable) to the Editor-inChief, in the manuscript (in the footnotes, Conflict of Interest or Acknowledgments
section), and in the online submission system ALL pertinent commercial and other
relationships.
Manuscript Preparation. Manuscripts should be divided into the major divisions given
below in the order indicated. (Review Articles, New Approaches, and Commentaries
may deviate from this style of organization, but must include an Abstract, Introduction,
Discussion, and Acknowledgments.) Please see below for additional guidelines
regarding New Approaches.
Title page. The first page of the manuscript should include the complete title of the
paper; the names of authors and their affiliations; a short title (not more than 40
characters including spaces); and name, postal address, E-mail address, and phone
number of person to whom editorial correspondence, page proofs, and reprint requests
should be sent.
Abstract. The abstract must be a factual condensation of the entire work, including a
statement of its purpose, a succinct statement of research design, a clear description of
the most important results, and a concise presentation of the conclusions. Abstracts
should not exceed 300 words. Three to six key words for use in indexing should be
listed immediately below the abstract.
Text. The body of Research Articles must be organized into the following sections:
Abstract, Introduction, Methods, Results, Discussion and Acknowledgments. The
Methods section must include the dates and location of the study. The Methods section
must also include a statement that the research complied with protocols approved by the
appropriate institutional animal care committee (provide the name of the committee)
and adhered to the legal requirements of the country in which the research was
conducted. The Results section must include the essential values from all statistical tests
cited to support statements regarding findings, in addition to summarizing key data
using tables and figures where possible. Acknowledgments should include: funding
sources; names of those who contributed but are not authors, further statements of
recognition appropriate to the study; and brief confirmation of compliance with animal
care regulations and applicable national laws. If photos or identifiable data on human
subjects are in any manuscript, they must be accompanied by a notarized copy of the
consent form. Footnotes are not to be used except for tables and figures. Nonstandard
abbreviations should be kept to a minimum and defined in the text. Measurements
should be given in metric units and abbreviated according to the American Institute for
82
Biological Sciences’ Style Manual for Biological Journals. Review Articles and
Commentaries may deviate from this style of organization, but must include an
Abstract, Introduction, Discussion, and Acknowledgements.
References. In the text, references should be cited chronologically by publication date,
then alphabetically by author, with the author's surname and year of publication in
square brackets. The reference list should be arranged alphabetically by first author's
surname. List all authors if there are five or fewer; when there are six or more authors,
list the first three followed by et al. Journal titles should NOT be abbreviated. Examples
follow.
Journal
Articles:
King VM, Armstrong DM, Apps R, Trott JR. 1998. Numerical aspects of pontine,
lateral reticular, and inferior olivary projections to two paravermal cortical zones of the
cat cerebellum. Journal of Comparative Neurology 390:537-551.
Boubli JP, de Lima MG. 2009. Modeling the geographical distribution and fundamental
niches ofCacajao spp. and Chiropotes israelita in Northwestern Amazonia via a
maximum entropy algorithm. International Journal of Primatology 30:217–228.
Chapman CA, Chapman LJ, Naughton-Treves L, Lawes MJ, McDowell LR. 2004.
Predicting folivorous primate abundance: validation of a nutritional model. American
Journal of Primatology 62:55–69.
Books
and
Monographs:
Voet D, Voet JG. 1990. Biochemistry. New York: John Wiley & Sons. 1223 p.
Dissertations:
Lastname FN. Year. Title of dissertation (Doctoral dissertation). Retrieved from Name
of database. (Accession or Order Number).
Ritzmann RE. 1974. The snapping mechanism of Alpheid shrimp [dissertation].
Charlottesville (VA): University of Virginia. 59 p. Available from: University
Microfilms, Ann Arbor, MI; AAD74–23.
Book
Chapters:
Gilmor ML, Rouse ST, Heilman CJ, Nash NR, Levey AI. 1998. Receptor fusion
proteins and analysis. In: Ariano MA, editor. Receptor localization. New York: WileyLiss. p 75-90.
Conklin-Brittain NL, Knott CD, Wrangham RW. 2006. Energy intake by wild
chimpanzees and orang-utans: methodological considerations and a preliminary
comparison. In: Hohmann G, Robbins MM, Boesch C, editors. Feeding ecology in apes
and other primates: Ecological, physical and behavioral aspects. Cambridge: Cambridge
University Press. p 445–471.
Format for Presenting Statistical Information. Overall is it recommended that
authors provide the details of their statistical analyses in the Methods, Tables, and
Figures as appropriate. Linear statistics: means and standard deviation/standard errors
should be written in the format X± SD/SE unit (i.e., mean body weight=6.38 ± SD 1.29
83
kg or mean head-trunk length=425 ± SE 3.26 mm). Circular statistics: mean and angular
dispersion should be written in the format X± AD unit (i.e., phase relationship between
head linear and angular displacement=104 ± AD 14 deg). Ranges should be written as
range: 15-29; sample sizes should be written as N=731; numbers less than 1 should be
written as 0.54 not as .54. P values that are deemed significant can be presented as less
than a threshold value (i.e., P < 0.05, P < 0.01, P < 0.001). Nonsignificant test outcomes
should be reported using an exact probability value whenever possible. The P value (P)
and sample size (N) should be capitalized, and degrees of freedom, if required, should
be written in lower case (e.g. df=4). For example: X2 = 1.84, df=8, P = 0.91 Unless a
test statistic unambiguously refers to a particular statistical test (i.e., X2 is understood to
refer to a Chi-squared test), results should include the name of the statistical test which
should be followed by a colon, the test statistic and its value, degrees of freedom or
sample size (depending on which is most appropriate for that test), and the P value, with
indication if it is one- or two-tailed (unless that issue has been addressed for the
manuscript as a whole before any statistical results are given). These entries should be
separated by commas. Wilcoxon signed-ranks test: Z=3.82, P<0.001, N=20 ANOVA:
F=2.26, df=1, P=0.17
Tables. Tables should be titled and numbered in accordance with the order of their
appearance; each table should be placed on a separate page. All tables must be cited in
the text with approximate placement clearly defined. Table titles should be concise
descriptions of the data in the table. Table footnotes should provide more detail relating
to the interpretation of data presented in the table (i.e., notes on sample sizes, tests
performed,
etc.).
Samples
are
shown
below:
Table title: Leadership of Group Movements by Males and Females within Each Group
Table footnote: Chi-square results for adult female- versus adult male-led group
progressions overall (A), when feeding occurred within 5 min of group movement (B),
and when feeding did not occur within 5 min of group movement (C). N refers to the
number of progressions led by each sex. Females in each group, except C3, led group
movements significantly more than males overall and in all contexts.
Table title: Food Species and Plant Parts in the Diet of Rhinopithecus brelichi at
Yangaoping, Guizhou During the Study Period Table footnote: Season: Sp, spring
(February, March, April); Su, summer (May, June, July); A, autumn (August,
September, October); W, winter (November, December, January); Y, four seasons. E,
evergreen; D, deciduous
Figure Legends. A descriptive legend must be provided for each figure and must define
all abbreviations used therein.
Figures/Illustrations. Figures must be submitted in TIFF or EPS format. Do not embed
figures in your text document. To ensure the highest reproduction quality, figures
should be submitted according to the following minimum resolutions:
 1200 dpi (dots per inch) for black and white line art (simple bargraphs, charts, etc.)
 300 dpi for halftones (black and white photographs)
 600 dpi for combination halftones (photographs that also contain line art such as
labeling or thin lines)
This specification means that a figure which you wish to be printed at a size, for
example, of 2 x 2 inches will be 2,400 dots wide (black and white line art), or 600 dots
wide (halftone). Vector-based figures (e.g., figures created in Adobe Illustrator) should
be submitted in EPS format. Figure sizes should be no more than 5 inches in width and
84
6 inches in height. Please contact AJP Production at [email protected] for further
information.
In addition to the above guidelines, color figures must be submitted in the RGB
colorspace. All color figures will be reproduced at no charge.
Journal Cover Artwork. Along with their manuscript, authors are welcome to submit
an original photograph or other artwork that illustrates their research for possible use on
the cover of the issue in which the article appears. This artwork is submitted with the
understanding that it has not been published elsewhere, that the author has copyright,
and that the author grants Wiley permission to publish the photo as a cover image,
should it be chosen. Candidate images for journal covers may be submitted
electronically as TIF files.
AJP is pleased to announce the introduction of a new category for publication: "New
Approaches". This category provides the opportunity for researchers to share new
methods, techniques, and protocols in order to facilitate more rapid scientific advances
in the field of Primatology. The emphasis is on approaches that are either newly
developed or modifications and improvements of established approaches in Primatology
and other scientific fields. Manuscripts in this category should be organized around the
following four sections: (1)Introduction: set the stage for justifying why a new
approach is required; (2) Description:describe the new approach; (3) Example: apply
the new approach to a particular experiment or problem; and (4) Comparison and
Critique: discuss the advantages and disadvantages of the new approach when
compared to other available approaches. These sections should be followed
by Acknowledgments and References, the final sections used in other categories of
AJP manuscripts.
Copyright/Licensing Agreements. If your paper is accepted, the author identified as
the formal corresponding author for the paper will receive an email prompting them to
login into Author Services; where via the Wiley Author Licensing Service (WALS)
they will be able to complete the license agreement on behalf of all authors on the
paper.
For
authors
signing
the
copyright
transfer
agreement:
If the OnlineOpen option is not selected the corresponding author will be presented with
the copyright transfer agreement (CTA) to sign. The terms and conditions of the CTA
can be previewed in the samples associated with the Copyright FAQs below:
CTA Terms and Conditions http://authorservices.wiley.com/bauthor/faqs_copyright.asp
For
authors
choosing
OnlineOpen:
If the OnlineOpen option is selected the corresponding author will have a choice of the
following Creative Commons License Open Access Agreements (OAA):
Creative
Commons
Attribution
License
OAA
Creative
Commons
Attribution
Non-Commercial
License
OAA
Creative Commons Attribution Non-Commercial -NoDerivs License OAA
To preview the terms and conditions of these open access agreements please visit the
Copyright
FAQs
hosted
on
Wiley
Author
Services http://authorservices.wiley.com/bauthor/faqs_copyright.aspand
visit http://www.wileyopenaccess.com/details/content/12f25db4c87/Copyright-License.html
If you select the OnlineOpen option and your research is funded by The Wellcome Trust
and members of the Research Councils UK (RCUK) you will be given the opportunity
to publish your article under a CC-BY license supporting you in complying with
85
Wellcome Trust and Research Councils UK requirements. For more information on this
policy
and
the
Journal’s
compliant
self-archiving
policy
please
visit: http://www.wiley.com/go/funderstatement.
86