104,7 wspk

Transcrição

104,7 wspk
GABARITO ITA
2014/2015
QUÍMICA
12/12/14
Constantes
Constante de Avogrado
Constante de Faraday (F)
Volume molar de gás ideal
Carga elementar
Constante dos gases (R)
Constante gravitacional (g)
= 6,02 × 1023 mol–1
= 9,65 × 104 C mol–1 = 9,65 × 104 A s mol–1 = 9,65 × 104 J V–1 mol–1
= 22,4 L (CNTP)
= 1,602 × 10–19 C
= 8,21 × 10–2 atm L K–1 mol–1 = 8,31 J K–1 mol–1 = 62,4 mmHg L K–1 mol–1
= 9,81 ms–2
Definições
Pressão de 1 atm = 760 mmHg = 101.325 Nm–2 = 760 Torr = 1,01325 bar
1 J = 1 N m = 1 kg m2s–2
Condições normais de temperatura e pressão (CNTP): 0 °C e 760 mmHg
Condições ambientes: 25 °C e 1 atm
Condições-padrão: 1 bar; concentração das soluções = 1 mol L–1 (rigorosamente: atividade unitária das
espécies); sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.
(s) = sólido; (l) = líquido; (g) = gás; (aq) = aquoso; (CM) = circuito metálico; (conc) = concentrado;
(ua) = unidades arbitrárias; [X] = concentração da espécie química X em mol–1.
Massas molares
2
Elemento
químico
Número
atômico
Massa molar
(g · mol–1)
Elemento
químico
Número
atômico
Massa molar
(g · mol–1)
H
1
1,01
K
19
39,10
Li
3
6,94
Ca
20
40,08
B
5
10,81
Cr
24
52,00
C
6
12,01
Mn
25
54,94
N
7
14,01
Fe
26
55,85
O
8
16,00
Zn
30
65,38
F
9
19,00
Br
35
79,90
Na
11
22,99
Ag
47
107,90
P
15
30,97
Pt
78
195,08
S
16
32,07
Hg
80
200,59
Cl
17
35,45
Pu
94
238
GABARITO ITA – QUÍMICA
Questão 1
Assinale a opção que apresenta os instrumentos de medição de volume mais indicados para a realização
de uma titulação.
A
B
C
D
E
(
(
(
(
(
) Bureta e erlenmeyer
) Proveta e erlenmeyer
) Pipeta volumétrica e erlenmeyer
) Proveta e béquer
) Pipeta volumétrica e béquer
Gabarito: Letra A.
Bureta: instrumento de precisão no qual introduz-se o titulante. Uma válvula controla a vazão da
solução titulante. O volume utilizado é aferido a partir da graduação da vidraria.
Frasco de erlenmeyer: recipiente que contém volume conhecido de solução a ser titulada.
Obs.: volume utilizado e concentração do titulante são conhecidos.
3
12/12/14
Questão 2
Cinco amostras idênticas de um mesmo metal são aquecidas a diferentes temperaturas até à incandescência.
Assinale a opção que apresenta a cor da amostra submetida a uma maior temperatura.
A ( ) Vermelho
B ( ) Laranja
C ( ) Amarelo
D ( ) Verde
E ( ) Branco
Gabarito: Letra E.
Conforme a temperatura aumenta, a coloração passa de vermelha (temperatura mais baixa) para branca
(temperatura mais alta). Vale ressaltar que a energia do fóton emitido é diretamente proporcional à frequencia
da luz emitida, ou seja, inversamente proporcional ao comprimento de onda.
Questão 3
O elemento Plutônio-238 é utilizado para a geração de eletricidade em sondas espaciais. Fundamenta-se
essa utilização porque esse isótopo tem:
A
B
C
D
E
(
(
(
(
(
) longo tempo de meia-vida e é emissor de partículas beta.
) longo tempo de meia-vida e é emissor de partículas gama.
) longo tempo de meia-vida e é emissor de partículas alfa.
) longo tempo de meia-vida e é emissor de partículas delta.
) tempo de meia-vida curto e é emissor de partículas alfa.
Gabarito: Letra C.
Elementos de grande número atômico tendem a emitir partículas alfa (a).
No caso da geração de energia, a utilização de um emissor alfa é boa, pois as partículas “a” são facilmente
bloqueadas.
Questão 4
Sendo o pk do NH4OH igual a 4,74, o pH de uma solução aquosa 0,10 mol L–1 em NH4C é:
A
B
C
D
E
(
(
(
(
(
4
) 1,00.
) 3,74.
) 4,74.
) 5,13.
) 8,87.
GABARITO ITA – QUÍMICA
Gabarito: Letra D.
pkb(NH4OH) = 4,74 ⇒ kb(NH4OH) = 10–4,74.
O sal NH4C é um sal de hidrólise ácida, pois é composto a partir de ácido forte (HC) e base fraca (NH4OH).
Temos para hidrólise desse sal a equação:
NH4C(aq) + H2O()  NH4OH(aq) + HC(aq)
ou na forma iônica:
NH4C(aq)
+
H2O()

NH4OH(aq)
+
H+(aq)
início
0,1 mol/
0 mol/
0 mol/
reação
– x mol/
+ x mol/
+ x mol/
(0,1 – x) mol/
x mol/
x mol/
equilíbrio
(k h )ácida =
kw
[H+ ] ⋅ [NH4 OH] k w
x2
10−14
⇒
=
⇒
= −4,74 = 10−9,26
+
kb
kb
(0, 1− x ) 10
[NH4 ]
Resolvendo temos x = 10–5,13 · mol/ = [H+]
Se [H+] = 10–5,13 mol/l = pH = 5,13
Questão 5
Considere uma reação química hipotética representado pela equação X → Produtos. São feitas as seguintes
proposições relativas a essa reação:
I. Se o gráfico [X] em função do tempo for uma curva linear, a lei de velocidade da reação dependerá
somente da constante de velocidade.
II. Se o gráfico de
1
em função do tempo for uma curva linear, a lei de velocidade da reação dependerá
[X]
somente da constante de velocidade.
III. Se o gráfico da velocidade da reação em função de [X] for uma curva linear, a ordem de reação será 1.
IV. Se o gráfico da velocidade de reação em função de [X]2 for uma curva linear, a ordem de reação será 2.
Das proposições acima, está(ão) CORRETA(S)
A
B
C
D
E
(
(
(
(
(
) apenas I.
) apenas I e II.
) apenas I, III e IV.
) apenas III.
) todas.
5
12/12/14
Gabarito: Letra E.
d[x]
Cinética de ordem zero:
= − k ⇒ [ x ] = − kt + [ x ]
dt
Reta
Cinética de primeira ordem:
Cinética de segunda ordem:
d[x]
dt
= − k ⋅ [ x ] ⇒ ln [ x ] = − kt + ln [ x ]0
Reta
d[x]
dt
= −k ⋅ [ x ] ⇒
2
1
= + kt +
1
[x]
[x]
0
Reta
I.Verdadeira: [ x ] = − kt + [ x ]0 ⇒ cinética de ordem zero
v = k ⋅ [ x ] ou v = k
0
II.Verdadeira:
1
[x]
= kt +
1
[ x ]0
⇒ cinética de segunda ordem
III.Verdadeira: v = k ⋅ [ x ] ⇒ cinética de primeira ordem
Reta
IV.Verdadeira:
v = k ⋅[x]
2
(
Reta v em função de [ x ] 2
⇒ cinética de segunda ordem.
)
Parabéns aos nossos
aprovados na 2a fase
do IME deste ano!
Mais de 70% dos
aprovados no Rio!
6
54
GABARITO ITA – QUÍMICA
Questão 6
Considere as seguintes comparações entre as respectivas temperaturas de fusão dos polímeros
representados pelas suas unidades repetitivas:
I. A do H — OCH2CH2OOC(CH2)4CO —n OCH2CH2OH é maior que a do
H — OOC-
- COOCH2CH2 —n OH
II. A do — CH2CH2 —n é maior que a do — CH2CH2O —n
III. A do — CH2-
- CH2 —n é maior que a do — CH2CH2 —n
IV. A do — NH(CH2)7CO — n é maior que a do — NH(CH2)3CO — n
Assinale a opção que apresenta a(s) comparação(ões) ERRADA(S).
A
B
C
D
E
(
(
(
(
(
) apenas I.
) apenas I e IV.
) apenas II e III.
) apenas III e IV.
) apenas IV.
Gabarito: Letra C.
I.Verdadeiro
Apesar da massa molecular do segundo polímero ser maior e ambos apresentarem o mesmo tipo de
interação intermolecular, as nuvens eletrônicas dos anéis benzênicos de uma macromolécula repelem as
nuvens das outras macromoléculas.
Sendo assim, o PF do segundo polímero é menor.
II.Falsa
A massa molecular e as interação interatômicas do segundo polímero são maiores.
III. Falsa
Apesar do primeiro polímero possuir maior massa, os anéis benzênicos de uma macromolécula irão repelir
os anéis das outras moléculas, fazendo com que o PF seja menor.
IV.Verdadeira
Ambos os polímeros apresentam o mesmo tipo de interação intermolecular (lig. de hidrogênio), mas o
primeiro tem maior massa.
7
12/12/14
Questão 7
Considere a reação química hipotética realizada em sistema fechado a pressão e temperatura constantes
representada pela equação X + Y  W + Z. Supondo que no início da reação haja apenas os reagentes
X e Y, e considerando um intervalo de tempo que se estende de t = 0 até um instante t após o equilíbrio ter
sido atingido, assinale a opção que apresenta a variação da energia livre de Gibbs.
A ( )
D ( )
B ( )
E ( )
C ( )
Gabarito: Letra E.
Considerando que a reação ocorra espontaneamente em sistema fechado, temos ∆G < 0. Quando o equilíbrio
é atingido, temos ∆G = 0. Logo, a curva decresce no início e torna-se constante ao atingir o equilíbrio.
8
GABARITO ITA – QUÍMICA
Questão 8
Borbulha-se gás cloro em solução aquosa diluída de hidróxido de sódio a 25°C. Assinale a opção que
contém apenas produtos clorados resultantes.
A
B
C
D
E
(
(
(
(
(
) Cl–, ClO–3
) OCl–,Cl–
) ClO–3, ClO4–, Cl–
) ClO–3, OCl–
) ClO–4, ClO3–
Gabarito: Letra B.
Cl2(g) + NaOH(dil) → NaCl + NaClO + H2O
123 123
Na++Cl– Na++ClO–
Questão 9
O grau de dissociação, α, do ácido acético em solução aquosa 0,10 molL–1 é 100 vezes menor que o do
ácido clorídrico também em solução aquosa 0,10 molL–1. Com base nestas informações, pode-se afirmar
que o pH da solução aquosa do ácido acético 0,10 molL–1 é
A
B
C
D
E
(
(
(
(
(
) zero.
) um.
) dois.
) três.
) quatro.
Gabarito: Letra D.
HCl: M = 0,1 mol/l
[H+ ]HCl = M ⋅ α

Grau de ionização = α  [H+ ]HCl = 0,1 ⋅ α mol/l
Admitindo HCl como ácido forte 100% ionizado, temos [H+]HCl = 10 – 1 mol/l ⇒ pH = 1.
+
CH3COOH: M = 0,1 mol/l
 [H ]CH3 COOH = M ⋅ α

α  +
α
Grau de ionização =
mol/l
[H ]CH3 COOH = 0,1 ⋅
100 
100
Nas mesmas condições:
1
[H+ ]CH3 COOH = 0,1 ⋅
= 10−3 mol/l ⇒ pH = 3
100
9
12/12/14
Questão 10
Para determinar a entalpia de vaporização do composto hipotético MX4(l), o mesmo foi colocado num
recipiente equipado com uma serpentina de aquecimento resistivo, a 80 °C e sob pressão de 1,0 bar. para a
manutenção da temperatura, foi utilizada uma fonte de 30 V com passagem de corrente de 900 mA durante
30 s, tendo sido vaporizados 2,0 g de MX4(l). Sabendo que a massa molar desse composto é 200 gmol–1,
assinale a opção que apresenta a entalpia molar de vaporização em KJ mol–1, a 80 °C.
A ( ) 4,1
B ( ) 8,1
C ( ) 81
D ( ) 405
E ( ) 810
Gabarito: Letra C.
Q
⇒ Q = i ⋅ t = 900 ⋅ 10−3 ⋅ 30
t
Q = 27 C.
E = Q · V = 27 · 30 J = 810 J.
i=
810 J
xJ
2g de Mx4 vaporizados
200g de Mx4 vaporizados
x = 81.000 J ou 81 KJ.
Questão 11
Os óxidos de metais de transição podem ter caráter ácido, básico ou anfótero. Assinale a opção que
representa o caráter dos seguintes óxidos: CrO, Cr2O3 e CrO3
A ( ) Ácido, anfótero, básico.
B ( ) Ácido, básico, anfótero.
C ( ) Anfótero, ácido, básico.
Gabarito: Letra E.
CrO ⇒ óxido de cromo II ⇒ caráter básico.
Ex. CrO + 2HCl → CrCl2 + H2O
Cr2O3 ⇒ óxido de cromo III ⇒ caráter anfótero.
Ex. Cr2O3 + 6HCl → 2CrCl3 + 3H2O
Cr2O3 + 2NaOH → 2NaCrO2 + H2O
Metacromito de sódio
Cr2O3 ⇒ anidrido crômico ⇒ caráter ácido.
Ex.2CrO3 + 2KOH → K2Cr2O7 + H2O
10
D ( ) Básico, ácido, anfótero.
E ( ) Básico, anfótero, ácido.
GABARITO ITA – QUÍMICA
Questão 12
Considere as seguintes reações químicas e respectivas constantes de equilíbrio:
N2(g) + O2(g)  2NO(g)
2NO(g) + O2(g)  2NO2(g)
K1
K2
1
N2(g) + O2(g)
2
K3
NO2(g) 
Então, K3 é igual a
1
1
A ( )
.
( K1 K 2 )
B ( )
C ( )
D ( )  1  2 .


 K1 K 2 
2
1
.
( 2K1 K 2 )
1
( 4K1 K 2 )


E ( )  1  .
K
K
 1 2
.
Gabarito: Letra D.
N2(g) + O2(g)  2NO(g)
K1
2NO(g) + O2(g)  2NO2(g)
K2
NO(g) 
1
1
N2(g) + O2(g)
2
2
NO2(g)  NO(g) +
NO2(g) 
1
O2(g)
2
1
N2(g) + O2(g)
2
K’1 =
1
K1
K’2 =
1
K2
K3 =
1
1
·
K1
K2
1
 1 2
K3 = 

 K1 · K 2 
11
12/12/14
Questão 13
É de 0,76V a força eletromotriz padrão, E°, de uma célula eletroquímica, conforme a reação
Zn(s) + 2H+(aq) → Zn2+(aq) + H2(g).
Na concentração da espécie de Zn2+ igual a 1,0 mol L– 1 e pressão de H2 de 1,0 bar, a 25°C foi verificado
que a força eletromotriz da célula eletroquímica é de 0,64V. Nestas condições, assinale a concentração de
íons H+ em mol L– 1.
A
B
C
D
E
(
(
(
(
(
) 1,0 x 10– 12
) 4,2 x 10– 4
) 1,0 x 10– 4
) 1,0 x 10– 2
) 2,0 x 10– 2
Gabarito: Letra D.
Para a equação: Zn(s) + 2H+(aq) → Zn2+(aq) + H2(g)
 Zn2 +  ⋅ pH2

Temos o quociente de equilíbrio dado por: Qc = 
.
[ H + ]2
Escrevemos, pela equação de Nernst:
0, 0592
∆ε = ∆ε° −
⋅ log Qc
n
0, 0592
0, 64 = 0, 76 −
⋅ log Qc
2
 Zn2 +  ⋅ pH2

log Qc = 4, 054 ⇒ 
= 104,054
[ H + ]2
1⋅ 1
= 104,054 ⇒ [ H + ] = 10−2,027 mol / L.
[ H + ]2
Questão 14
Uma mistura de metanol e água a 25°C apresenta o volume parcial molar de água igual a 17,8 cm3 mol– 1 e
o volume parcial molar do metanol igual a 38,4 cm3 mol– 1. Com base nestas informações e sendo a massa
específica do metanol de 0,791 g cm3 e a da água igual a 1,000 g cm– 3, assinale a opção CORRETA do
volume total (em cm3) quando se adicionam 15 cm3 de metanol em 250 cm3 de água nessa temperatura.
A ( ) 250
B ( ) 255
C ( ) 262
12
D ( ) 270
E ( ) 280
GABARITO ITA – QUÍMICA
Gabarito: Letra C.
VH O = 17,8 cm3 /mol
MH O = 1,000g · cm3
Vmet = 38,4 cm /mol
Mmet = 0,791g · cm3
Para metanol
Para água
2
3
0,791 g
x
1 cm3
2
1g
y
1cm3
250 cm3
15 cm3
y = 250 g
x = 11,865 g
↓
1 mol Metanol
Z
11,865 g
32,05 g
1 mol
18,02 g
W
250 g
W = 13,8734 mol de água
Z = 0,3702 mol de Metanol
Sendo
Sendo
Vmet = 38,4 cm3 /mol
38,4 cm3
1 mol
V1
0,3702 mol
V1 = 14,215 cm3
VH O = 17,8 cm3 /mol
2
17,8 cm3
1 mol
V2
13,8734 mol
V2 = 246,88 cm3
O volume total será v1 + v2, então vT = 246,94 + 14,215
vT = 261,16.
Questão 15
Para uma molécula diatômica, a energia potencial em função da
distância internuclear é representada pela figura ao lado. As linhas
horizontais representam os níveis de energia vibracional
quanticamente permitidos para uma molécula diatômica. Uma
amostra contendo um mol de moléculas diatômicas idênticas, na
forma de um sólido cristalino, pode ser modelada com um conjunto
de osciladores para os quais a energia potencial também pode ser
representada qualitativamente pela figura. Em relação a este sólido
cristalino, são feitas as seguintes proposições:
I. À temperatura de 0 K, a maioria dos osciladores estará no estado
vibracional fundamental, cujo número quântico vibracional, n, é
igual a zero.
II. À temperatura de 0 K, todos os osciladores estarão no estado vibracional fundamental, cujo número
quântico vibracional, n, é igual a zero.
13
12/12/14
III. O movimento vibracional cessa a 0 K.
IV. O movimento vibracional não cessa a 0 K.
V. O princípio da incerteza de Heisenberg será violado se o movimento vibracional cessar.
Das proposições acima estão corretas:
A ( ) apenas I e III.
B ( ) apenas II e III.
C ( ) apenas I, IV e V.
D ( ) apenas II, IV e V.
E ( ) apenas II, III e V.
Gabarito: Letra D.
No zero absoluto, os osciladores harmônicos devem ter energia mínima. Portanto, devem estar no seu
estado fundamental, que por definição é o nível menos energético. Sendo assim, a afirmativa (II) está
correta e a (I) errada.

O princípio da incerteza de Heisenberg afirma que ∆x ⋅ ∆p ≥ .
2
Se por acaso o movimento vibracional cessasse, Dp = 0, o que é absurdo. Portanto, o movimento cessa
se, e somente se, o princípio da incerteza não for verdadeiro. Logo, as afirmativas IV e V são verdadeiras.
Questão 16
Dois béqueres, denominados “X” e “Y”, encontram-se dentro de um recipiente hermeticamente fechado, à
pressão de 1 bar e temperatura de 298 K. O béquer “X” contém 100 mL de uma solução aquosa de cloreto
de sódio cuja concentração é 0,3 mol L–1. O béquer “Y” contém 100 mL de uma solução aquosa de cloreto
de sódio cuja concentração é 0,1 mol L–1. Se o recipiente for mantido fechado e em repouso até alcançar o
equilíbrio termodinâmico, assinale o volume final (em mL) da solução no béquer “Y”:
A ( ) 25
B ( ) 50
C ( ) 100
D ( ) 150
E ( ) 200
Gabarito: Letra B.
O equilíbrio termodinâmico será alcançado quando as pressões de vapor dos solventes das duas soluções
se igualarem, ou seja, quando as concentrações forem iguais. Matematicamente, temos:
Cxfinal = Cyfinal
inicial
⋅ Vyinicial
Cxinicial ⋅ Vxinicial Cy
=
final
final
Vy
Vx
0, 3 ⋅ 100 0,1⋅ 100
=
∴ Vxfinal = 3Vyfinal
Vxfinal
Vyfinal
Allém disso, Vxfinal + Vyfinal = 200 mL
∴ 4Vyfinal = 200 → Vyfinal = 50 mL
14
GABARITO ITA – QUÍMICA
Questão 17
São feitas as seguintes comparações sobre as capacidades caloríficas de diferentes substâncias puras,
todas à temperatura ambiente:
I. A capacidade calorífica da água é menor que a do peróxido de hidrogênio.
II. A capacidade calorífica do bromo é menor que a do tetracloreto de carbono.
III. A capacidade calorífica do metanol é menor que a do mercúrio.
Assinale a opção que apresenta a(s) comparação(ões) CORRETA(S).
A
B
C
D
E
(
(
(
(
(
) Apenas I
) Apenas I e II
) Apenas II
) Apenas II e III
) Apenas III
Gabarito: Letra B.
(I)Correta.
Como o peróxido de hidrogênio possui maior número de ligações que a água, o grau de liberdade de
molécula é reduzido, o que acarreta numa capacidade calorífica maior, pois há maior dificuldade de
aumentar a temperatura se a molécula tem seu movimento vibracional dificultado.
(II)Correta.
O maior número de ligações reduz o número de graus de liberdade e dificulta o aumento da temperatura.
(III)Incorreta.
É conhecido que metais tem baixa capacidade calorífica.
15
12/12/14
Questão 18
Considere a reação química representada pela equação NH3 + BF3 → H3NBF3. Pode-se afirmar que o BF3
age
A
B
C
D
E
(
(
(
(
(
) como ácido de Bronsted.
) como ácido de Lewis.
) como base de Bronsted.
) como base de Lewis.
) tanto como ácido como base.
Gabarito: Letra B.
Ácidos de Lewis são substâncias capazes de receptar par de elétrons.
Bases de Lewis são substâncias capazes de doar par de elétrons.
Nas seguintes estruturas
F
F
N̈
B
H H H
F
podemos observar que o par de elétrons disponível encontra-se no NH3, portanto o NH3 é uma base de
Lewis e o BF3 um ácido de Lewis.
A figura mostra a variação da massa específica de uma
substância pura com a temperatura à pressão de 1 bar.
Então, é CORRETO afirmar que TX pode representar a
temperatura de
A
B
C
D
E
(
(
(
(
(
) ebulição da água.
) ebulição do benzeno.
) fusão da água.
) fusão do benzeno.
) fusão do dióxido de carbono.
Massa específica
Questão 19
Tx
Temperatura
Gabarito: Letra C.
Sabe-se que a densidade do gelo é menor que da água líquida. Isso acontece por conta da estrutura
hexagonal do gelo, que deixa um vão entre as moléculas. Com a ausência das moléculas nesses espaços,
há uma diminuição em sua densidade.
O gráfico deixa muito claro o comportamento anômalo da água.
16
GABARITO ITA – QUÍMICA
Questão 20
Contribuíram de forma direta para o desenvolvimento do conceito de pressão atmosférica
A
B
C
D
E
(
(
(
(
(
) Friedrich August Kekulé e John Dalton.
) Michael Faraday e Fritz Haber.
) Galileu Galilei e Evangelista Torricelli.
) Jöns Jacob Berzelius e Eduard Bünchner.
) Robert Bunsen e Henry Louis Le Chatelier.
Gabarito: Letra C.
A contribuição de Galileu Galilei se deu ao desenvolver o aparelho Termobaroscópio; aparelho utilizado para
medir a pressão atmosférica.
Torricelli contribui ao desenvolver o Barômetro de Torricelli.
Questão 21
3,64 gramas de fosfeto de cálcio foram adicionados a uma certa quantidade de água. Após a reação
completa, todo o produto gasoso formado foi recolhido em um recipiente de 8,2 mL. Calcule o valor
numérico da pressão, em atm, exercida pelo produto gasoso a 27°C.
Gabarito:
1Ca3P2 + 6H2O → 3Ca (OH)2 + 2PH3
1 mol
2 mols
182g
2 mols
3,64g
x
2 ⋅ 3, 64
= 0, 04 mol
182
PV=nRT
8, 2
P⋅
= 0, 04 ⋅ 0, 082 ⋅ 300
1.000
4 ⋅ 82 ⋅ 3 ⋅ 1.000 ⋅ 100
P=
100 ⋅ 1.000 ⋅ 8, 2
x=
P = 120 atm
17
12/12/14
Questão 22
Considere uma solução saturada do sal MX que é pouco solúvel em água destilada a 25°C. Seja y a
condutância da água destilada e (y + 2,0 · 10–7) ohm–1 cm–1 a condutância da solução. Sabendo que
as condutividades iônicas molares dos íons M+ e X– são, respectivamente, 60 ohm–1 cm2 mol–1 e
40 ohm–1 cm2 mol–1, determine a solubilidade do MX em água em mol dm–3.
Gabarito:
Condutância da solução = y · 2 · 10–7 ohm–1 cm–1
Condutância da água pura = y ohm–1 cm–1
Condutância associada aos íons em solução = 2 · 10–7 ohm–1 cm–1
2 · 10–7 = (60 + 40). Concentração do sal MX
CMX =
2 · 10−7
mol
mol
= 2 · 10−9
= 2 · 10−6
100
cm3
dm3
Questão 23
Considere uma reação genérica reversível A + B  2C e os dados cinéticos para a reação direta (D) e
inversa (I):
Sentido da reação
Constante de velocidade
Energia de ativação
A + B → 2C
Kd
Ea,D
2C
3
k I = kD
2
→A+B
Ea , I =
1
Ea , D
2
a) Desenhe o gráfico de energia potencial versus coordenada da reação direta.
b) Determine o valor número da constante de equilíbrio da reação.
c) Qual sentido da reação é endotérmico?
Gabarito:
E
a) P
b) K
=
e
2C
c) Sentido direto.
A+B
Coordenador da reação
18
KD
KD
2
=
= .
KI 3 K
3
D
2
GABARITO ITA – QUÍMICA
Questão 24
Uma amostra de ferro foi totalmente dissolvida a Fe(II) em 25,0 mL de solução aquosa ácida. A seguir, a
solução de Fe(II) foi titulada com 20 mL de uma solução aquosa 0,01 moL–1 em permanganato de potássio.
Baseando-se nessas informações, responda os seguintes itens:
a)
b)
c)
d)
Qual é a equação iônica balanceada que descreve a reação de titulação?
É necessária a adição de indicador para visualização do ponto final da titulação? Por quê?
Qual será a variação de cor e as espécies responsáveis por essa variação no ponto de viragem?
Qual é o valor númerico da massa (em g) de ferro na amostra dissolvida, considerando que não há
interferentes na solução?
Gabarito:
a)5Fe2+(aq) + 1 MnO4– (aq) + 8H+(aq) →
5Fe3+(aq) + 1 Mn2+(aq)+ 4H2O()
b) Não. Enquanto existe Fe2+ o permanganato (MnO4–) irá descorar. Uma coloração violeta persistente,
devido excesso de MnO4–, indicará o término de F2+, ou seja, o término da reação.
c) No ponto de viragem observa-se a mudança do amarelo, associado ao Fe3+ produzido, para o violeta
em função do excesso de MnO4–.
d) n
Fe2 +
= 5 ⋅n
MnO4 −
20
m
= 5 ⋅ 0, 01⋅
55, 85
1000
m=
5 ⋅ 55, 85 ⋅ 0, 01⋅ 20
1000
m = 0, 05585 g
Questão 25
Descreve-se o seguinte experimento:
I. São dissolvidas quantidades iguais de ácido benzoico e ciclohexanol em diclorometano.
II. É adicionada uma solução aquosa 10% massa/massa em hidróxido de sódio à solução descrita no item
(I) sob agitação. A seguir, a mistura é deixada em repouso até que o equilíbrio químico seja atingido.
Baseando-se nessas informações, pedem-se:
19
12/12/14
a) Apresente a(s) fase(s) líquidas formada(s)
b) Apresente o(s) componente(s) da(s) fase(s) formada(s)
c) Justifique a sua resposta para o item b, utilizando a(s) equação(ões) químicas que representa(m) a(s)
reação(ões).
Gabarito:
a) Uma fase aquosa (menos densa) e outra orgânica (mais densa)
b) Fase aquosa: Benzoato de sódio e hidróxido de sódio em água.
Fase Orgânica: Ciclohexanol em diclorometano.
c)
O
O
C
C
OH + NaOH
ONa + H2O
Questão 26
Considere um elemento galvânico formado por dois semielementos contendo soluções aquosas ácidas e
cujos potenciais na escala do eletrodo de hidrogênio (E°) nas condições-padrão são E°(Pt/PtO2) = 1,00 V
e E°(Br2/BrO–3) = 1,48 V.
Baseando-se nessas informações, pedem-se:
a) Calcule o valor numérico da força eletromotriz do elemento galvânico.
b) Apresente as equações químicas que representam as semirreações do anodo e catodo.
c) Apresente a equação química que representa a reação global.
Gabarito:
Para a pilha formada são informados potenciais padrão de redução:
Catodo: Eletrodo de Bromo
BrO–3 / Br2 ⇒ 2BrO–3 + 12H+ + 10e– → Br2 + 6H2O
Anodo: Eletrodo de platina
Pt / PtO2 ⇒ Pt + 2H2O → PtO2 + 4H+ + 4e–
20
GABARITO ITA – QUÍMICA
a) ∆ε° = ε°RED (CAT) – ε°RED (ANO) ⇒
⇒ ∆ε° = (+1,48) – (+1,00)
∆ε° = +0,48 V.
b) Catodo: 2BrO–3 + 12 H+ + 10e– → Br2 + 6H2O
Anodo: Pt + 2 H2O → PtO2 + 4H+ + 4e–
c)4BrO–3 + 4 H+ + 20e– → 2Br2 + 12H2O
5Pt + 10 H2O → 5PtO2 + 20H+ + 20e–
Global: 4BrO–3 + 5Pt + 4H+ → 2Br2 + 5PtO2 + 2H2O
Questão 27
Com base no modelo atômico de Bohr:
a) Deduza a expressão para o módulo do momento angular orbital de um elétron na n-ésima órbita de
Bohr, em termos da constante da Planck, h.
b) O modelo de Bohr prevê corretamente o valor do módulo do momento angular orbital do elétron no
átomo de hidrogênio em seu estado fundamental? Justifique.
Gabarito:
a) De acordo com os postulados de Bohr, sabemos que:
(I) O elétron descreve uma trajetória circular em torno do núcleo do átomo de hidrogênio.
(II) A energia é quantizada em níveis de energia.
(III)O comprimento dessas órbitas deve ser um múltiplo inteiro de comprimentos de onda de De Broglie
(comprimento de onda associado ao movimento do elétrom).
O terceiro postulado pode ser traduzido da seguinte forma:
2pRn = nλ, onde Rn é o raio do n-ésimo nível de energia e λ =
h
, P é o momento linear.
P
Substituindo: 2πRn = n ⋅ h ⇒ Rn = nh .
2π ⋅ P
P
Sabemos que L = mvr = p · r.
Portanto, Ln = P · Rn ⇒ Ln = P ⋅
Resposta: Ln = n ⋅
n ⋅ h nh
= , onde Ln é o momento angular no nível n.
2πP 2π
h
2π
b) Como sabemos, o modelo de Bohr descreve o átomo de hidrogênio no estado fundamental
corretamente. O modelo de Bohr passa a não funcionar em outros níveis de energia ou com a adição
de outros elétrons. Portanto, o modelo prevê o valor correto de momento angular nesse estado.
21
12/12/14
Questão 28
Escreva a fórmula estrutural do produto majoritário formado na reação entre 0,1 mol de tolueno
(metilbenzeno) e 0,1 mol de Cl2 nas seguintes condições:
a) Ausência de luz e presença de pequena quantidade de Fe(s).
b) Presença de luz e ausência de Fe(s).
Gabarito:
a)
CH3
CH3
CH2
C
+ C2
Fe
+
Sem luz
C
A posição orto é prioritária pois há duas posições “orto” contra apenas uma posição “para” no anel
benzênico.
b)
CH2 — C
CH3
+ C2
Luz
Reação via radical livre na cadeia lateral de um benzeno substituído.
Resultado IME 2013/2014
1o lugar geral do Brasil
(Reserva)
e mais de
22
50% dos aprovados do Rio!
GABARITO ITA – QUÍMICA
Questão 29
Considere os compostos orgânicos metilfenilcetona e propanona.
a) Apresente a equação química que representa o equilíbrio tautomérico para cada um dos compostos.
b) Qual das duas cetonas acima tem maior conteúdo enólico? Justifique.
Gabarito:
a)
Metilfenilcetona
O
C
OH
CH3
C
Propanona
O
CH3
C
CH2
OH
CH3
CH3
C
CH2
b) A propanona tem maior conteúdo enólico. O tamanho grande do grupo fenil dificulta as ligações de
hidrogênio entre as moléculas enólicas. Além disso, o efeito indutivo retirador de elétrons do grupo fenil
faz com que o oxigênio atraia os elétrons “pi” com mais intensidade, deslocando, assim, o equilíbrio
para a cetona.
Apesar do radical fenil permitir uma conjugação com a dupla ligação, essa conjugação é mais intensa
na cetona que no enol.
Questão 30
Desenhe a fórmula estrutural (IUPAC) das seguintes espécies químicas aromáticas.
a)Naftaleno
b)Fenantreno
c)Antraceno
d) Peróxido de benzoíla.
Gabarito:
a)Naftaleno
23
12/12/14
b)Fenantreno
c)Antraceno
d) Peróxido de benzoíla.
O
C
O
O
C
O
Comentários
A prova do ITA de 2014/2015 teve um bom nível de dificuldade. Destaque negativo seja
feito para a questão 15, que aborda tema muito específico de Física Moderna. A prova continua
cobrando conhecimentos descabidos de história da Química, como contemplado na questão 20.
Os temas de Fisico-Química e Orgânica foram bem abordados, porém tópicos importantes de
Química Geral não constavam da prova.
Professor:
Jackson Miguel
Jefferson Santos
Leonardo Vladimir
Lucas Niemeyer
Márcio Santos
24