Generalized Logarithmic and Exponential Functions and

Transcrição

Generalized Logarithmic and Exponential Functions and
Generalized Logarithmic and Exponential Functions
and Growth Models
Alexandre Souto Martinez
Rodrigo Silva González and
Aquino Lauri Espíndola
Department of Physics and Mathematics
Ribeirão Preto School of Philosophy, Sciences and Literature
University of São Paulo,
Avenida Bandeirantes, 3900
Ribeirão Preto, São Paulo
14040-901, Brazil
03/03/2010
Alexandre S. Martinez (USP)
Generalized Functions
[email protected]
1 / 20
Contents
1
Introduction
2
Generalized Functions
q̃-logarithm
q̃-exponential
generalized Euler’s number
3
Continous Models
Discretization of the Richards’ model
The Generalized θ-Ricker model
Generalized Skellan Model
4
Conclusion
Alexandre S. Martinez (USP)
Generalized Functions
[email protected]
2 / 20
Introduction
Introduction
One-parameter logarithmic and exponential functions have been
proposed in the context of:
non-extensive statistical mechanics ⇒ S(A + B) 6= S(A) + S(B);
relativistic statistical mechanics;
quantum group theory.
Two and three-parameter generalization of these functions have
also been proposed.
One parameter generalization of these functions can be obtained
using simple geometrical arguments.
Alexandre S. Martinez (USP)
Generalized Functions
[email protected]
3 / 20
Generalized Functions
Non-Symmetrical Hyperboles and Power Laws
Consider fq̃ (t) =
1
t 1−q̃
Figure: Behaviors of equation 1/t 1−q̃ as a function of q̃.
Alexandre S. Martinez (USP)
Generalized Functions
[email protected]
4 / 20
Generalized Functions
q̃-logarithm
q̃-Logarithm Function
lnq̃ (x) is defined as the value of the area underneath the
non-symmetric hyperbole in the interval t ∈ [1, x]:
Z
x
lnq̃ (x) =
1
lnq̃ (x) =



x q̃ −1
,
q̃
dt
t 1−q̃
if q̃ 6= 0,

 ln(x), if q̃ = 0.
Alexandre S. Martinez (USP)
Generalized Functions
[email protected]
5 / 20
Generalized Functions
q̃-logarithm
For any q̃, the area is for:
0 < x < 1, negative
x = 1, null
x > 1, positive
Convergence and divergence:
(q̃ < 0):
x → 0, lnq̃ (x) → −∞
x → ∞, lnq̃ (x) → −1/q̃
(q̃ = 0):
x → 0, lnq̃ (x) → −∞
x → ∞, lnq̃ (x) → +∞
(q̃ > 0):
x → 0, lnq̃ (x) → −1/q̃
x → ∞, lnq̃ (x) → +∞
Alexandre S. Martinez (USP)
Generalized Functions
[email protected]
6 / 20
Generalized Functions
q̃-exponential
q̃-Exponential Function
Let x be the area underneath the curve fq̃ (t), for t ∈ [0, eq̃ (x)]:
eq̃ [lnq̃ (x)] = lnq̃ [eq̃ (x)] = x
eq̃ (x) =
[a]+ = max(a, 0) guarantees t > 0 in fq̃ (t) =
Alexandre S. Martinez (USP)
Generalized Functions
1/q̃ 0
lim [1 + q̃ 0 x]+
q̃ 0 →q̃
1
.
t 1−q̃
[email protected]
7 / 20
Generalized Functions
q̃-exponential
eq̃ (x) > 0 (non-negative function):
eq̃ (0) = 1
q̃ → ±∞, e±∞ (x) = 1
1/q̃ 0
Figure: Behaviors of equation limq̃ 0 →q̃ [1 + q̃ 0 x]+
Alexandre S. Martinez (USP)
Generalized Functions
as a function of q̃.
[email protected]
8 / 20
Generalized Functions
Generalized Euler’s Number
Generalized Euler’s number
The Euler’s number:
lim (1 + n)1/n = e = 2.718 . . .
n→0
The generalized the Euler’s
number, for x = 1:
eq̃ = eq̃ (1) = (1 + q̃)1/q̃ .
Alexandre S. Martinez (USP)
Generalized Functions
[email protected]
9 / 20
Continuous Models
Richards’ Model (arXiv:0803.2635)
d ln p(t)
= −κ lnq̃ p(t),
dt
p(t) = N(t)/N∞ , with:
N(t) is the population size at time t
N∞ is the carrying capacity
κ is the intrinsic growth rate
Limiting cases for:
(q̃ = 0) ⇒ Gompertz model, d ln p/dt = −κ ln p
(q̃ = 1) ⇒ Verhulst model, d ln p/dt = −κ ln1 (p) = κ (1 − p)
The model solution is the q̃-generalized logistic equation:
p(t) =
1
eq̃ [lnq̃ (p0−1 )e−κt ]
= e−q̃ [− lnq̃ (p0−1 )e−κt ].
Notice that: 1/eq̃ (x) = e−q̃ (−x).
Alexandre S. Martinez (USP)
Generalized Functions
[email protected]
10 / 20
Continuous Models
In short
Alexandre S. Martinez (USP)
Generalized Functions
[email protected]
11 / 20
Continuous Models
Microscopic Model
Alexandre S. Martinez (USP)
Generalized Functions
[email protected]
12 / 20
Continuous Models
Richard Model
Loquistic Map
To discretize d ln p(t)/dt=−κ lnq̃ p(t) ⇒dp/dt=−κp lnq̃ p:
q̃
κpi (p −1)
(pi+1 −pi )
i
=−
,
∆t
q̃
ρ0q̃ = 1+κ∆t
,
q̃
xi =pi
ρq̃ −1 q̃
ρq̃
.
This leads to the loquistic map:
xi+1 = ρ0q̃ xi (1 − xiq̃ ) = −ρq̃ xi lnq̃ (xi ) ,
where ρq̃ = q̃ρ0q̃ .
If (q̃ = 1) ⇒ logistic map obtained from the discretization of
Verhulst model.
Alexandre S. Martinez (USP)
Generalized Functions
[email protected]
13 / 20
Continuous Models
Alexandre S. Martinez (USP)
q̃
Loquistic Maps xi+1 = ρq̃ xi (1 − xi )
Generalized Functions
[email protected]
14 / 20
Continuous Models
q̃
Loquistic Maps xi+1 = ρq̃ xi (1 − xi )
Normalized Maps
Alexandre S. Martinez (USP)
Generalized Functions
[email protected]
15 / 20
Continuous Models
The Generalized θ-Ricker model
θ-Ricker
θ-Ricker model:
θ
xi+1 = xi er [1−(xi /κ) ] .
κ1 = e r ,
x̃ = (r 1/θ x)/κ, relevant variable.
θ
x̃i+1 = κ1 x̃i e−x̃i .
Limiting cases, for:
θ = 1:
standard Ricker model.
expanding the exp. to the first order ⇒ logistic map.
θ 6= 1, expanding the exp. to the first order:
loquistic map
All are scramble models.
Alexandre S. Martinez (USP)
Generalized Functions
[email protected]
16 / 20
Continuous Models
The Generalized θ-Ricker model
Generalized θ-Ricker
θ
In Eq. xi+1 = κ1 xi e−r (xi /κ) :
e(−x) ⇒ e−q̃ (−x)
xi+1 = κ1 xi e−q̃ [−r (xi /κ)θ ] = h
κ1 xi
1 + q̃r
xi θ
κ
i1/q̃ .
(1)
To obtain standard notation of combined models1 write:
c = 1/q̃,
κ2 = r /(κc),
xi+1 =
κ1 xi
(1 + κ2 xiθ )c
1
A. Brannstrom and D. J. T. Sumpter. The role of competition and clustering in
population dynamics. Proc. R. Soc. B 272 (2005) 2065-2072.
Alexandre S. Martinez (USP)
Generalized Functions
[email protected]
17 / 20
Continuous Models
The Generalized θ-Ricker model
Limiting Models
xi+1 = κ1 xi e−q̃ [−r (xi /κ)θ ]
For θ = 1 ⇒ Hassel model.
q̃ = −1, ⇒ logistic model.
q̃ = 0, ⇒ Ricker model.
q̃ = 1, ⇒ Beverton-Holt model.
For θ 6= 1:
q̃ = 0, ⇒ θ-Ricker model.
q̃ = 1, ⇒ Maynard-Smith-Slatkin model,.
q̃ = −1, ⇒ loquistic model.
For q̃ → −∞, the trivial linear model.
These models are either scramble or contest.
Alexandre S. Martinez (USP)
Generalized Functions
[email protected]
18 / 20
Continuous Models
Generalized Skellan Model
Generalized Skellan Model
All the models generalized are power-law-like models for q̃ 6= 0.
The Skellan (contest) model, xi+1 = κ(1 − e−rxi ), could not be
retrieved.
However, if e(−x) ⇒ e−q̃ (−x):
xi+1 = k 1 − e−q̃ (−rxi ) .
q̃
q̃
q̃
q̃
(2)
= −∞, ⇒ constant model.
= −1, ⇒ the trivial linear.
= 0, one retrieves the Skellan model.
= 1 ⇒ the Beverton-Holt contest model.
Alexandre S. Martinez (USP)
Generalized Functions
[email protected]
19 / 20
Conclusion
In Short
Alexandre S. Martinez (USP)
Generalized Functions
[email protected]
20 / 20

Documentos relacionados