Atividade de Matemática

Сomentários

Transcrição

Atividade de Matemática
SECRETARIA DE SEGURANÇA PÚBLICA/SECRETARIA DE EDUCAÇÃO
POLÍCIA MILITAR DO ESTADO DE GOIÁS
COMANDO DE ENSINO POLICIAL MILITAR
COLÉGIO DA POLÍCIA MILITAR SARGENTO NADER ALVES DOS SANTOS
DATA:
SÉRIE/ANO: 2 ª
TURMA(S):
DISCIPLINA: Matemática
____ / ____ / 2015
PROFESSOR (A):
ALUNO (A):_____________________________________________________________________________
Nº_______
ATIVIDADES
01) Temos que a raiz do polinômio p(x) = x² – mx + 6 é igual a 6. Calcule o valor de m. Resp: m = 7
02) (Enem 2004) Em quase todo o Brasil existem restaurantes em que o cliente, após se servir, pesa o
prato de comida e paga o valor correspondente, registrado na nota pela balança. Em um
restaurante desse tipo, o preço do quilo era R$12,80. Certa vez a funcionária digitou por engano na
balança eletrônica o valor R$18,20 e só percebeu o erro algum tempo depois, quando vários
clientes já estavam almoçando. Ela fez alguns cálculos e verificou que o erro seria corrigido se o
valor incorreto indicado na nota dos clientes fosse multiplicado por:
a) 0,54
b) 0,65
c) 0,70
d) 1,28
e) 1,42
Resp: c
03) Dado o polinômio P(x) = x3 + kx2 – 2x + 5, determine k sendo P(2) = P(0). Resp: k = - 1
04) Determine a soma dos coeficientes do polinômio P(x) = (4x2 – 3)5. Resp: 1
05) Divida P(x) = – 5x4 + 3x3 – 2x – 3 por D(x) = x – 2 pelos métodos da chave e de Briot-Ruffini.
3
2
Resp: Q(x) = - 5x – 7x – 14x – 30 e R(x) = - 63.
06) Determine o resto da divisão de P(x) = x3 – 5x2 – 9x + 8 por D(x) = x + 3. Resp: - 37
07) Determine o resto da divisão de P(x) = xn + 1 por D(x) = x – 1, onde n ϵ IN. Resp: 2
08) Determine o resto da divisão de P(x) = xk – 1 por D(x) = x – 1 onde n ϵ IN. Resp: 0
09) (FUVEST) Determine o valor de “p” para que o polinômio 2x3 + 5x2 – px + 2 seja divisível por x – 2.
Resp: p = 19
10) A divisão de x999 – 1 por x – 1 tem resto R(x) e o quociente Q(x). Pode-se afirmar que:
a) R(x) = – 2 e Q(x) tem grau 998
b) R(x) = 0 e Q(x) se anula para x = 0
c) R(x) = – 2 e Q(x) se anula para x = –1
d) R(x) = 0 e Q(x) tem grau 998
e) R(x) = – 2 e Q(x) vale –1 para x = 0
Resp: d
11) Um professor, depois de corrigir as provas de sua turma, percebeu que várias questões estavam
muito difíceis. Para compensar, decidiu utilizar uma função polinomial f, de grau menor que 3, para
alterar as notas x da prova para notas y = f(x), da seguinte maneira:
 A nota zero permanece zero.
 A nota 10 permanece 10.
 A nota 5 passa a ser 6.
A expressão da função y = f(x) a ser utilizada pelo professor é:
a) y = - x2 + x
b) y = c) y =
x2 + 2x
x2 +
x
d) y = - x + 2
e) y = x
Resp: a
12) (Ufam) Sabe-se que 2 é a raiz da equação x4-4x3+x2+6x=0. A forma dessa equação é:
a) x(x - 2)(x - 1)(x + 3)
b)
c)
d)
e)
Resp: d
x(x - 2)(x - 1)(x - 3)
x(x + 2)(x + 1)(x - 3)
x(x - 2)(x + 1)(x - 3)
x(x + 2)(x – 1)(x – 3)
13) O produto das raízes reais da equação 4x²-14x+6=0 é igual a:
a) b) c)
d)
e)
14) (UFMS) Sabendo-se que o polinômio p(x) = x3 – x2 + mx – n é divisível pelo polinômio
q(x) = x2 + x – 2, é correto afirmar que:
a) m + n = 0
b) m = 2n
c) m = - 4n
d) m – 2n = 4
e) m = n + 1
Resp: d
15) Sejam r1, r2 e r3 as raízes da equação x³ + 11x² - 160x + r = 0, r ϵ p. Sabe-se que uma das
raízes da equação é -20. Então:
a) As outras duas raizes são 3 e -4.
b) As outras duas raizes são -4 e 5.
c) As outras duas raizas são 4 e 5.
d) As outras duas raizes são -3 e -5.
e) As outras duas raizes são 3 e 5.
16) Assinale o que for correto.
a) O número 2 é raiz do polinômio p(x) = x3 – 5x2 + 12.
b) O resto da divisão do polinômio h(x) = - x3 + x2 – x – 2 por g(x) = x + 1 é igual a 1.
c) O polinômio p(x) = (a2 – 1)x2 + ax + 3 tem grau 2 se a = -1.
d) Sabendo-se que os polinômios p(x) = (a + b)x2 + (a + 2)x + (4 + b) e q(x) = 3x + 3 são
idênticos, então a . b = 1.
Resp: a,b
17) Uma das raízes da equação x3 – 8x2 + 29x – 52 = 0 é 4. Resolva essa equação.
Resp: s = {4, 2 – 3i, 2 + 3i}
18) Escreva uma equação algébrica de 3º grau cujas raízes sejam 1, - 2 e 5.
Resp: x3 – 4x2 – 7x + 10 = 0
19) Duas das raízes da equação 2x4 + 5x3 – 35x2 – 80x + 48 = 0 são – 3 e – 4. Quais são as
outras duas raízes?
Resp: S = {4 e }
20) Quais são as raízes da equação x3 – 2x2 + 2x = 0?
Resp: S = {0, 1 + i, 1 – i}

Documentos relacionados

Lista de Exercícios Polinômios – Lista Base

Lista de Exercícios Polinômios – Lista Base 11)2x+3 12a)1 não 2 sim 12b)1 não 0 e 2 sim 12c)1 e 3 não -1 sim 12d)todas são raízes 13a)P(x)=x²-3x+2 13b)P(x)=x³-x²-2x 13c) x³-6x²+13x-10 14)m=1/2, n=2/5, r=2/3 15)maior é c pois a=11 b=1 c=12 d=...

Leia mais

teoria polinomios (objetivas)

teoria polinomios (objetivas) grmáx ( r ) = gr ( D ) – 1

Leia mais

Exercícios de Matemática Polinômios

Exercícios de Matemática Polinômios 6) (UFSCar-2009) Em relação a P(x), um polinômio de terceiro grau, sabe-se que P(-1) = 2, P(0) = 1, P(1) = 2 e P(2) = 7. a) Determine a equação reduzida da reta que passa pelo ponto em que o gráfic...

Leia mais