TAMBAQUI Colossoma macropomum

Transcrição

TAMBAQUI Colossoma macropomum
EFFECTS OF PHYTASE INCLUSION
IN PHOSPHOROUS EXCRETION OF
TAMBAQUI Colossoma macropomum
JUVENILES
L.V. Brandão; L.A. L. Barbas; V.M.D. Brandão; Rodrigo Roubach
Coordenação Geral de Aquicultura Marinha em Estab.
Rurais e Áreas Urbanas/CAMER/DAER/SEPOA
Introduction
Tambaqui, Colossoma macropomum (Cuvier, 1818)
Order: Characiformes
Family: Serrassalmidae
 Origin: Amazon Basin
Fonseca,F
 Reach up to 100 cm ; 30 kg
 High commercial value
 Flesh quality
 Omnivorous
 Rapid growth
 Resistance to manipulation
 Easily adaptable to artificial feed
 Induced breeding
Brandão, L.
6
Introduction
Tambaqui aquaculture production from 1994 to 2009.
Source: MPA, 2010
Introduction
Photo: Michel Machado
Introduction
Feeding x Fish culture
- Exploit fish growth potential;
- High quality protein production;
- Allows to ameliorate effluents emissions;
- Maximizes productivity x profit relationship;
Brandão, L
- Represents 60 to 80 % culture costs;
- Fish meal;
- Excellent AA’s source, Essential lipids,
minerals and vitamins (Pezzato, 1997)
- Elevated costs.
5
Fonseca, F
Introduction
Need for alternative feed source;
Vegetable protein sources;
Soybean meal
North Region
- Increased costs
- Freight cost
6
Introduction
Alternatives
- Total substitution of the animal with vegetal protein without prejudice1
- Regional ingredients: costs, availability and good nutritional quality2
Advantages:
- Products with few or no use;
- No-commercial value;
- Expenditure to discard
7
1 Campos
et al., ; 2Silva et al.,2007
Introduction
The Amazon presents around 1,400 aquatic and terrestrial vegetable species1.
Food chain2
Scarce informations: nutritional contribution and natural balance of
those itens in fish diets.
North region:
Present loss up to 25% fruit production:
- poor conservation, inadequate stocking or manipulation;
- Sub products are discarded after use of the pulp.
8
1
Maia (2001); 2 Pizango-Paima et al.,2001; Silva et al., 2007
Introduction
Use of exogenous enzymes
- Improve ingredients availability;
- Remove or destroy the anti-nutritional factors in grains;
- Increase the feed total digestibility;
- Decrease environmental pollution from the excreta.
Phytase enzyme:
- Industrialized from microorganisms;
- DNA recombination (Aspergyllus niger e A. ficum)
- Promotes a more efficient phosphorus absorption1;
- Lower the need to add inorganic phosphorus 2
9
1Vielma
et al., 1998; Vielma et al., 2000; Jackson et al., 1996; Schäfer et al., 1995;Olivia-Teles et al., 1998; 2 Qian, 1996
Material and Methods
To
evaluate
phosphorus
excretion
in
tambaqui,
Colossoma
macropomum, juveniles fed with increased level of phytase in the ration.
- Duration: 45 days
- 120 tambaqui juveniles;
- Initial weight = 12 g;
- 12 cones; 70 L ;
- Density: 30 fish/unit.
Material and Methods
Experimental design
Protein level
30% CP
Phytase levels
*NP
1000 Pu/kg
- 4 treatments; 3 repetitions
*NP – Without phytase
1500 Pu/kg
2000 Pu/kg
Material and Methods
Performance evaluation
Initial and final biometry:
- Weight gain (WG)
- Feed conversion (FC)
- Survival (S%)
Statistical Analysis
- ANOVA (5%)
- Tukey 5%
12
Material and Methods
Enzyme adition to feed:
-
After ingredients mixture, enzyme dissolved in tempered water (40º
C) at 30% diet dry weight1
-
Pulverized in the diets at 1000, 1500 and 2000 phytase units /kg.
-
Natuphos® 5000 G, BASF S.A., fungal fermentation (Aspergillus
niger) with a minimal initial activity of 5000 Fu/g.
1Furuya
et al., 2001;
Material and Methods
Feed management:
30% CP
Fed twice a day @ 5% biomass
Water quality parameters
Twice a week:
DO (mg/L),
Temperature (°C),
pH,
Conductivity
Amonia – Endofenol
Material and Methods
Water quality samplings for phosphorus determination:
During the last 5 days:
08:00 (Static water / Measuring: T0C, DO, pH)
09:00 (Fed)
16:00 (Fed)
20:00 (Measuring: T0C, O2D, pH / Change water)
Total phosphorus determination
Method: Photometry
Micronal B582
Results and Discussion
Mean values from water quality parameters
Parameter
DO
Temperature
Unit
Treatments
Control
1000 uF
1500 uF
2000 uF
mg/L
4.9± 0.1
5.7± 0.4
5.1± 0.4
5.3± 0.2
°C
28.2± 0.3
27.8± 0.2 27.7± 0.4 27.9± 0.2
5.9± 0.2
6.1± 0.4
pH
6.2± 0.6
6.1± 0.4
Conductivity
µS.cm2
20.0± 0.8
19.0± 0.8 22.0± 0,8 20.0± 0.4
Total Amonia
mg/L
0.5± 0.2
0.3± 0.1
0.4± 0.1
0.4± 0.2
Results and Discussion
Survival (S), Weight gain (WG) and Feed conversion (FC) for juvenile tambaqui
after 45 days fed with increased levels of phytase in a extruded feed.
Variáveis de desempenho
Treatment
S(%)
WG (g)
FC
Without Phytase
100
33.9±0.9a
1.2±0.9a
1000 Pu
100
34.9±0.8a
1.1±0.8a
1500 Pu
100
35.0±0.8a
1.1±0.8a
2000 Pu
100
35.2±0.8a
1.1±0.8a
Pu – Phytase units.
Similar letter in the collunm are did not shown statistacally difference (p>0,05) by Tukey test.
Results and Discussion
Total phosporus levels in water x phytase inclusion levels
CONCLUSIONS
Phytase inclusion in a vegetable based diets for
tambaqui juveniles (Colossoma macropomum) at the
tested levels increase phosphorus biodisponability,
decreasing its excretion levels up to 21%.
REFERENCES
Araújo-Lima, C.; Goulding, M. 1998. Os frutos do tambaqui: ecologia, conservação e cultivo na
Amazônia. Sociedade Civil Mamirauá/CNPq. Tefé, AM. 187 p.
Baruah, K.; Sahu, N.P.; Pal, A.K. et al. Dietary phytase: an ideal approach for cost effective and lowpolluting aquafeed, NAGA: Word Fish Center Quarterly, v.27, n.3/4, p.15-19, 2004.
Bock, C. L.; Pezzato, L. E.; Cantelmo, O. A.; Barros, M. M. Fitase em rações para tilápia-do-nilo na fase
de crescimento. R. Brás. Zootec., v. 36, n. 5, p. 1455-1461, 2007.
Brandão, L.V. Utilização de fitase em dietas para peixes. PUBVET, Londrina, V. 3, N. 5, Art.501, Fev 2,
2009.
Cao, L.; Yang, Y.; Wang, W. M.; Yakupitiyage.; Yuan, D. R.; Diana, J. S. Effects of pretreatment with
microbial phytase on phosphorous utilization and growth performance of Nile tilapia (Oreochromis
niloticus). Aquaculture Nutrition 14. 99-109, 2008.
Cyrino, J. E. P.; Bicudo, A. J. de A.; Sado, R. Y.; Borghesi, R.; Dairiki, J. K. A piscicultura e o ambiente – o
uso de alimentos ambientalmente corretos em piscicultura. R. Bras. Zootec., v.39, p. 68-87, 2010.
REFERENCES
Furuya, W. M. Gonçalves, G. S.; Furuya, V. R. B.; Hayashi, C. Fitase na alimentação de tilápia do
Nilo (Oreochromis niloticus). Desempenho e digestibilidade. Rev. bras. zootec., 30(3):924-929,
2001.
Furuya, W. M.; Santos, V. G.; Borato, D.; Hayashi, C.; Silva, L. C. R. Níveis de proteína e fitase em
rações de terminação para a tilápia do Nilo (Oreocrhomis niloticus). Arq. ciên. vet. zool. UNIPAR,
8(1): p.11-17, 2005.
Gatlin, D. M.; Phillips, H. F. Dietary calcium, phytate and zinc interactions in channel catfish.
Aquaculture, v. 79, p. 259-266, 1989.
Gonçalves, G. S.; Pezzato, L. E.; Barros, M. M.; Kleeman, G. K.; Rocha, D. F. Efeitos da
suplementação de fitase sobre a disponibilidade aparente de Mg, Ca, Zn, Cu, Mn e Fe em
alimentos vegetais para a tilápia do Nilo. R. Bras. Zootec., v.34, n.6, p.2155-2163, 2005.
Graef, E.W. 1995. As espécies de peixes com potencial para criação no Amazonas. In: Val, A.L.;
Honczaryk, A. (Eds.). Criando peixes na Amazônia. Instituto Nacional de Pesquisas da Amazônia
(INPA). Manaus, AM. p. 29-43.
REFERENCES
NATIONAL RESEARCH COUNCIL - NRC. Nutrient requirements of fish. Washington, D.C.: National
Academy of Sciences, 1993. 102p.
Oishi, C.A. 2007. Resíduo da castanha da Amazônia (Bertholletia excelsa) como ingrediente em
rações para juvenis de tambaqui (Colossoma macropomum) Dissertação de Mestrado – Instituto
Nacional de Pesquisas da Amazônia. 60p.
Pereira-Filho, M. Alternativas para a alimentação de peixes em cativeiro. In: VAL, A.L.; Honczaryk, A.
(Eds.) Criando peixes na Amazônia. Manaus: Instituto Nacional de Pesquisas da Amazônia, 1995.
p.75-82.
Pereira-Filho, M. Castagnolli, N.; Kronsa, S.N. Efeito de diferentes níveis de proteína e de fibra bruta
na alimentação de juvenis de matrinxã Brycon cephalus. Acta Amazonica, 24, 3, 1-8, 1994.
Silva, J.A.M.; Filho, M.P., Oliveira-Pereira, M.I. Frutos e sementes consumidos pelo tambaqui,
Colossoma macropomum (Cuvier, 1818) incorporado em rações. Digestibilidade e velocidade de
trânsito pelo trato gastrointestinal, R. Bras. Zootec., v.32, n.6, p.1815-1824, 2003.
Terrazas, W. D. M. (1998). Efeito de diferentes níveis de farinhas de resíduos de peixe e de frango no
ganho de peso e composição corporal de alevinos de tambaqui, Colossoma macropomum (Cuvier,
1818). [Dissertação de Mestrado]. Manaus (AM): Universidade do Amazonas.
Acknowledgements
PPI 2-3905/2005 - Estudos do manejo alimentar e nutrição
de tambaqui, Colossoma macropomum, matrinxã, Brycon
amazonicus, e Pirarucu, Arapaima gigas.
Amazonas state foundation for research
support
Project: Temático Amazonas Verde No.
1339/04
National Development Council for Research,
Science and Technology of Brazil (CNPq)
Research fellowship recipient and travel funds
Thank you
Rodrigo Roubach
Ministério da Pesca e Aquicultura - MPA
Coordenação-geral de Planejamento e Ordenamento
da Aquicultura Marinha em Áreas Rurais e Urbanas
Tel: +55 61 2023 3622
E-mail: [email protected]
www.mpa.gov.br

Documentos relacionados