Multibody Systems

Transcrição

Multibody Systems
22.09.2014
Fachbereich
Mathematik
Multibody Systems
Bernd Simeon
TU Kaiserslautern - FB Mathematik
Felix-Klein-Zentrum
[email protected]
GAMM Junior‘s School Applied Mathematics & Mechanics
Elgersburg, 17. September 2014
Fachbereich
Mathematik
Point of Departure
Application fields for multibody dynamics







Robotics
Aerospace engineering
Biomechanics
Automotive
Machinery
Wind turbines
…
TESIS Dynaware
SIMPACK AG
Fraunhofer ITWM
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
2
1
22.09.2014
Fachbereich
Mathematik
Historical Remarks
 Euler-Lagrange equations 1788
………..
 Baumgarte stabilization 1972
 DAEs are not ODEs, Petzold 1983
 Gear-Gupta-Leimkuhler-Stabilization 1985
 Oberwolfach Conference 1993
………..
 Today: Most software packages in multibody
dynamics use DAE models
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
3
Fachbereich
Mathematik
Outline
 Mathematical modeling in multibody dynamics
 Examples: pendulum, slider crank, wheel suspension
 Structure of DAEs in multibody dynamics
- BREAK –
 Stabilized formulations
 Hitchhiker‘s guide to numerical integration
 Specific application fields
& outlook on future research topics
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
4
2
22.09.2014
Fachbereich
Mathematik
References
 Eich-Söllner & Führer: Numerical Methods in
Multibody Dynamics, 1998
 Hairer & Wanner: Solving ODEs II, 1996
 Roberson & Schwertassek: Dynamics of Multibody
Systems, 1988
 Shabana: Dynamics of Multibody Systems, 1998
 Si.: Computational Flexible Multibody Dynamics,
2013
Chapters 2 & 7
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
5
Fachbereich
Mathematik
Part I: Mathematical Modeling
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
6
3
22.09.2014
Fachbereich
Mathematik
Planar Pendulum
Rigid rod, planar motion
Kinematics:
Cartesian (absolute) coordinates
⎛
⎞
r1(t)
q(t) = ⎝ r2(t) ⎠
α(t)
r1, r2 : coordinates of centroid
α: angle between inertial reference frame
and body-fixed frame placed in centroid
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
7
Fachbereich
Mathematik
Pendulum II
Revolute joint at tip → kinematic constraint
Ã
!
l
r1 − 2 cos α
0=
=: g(q)
r2 − 2l sin α
l: length of pendulum
Constraint Jacobian
¶
µ
1 0 2l sin α
G(q) =
0 1 − 2l cos α
is rectangular matrix, rank 2
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
8
4
22.09.2014
Fachbereich
Mathematik
Pendulum III
Selection of minimal coordinate α:
Since r 1 = 2l cos α, r 2 = 2l sin α
⎞
⎛ l
cos
α
2
⇒ q(α) = ⎝ 2l sin α ⎠
α
Choices for describing the motion
(i) Full set of nq = 3 coordinates q
plus nλ = 2 kinematic constraints 0 = g(q)
(ii) Minimal coordinate α
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
9
Fachbereich
Mathematik
Multibody System
Assumptions:
multibody system = {rigid bodies} ∪ {interconnections}
• rigid bodies have mass and geometry
• springs, dampers, actuators: compliant elements, massless
• joints: constrain relative motion of pairs of bodies, massless
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
10
5
22.09.2014
Fachbereich
Mathematik
Kinematics
q(t) ∈ Rnq : coordinates for position + orientation
Holonomic constraint equations
0 = g(q) ∈ Rnλ
Well-defined model:
G(q) :=
nλ < nq and Jacobian
∂g(q)
∈ Rnλ ×nq
∂q
has full rank nλ
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
11
Fachbereich
Mathematik
Minimal Coordinates
Implicit Function Theorem ⇒ minimal coordinates
s(t) ∈ Rns exist such that q = q(s) and
g(q(s)) ≡ 0
Number of degrees of freedom (DOF) ns = nq − nλ
Orthogonality relation
G(q(s)) N (s) = 0
with null space matrix N (s) := ∂q(s)/∂s ∈ Rnq ×ns
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
12
6
22.09.2014
Fachbereich
Mathematik
Dynamics
Lagrange Equations of 1st Kind
M (q) q̈ = f (q, q̇, t) − G(q)T λ
0 = g(q)
where M (q) ∈ Rnq ×nq : mass matrix
f (q, q̇, t) ∈ Rnq : applied and internal forces
λ(t) ∈ Rnλ : Lagrange multipliers
Conservative system: Hamilton’s Principle applies
Z t1 ³
´
T
T − U − g(q) λ dt → stationary !
t0
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
13
Fachbereich
Mathematik
Variational Principle
Principle of Least Action (Hamilton)
Z t1 ³
´
T − U − g(q)T λ dt → stationary !
t0
with kinetic energy T (q, q̇) = 12 q̇ T M (q)q̇, potential energy U (q)
Non-conservative case
³
´
d ∂ T (q, q̇) − ∂ T (q, q̇) = f (q, q̇, t) − G(q)T λ
a
∂q
dt ∂ q̇
0 = g(q)
with applied forces fa and
∂
f (q, q̇, t) := fa (q, q̇, t) +
∂q
µ
¶
¶ µ
1 T
d
q̇ M (q)q̇ −
M (q) q̇
2
dt
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
14
7
22.09.2014
Fachbereich
Mathematik
State Space Form
Insert q = q(s(t)) into variational principle
⇒ C(s) s̈ = h(s, ṡ, t)
Lagrange Equations of 2nd Kind
where
d2
∂N (s)
(ṡ, ṡ)
q(s) = N (s)s̈ +
2
dt
∂s
d
q(s) = N (s)ṡ,
dt
and C(s) = N (s)T M (q(s))N (s) ∈ Rns ×ns ,
h(s, ṡ, t) = N (s)T f (q(s), N (s)ṡ, t) − N (s)T M (q(s))
∂N (s)
(ṡ, ṡ)
∂s
15
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
Fachbereich
Mathematik
Pendulum Example
DAE model - Lagrange 1st kind:
⎛
m
⎝ 0
0
⎞⎛
⎞
0
0
r̈1
m
0 ⎠ ⎝ r̈2 ⎠
l2
α̈
0 m 12
0
⎛
⎞ ⎛
1
0
⎜
⎟ ⎜
0
= ⎝ −mγ ⎠ − ⎝
l
0
2 sin α
Ã
!
r1 − 2l cos α
=
r2 − 2l sin α
0
1
− 2l cos α
⎞
⎟
⎠
µ
λ1
λ2
¶
where m: mass, γ: gravitation constant
Minimal coordinate α: state space form - Lagrange 2nd kind:
l
J α̈ = −mγ cos α
2
with moment of inertia J = l2 m/3
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
16
8
22.09.2014
Fachbereich
Mathematik
Pros and Cons
 State space form is ODE, but existence in general
guaranteed only locally
closed kinematic loops
 DAE model is gobally defined, bypasses
topological analysis
 Generation of eqs. of motion proceeds
automatically by means of multibody formalisms.
Newton-Euler eqs. instead of energy expressions
 Most software packages use DAE models
(either completely or partially for closed loop systems)
Need for DAE analysis and numerical methods!
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
17
Fachbereich
Mathematik
Remark on Hamiltonian Systems
Conservative case allows modeling based on Hamiltonian
H =T +U
with momenta p := M (q)q̇
Hamiltonian system with constraints
∂
H(p, q)
∂p
∂
ṗ = − H(p, q) − G(q)T λ
∂q
0 = g(q)
q̇ =
−→ too restrictive for engineering applications
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
18
9
22.09.2014
Fachbereich
Mathematik
Slider Crank Example
3 rigid bodies: crank,
connecting rod, slider
3 revolute joints
1 sliding joint
⎞ ⎛
⎞
⎞
⎛
l1 cos α1 l1 sin α1
−1/2 l1 l2 m2 α̇22 sin(α1 − α2 )
µ
¶
α̈1
λ1
2
⎠
⎝
⎝
⎠
⎠
⎝
α̈2
l2 cos α2 l2 sin α2
1/2 l1 l2 m2 α̇1 sin(α1 − α2 )
−
M
=
λ2
r̈3
−F (t)
0
1
¶
µ
l1 sin α1 + l2 sin α2
0 =
r3 − l1 cos α1 − l2 cos α2
3rd revolute joint
nq = 3, nλ = 2, ns = 1
⎛
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
19
Fachbereich
Mathematik
Wheel Suspension
Hiller & Frik 1992
High comfort rear suspension
7 rigid bodies
(5 rods between wheel carrier and chassis, wheel carrier, wheel)
14 relative coordinates
q = (ϕ1 , ψ1 , α, β, γ, ϕ2 , ψ2 , ϕ3 , ψ3 , ϕ4 , ψ4 , ϕ5 , ψ5 , δ)T
12 constraints due to universal/spherical joints
and closed kinematic loops
Eqs. of motion spread over 7000 lines
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
20
10
22.09.2014
Fachbereich
Mathematik
Newton-Euler Equations
Spatial motion of rigid body
−→ Newton-Euler eqs.
mr̈ = ff (t)
~
J~ω̇ + ω̃ Jω
= fm (t)
with angular velocity ω
−→ no system of 2nd order!
Euler parameters (quaternions) θ ∈ R4 lead to
mr̈ = ff (t)
^
~
θ̇ JQ(θ)
θ̇ − θλ
Q(θ)T J~ Q(θ)θ̈ = Q(θ)T fm (t) − Q(θ)T Q(θ)
T
0 = θ θ−1
−→ complies with 2nd order system!
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
21
Fachbereich
Mathematik
Part II:
Structure of DAEs in
Multibody Dynamics
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
22
11
22.09.2014
Fachbereich
Mathematik
DAEs
Refer to Brenan, Campbell & Petzold 1996, Hairer & Wanner 1996, Kunkel &
Mehrmann 2006, Lamour, März & Tischendorf 2013, Rabier & Rheinboldt 2002
Consider fully implicit system
F (ẋ, x, t) = 0
with state variables x(t) ∈ Rnx
Assumption: nx × nx Jacobian ∂F /∂ ẋ is singular
Linear-implicit system
Semi-explicit system
E ẋ = φ(x, t) with singular E ∈ Rnx ×nx
ẏ = a(y, z)
0 = b(y, z)
with differential variables y and algebraic variables z
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
23
Fachbereich
Mathematik
The Differential Index
(Gear 1988)
The differential index k of F (ẋ, x, t) = 0 is defined as
k = 0: ⇔ ∂F /∂ ẋ is non-singular
k > 0: Otherwise, consider
F (ẋ, x, t) = 0,
d
∂
F (ẋ, x, t) =
F (ẋ, x, t) x(2) + . . . = 0,
dt
∂ ẋ
..
.
ds
∂
F (ẋ, x, t) x(s+1) + . . . = 0
F (ẋ, x, t) =
dts
∂ ẋ
in ẋ, x(2) , . . . , x(s+1) , with x and t as independent variables.
Then k := smallest s such that ODE ẋ = ψ(x, t)
can be extracted (by algebraic manipulations only).
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
24
12
22.09.2014
Fachbereich
Mathematik
Semi-Explicit Systems
ẏ = a(y, z)
0 = b(y, z)
b (y, z) ∈ Rnz ×nz
Assume Jacobian ∂∂z
Consider
⇒ 0=
is invertible
d
∂b
∂b
b(y, z) =
(y, z)ẏ +
(y, z)ż
dt
∂y
∂z
Thus
ż = −
µ
∂b
(y, z)
∂z
¶−1
∂b
(y, z) · a(y, z)
∂y
ẏ = a(y, z) and eq. for ż form the underlying ODE
⇒ Index k = 1
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
25
Fachbereich
Mathematik
Perturbation Index
(Hairer/Lubich/Roche 1989)
System F (ẋ, x, t) = 0 has perturbation index k ≥ 1 along x(t)
on [t0 , t1 ] if k is the smallest integer such that for all x̂
˙ x̂, t) = δ(t) there exists on [t0 , t1 ] an estimate
with defect F (x̂,
³
kx̂(t) − x(t)k ≤ c kx̂(t0 ) − x(t0 )k + maxt0 ≤ξ≤t kδ(ξ)k + . . .
´
(k−1)
+ maxt0 ≤ξ≤t kδ
(ξ)k
with sufficiently small bound on rhs.
Constant c depends on F and on [t0 , t1 ], not on δ.
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
26
13
22.09.2014
Fachbereich
Mathematik
„Never Trust Authorities“
Conjecture PI ≤ DI + 1 proved by Gear 1990
Counter example by
⎛
0
⎝ 0
0
Campbell & Gear 1995
⎞⎛
⎞ ⎛
⎞
y3 0
ẏ1
y1
0 y3 ⎠ ⎝ ẏ2 ⎠ + ⎝ y2 ⎠ = 0
0 0
ẏ3
y3
DI = Differential Index = 1, PI = Perturbation Index = 3!
I think you should be more explicit here in step two!
Cartoon by S. Harris
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
27
Fachbereich
Mathematik
Analysis of Equations of Constrained
Mechanical Motion
Rewrite as system of first order
q̇ = v
M (q) v̇ = f (q, v, t) − G(q)T λ
0 = g(q)
v(t) ∈ Rnq : velocity variables
Semi-explicit DAE - index k =???
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
28
14
22.09.2014
Fachbereich
Mathematik
Hidden Constraints
Differentiation of holonomic constraints
d
0 = g(q) = G(q) q̇ = G(q) v
dt
Constraints at velocity level
d2
0 = 2 g(q) = G(q) v̇ + κ(q, v),
dt
κ(q, v) :=
∂ G(q )
(v, v)
∂q
Constraints at acceleration level
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
29
Fachbereich
Mathematik
Eliminating the Lagrange Multipliers
Dynamic equation and acceleration constraint yield
¶
¶µ
¶ µ
µ
f (q, v, t)
v̇
M (q) G(q)T
=
G(q)
0
λ
−κ(q, v)
µ
¶
M (q) G(q)T
Assumption:
is invertible
G(q)
0
Thus
¢
¡
v̇ = M (q)−1 f (q, v, t) − GT (q)λ
¡
¢−1 ¡
¢
λ = G(q)M (q)−1 GT (q)
G(q)M (q)−1 f (q, v, t) + κ(q, v)
−→ ODE q̇ = v, v̇ = φ(q, v, t)
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
30
15
22.09.2014
Fachbereich
Mathematik
Index
Index of equations of motion k = 3
Consistent initial values satisfy
0 = g(q 0) ,
0 = G(q 0 ) v 0
while λ0 = λ(q 0 , v 0, t0 ) completely determined
Assumptions made:
Sufficient smoothness + M is s.p.d. + G full rank
31
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
Fachbereich
Mathematik
Hidden Constraints Pendulum
⎛
⎞
⎛
⎞
v1 (t)
ṙ1 (t)
Velocity variables v(t) = ⎝ v2 (t) ⎠ := ⎝ ṙ2 (t) ⎠
v3 (t)
α̇(t)
Differentiation steps
⎞
⎛
Ã
! µ
¶
v
l
1
l
r1 − 2 cos α
1 0
2 sin α
⎝ v2 ⎠
=
0= d
dt
0 1 − 2l cos α
r2 − 2l sin α
v3
d2
0= 2
dt
Ã
r1 −
r2 −
l
2
l
2
cos α
sin α
!
=
µ
1
0
0
1
l
2
sin α
− 2l cos α
¶
⎛
⎞
µ
v̇1
⎝ v̇2 ⎠ + v32
v̇3
Lagrange multipliers
¶
µ
µ
¶
µ
mγ
3 sin α cos α
λ1
2
+
mv
=−
3
λ2
1 + 3 sin2 α
4
l
2
l
2
cos α
sin α
l
2
l
2
cos α
sin α
¶
¶
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
32
16
22.09.2014
Fachbereich
Mathematik
Part III:
Stabilized Formulations for
Multibody Dynamics
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
33
Fachbereich
Mathematik
Equations of Motion
q̇ = v
M (q) v̇ = f (q, v, t) − G(q)T λ
0 = g(q)
is DAE of index k = 3
Issues
• Well-posedness
• Differentiation corresponds to difference quotient
in numerical methods
• Lack of reliable numerical methods
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
34
17
22.09.2014
Fachbereich
Mathematik
Formulation of Index 1
Replace original constraint by constraint at acceleration level
q̇ = v
M (q) v̇ = f (q, v, t) − G(q)T λ
0 = G(q) v̇ + κ(q, v)
Drift off
Consider w(t) := g(q(t)) and ODE ẅ = 0 with perturbed init. values
ẅ = ζ a ,
ẇ(t0 ) = ζ v , w(t0 ) = ζ p
Integration yields w(t) = 12 (t − t0 )2 ζ a + (t − t0 )ζ v + ζ p
−→ quadratic growth - original constraints violated!
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
35
Fachbereich
Mathematik
„Flying Wheelset“
„Hunting motion“ – stable limit cycle
Si./Führer/Rentrop1991, Eich 1993
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
36
18
22.09.2014
Fachbereich
Mathematik
Baumgarte Stabilization
(1972)
q̇ = v
M (q) v̇ = f (q, v, t) − G(q)T λ
0 = G(q) v̇ + κ(q, v) + 2αG(q)v + β 2 g(q)
Still index k = 1.
Select α, β ∈ R such that
0 = ẅ + 2αẇ + β 2 w
becomes asymptotically stable. E.g., α = β > 0 yields
ẅ + 2αẇ + α2 w = ζ a ,
ẇ(t0 ) = ζ v , w(t0 ) = ζ p
and
¢
¡
ζ
w(t) = ζ p + (t − t0 )(ζ p + αζ v ) exp(−α(t − t0 )) + a2
α
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
37
Fachbereich
Mathematik
Formulation of Index 2
Use constraint at velocity level
q̇ = v
M (q) v̇ = f (q, v, t) − G(q)T λ
0 = G(q) v
Index k = 2, still feasible for numerical methods like BDF
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
38
19
22.09.2014
Fachbereich
Mathematik
Gear/Gupta/Leimkuhler Formulation
q̇
M (q) v̇
0
0
It holds
0=
=
=
=
=
(1985)
v − G(q)T μ
f (q, v, t) − G(q)T λ
G(q) v
g(q)
with extra multipliers μ(t) ∈ Rnλ
d
g(q) = G(q)q̇ = G v − GGT μ = −GGT μ
dt
⇒ μ = 0, index k = 2, original constraint included!
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
39
Fachbereich
Mathematik
Part IV:
Hitchhiker‘s Guide to Time
Integration in Multibody Dynamics
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
40
20
22.09.2014
Fachbereich
Mathematik
Basics
Assume consistent initial values q 0 , v 0
0 = g(q 0 ) ,
0 = G(q 0) v 0
Time grid t0 < t1 < . . . < tn with stepsize τi = ti+1 − ti
q n : numerical approximation of q(tn ),
analogously v n and λn
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
41
Fachbereich
Mathematik
Index 1 – Formulation and Drift Off
Solve linear system
µ
¶µ
¶ µ
¶
f (q, v, t)
M (q) G(q)T
Ψ
=
G(q)
0
Υ
−κ(q, v)
for Ψ ∈ Rnq and Υ ∈ Rnλ
Given q and v, this defines rhs of
q̇ = v,
v̇ = Ψ(q, v, t)
−→ any standard ODE integrator can be applied
Expectation for method of order k:
q(tn ) − q n = O(τ k ), v(tn ) − v n = O(τ k ), λ(tn ) − λn = O(τ k )
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
42
21
22.09.2014
Fachbereich
Mathematik
Drift Off
Formulation of index 1 is integrated by a method of order k
kg(q n )k ≤ τ k (A(tn − t0 ) + B(tn − t0 )2 ),
⇒
kG(q n )v n k ≤ τ k C(tn − t0 )
with constants A, B, C
Original constraints = invariants, not satisfied by numerical solution!
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
43
Fachbereich
Mathematik
Projection Methods
q n+1 , v n+1 : numerical solution computed from consistent q n , v n
Projection (Lubich 1989, Eich 1990)
½
0 = M (q̃ n+1 )(q̃ n+1 − q n+1 ) + G(q̃ n+1 )T μ,
solve
0 = g(q̃ n+1 )
for q̃ n+1 , μ
solve
½
0 = M (q̃ n+1 )(ṽ n+1 − v n+1 ) + G(q̃ n+1 )T η,
0 = G(q̃ n+1 ) ṽ n+1
for ṽ n+1 , η
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
44
22
22.09.2014
Fachbereich
Mathematik
Half-Explicit Methods
Half-explicit Euler
q n+1 = q n + τ v n
M (q n ) v n+1 = M (q n ) v n + τ f (q n , v n , tn ) − τ G(q n )T λn
0 = G(q n+1 ) v n+1
Leads to linear system
¶µ
¶ µ
¶
µ
v n+1
M (q n )v n + τ f (q n , v n , tn )
M (q n ) G(q n )T
=
τ λn
0
G(q n+1 )
0
Basis for extrapolation and Runge-Kutta methods
(Arnold/Murua 1996, Lubich 1992)
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
45
Fachbereich
Mathematik
Implicit Methods
Write eqs. of motion (GGL) as linear-implicit system
E ẋ = φ(x, t)
with singular matrix E
Prototype of an implicit method: implicit Euler
E
xn+1 − xn
= φ(xn+1 , tn+1 )
τ
−→ solve system of nonlinear eqs. with Jacobian
∂φ
1
E−
(xn , tn )
τ
∂x
Invertible for regular matrix pencil μE − ∂φ/∂x
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
46
23
22.09.2014
Fachbereich
Mathematik
Part V:
Specific Application Fields & Outlook
• Real-time integration
• Flexible multibody systems
• Transient saddle point problems
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
47
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
48
Fachbereich
Mathematik
Real-Time Simulation
24
22.09.2014
Fachbereich
Mathematik
Time Integration
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
49
Fachbereich
Mathematik
Vehicle-Trailer Coupling
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
50
25
22.09.2014
Fachbereich
Mathematik
DAE Real-Time Integrator
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
51
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
52
Fachbereich
Mathematik
Simulation Example
26
22.09.2014
Fachbereich
Mathematik
Drift-Off?
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
53
Fachbereich
Mathematik
Flexible Multibody Systems
elastic
elastic
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
54
27
22.09.2014
Fachbereich
Mathematik
Linear Elasticity
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
55
Fachbereich
Mathematik
Floating Frame of Reference
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
56
28
22.09.2014
Fachbereich
Mathematik
Slider Crank Revisited
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
57
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
58
Fachbereich
Mathematik
29
22.09.2014
Fachbereich
Mathematik
Concluding Remarks
 Mechanical multibody systems have been driving
force in development of DAE methodology
 Trend to multiphysics and inclusion of PDE models
 Example wind turbine:
 Tower is classical mbs
 Turbine blades are
flexible bodies
 Fluid-structure
interaction with windfield
 Fatigue analysis and
prediction of lifespan
Bernd Simeon: Multibody Systems, SAMM Elgersburg Sept. 2014
59
30

Documentos relacionados