Presentation - Lehrstuhl für Elektronische Bauelemente

Transcrição

Presentation - Lehrstuhl für Elektronische Bauelemente
SILICON TECHNOLOGY
Heiner Ryssel
Fraunhofer-Institut für Integrierte Systeme
und Bauelementetechnologie (IISB)
(Fraunhofer Institute of Integrated Systems and Device Technology)
Schottkystrasse 10, 91058 Erlangen
and
Universität Erlangen-Nürnberg, Lehrstuhl für Elektronische Bauelemente
(University Erlangen-Nuremberg, Chair of Electron Devices)
Cauerstrasse 6, 91058 Erlangen
Indo - German Winter Academy 2008
December 13 -19, 2008, Chennai, India
Stand 11.12.2007
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
1
Silicon Technology











Introduction
Crystal Pulling and Wafering
Cleanroom
Cleaning
Oxidation
Layer Deposition
Lithography
Etching
Diffusion
Ion Implantation
Assembly and Packaging
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
2
Silicon Technology











Introduction
Crystal Pulling and Wafering
Cleanroom
Cleaning
Oxidation
Layer Deposition
Lithography
Etching
Diffusion
Ion Implantation
Assembly and Packaging
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
3
Silicon Technology - Introduction
 Schematic View of Integrated Circuit Fabrication
Front End fabrication
takes place in a clean room
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
4
Silicon Technology











Introduction
Crystal Pulling and Wafering
Cleanroom
Cleaning
Oxidation
Layer Deposition
Lithography
Etching
Diffusion
Ion Implantation
Assembly and Packaging
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
5
Crystal Pulling and Wafering
 Production of Ultra Pure Silicon
– Production of metallurgic silicon from quartz sand by reduction with
carbon (1500-2000 °C)
– Production of a halogen compound (SiHCl3) of silicon (350 °C)
– Purification by distillation
– Poly crystal by pyrolysis (7-15 days at 1100 °C)
– Crystal growth by the Czochralski method (CZ method, 5-24 hours at
1415 °C)
– Doping during crystal growth
– Alternative methods exist, but have less importance
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
6
Crystal Pulling and Wafering
 Crystal Growth by the CZ Method
Three important steps in
crystal growth
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
7
Crystal Pulling and Wafering
 Sawing with Inner Diameter Saw
– Standard saw for wafer diameters up to 200 mm
– Sectioning of the rods for subsequent wire sawing
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
8
Crystal Pulling and Wafering
 Sawing with Wire Saw
– Most modern sawing method
– Standard method for diameters 300 mm and larger
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
9
Crystal Pulling and Wafering
 Polishing of the Wafer Surface
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
10
Overview of Silicon Technology











Introduction
Crystal Pulling and Wafering
Cleanroom
Cleaning
Oxidation
Layer Deposition
Lithography
Etching
Diffusion
Ion Implantation
Assembly and Packaging
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
11
Cleanroom
 Schematic Cross Section of the LEB Cleanroom
Ventilation unit
Plenum
Cleanroom class 100
Recirculation
Media basement
Cross section of the LEB cleanroom
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
12
Cleanroom
 Cleanroom Classes
-
1000 1000 particles* per cubic foot
100
100 particles* per cubic foot
10
10 particles* per cubic foot
1
1 particles* per cubic foot
(105-106 external air)
*particles >0,5µm in diameter
Cleanroom at Intel 1968
approx. class 10000
Cleanroom at Intel 1990
approx. class 1
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
13
Overview of Silicon Technology











Introduction
Crystal Pulling and Wafering
Cleanroom
Cleaning
Oxidation
Layer Deposition
Lithography
Etching
Diffusion
Ion Implantation
Assembly and Packaging
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
14
Cleaning
 Cleaning steps are carried out between numerous processing
steps in order to avoid defects by impurities
 Impurities (Contamination) may be:
–
–
–
–
Particles
Organic impurities
Metallic impurities
Natural oxide
 Impurities lead to:
–
–
–
–
Oxide defects
Short circuits/breaks of conducting lines
Shift of threshold voltage
In general:
defect or malfunctioning devices
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
15
Cleaning
 Cleaning Methods (Examples)
– Wet-chemical cleaning sequence
•
•
•
•
•
•
Caro: 1H2O2+2H2SO4
Rinsing with H2O
SC-1: 1H2O2+1NH4OH + 5H2O
SC-2: 1H2O2+1HCl+6H2O
Rinsing with H2O
Drying (Spin-drying, Marangoni)
– Dry-chemical cleaning method
Single wafer etcher by SEZ
• HCl (> 1000°C)
• HF/Methanol vapor
• Ar/H2 plasma
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
16
Cleaning
 Purity Standards of Silicon Wafers, 180 nm Technology
Object
Property
Hypothetical Si wafer
Lehrstuhl
Elektronische Bauelemente
Hypothetical
Wafer
Silicon
Wafer
Diameter
12900 km
(Earth)
300 mm
Thickness
38 km
875 µm
Comparison
1 small marble
(1.2 cm)
1 surface atom
(1Å)
Purity
standard
( crit. metals)
1 marble/14 m2
1.3·1010 at/cm2
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
17
Silicon Technology











Introduction
Crystal Pulling and Wafering
Cleanroom
Cleaning
Oxidation
Layer Deposition
Lithography
Etching
Diffusion
Ion Implantation
Assembly and Packaging
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
18
Oxidation
 Oxidation is the core process of silicon planar technology. Due
to the excellent properties of SiO2 it serves for
Ions
– Masking
Thick oxide
(diffusion, implantation)
Implanted ions
– Insulation
(metallic conducting lines)
Thick oxide
Thick oxide
– Control
(gate oxide)
– Passivation
Thick oxide
(CVD)
(layer deposition)
Thin oxide
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
19
Oxidation
 The Principle of Oxidation
– Oxygen (dry oxidation) or water vapor
(wet oxidation) are blown over the silicon
wafers in a heated quartz tube
– Wet oxides are thicker than dry oxides
at the same time and temperature
– Reaction equations
• dry: Si + O2  SiO2
• wet: Si + 2H2O  SiO2 + 2H2
• T = 800-1250°C
• t = 30 min - 18 h
Wafers being inserted into the
oxidation tube
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
20
Oxidation
 Oxidation Furnace
– Resistance heated quartz tubes (SiO2), horizontal or vertical
– Gases directly injected or provided by combustion (H2+O2) or bubblers
Together with
metals (impurities),
chlorine forms
volatile compounds
4-section oxidation furnace
Sketch of an oxidation tube
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
21
Oxidation
 Local Oxidation (LOCOS, LOCal Oxidation of Silicon)
Oxidation
SiO2
(approx. 50 nm)
– Advantages:
• Reduction of unwanted capacities
outside active areas
• Relatively plane suface of oxidized wafers
Nitride deposition
Si3N4
(approx. 250 nm)
Photo technology
– Disadvantages:
• lateral oxidation below nitride
• maybe defects by stress
Thick oxide
wet oxidation
– Alternative:
• STI (shallow trench isolation)
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Nitride and oxide etching
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
22
Overview of Silicon Technology











Introduction
Crystal Pulling and Wafering
Cleanroom
Cleaning
Oxidation
Layer Deposition
Lithography
Etching
Diffusion
Ion Implantation
Assembly and Packaging
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
23
Layer Deposition
 Besides thermal oxides, numerous other - both insulating and
conducting - layers are needed, which are produced by
different methods
 Layers are needed for:
– Masking for
• Oxidation (LOCOS)
• Diffusion
• Ion implantation
• Etching
– Insulation
– Electrode (gate)
– Contact (silicides, metals)
– Diffusion Barriers (against intrusion of metals)
– Passivation (against corrosion from outside)
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
24
Layer Deposition
 Chemical Vapor Deposition (CVD)
Principle: Deposition of solid
layers by chemical reaction of
gases containing components
of the layers.
Pressure: atmospheric (APCVD)
or (in most cases) low pressure
(LPCVD)
Temperature: 400-600 °C
Layers: Single-crystalline
silicon (epitaxy), polysilicon,
SiO2, Si3N4, glasses,
tungsten, aluminum, copper
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
25
Layer Deposition
 Chemical Vapor Deposition (CVD)
– Examples
Layer
Reaction Equations
Temperature (°C)
SiO2 : LTO
SiO2 : TEOS
SiO2 : HTO
SiH4+O2 SiO2+H2
Si(OC2H5)4  SiO2+gas. react.products
SiCl2H2+N2O  SiO2+2N2+2HCl
SiH4+CO2+H2  SiO2+gas. RP
400-450
650-700
850-900
850-950
Glasses
Addition of PH3, AsH3, B2H6
Si3N4
3SiH2Cl2+4NH3  Si3N4+6HCl+6H2
700-900
Poly-silicon
SiH4  Si+2H2
600-650
Tungsten: selective
Tungsten: all over
2WF6+3Si  2W+3SiF4
WF6+SiH4  W+SiF4+2HF+H2
300
400-450
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
26
Layer Deposition
 Epitaxy
Variant of the CVD method, for growing single-crystalline layers
– Starting substances: SiH4, SiH2Cl2, SiHCl3, SiCl4
– Reaction equation (example): SiCl4+2H2  Si+4HCl
– Doping: by injection of suitable gases, e.g. AsH3, PH3, B2H6
– Reactor types: Barrel (left), Pancake (right)
Gas inlet
Gas inlet
Quartz lamps
Wafers
Wafers
HF coils
Outlet
Outlet
Lehrstuhl
Elektronische Bauelemente
Graphite
mount
Universität
Erlangen-Nürnberg
Gas inlet
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
27
Layer Deposition
 Sputtering (PVD)
Metals, silicides, diffusion barriers are generally
deposited by sputtering
– Principle:
• Between two parallel electrodes
a (DC) voltage is applied at
reduced pressure
• from the resulting glow
discharge ions (normally
argon) are accelerated to
the metal cathode,
• these strike out atoms,
• the atoms are deposited
on the silicon wafer
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
28
Layer Deposition
 Sputtering (PVD): Typical Sputtered Layers
– AlSiCu: Al with 1% Si and 0,5 % Cu
• Si admixing, in order to avoid „spiking“
• Cu admixing, in order to reduce „electromigration“
– TiN: Titanium is reactively sputtered in N2
• TiN works as a diffusion barrier against „spiking“
– TiSi2, TaSi2, MoSi2, CoSi2
• Silicides must be tempered to
low resistance phases
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
29
Layer Deposition
 Spin-On
– Dielectric layers (SiO2, glasses, polymers)
are spinned on as an intermediate insulation
or as a diffusion source, just like resist
(refer to chapter on lithography)
 Electroplating
– Copper is getting more and more
important for metallization.
– Today it is deposited by
electroplating
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
30
Silicon Technology











Introduction
Crystal Pulling and Wafering
Cleanroom
Cleaning
Oxidation
Layer Deposition
Lithography
Etching
Diffusion
Ion Implantation
Assembly and Packaging
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
31
Lithography
 Patterning of the respective layers is
done by lithography and subsequent
etching
 Principle
– A thin layer of photoresist is spun onto the
wafer surface.
– Photoresist is pre-baked at 120°C
(to drive out the solvents)
– and is exposed using a photomask
or a direct writing technique.
– Finally, the resist is developped.
During development, the exposed
(positive resist) or non-exposed
(negative resist) will be dissolved.
– Using the resist as a mask, the layer
will be etched.
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
32
Lithography
 Photo Resists
– Positive resist is soluble after exposure
– Negative resist is insoluble after exposure
– Typical resists: Novolack (positive), PMMA
Photo resist
Layer
Substrate
Negative resist
Positive resist
Development
Etching
Resist stripping
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
33
Lithography
 Exposure Techniques
–
–
–
–
–
Contact Printing
Contact Printing
Proximity Printing
Proximity Printing
Projection Exposure
Light Source
Writing
Limitiations
Projection Exposure
• Diffraction
• Photo resists
Mask
Substrate+
Photo resist
Proximity
gap
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
34
Lithography
 Exposure Techniques
– Optical projection imaging
• Wavelength
Mercury-vapor lamp: 436 nm (g-Line), 365 nm (i-Line),
Excimer laser: 248 nm (KrF), 193nm (ArF), 157 nm (F2)
Plasma: 10-15nm
• Resolution limit
x  k1

NA
NA: Numerical aperture
of projection lens
• Depth resolution
f  k 2

NA2
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
35
Lithography
 Planarization: Chemo-Mechanical Polishing (CMP)
– Due to limited depth of focus of lithography, a planarization of the
topography is necessary for integrated circuits with minimal
dimensions below aprox. 200 nm
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
36
Lithography
 Exposure Techniques
– Electron beam exposure
electron source
Wehnelt cylinder
• De Broglie-wavelength

h
m v
-10...-50 kV
Anode
capacitor plates for
beam fade-out
aperture
• Resolution ist limited by
electron and secondary
electron backscattering
magnetic lens
electron beam
Deflection coils
aperture
"
magnetic lense
detector
substrate
laser controlled table
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
37
Silicon Technology











Introduction
Crystal Pulling and Wafering
Cleanroom
Cleaning
Oxidation
Layer Deposition
Lithography
Etching
Diffusion
Ion Implantation
Assembly and Packaging
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
38
Etching
 Pattern transfer is done by wet or dry etching.
 Photo resist or a layer which is not affected by the etching
process can be used as masking material.
anisotropic
Process steps
• before etching
layer
isotropic
photo resist
substrate
• after etching
• after mask removal
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
39
Etching
 Wet Chemical Etching
–
–
–
–
–
Wet chemical etching is usually isotropic
Isotropic etching resulting in lateral undercut
Etching solvents are highly selective
(ratio of etch rates > 100 : 1)
Wet etching is simple and cheap
Photoresists or other layers which are
resistant against the etchants can be used
as masks
Wet etching bench for 300mm wafers
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
40
Etching
 Wet Chemical Etching: Etchants (liquid)
Layer
Mask
Etchant
SiO2
Photo resist
HF (1-5%)
BHF: 12,5% HF (50%) + 87,5% NH4F (40%)
Si3N4
SiO2
H3PO4 (86%)
Polysilicon
Photo resist
99% HNO3 (50%) + 1% HF (50%)
Aluminum
Photo resist
75% H3PO4 + 5% HNO3
Titanium
Photo resist
HF (1%)
TiSi2, TaSi2
Photo resist
BHF
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
41
Etching
 Dry Etching
– Dry etching is performed in a barrel reactor or, more often, in a
parallel plate reactor
– Dry etching in general is isotropic
– Photo resist is used for masking.
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
42
Etching
 Dry Etching: Etchants (gaseous)
Material
Etchant
Comment
Si Trench
Etching
SF6 /O2 (etching), C4F8 (passivation)
Multi-step-process,
Switching: etch./passivation
Polysilicon
Cl2 (etching), HBr, O2 (passivation)
Multi-step-process
SiO2
CF4, C4F8 (etching), CHF3, C2F6
(passivation)
Si3N4
SF6, CF4,(etching) CHF3
(passivation)
SF6: low etch rate for SiO2
CF4: low etch rate for Si
Al, AlSi(1%)Cu,
AlCu(2%)
BCl3,(aluminum oxide etching), Cl2
(etching), BCl3, CCl4 (passivation),
Cl residue removal with CF4, CHF3,
SF6 or wet chemically with H2O
Multi-step-process (Al2O3
etching, Al etching, pass.),
Cl residue removal for
prevention of corrosion
W
SF6 (etching), CHF3, N2 (pass.)
WSi2
C2F6/Cl2/O2
TiN
C2F6/O2
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
43
Silicon Technology











Introduction
Crystal Pulling and Wafering
Cleanroom
Cleaning
Oxidation
Layer Deposition
Lithography
Etching
Diffusion
Ion Implantation
Assembly and Packaging
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
44
Diffusion
 n- and p-Doping is necessary for manufacturing electron
devices. Diffusion has been applied widely in the early
days of silicon processing.
 Principle
– at elevated temperatures (800 - 1200°C) doping atoms diffuse into
silicon
– Same equipment as for thermal oxidation
– p-doping: boron, indium, (gallium, aluminum)
– n-doping: phosphorus, antimony, (arsenic)
 Techniques
– Diffusion from a unlimited source (z.B. B2H6, POCl3, gaseous)
– Diffusion from limited source (e.g. from a previously deposited
borosilicate layer)
– Predeposition and drive-in
– Predeposition by ion implantation
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
45
Diffusion
 Diffusion Furnaces
Vertical furnace
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
46
Diffusion
 Diffusion Laws after Fick

J  D  grad C
C
 div ( D  grad C )
t
– Diffusions coefficient D
 E 
Di  D0 exp   a 
 kT 
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
47
Diffusion
 Diffusion: Masking with SiO2
– Oxidizing diffusion
Discontinuity of doping concentration
at the interface due to segregation
(chemical potential is continuous)
– Segregation coefficient m
m
C(x)
Si
SiO 2
x=0
x
C1 (0, t )
C2 (0, t )
– Conservation of masses at the interface
D2
C
C2
dx
 D1 1  (m  b )C2 (0, t ) 0
x
x
dt
b: Ratio Si/SiO2
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
48
Silicon Technology











Introduction
Crystal Pulling and Wafering
Cleanroom
Cleaning
Oxidation
Layer Deposition
Lithography
Etching
Diffusion
Ion Implantation
Assembly and Packaging
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
49
Ion Implantation
 Ion implantation is the standard technique for doping in device
manufacturing
 Principle:
–
–
–
–
–
–
ions are generated by impact ionization in a ion source,
are extracted,
are separated by mass in a magnet,
are accelerated,
are deflected electrically or magnetically, and
are implanted into the sample
 Stopping mechanisms:
– Electronic stopping Se
(inelastic)
– Nuclear stopping Sn
(elastic)
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
50
Ion Implantation
 Implantation Equipment
Ion source
Lehrstuhl
Elektronische Bauelemente
Target chamber
Schematic overview
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
51
Ion Implantation
 Implantation Profiles
– Ideal case: Gaussian profile
C( x ) 
 x  R p 2 

exp 
2

2R p 
2 R p

N
• Ion dose N
• Projected range Rp
• Vertical straggle ΔRp
 Annealing
– Damage is caused by nuclear
stopping (displacement of lattice
atoms),
– Thermal treatment at 800-1050°C
anneals damage
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
52
Silicon Technology











Introduction
Crystal Pulling and Wafering
Cleanroom
Cleaning
Oxidation
Layer Deposition
Lithography
Etching
Diffusion
Ion Implantation
Assembly and Packaging
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
53
Assembly and Packaging
Wafer manufacturing
Packaging
Wafer test
Contacting external connectors
Dicing
Chip bonding
Final test
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
54
Assembly and Packaging
 Separation of Chips by Dicing (Friction sawing)
–
–
–
–
Wafer is laminated and clamped to a frame for dicing
Lamination is just scored while dicing
Water cooling while dicing
Saw blade
• Steel disc with diamond grains (3-7 µm)
• Cutting width: 30-100 µm
saw blade
• Rotation: 15,000-40,000 rpm
coolant
supply
wafer
lamination
dicing table
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
55
Assembly and Packaging
 Mounting (gluing) Tested Chips onto Lead Frames
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
56
Assembly and Packaging
 Electrical Contact between Chips and Connector Pins
– Ball-Point Bonding:
SEM picture of a Ball-Point Bond connection
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
57
7th Indo-German Winter Academy
Lehrstuhl
Elektronische Bauelemente
Universität
Erlangen-Nürnberg
Fraunhofer Inst. Integr. Systeme &
Bauelementetechnologie
58

Documentos relacionados