1 Inhaltsverzeichnis / Content - Leibniz

Transcrição

1 Inhaltsverzeichnis / Content - Leibniz
INHALT / CONTENT
Inhaltsverzeichnis / Content
A.
B.
C.
D.
Vorwort / Introduction
Organisation / Organization
Personal und Finanzen / Staff and Budget
Forschungsbereiche / Scientific Divisions
1.
Bereich Magnetik/Quantenelektronik (Prof. Dr. H. E. Hoenig)
Magnetics/Quantum Electronics Division
1.1
1.2
1.2.1
1.2.2
1.2.3
1.2.4
1.2.5
1.2.6
1.2.7
3
7
10
12
12
Überblick / Overview
Scientific results
Microfabrication technology
SQUID sensors and systems
Integrated superconducting circuits
Quantum computing
Multi-turn sensors with nanometer structures
Beating the AF-superparamagnetic limit of F/AF films by adding an AAF
Characterization of AF symmetry and of coupling strength distribution
in F/AF exchange bias systems
1.2.8 Temperature stability of high-Tc superconducting films
1.2.9 Preparation, characterization, and application of melt-textured YBCO
1.2.10 Investigation of magnetic properties of MgB2
1.2.11 Magnetic materials
1.2.12 Magnetic nanoparticles for tumour therapy
1.3
Appendix
Partners
Publications
Talks/Posters
Patents
Memberships
Lectures
Awards
New equipment
Diploma
Laboratory exercises
Events/exhibitions, Miscellaneous
22
22
23
24
25
26
26
26
28
30
35
35
35
36
36
36
36
36
2.
Bereich Optik (Prof. Dr. H. Bartelt)
Optics Division
37
2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
Übersicht / Overview
Scientific results
Dopant effects in active fibers
Investigation of Nd:Yb-codoped silica fibers as a laser material
Yb doped fiber laser beyond the 1 kW-level
Modeling and preparation aspects of passive and active doped microstructured
fibers with multiple ring core structure
Preparation of silica based microstructured fibers
Microstructured fiber lasers
Modeling and measurements of fundamental properties
of photonic crystal fibers (PCFs)
Metal coatings and Bragg gratings in fibers for high temperature applications
Thermal poling of silica
Index-matched layers for UV inscription made by FHD
Planar technology for optical networks (PLATON)
Advanced photonic crystal waveguide components in Ta2O5
Intrinsic optical fiber grating pH-sensor based on evanescent field interaction
Fiber Bragg gratings for contact force measurements in railway pantographs
Towards photonic crystal fiber-based distributed chemosensors
37
39
39
40
40
2.2.5
2.2.6
2.2.7
2.2.8
2.2.9
2.2.10
2.2.11
2.2.12
2.2.13
2.2.14
2.2.15
12
15
15
16
17
18
20
21
41
41
42
43
44
45
45
46
47
47
48
49
1
INHALT / CONTENT
2.3
Appendix
Partners
Publications
Presentations/Posters
Patents
Lectures
Diploma/Laboratory Exercises
Guest scientists
Memberships
Participations in fairs/expositions
50
50
51
52
55
55
55
55
56
56
3.
Bereich Mikrosysteme (Dr. H. Dintner)
Microsystems Division
57
3.1
3.2
3.2.1
Übersicht / Overview
Scientific results
Biotechnical microsystems
Molecular and cellular manipulation in microreactors
Molecular nanotechnology
DNA chip technology
Microanalytical systems
Microaperture arrays in optics
Thermal microsensors
Multi-element infrared radiation sensors for gas detection (MULTIGAS)
High-sensitive thermopile heat power sensor for micro-flow calorimetry
New generation of micro-thermopiles with high detectivity
Appendix
Partners
Editor/Publications
Presentations/Posters
Patents
Lectures
Doctoral Theses, Diploma Theses
Laboratory exercises
Guest scientists
Memberships
Conference organization
57
61
61
61
64
65
66
66
68
68
68
69
69
69
70
72
75
75
75
76
76
76
76
4.
Bereich Lasertechnik (Prof. Dr. H. Stafast)
Laser Technology Division
77
4.1
4.2
4.2.1
Überblick / Overview
Selected results
Laser chemistry
Laser crystallisation, Thin film deposition, Laser ablation
Laser diagnostics
UV optical materials, Combustion processes, Diagnostics in a gas discharge lamp
Appendix
Partners
Publications
Presentations/Posters
Patents
Lectures
Diploma Theses
Laboratory Exercises
Committees
Award, Exhibitions
New Equipment
77
80
80
80
82
82
84
84
85
86
87
87
87
87
88
88
88
Innovation Project 2004
89
89
3.2.2
3.2.3
3.3
4.2.2
4.3
E.
DNA affinity sensor based on Bragg gratings in planar waveguides
2
VORWORT / INTRODUCTION
A. Vorwort
A. Introduction
Hohe Effizienz im Einsatz der Mittel, verstärkte
Zusammenarbeit und die Fokussierung auf
zukunftsträchtige Arbeitsrichtungen sind Herausforderungen, die sich angesichts knapper
öffentlicher Förderbudgets für die Forschung
aktuell stellen. Im März 2004 legte die vom
Thüringer Ministerium für Wissenschaft, Forschung und Kunst beauftragte Expertenkommission „Wissenschaftsland Thüringen“ ihren
Abschlussbericht vor. Ihre Empfehlung zum
Institut für Physikalische Hochtechnologie
schließt die Kommission mit der Feststellung:
„Das IPHT ist ein sehr leistungsfähiges, erhaltenswürdiges Institut. Es sollte weiter vom Land
gefördert werden.“ Die Leistungsfähigkeit des
IPHT konnte unter anderem auch wieder durch
das erfolgreiche Drittmittelaufkommen im Jahr
2004 bestätigt werden. Weitere Empfehlungen
betrafen die Fokussierung auf Arbeitsrichtungen
der Optik/Photonik und der Magneto-/Quantenelektronik, die vom IPHT mit der Unterstützung
des Wissenschaftlichen Beirats und des Kuratoriums verfolgt werden. Damit verbessert das
IPHT seine Einbindung in das wissenschaftliche
Umfeld und erhöht seine Förderfähigkeit in den
aktuellen Forschungsprogrammen.
The efficient use of resources, improved cooperation, and the focus on research fields with a high
future impact are today’s challenges in view of
limited public research budgets. In March 2004,
an expert commission entrusted by the
Thuringian Ministry of Science, Research and Art
with evaluating the Thuringian research institutions, presented their results. The recommendations made for the Institute for Physical High
Technology described the institute as a powerful
institution and recommended continued funding
by the State of Thuringia. The efficiency of the
institute was also confirmed by successful results
in funding and contracts in 2004. Further recommendations concerned concentration in the
research fields of magnetic and quantum electronics and optics/photonics, pursued by the institute and supported by its scientific council and its
supervisory board. The goal of this focusing process is to improve integration in the scientific
environment and to assure compliance with actual funding programs.
Als besonders erfreuliche Ergebnisse der wissenschaftlichen Arbeit des vergangenen Jahres
sind eine ganze Reihe von Preisen und Auszeichnungen zu nennen. Der Thüringer Forschungspreis 2004 in der Kategorie Grundlagen
mit Anwendungsbezug geht an die Wissenschaftler Dr. Evgeni Ilichev, Dipl.-Phys. Andrei
Izmalkov, Prof. Dr. Miroslav Grajcar und Dr.
Thomas Wagner für ihren Nachweis von elektronischen Qubit-Wechselwirkungen über hinreichend lange Zeitspannen. Diese bilden eine
wesentliche Voraussetzung zur Realisierung von
zukünftigen Quantenrechnern. Derartige Superrechner könnten effizient die rechnerische
Lösung hochkomplexer Probleme, wie Klimasimulation oder Modellierung von großen
Biomolekülen, ermöglichen.
Ausgezeichnet mit dem EMAS Young Scientist
Award wurde Dipl.-Ing. (FH) Andy Scheffel von
der European Microbeam Analysis Society
(EMAS) für die zum 9th European Workshop on
Modern Developments and Applications in
Microbeam Analysis eingereichte Arbeit „The Lspectrum of Fe and Fe3O4“. Dieser Preis wird auf
der Konferenz im Mai 2005 in Florenz übergeben
und ist mit der kostenlosen Teilnahme verbunden.
Den IPHT-Preis 2003 erhielt Dipl.-Phys. Ronny
Stolz für seinen Beitrag zum Aufbau eines extrem
empfindlichen Gradiometers auf der Basis von
SQUIDS zum Einsatz in innovativen Messsystemen für kleinste Magnetfelder in nicht
abgeschirmter Umgebung. Mit einer Anerkennung wurde die hervorragende wissenschaftliche
Several prices and awards were welcome results
of our scientific work performed last year. The
Thuringian Research Award 2004 for applicationrelated basic research was awarded to Dr. Evgeni
Ilichev, Dipl.-Phys. Andrei Izmalkov, Prof. Dr.
Miroslav Grajcar and Dr. Thomas Wagner for
their proof of electronic qubit interactions for relatively long time spans. These effects are an
important requirement for the implementation of
future quantum computers. Such supercomputers
should allow efficient computational solutions for
highly complex problems such as simulation of
climatic conditions or modeling of large biomolecules.
Die Preisträger des Thüringer Forschungspreises Prof. M. Grajar, Dr. T. Wagner, Dr. E.
Il’ichev und Dipl.-Phys. A. Izmalkov (v.l.n.r.).
The prize winners of the Thuringian Research
Award, Prof. M. Grajar, Dr. T. Wagner, Dr. E.
Il’ichev and Dipl.-Phys. A. Izmalkov (left to right).
3
VORWORT / INTRODUCTION
Leistung von Dipl.-Ing. (FH) Jan Dellith bei der
Erfassung von Röntgen-M-Spektren als Grundlage für eine verbesserte röntgenspektrometrische Analytik gewürdigt.
Die erstmalig vergebenen Auszeichnungen für
die besten Diplomarbeiten 2003 im IPHT gingen
an Martin Amberg für seine Arbeit „Herstellung
von Faserkoppelgittern mit Hilfe von Laserlithographie“ und an Andreas Wolff für seine
Arbeit „Erarbeitung von Passivierungsmethoden
für eine Nanopartikel-basierte DNA-ChipDetektion“. Diese Auszeichnungen wurden in
dankenswerter Weise von der Sparkasse JenaSaale-Holzland zur Verfügung gestellt.
Den IPHT-internen Wettbewerb um das Innovationsprojekt 2004 gewannen Stefan Grimm,
Claudia Aichele, Manfred Rothhardt, Martin
Becker, Dr. Tilman Glaser, Ines Latka (Bereich
Optik), Robert Möller, Dr. Wolfgang Fritzsche
(Bereich Mikrosysteme), Wolfgang Morgenroth,
Dr. Uwe Hübner (Bereich Magnetik/Quantenelektronik) mit der gemeinsamen Thematik
„DNA-Affinitätssensor auf der Basis von BraggGittern in planaren Wellenleitern“. Die erzielten
Ergebnisse sind am Ende dieses Jahresberichtes
zusammengefasst.
Dipl.-Ing. Andy Scheffel received the young scientist award from the European Microbeam
Analysis Society (EMAS) for the paper on “The Lspectrum of Fe and Fe3O4” contributed to the 9th
European Workshop on Modern Developments
and Applications in Microbeam Analysis. The
prize will be presented at the meeting in Florence
in May 2005 and includes free conference participation.
The 2003 IPHT award went to Dipl.-Phys. Ronny
Stolz for his work on an extremely sensitive gradiometer on the basis of SQUIDs, intended to be
applied in innovative measuring systems for
small magnetic fields in non-shielded environments. The impressive scientific work of Dipl.Ing. (FH) Jan Dellith on the measurement of Xray M-spectra as a basis of improved X-ray analytical methods was also acknowledged.
For the first time, prizes were presented for the
best diploma work at the IPHT. The prizes went to
Martin Amberg for his work on “Realization of
fiber grating couplers using laser lithography”
and to Andreas Wolff for his work on
“Development of passivation methods for nanoparticle-based DNA chip detection”. Sponsoring
of these prizes by the Jena-Saale-Holzland
Savings Bank is gratefully acknowledged.
Das IPHT war auch wieder aktiv an der Veranstaltung von verschiedenen Tagungen, Workshops und Ausstellungen beteiligt. Im Mai organisierte Dr. Wolfgang Fritzsche eine internationale
Tagung zur DNA-basierten molekularen Elektronik im IPHT. Als einer von zwei deutschen Vertretern wurde er in das Wissenschaftliche
Komitee der neu gegründeten International
Society for Nanoscale Science, Computation and
Engineering (ISNSCE) mit Sitz in Newark/USA
berufen. Im November veranstaltete das IPHT in
Zusammenarbeit mit dem Cluster OptoNet e.V.
einen Workshop zum Thema „Photonische
Kristallfasern“ mit internationaler Beteiligung.
Zu einem Ehrenkolloquium war vom IPHT aus
Anlass des 80. Geburtstages von Prof. Dr.
Friedrich Voigt im Oktober eingeladen worden.
Prof. Voigt hat in seiner aktiven Zeit von 1952 bis
1989 in den Vorgängereinrichtungen des IPHT
ca. 20 Wissenschaftler bei ihrer wissenschaftlichen Qualifikation (Promotion und Habilitation)
betreut, wovon fünf Professoren wurden. Einige
seiner ehemaligen Schüler und Mitarbeiter haben
heute noch verantwortungsvolle Aufgaben im
IPHT.
4
Bei der Präsentation „Thüringen innovativ“
Anfang Oktober im Rahmen der Feierlichkeiten
zum Tag der Deutschen Einheit in Erfurt stellte
das IPHT Ergebnisse aus seinen Forschungsund Entwicklungsarbeiten vor. Seine Beiträge zur
Präparation und Nutzung von Bio-Chips
stammten aus dem Bereich Mikrosysteme.
„Reise in den Nanokosmos“ hieß das Motto einer
Veranstaltung in verschiedenen Instituten des
Die Preisträger der besten Diplomarbeiten 2003
Andreas Wolff (Mitte links) und Martin Amberg
(Mitte rechts) mit Herrn Martin Fischer
(Sparkasse Jena), und Prof. Dr. Hartmut Bartelt.
The prize winners of the best graduation theses
in 2003, Andreas Wolff (2nd from left) and Martin
Amberg (3rd from left), with Mr. Martin Fischer
(Jena Savings Bank) and Prof. Dr. Hartmut Bartelt.
The internal competition for the IPHT 2004 innovation project has been decided in favor of
Stefan Grimm, Claudia Aichele, Manfred Rothhardt, Martin Becker, Dr. Tilman Glaser, Ines
Latka (Optics Division), Robert Möller, Dr. Wolf-
VORWORT / INTRODUCTION
Beutenberg Campus unter der Regie des
OptoNet e.V. Etwa 500 Schüler drängten sich in
den Vorträgen und vor den Experimenten, zu
denen das IPHT vier Vorträge und neun Experimente/Exponate beisteuerte. Einen zusätzlichen
Anziehungspunkt bildete der Nano-Truck des
BMBF auf dem Vorplatz des IPHT.
gang Fritzsche (Micro Systems Division), Wolfgang Morgenroth, Dr. Uwe Hübner (Magnetics/
Quantum Electronics Division) for their proposal
on “DNA affinity sensor on the basis of Bragg
gratings in planar waveguides”. The results
achieved within this innovation project are presented at the end of this report.
Again, the IPHT took part in the organization of
several conferences, workshops and exhibitions.
In May Dr. Wolfgang Fritzsche organized an international conference on DNA-based molecular
electronics in the IPHT. He was elected as one of
the two German representatives to the scientific
committee for the newly founded International
Society for Nanoscale Science, Computation
and Engineering (ISNSCE) in Newark/USA. In
November the IPHT organized, jointly with the
OptoNet cluster, a workshop on photonic crystal
fibers with international participation.
Interessierte Schüler am Experiment während
der Veranstaltung „Reise in den Nanokosmos“.
Students are interested in the experiments of the
event “A travel to the nanocosmos”.
Prof. Dr. Herbert Stafast trug zur Öffentlichkeitsarbeit im Rahmen der jeweils im Wintersemester
laufenden Samstagsvorlesungen der Physikalisch-Astronomischen Fakultät der Universität
im November mit einem Vortrag zum Thema „Der
Laser als kontaktfreie Sonde“ bei.
Im Oktober besuchte der neu gewählte Prorektor
für Mathematik und Naturwissenschaften der
Friedrich-Schiller-Universität, Prof. Dr. Herbert
Witte, das IPHT. Prof. Witte wird die Universität im
Kuratorium und in der Mitgliederversammlung
des IPHT e.V. vertreten und somit an wichtigen
Entscheidungen beteiligt sein. Dem bisherigen
Vertreter der Universität, Prof. Dr. Christian
Rüssel, danken wir für seine Mitarbeit in diesen
Gremien.
Der Wissenschaftliche Beirat begleitet und berät
das IPHT. Nach seiner jährlichen Sitzung im April
bescheinigte der Beirat dem IPHT eine überzeugende wissenschaftliche Leistungsfähigkeit mit
Alleinstellungsmerkmalen
in
verschiedenen
Bereichen. Dr. Ingolf Streit (Asclepion Laser
Technologies, Jena) und Prof. Dr. Andreas Wipf
(Universität Jena) sind turnusmäßig aus dem
Wissenschaftlichen
Beirat
ausgeschieden.
Beiden ehemaligen Mitgliedern danken wir für
ihre konstruktive Mitarbeit in den vergangenen
Jahren, insbesondere Dr. Streit für die Tätigkeit
als stellvertretender Sprecher. Als neue Mitglieder wurden Prof. Dr. Paul Seidel (Universität
Jena) und Dr. Thomas Töpfer (Jenoptik) berufen.
An honorary colloquium was held on the occasion of the celebration of the 80th birthday of
Prof. Dr. Friedrich Voigt in October. During his
active years in the predecessor institutes of the
IPHT from 1952 to 1989, Prof. Voigt supervised
about 20 scientists during their scientific (doctoral and post-doc) qualification work. Five of these
scientists got professorships, and several of them
still hold positions at the IPHT.
At “Innovative Thuringia”, a presentation staged
in Erfurt during the annual celebrations in
October on the occasion of the anniversary of
German reunification, the IPHT displayed results
of its research and development activities. The
contributions on the preparation and application
of biochips came from the Micro Systems
Division.
“A travel to the nanocosmos” was the subject of a
scientific event organized by the OptoNet cluster
in cooperation with institutes on the Beutenberg
science campus. School classes with a total of
500 students filled the experimental presentation
rooms and lecture halls. The IPHT offered nine
hands-on experiments and four lectures on nanotechnology. A special highlight was the nanotruck of the German Federal Ministry of Science
and Technology in front of the IPHT's main building.
As part of the public presentation of science by
the University of Jena, Prof. Dr. Herbert Stafast
gave a lecture in November on “Lasers as NonContacting Probes”.
In October Prof. Dr. Herbert Witte, the University's newly elected prorector for mathematics
and natural sciences, visited the IPHT. He will
represent the University in the assembly of members and in the supervisory board of the IPHT,
replacing Prof. Dr. Christian Rüssel, who
deserves our thanks for his cooperation on these
panels.
5
VORWORT / INTRODUCTION
Die wissenschaftlich-technischen Ergebnisse
des IPHT aus dem Jahre 2004 sind in den folgenden Kapiteln der Forschungsbereiche beschrieben. Auf einige besondere exemplarische
Highlights des vergangenen Jahres, neben den
schon benannten Arbeiten zu elektronischen
Qubits, soll schon an dieser Stelle hingewiesen
werden:
– Neuer Weltrekord bei Faserlasern mit einer
Ausgangsleistung von 1,3 kW in Zusammenarbeit mit weiteren Partnern, insbesondere
den Firmen Ceram-Optec und Laserline,
– Vorstellung des weltweit ersten flugfähigen
SQUID-Systems, das die Messung des vollständigen Erdmagnetfeld-Tensors ermöglicht,
– Entwicklung des optischen und mechanischen
Designs für ein extrem miniaturisiertes Hochleistungs-Ramanspektrometer gemeinsam mit
Optik-Unternehmen und weiteren Partnern.
Eine zeitlich umfassendere Darstellung der
Forschungsgebiete des IPHT über die vergangenen 12 Jahre, verbunden auch mit einem Blick
auf die historische Basis in den Vorgängereinrichtungen, erschien im übrigen jetzt in dem
Beitrag „Institut für Physikalische Hochtechnologie – Forschung und Technologie für
innovative Systeme” im „Jenaer Jahrbuch zur
Technik- und Industriegeschichte 2004“ (GlauxVerlag Christine Jäger KG, Jena 2004).
Danken möchten wir an dieser Stelle auch dem
Freistaat Thüringen, allen Förderern im Bund und
bei der EU für die stete Unterstützung sowie
unseren Partnern in Wissenschaft, Forschung
und Wirtschaft für die gute Zusammenarbeit.
H. Bartelt, im Februar 2005
The scientific council advises the IPHT on its
decisions. After its annual meeting in April, the
scientific council acknowledged the institute's
impressive scientific competences and its outstanding position in several scientific fields. Dr.
Ingolf Streit (Asclepion Laser Technologies,
Jena) and Prof. Andreas Wipf (University of
Jena) left the scientific council. We would like to
thank them for their constructive involvement and
especially Dr. Streit, who held the position of
deputy head of the council. Prof. Dr. Paul Seidel
(University of Jena) and Dr. Thomas Toepfer
(Jenoptik) were elected as new members.
The scientific and technical results of the institute's work in 2004 are discussed in detail in the
following chapters. The reports include several
outstanding results (besides the work on electronic qubits already mentioned), such as:
– new record cw output power of 1.3 kW for fiber
lasers, achieved jointly with partners, especially the Ceram Optech and Laserline companies,
– presentation of the first in-flight SQUID system
for complete measurement of the earth's magnetic tensor field,
– development of the optical and mechanical
design for an extremely miniaturized high-performance Raman spectrometer, developed in
collaboration with optics companies and other
scientific partners.
A description of IPHT research subjects for a
wider time scale, including a view on the history
of the IPHT's predecessor institutes, has been
published recently as a chapter “Institut für
Physikalische Hochtechnologie – Forschung und
Technologie für innovative Systeme” in the
“Jenaer Jahrbuch zur Technik- und Industriegeschichte 2004” (Glaux-Verlag Christine Jäger
KG, Jena 2004).
Finally, we would like to thank the State of
Thuringia, as well as all other funding organizations for their continuing support, as well as our
partners in science, research and industry for
their valuable collaboration in 2004.
H. Bartelt, February 2005
6
ORGANISATION / ORGANIZATION
B. Organisation / Organization
Institut für Physikalische Hochtechnologie e.V., Jena
Institute for Physical High Technology
Dez. 2004
Kuratorium/Supervisory Board
Thüringer Kultusministerium
MDgt. Dr. J. Komusiewicz
Thüringer Ministerium für
Wirtschaft, Technologie und Arbeit
MD Dr. F. Ehrhardt
Friedrich-Schiller-Universität Jena
Prorektor Prof. Dr. H. Witte
2 gewählte Mitglieder
Dr. E. Hacker, Dr. M. Heming
Vereinsvorstand/Executive Committee
Vorsitzender = Direktor
Prof. Dr. H. Bartelt
Stellvertretender Direktor
Dr. K. Fischer
Kaufmännischer Direktor
F. Sondermann
Kaufmännischer Bereich
Administrative Division
Kaufmännischer Direktor:
F. Sondermann
Forschungsbereich 1
Research Division 1
Magnetik/
Quantenelektronik
Magnetics/
Quantum Electronics
Leiter:
Prof. Dr. H.E. Hoenig
Mitgliederversammlung
Assembly of Members
Wissenschaftlicher Beirat
Scientific Advisory Council
Sprecher:
Prof. Dr. S. Büttgenbach
Bereichsleiterversammlung
Assembly of Convention
Vereinsvorstand
Betriebsratsvertreter
Forschungsbereichsleiter
Betriebsrat
Works Committee
Vors.: Frau Dr. G. Andrä
Wissenschaftl.-Techn. Rat
Scient.-Techn. Council
Sprecher: Dr. E. Keßler
Forschungsbereich 2
Research Division 2
Optik
Forschungsbereich 3
Research Division 3
Mikrosysteme
Optics
Microsystems
Leiter:
Prof. Dr. H. Bartelt
Leiter:
Dr. H. Dintner
Forschungsbereich 4
Research Division 4
Lasertechnik
Laser
Technology
Leiter:
Prof. Dr. H. Stafast
Die Leiter der Forschungsbereiche sind berufene Professoren an der Friedrich-Schiller-Universität Jena.
The divisions head are professors at the University of Jena.
7
ORGANISATION / ORGANIZATION
Das IPHT ist eine gemeinnützige Forschungseinrichtung in der Rechtsform eines eingetragenen Vereins, institutionell gefördert durch den
Freistaat Thüringen, mit der Mitgliedschaft öffentlicher Einrichtungen und persönlichen Mitgliedern aus Wissenschaft und Wirtschaft. Im
Kuratorium sind zwei verschiedene Ministerien
des Freistaates Thüringen, die Friedrich-SchillerUniversität Jena und die Industrie durch zwei von
der Mitgliederversammlung gewählte Persönlichkeiten vertreten. Das FuE-Programm unterliegt
der Kontrolle eines Wissenschaftlichen Beirats
mit Mitgliedern sowohl aus der Wissenschaft als
auch aus der Industrie. Das Institut ist in vier
Forschungsbereiche untergliedert, deren Leiter
gleichzeitig Mitglieder der Physikalisch-Astronomischen Fakultät der Friedrich-Schiller-Universität sind.
The IPHT is a non-profit association with the legal
status of a convention, institutionally funded by
the Free State of Thuringia, with members from
public institutions and private members. There is
a Supervisory Board with two representatives of
two different ministries of the Free State of
Thuringia in Germany, one from the FriedrichSchiller-University in Jena, and two R&D managers from the industry. The R&D program is
supervised by a Scientific Advisory Council with
members from the scientific community and from
the industry. The institute is organized in four
research divisions with heads serving also as
member of the physics faculty of the FriedrichSchiller-University.
Wissenschaftlicher Beirat / Scientific Advisory Council
Dr. Siegfried Birkle
Siemens AG, Erlangen
Prof. Dr. Stephanus Büttgenbach
(Sprecher/Chairman)
Technische Universität Braunschweig
Prof. Dr. Bruno Elschner
Technische Hochschule Darmstadt
Dr. Michael Harr
ASTEQ Applied Space Techniques GmbH, Kelkheim
Prof. Dr. Burkard Hillebrands
Universität Kaiserslautern
Prof. Dr. Hans Koch
Physikalisch-Technische Bundesanstalt, Berlin
Prof. Dr. Peter Komarek
Forschungszentrum Karlsruhe
Prof. Dr. Siegfried Methfessel
Witten-Herbede
Prof. Dr. Frieder Scheller
Universität Potsdam
Dr. Augustin Siegel
Carl Zeiss GmbH, Oberkochen/Jena
2004 ausgeschieden / left in 2004
Dr. Ingolf Streit
Asclepion Laser Technologies GmbH, Jena
Prof. Dr. Andreas Wipf
Friedrich-Schiller-Universität Jena
2004 neu hinzugekommen / joined in 2004
8
Prof. Dr. Paul Seidel
Friedrich-Schiller-Universität Jena
Dr. Thomas Töpfer
Jenoptik AG, Jena
ORGANISATION / ORGANIZATION
Mitglieder des IPHT e. V.
Members of the Convention
Institutionelle Mitglieder / Membership of institutions
Thüringer Kultusministerium, Erfurt
Dr. Gerd Meißner
Thüringer Ministerium für Wirtschaft,
Technologie und Arbeit, Erfurt
MD Dr. Frank Ehrhardt
Stadt Jena
Oberbürgermeister Dr. Peter Röhlinger
Friedrich-Schiller-Universität Jena
Prof. Dr. Herbert Witte
Fachhochschule Jena
Prof. Dr. Gabriele Beibst
CiS Institut für Mikrosensorik e.V.,
Erfurt
Dr. Hans-Joachim Freitag
Leibniz-Institut für Festkörper- und
Werkstoffforschung e.V., Dresden
Prof. Dr. Helmut Eschrig
Sparkasse Jena
Herr Martin Fischer
TÜV Thüringen e.V., Erfurt
Herr Bernd Moser
4H Jena Engineering GmbH
Herr Manfred Koch
Robert Bosch GmbH, Stuttgart
Dr. Christoph P. O. Treutler
Persönliche Mitglieder / Personal members
Prof. Dr. Hartmut Bartelt
Institut für Physikalische Hochtechnologie, Jena
Dr. Peter Egelhaaf
Robert Bosch GmbH, Stuttgart
Prof. Dr. Bruno Elschner
Darmstadt
Dr. Klaus Fischer
Institut für Physikalische Hochtechnologie, Jena
Prof. Dr. Peter Görnert
Innovent e.V., Jena
Frau Elke Harjes-Ecker
Thüringer Kultusministerium, Erfurt
Prof. Dr. Karl-August Hempel
RWTH Aachen
Prof. Dr. Hans Eckhardt Hoenig
Institut für Physikalische Hochtechnologie, Jena
Herr Bernd Krekel
Commerzbank AG, Jena
Prof. Dr. Siegfried Methfessel
Witten-Herbede
Prof. Dr. Gerhard Schiffner
Ruhr-Universität Bochum
Herr Frank Sondermann
Institut für Physikalische Hochtechnologie, Jena
Prof. Dr. Herbert Stafast
Institut für Physikalische Hochtechnologie, Jena
9
PERSONAL UND FINANZEN / STAFF AND BUDGET
C. Personal und Finanzen / Staff and Budget
Kaufmännischer Bereich / Administrative Division
Leitung/Head: F. Sondermann
e-mail: [email protected]
Beauftragte für den Haushalt/
Finance Department Head: I. Ring
Projektmanagement/
Project Management: Dr. J.-U. Jahn
e-mail: [email protected]
e-mail: [email protected]
Technik/Technical Infrastructure: Th. Büttner, e-mail: [email protected]
Mitarbeiterinnen und Mitarbeiter
des Kaufmännischen Bereichs.
The staff of the administrative division.
Personal des Instituts / Staff of the institute
Institutionelle
Förderung/
Institutional
funding
Wissenschaftler/
Scientists
34
Doktoranden/
Doctoral candidates
Techniker, Mitarbeiter
für den Betrieb/
Engineers, employees
for infrastructure
48
Verwaltung/
Administration
15
Personalbestand
am 31.12.2004/
Number of employees
per 2004/12/31
97
Drittmittel/Project funding
Öfftl. Förderung/
Public funding
Industrie/
Industrial funding
31
21
86
11
5
16
30
15
93
15
72
41
Zusätzliches Personal (Gastwissenschaftler, Diplomanden, Praktikanten)/
Additional staff (Guest scientists, students, trainees):
10
Anmerkung: Die Tabelle weist Personen aus, nicht Vollbeschäftigtenäquivalente./
Note: The table states numbers of persons, not of full time-jobs
210
32
PERSONAL UND FINANZEN / STAFF AND BUDGET
Finanzen des Instituts / Budget of the institute
Institutionelle Förderung (Freistaat Thüringen)/
Institutional funding (Free State of Thuringia)
Drittmittel/Project funding
6.660,0 T ”
7.149,4 T ”
13.809,4 T ”
Institutionelle Förderung: Verwendung / Institutional funding: use
Personalmittel/staff
Sachmittel/materials
Investitionsmittel/investments
4.405,1 T ”
1.790,4 T ”
464,5 T ”
6.660,0 T ”
Aufgliederung Drittmittel / Subdivision of project funding
BMBF/Federal Ministry
DFG/German Research County
Freistaat Thüringen (Projektförderung)/Free State of Thuringia (Projects)
Europäische Union/European Union
Aufträge öffentlicher Einrichtungen/Contracts of public institutions
Sonstige Zuwendungsgeber/Other fundings
(Unterauftr. an Dritte in öfftl. gef. Projekten/Subcontracts to others 433,3 T ”)
Unteraufträge in Verbundprojekten/Subcontracts
FuE-Aufträge incl. wiss. techn. Leistungen/R&D contracts
2.419,6
303,4
882,4
132,2
390,7
94,4
T”
T”
T”
T”
T”
T”
447,3 T ”
2.479,4 T ”
7.149,4 T ”
11
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
D. Forschungsbereiche / Scientific Divisions
1. Magnetik & Quantenelektronik / Magnetics & Quantum Electronics
Leitung/Head: Prof. Dr. H.E. Hoenig
e-mail: [email protected]
Magnetik
Magnetics
Ltg./Head: Prof. Dr. W. Gawalek
[email protected]
12
Magnetoelektronik
Magnetoelectronics
Ltg./Head: Dr. R. Mattheis
[email protected]
Quantenelektronik
Quantum Electronics
Ltg./Head: Dr. H.-G. Meyer
[email protected]
1.1 Überblick
1.1 Overview
Unser Forschungsbereich repräsentiert in unserem Hause die Elektronik, als zweites wesentliches Standbein neben der Photonik.
Die Elektronik stützt sich auf supraleitende bzw.
magnetische Materialien und ist dementsprechend in Quantenelektronik und Magnetoelektronik gegliedert. Unter Quantenelektronik
verstehen wir und unsere „Wissenschaftlergemeinde“ die Nutzung der Quanteneffekte der
Supraleitung in mikro- und nanotechnisch hergestellten Bauelementen und Schaltungen.
Die Abteilung Quantenelektronik, mit mehr als
30 Mitarbeitern die weitaus größte und dynamischste im Forschungsbereich und im Institut,
betreibt wesentlich unseren Reinraum und versteht sich als Systementwickler mit und für
Partner und Anwender weltweit. Professionelle
Qualität wird durch eine jährlich aktualisierte
ISO-Zertifizierung gesichert. Eine strategische
Partnerschaft besteht mit dem Fraunhofer-Institut
für Angewandte Optik und Feinmechanik bei
Betrieb und Anwendung der Elektronenstrahllithographie.
Herausragende wissenschaftliche Ergebnisse im
Jahre 2004 waren: (1) Weltweit erstmals wurde
die „Verschränkung“ von Flussquanten-Qubits
nachgewiesen. Das ist eine Grundvoraussetzung, um solche Qubits in den hochparallelen
Quantenrechnern nutzen zu können. Dafür gab
es den Thüringer Forschungspreis 2004. (2) Weltweit erstmals konnte mit einem luftgestützten
In the institute our division represents the electronics whereas the other divisions stand for photonics. We base our work on metallic superconductive resp. magnetic materials resulting in
Quantum- respectively Magneto-Electronics. We
and our community understand Quantum
Electronics as the use of quantum effects of
superconductivity in micro- or nanotech devices
and circuits.
The corresponding department for Quantum
Electronics comprises the largest and most
dynamical unit in the institute. It runs our clean
room and understands itself as a system developer together with partners world wide. Quality is
controlled and assured by ISO certification which
is updated annually. We have established a
strategical partnership with the nearby
Fraunhofer Institute for Applied Optics and
Precision Engineering with regard to the investment and operation in and resp. of the equipment
for e-beam lithography. Highlights in 2004 have
been: (1) For the first time world wide we could
demonstrate entanglement of flux quantum
qubits as prerequisite for efficient parallel computing with future quantum computers. This
achievement gained the 2004 award for distinguished scientific contributions as granted by the
Thuringian Ministry for Science and Education.
(2) For the first time the full tensor of the earthfield-gradient has been measured airborne,
meanwhile we have >100 flight hours together
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
Two components of the Earth’s magnetic field gradient, measured with an LTS SQUID system during
flight over a geophysically interesting area. It shows magnetic anomalies originating from rock formations
of the subsoil.
New power-less operating magnetic multi-turncounter (sensor-part and sensor-signal).
Photomontage of a Maglev train on an existing
rail in Moscow. Insert: Demonstration of the
superconducting man-loading Maglev-Model.
13
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
14
SQUID-System der vollständige Tensor des Erdmagnetfeldes gemessen werden. Mittlerweile ist
das System in über 100 Flugstunden gemeinsam
mit internationalen Partnern erfolgreich erprobt
worden.
Für die Quantenelektronik zeichnen sich gegenwärtig eine Reihe bedeutsamer Anwendungsfelder mit großen Synergieeffekten ab: Geologische Erkundung, hochempfindliche Sensorik
von Gammastrahlung bis zum Radiowellenbereich, Medizintechnik, Halbleiter-Qualitätskontrolle und Quantenrechner.
Insgesamt hat die Quantenelektronik eine solide
Finanzierung erreicht. Dazu konnten einige
bedeutende langfristige F&E-Verträge abgeschlossen werden. Hervorragende Wissenschaftsgäste besuchen die Abteilung Quantenelektronik regelmäßig. Die Aussichten der
Quantenelektronik sind insgesamt sehr positiv.
Es entwickeln sich rasch Synergien mit der
Abteilung Magnetoelektronik bei der Entwicklung
und Anwendung von Raumtemperatur-Magnetfeldsensoren.
Unsere Magnetoelektronik stützt sich auf die
Besonderheit einer industriekompatiblen Beschichtungsanlage bis zum Format von 8 Zoll.
Professioneller Betrieb ist erprobt in kundenspezifischen und kundenvertraulichen Arbeiten.
Kürzlich erfolgte der Start einer Industriekooperation mit internationalen Zulieferfirmen der
Automobilindustrie. Anwendungen des GiantMagnetowiderstandes und Tunnel-Magnetowiderstandes setzen sich weltweit durch (Physics
Today 12/04), im Automobilbereich und in der
Automation besteht bislang noch eine Warteposition. Ein weltweit erstrangiger Geräteentwickler stützt sich auf unsere Prozessentwicklung. Wir haben Expertise in der
Charakterisierung der Dünnschicht-Grenzflächen
und das Instrumentarium dafür. Qualitätssicherung mit Zertifizierung besteht und wird
turnusmäßig erneuert. Herausragende wissenschaftliche Ergebnisse im Jahre 2004 waren: (1)
Vorarbeiten zum Tunnel-MR, (2) Viel-Umdrehungszähler, (3) Analytik-Highlights mit Anerkennung der EMAS. (4) In den letzten Jahren
ist im Rahmen mehrerer Projekte eine Technologie zur großflächigen Abscheidung supraleitender Filme mit Sprungtemperaturen oberhalb
100 K entwickelt worden. Die erstklassige
Eignung des Materials für die Hochfrequenztechnik ist mehrfach bewiesen. Diese Arbeiten
sind in der Magnetoelektronik untergebracht, weil
hierzu viel Analytik gebraucht wird. Immer noch
besteht eine Warteposition im Mobilfunk. Neue
Ansätze haben sich in der Medizintechnik ergeben, es ist hier aber noch keine Entspannung
in Sicht. Das Know-how zu den HTS-Filmen
wird auf grundlagenorientierter Seite in einem
DFG-Projekt zur Untersuchung intrinsischer
Josephsonkontakte eingesetzt. Die Finanzierung
zeigt gute Ansätze im Industriegeschäft, die
Aussichten sind insgesamt positiv.
with partners. Several new application fields are
opening for this department: geological prospection, ultra sensitive electromagnetic detection
from the gamma ray to the radio wave range,
medical engineering, quality control for semiconductor fabrication and quantum computers.
Overall our quantum electronics has achieved
solid funding and gained long term contracts.
Outstanding scientists join us routinely. The
prospects are rather bright. Synergy is established with our magnetoelectronics department
towards robust room temperature sensing.
Our department of Magnetoelectronics features
an outstanding sputtering equipment for up to
8 inch substrates, fully compatible to industrial
standards. Professional operation is well established, customer specific and customer devoted
with secrecy. Recently, partnership was started
with internationally operating companies supplying the automotive sector.
Applications of the devices based on giant magneto resistance and tunneling magneto resistance excel worldwide (Physics Today 12/04). In
the automotive and automation field still there is a
waiting position to this new technology apparent.
A first ranking equipment manufacturer is trusting
on our process development. We have expertise
in the characterization of such thin film interfaces
and the required instruments. Quality control is
established and renewed on a routine basis.
Highlights in 2004 have been: First results on tunneling magnetoresistive devices, (2) multiturn
counters, (3) x-ray analytical achievements which
have been honoured, (4) first ranking material
development work on superconducting high Tc
material for high frequency applications. This
work is placed in the Magnetoelectronics department, because many analytical tools are needed
and available there. Still we face a waiting position in the cellular phone application field. New
chances arise in the medical field, but the rather
tense situation still holds here. Funding is finding
good opportunities in the industrial contracts. The
prospects in total are positive.
In our department for Magnetics we develop
superconducting and magnetic materials for
power engineering and for medical applications,
respectively.
The project DYNASTORE is coming to an end
successfully. A large project for the development
of electric motors of very high dynamics has
been contracted recently.
Projects for levitation systems in transportation
are under preparation.
Always there has been good partnership with the
IFW at Dresden in projects. This collaboration will
be further established in joint projects for levitation in transport.
Great success was achieved with magnetic
nanoparticles in cancer therapy. Animal models
have convincingly demonstrated the power of this
method (where magnetic particles are concen-
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
Materialentwicklung supraleitender und magnetischer Materialien für die Energietechnik und
Medizintechnik betreiben wir in unserer Abteilung
Magnetik. Das Projekt DYNASTORE zum
Schwungmassenenergiespeicher steht vor dem
erfolgreichen Abschluss. Ein großes Projekt mit
Partnern zur Entwicklung hochdynamischer
Motoren wurde hinzugewonnen. Verkehrstechnische Projekte sind in Vorbereitung. Das
bisher schon bestehende Zusammengehen mit
dem IFW-Dresden wird intensiviert. Ressourcen
an beiden Standorten werden vereint für den
Start großer Projekte zur Magnetlagerung für
verkehrstechnische Projekte genutzt.
Große Fortschritte wurden bei der Nutzung von
Magnetpigmenten in der Krebstherapie erreicht.
Tiermodelle haben den Wert der Methode
überzeugend bestätigt. Wir sind stolz auf die
erstklassige Partnerschaft mit dem Klinikum Jena
(Forschungsgruppe von Prof. W. A. Kaiser).
Immer stärker wird die Forschungspartnerschaft
mit der Fachhochschule Jena (Medizintechnik
und Analytik), wobei der Schwerpunkt der
Magnetpigmententwicklung am IPHT liegt. Die
Präsentation unserer viel beachteten Ergebnisse
erfolgte bei einer internationalen Konferenz in
Dresden bzw. einer Medizintechnikkonferenz in
Ilmenau. Die Finanzierung dieser Arbeiten ist
weiterhin schwierig, die Aussichten sind differenziert zu sehen.
trated in the cancerous tissue and heated there
inductively, thereby destroying the cancer cells).
We are proud on the first class partnership to the
university clinics (group of Prof. W.A. Kaiser). The
partnership in research with the University of
Applied Science Jena is fostering (medical and
analytical field) with our group supplying the new
nano particle fluids. Our results have been presented and appreciated in an international conference held at Dresden and in a conference for
medical engineering organized in Ilmenau.
Funding of this research is difficult, prospects are
not so clear.
1.2 Scientific Results
readout, with submicron Al/AlOX/Al-Josephson
junctions (tunnel area: 150 × 600 nm2) were fabricated routinely and successfully by means of
high-resolution exposures using the e-beam-tool
LION and shadow mask evaporation technology.
Two R&D-projects, “Photonic Crystals” and
“FOKEN”, were successfully finished in 2004. For
the first project optical waveguide structures in
tantalum pentoxide thin films and polymer waveguide materials containing high aspect ratio
micro-hole gratings (hole diameter: 250…300 nm,
pitch: 500…620 nm, depth: 1…4 µm) were fabricated by means of e-beam-lithography and reactive ion etching. Photonic crystal waveguides
have clearly shown wavelength dependent transmission with the best transmission losses being
in the range of 5 dB/mm. In the R&D-project
“FOKEN” high-resolution linear and circular gratings (period = 200 nm, structure width = 100 nm,
depth = 150 nm) were etched in quartz substrates for use as master stamps for nanoimprinttechnology.
1.2.1 Microfabrication technology
(Uwe Hübner, Ludwig Fritzsch)
In the microfabrication group all the micro- and
nanotechnologies for the fabrication of quantum
electronic devices (SQUID sensors, voltage standard chips, Qubits) and other applications such
as photonic crystals, micro optical waveguides,
nanoimprint-masters and nanoscaled calibration
standards have been available and further
improved in 2004. In general, 188 masks were
made by electron beam exposure and 372 electron beam direct writing exposure jobs on wafers
and other substrates were carried out using the
ZBA 23H. 131 masks were prepared with the
optical pattern generator, a MANN 3600. The
standard 3.5 µm Nb/Al-technology was improved
by changing the layer sequence and optimizing
the wiring etch step, in order to prevent some
problems caused by the AuPd resistor lift-off process. A special anodization procedure was successfully tested for the preparation of capacitors
with a Niobium oxide dielectric. If required this
step can be introduced into the standard SQUID
process in order to realize filter structures for the
improvement of the noise parameters of the
SQUIDs. About 400 Qubit-devices with up to 4Qubit-structures, placed in pancake coils for the
In 2004 two new projects, “PLATON” and “KALI
II”, were started. In the European project PLATON (PLAnar Technology for Optical Networks)
we work together with partners from France,
Portugal, Switzerland, and Germany on the evaluation and development of an UV-photosensitive
planar technology for the creation of integrated
15
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
optical devices for high data rate telecommunication. In the R&D project “KALI II” we collaborate
with PTB Braunschweig, Nanoworld Services
GmbH Erlangen, HTWK Leipzig, Leica
Microsystems Lithography GmbH Jena, Carl
Zeiss Jena GmbH, and FRT GmbH BergischGladbach in order to realize new kinds of
nanoscale CD-standards for AFM and for highresolution optical microscopy like ultra violet
microscopy (UVM) and laser scanning
microscopy (LSM). The high-resolution pattern
for use in UVM or LSM consists of different grating structures in a metallic thin film on a quartz
substrate. The types of grating are 1-D (for both
x and y), 2-D (cross grating) and circular (Fig.
1.1). On one side of the 1-D grating an isolated
single structure for CD-determination is placed.
The smallest structure size should equal or be
less than the resolution limit of the optical
microscopy method. At the present time the pitch
of our fabricated gratings varies from 160 nm to
4 µm, i.e. the structure widths are between 80 nm
and 2 µm. The structures for the AFM-CD-standards are a further development of our AFM-tip
shape standards. These silicon structures offer a
series of line-space structures (pitch 1 µm) with
vertical or even slightly undercut sidewalls, which
can be easily found due to the surrounding finding patterns. The smallest lines are around 50 nm
wide, 300 nm deep and extremely parallel with
deviations below 10 nm.
Fig. 1.1: Circular grating with a period of 160 nm
etched in Niobium on quartz.
1.2.2 SQUID sensors and systems
(Volkmar Schultze, Ronny Stolz,
Andreas Chwala, Viatcheslav
Zakosarenko, Torsten May)
16
With regard to the SQUID activities also in 2004
the main emphasis was placed on low temperature superconductor (LTS) SQUID system developments. The BMBF project corresponding to the
development of high temperature superconductor (HTS) SQUID systems for nondestructive
evaluation (NDE) was finished in 2003. However,
a small project followed in 2004, with the aim of
transferring the main results to our spin-off company Supracon. This decision was triggered by
an interest of several groups in the world in our
highly balanced HTS gradiometer SQUID.
The third phase of the development of the LTS
SQUID system for mobile applications was finished. The system is able to measure the full tensor of the Earth’s magnetic field gradient with an
extremely high sensitivity by means of six highly
balanced SQUID gradiometers. Only five are
needed to determine the tensor, the 6th one is
redundant. Three SQUID magnetometers are
implemented as a reference for the magnetic field
amplitude. The accurate determination of the 3D
position, flight direction, and orientation is determined from a differential GPS system and a complete inertial system unit (INU). All sensor signals
are digitized by an enhanced eighteen channel
24 bit data acquisition system with glass-fiber
transmission line to the towing vehicle (helicopter,
airplane and so on).
During the last year several successful flight trials
with the actual SQUID system in various configurations have been performed. In total more than
100 flight hours have been undertaken with the
developed system.
The most impressive results in 2004 – the highlight of our work – have been achieved with the
system in a stinger mounted configuration on a
CESSNA Grand Caravan 208 airplane from
Fugro Airborne Systems. For the first time world
wide the Earth’s magnetic field gradient was
measured with the superior sensitivity of the LTS
SQUID system. This was done over two geophysically interesting areas in South Africa (see
colored picture). Besides the advantage of the
better gradient and spatial resolution compared
with conventional systems the gradient tensor
opens up new fields of information (e.g. remanence, rotational invariants, direct calculation of
compact source magnetic moments, improved
resolution of pipe-like bodies and structures parallel to the flight-path). The two areas were
scanned with a line spacing of 100 m and an altitude of 80 m, which results in 1100 flight line kilometers.
For the next year, besides the development of a
new data acquisition system in order to reduce
noise caused by the GPS system and the INU,
several field trials are planned so that the system
can be improved stepwise. Furthermore, a magnetic model of the used aircraft has to be implemented in the data processing, resulting in a further possibility to enhance the signal to noise
ratio in the stinger mounted case.
The development of SQUID systems for groundbased geophysical applications has reached a
level that allows its routine usage for exploration
work. A long term agreement with one major
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
player on the worldwide exploration market has
been signed in order to further develop a LTS
SQUID magnetometer system for Time Domain
Electromagnetics (TEM, also called Transient
Electromagnetics). So far a prototype of such a
system has been used successfully on different
targets. It could be shown that with a small
amount of training the field crew could work single-handedly with the system, including handling
liquid helium in the field.
In the near future, the benefit of SQUIDs to other
geophysical exploration methods will be evaluated within the frame of the above mentioned
development project.
In the project “ArcheNova” a SQUID system for
archaeological prospection has to be developed.
After setting up the system consisting of highly
balanced and sensitive LTS SQUID gradiometers,
a differential GPS system, and data logger – all
fixed on a nonmagnetic cart which enables very
stable movement even on rough terrain –, it was
tested in several field trials and stepwise
improved. One important feature was the implementation of an inertial system which delivers
three angels (pitch, roll, and yaw) in order to characterize the alignment of the system. With these
data a retroactive calculation of the actual position of the SQUID gradiometer from the measured position of the GPS system is possible.
Several field trials on archaeologically interesting
sites are planned for the next year.
Since 2002 our group has been developing
superconducting bolometers in collaboration with
the Max Planck Institute for Radio Astronomy in
Bonn. In the frame of this work in 2004 we have
focused on the integration of the recently developed technology of TES bolometers and the
existing SQUID foundry technology on one wafer.
We have succeeded in proving the compatibility
of both technologies. The aim of this integration
was to enable multiplexed readout schemes,
where in our case 8 bolometers with integrated
first-stage SQUIDs will be read out by one second-stage SQUID on a common electronic channel in the time domain. Multiplexing is the only
way of realizing an intended bolometric device
with a large number of pixels without going
beyond acceptable cost.
Based on prototypes, which have been tested
successfully at the 30m radio-telescope of IRAM
in Granada (Spain) in 2003, the so called “Large
Bolometer Camera” (LABOCA) with 288 bolometers and integrated first-stage SQUIDs was
designed and manufactured (see Fig. 1.2). The
multiplex electronics for 8 channels was developed and successfully tested. Supracon AG has
undertaken the task of manufacturing the
required 36 electronic channels. Next year the
setup of the complete system should be finished,
so that LABOCA will be operational at the
Atacama Pathfinder Experiment (APEX), a 12
meter radio telescope in Chile’s Atacama Desert,
at the end of 2005. This system will be the next
step towards still larger cameras with 1,000 channels and more.
Fig. 1.2: The LABOCA wafer with 288 superconducting bolometers and the same number of integrated first-stage readout SQUIDs.
In the joint project “Nanoanalytics with Magnetic
Calorimeters” the main task for IPHT is to develop and fabricate LTS SQUIDs for a magnetic
calorimeter. In 2004 the calorimeter SQUIDs fabricated previously have been characterized and
supplied to our partners (University of Heidelberg
and the company VeriCold). After tests in
Heidelberg, which were performed at the final
working temperature of 50 mK, the need for special thermal links in order to homogenize the temperature on the chip was highlighted. The new
layout of the SQUIDs was optimized for this purpose. Additionally, special thermal sinks were
introduced in order to avoid possible overheating
of the SQUID shunts. This third generation of the
calorimeter SQUIDs was fabricated and tested at
4.2 K, 0.35 K, and 50 mK. Some samples showed
hysteresis-like behavior at the lower temperature.
Consequently, special samples with extra-low
critical current density Josephson junctions have
now been fabricated in order to prevent hysteretic
SQUID behavior. As a next step, in cooperation
with University of Heidelberg and VeriCold these
new calorimeter SQUIDS will be tested in a real
environment in X-ray spectrometers.
1.2.3 Integrated superconducting circuits
(Gerd Wende, Marco Schubert,
Torsten May, Birger Steinbach,
Hans-Georg Meyer)
In 2004 the joint project “Quantum Synthesizer
(QuaSy)” was successfully developed further. In
the project three components, an RSFQ pulse
pattern generator, a pulse amplifier, and a
Josephson quantizer will be developed by differ-
17
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
ent project partners, and integrated into a multichip module (MCM). The interfaces between
these components have been established more
precisely in order to lay the foundation for the
execution of the MCM.
IPHT is focused, within the scope of the joint project, on investigations of pulse driven microwave
circuits for the low temperature superconducting
Josephson quantizer and on the relevant microwave tests and measurements. A special cryoprobe was developed and assembled for the test
of the various MCM components, separately as
well as in combination.
One of our main activities was the development
and test of an improved version of a Josephson
quantizer microwave circuit. Its linear dimensions
should be small compared to the line wavelength
of the driving microwave in order to generate ac
voltages with quantum accuracy. The layout is
shown in Fig. 1.3. It is based on coplanar strips
(CPS) as the microwave transmission lines. The
antenna at the input of the circuit consists of two
wings which are separated by a tapered slot
which changes from 200 µm to 40 µm to 1 µm.
Connected to this, the CPS configurations consist of two strips which are also separated by a
1 µm slot. The Josephson junctions (JJ) with a
total number of 2560 are integrated in eight
branches which are shorted at the ends and
which are connected in parallel with regard to the
microwave but in series for the dc bias current
and the dc or low-frequency Josephson voltage.
The contacts for the dc bias current and the dc or
low-frequency Josephson voltage are connected
to the antenna wings, and they are decoupled by
inductances from the microwave circuit. The
18
Fig. 1.3: Layout of the improved version of the
Josephson quantizer circuit.
Design parameters: 8 branches, 320 JJ per
branch, 2560 JJ per chip, length of a branch: 660
µm, line wavelength at 5 GHz: 24 mm.
external network only marginally affects the
microwave performance of the circuit.
The Josephson quantizer circuits were tested
with a pulse drive with pulse repetition rates of up
to 5 GHz and a clock frequency of 10 GHz.
Quantized Josephson voltage steps of up to
26 mV were generated. The circuit was shown to
function for pulse repetition rates of up to 5 GHz.
Cooperation between IPHT, PTB and NPL of the
UK continued with the development of components for Josephson voltage standard systems. A
joint exhibition entitled “Josephson junction array
systems for research and calibration” was organized at the Conference on Precision Electromagnetic Measurements (CPEM) in London.
Worldwide only HYPRES Inc. in the USA and the
IPHT offer 10 V Josephson voltage standard circuits. In 2004 the IPHT delivered 10 V chips to
the national metrology laboratories of South
Africa, Italy, Australia, Portugal, and Spain.
1.2.4 Quantum computing
(Evgeni Il’ichev, Miroslav Grajcar,
Andrei Izmalkov, Thomas Wagner,
Sven Linzen, Uwe Hübner,
Simon van der Ploeg)
Recently the field of superconducting electronics
has attracted renewed attention after it was recognized that suitable Josephson devices exhibit
quantum properties. Indeed it was clearly
demonstrated that such devices can behave like
single microscopic particles if they are sufficiently isolated from the environment. Therefore,
ideas developed in atomic and molecular physics
can be used for the description of artificially fabricated circuits of macroscopic size. These concepts are advanced by promising ways to realize
quantum bits (in literature so-called qubits – the
building block of a quantum computer) for quantum information processing.
Qubits are two-level quantum systems with externally controlled parameters. Generally, two kinds
of such devices with small-size Josephson junctions have been developed. One approach is
based on charge degrees of freedom; basic
states of such kind of qubits are distinguished by
the number of Cooper pairs on a specially
designed island. The quantum logic operation
can be performed by controlling the gate voltage
applied to the island via a gate capacitor. The
alternative realization utilizes the phase of a
Josephson junction (or the flux in a ring geometry), which is conjugate to the charge degrees of
freedom. Here the quantum logic operation could
be performed by controlling the current across
the junction (or magnetic field in a ring geometry
qubit).
Due to the macroscopic size of superconducting
qubits, they are extremely sensitive to external
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
disturbances. Thus, the backaction of a detector
should be as small as possible. A lot of different
detectors have been suggested in literature. We
implement the impedance measurement technique for the characterization of interferometertype superconducting qubits. In the framework of
this method, the interferometer loop is inductively
coupled to a superconducting high-quality tank
circuit. Conclusive information about qubits is
obtained from the read-out of the tank properties.
Below we show that by making use of such an
arrangement the different types of qubits can be
completely characterized.
One of the possible realizations of the superconducting qubits based on small-size Josephson
junction is the so-called persistent current qubit.
This qubit consists of a small inductive superconducting loop with three Josephson junctions. If
the internal magnetic flux is equal to a half flux
quantum (degeneracy point), the total Josephson
energy is double degenerated. In the presence of
quantum tunneling energy level splitting occurs
and the system can be effectively considered as
a two-level system. In the vicinity of the degeneracy point in the presence of a time-dependent
magnetic flux the system may become excited
from the lower to the upper level (i) or stay in
ground state (ii). The first mechanism is known
as Landau-Zener tunneling. The second is the
adiabatic behavior of the qubit. Both evolutions of
the qubit can be characterized by making use of
the
impedance
measurement
technique.
Moreover, the tunneling amplitude and the value
of the persistent current can be obtained from the
experimental data. A good agreement with the
theoretical predictions was also demonstrated.
quantum registers, absent in their classical counterparts. Since the coupling energy determines
the properties of the quantum system, it has to
be a designable parameter.
As a first step in this direction we have investigated two inductively coupled persistent current
qubits using the method described above. The
system of interest is coupled inductively to the
tank circuit (see Fig. 1.4). The tank coil was fabricated out of Nb by using e-beam lithography. As
usual the qubits were fabricated out of aluminum
by a conventional shadow evaporation technique,
nominally 1 mm apart, at the center of the niobium tank coil.
The external magnetic flux through the qubits
was created by the dc component of the current
in the coil Idc1, and by the bias current Idc2 through
a wire close to one of the qubits. This allowed for
independent control of the bias in each qubit.
From the experimental data we have found that
our system is described by the equilibrium density matrix of the Hamiltonian, where the coupling
is non-negligible. We have obtained quantitative
agreement between theory and experiment and
reconstructed the tunneling amplitude and the
value of the persistent current for both qubits.
The coupling constant was also estimated from
the data. In other words, we have shown that our
system is in a mixture of entangled two-qubit
eigenstates. This is the first time in the world that
such entanglement could be shown for flux
qubits.
The work described above was done in close collaboration with D-wave System Inc., Vancouver,
Canada.
Together with Friedrich-Schiller University Jena
we investigated, by making use of the same
method, an interferometer-type charge qubit consisting of a single-Cooper-pair transistor closed
by a superconducting loop. We performed qubit
spectroscopy by applying continuous microwave
power to the quantum device. We observed
inductance alterations caused by redistributions
of the energy-level populations. From the measured data we extracted the energy gap between
the ground and upper levels as a function of the
transistor quasicharge as well as of the
Josephson phase across both junctions.
In order to implement any concept of quantum
computation, qubits have to be coupled. The coupling energy should not be smaller than the thermal energy of the environment of the individual
qubits. On the other hand the energy gap
between the two lowest energy qubit states
should be much lower than the energy gap
between the first excited state and states with
higher energy. More generally, the coupling
should allow the formation of entangled states of
a multi-qubit system, which is a key feature of
Fig. 1.4: Two inductively coupled Al qubits inside
a Nb coil.
19
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
1.2.5 Multi-turn sensor with nanometer
structures
(Roland Mattheis, Marco Diegel,
Kai-Uwe Barholz, Uwe Hübner)
A new concept was developed and verified,
where a multi-turn sensor for automotive and
industrial applications counts and stores the
number of rotations without power. This new concept is based on the micromagnetic behaviour of
soft NiFe layers at line widths between 100 nm–
200 nm. In such narrow lines we found a large
difference between the field strength necessary
for magnetization reversal in the direction of the
line (nucleation field Hn of about 30 kA/m) with
respect to the field necessary for moving a
domain wall (HDW of about 8 kA/m). Our patented
sensor geometry schematically shown in Fig. 1.5
combines a race track shaped spiral (Ns turns)
with a larger area at one end of the spiral (some
µm in dimensions), where the domain walls are
generated.
As long as the rotating in-plane field Hrot fulfils the
condition HDW < Hrot < Hn domain walls can be
generated only in the larger area, whereas in the
race track shaped spiral we get only a domain
movement of the 180° domain walls. If the rotation sense of Hrot is identical with the rotation
sense of the spiral the newly created domain
walls are transported through the spiral, and, if
the spiral is completely filled, they move out and
vanish at the narrow end of the spiral. Otherwise,
the domain walls move to the large area where
they will be annihilated by newly generated
domain walls of opposite rotation sense. Due to
the race track geometry the domain walls move
within a small angle of rotation of Hrot through the
straight parts of the spiral while switching the
direction of magnetization of the NiFe in these
parts.
The use of a GMR stack for the spiral allows us
to determine the number of stored domain walls
and therefore the number of turns of the Hrot field.
In the straight parts of the spiral the GMR film
stack is either in a low or high resistance state,
depending on the number of 180° domain walls.
As a result the resistance changes stepwise by
∆R/2Ns with ∆R being the resistance difference
between the low and high resistance state. A
first demonstration of this concept is shown in
Fig. 1.7.
Fig.1.5: Race track geometry of the sensor.
In order to avoid any crossing of the Al metallization and the GMR race track we doubled the
spiral so that both electrical contacts are outside
the spiral. The artificial colour SEM picture on
page 13 shows a part of a 4-turn-sensor geometry with one Al contact (yellow). The white
lines are the nano-structured GMR thin film
stack; the green area is the thermally oxidized
silicon substrate.
Fig 1.6 shows some 110 nm width GMR lines of
the sensor geometry at high magnification.
Fig. 1.7: Resistance of the spiral as a function of
the angle of the rotating field Hrot = 16 kA/m. The
resistance values for full turns are marked by
large dots.
By changing the direction of rotation the number
will be counted up instead of down or down
instead of up. As seen on page 13 we can count
as many turns as the number of spiral turns Ns
we have – 4 turns. Extra-turns in both directions
and therefore for both cases, for an empty or
completely filled spiral, do not change the state
and the resistance of the spiral.
20
Fig 1.6: SEM picture of patterned GMR lines.
As the next step we will develop, in cooperation
with the company Novotechnik, a 12-turn counter
in a Wheatstone bridge geometry suitable for
automotive and industrial applications.
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
1.2.6
Beating the AF-superparamagnetic
limit of F/AF films by adding an AAF
(Roland Mattheis, Klaus Steenbeck)
The interaction at an F/AF interface (F ferromagnet, AF antiferromagnet) establishes a unidirectional anisotropy which is very useful for the definition of a reference direction necessary in any
magnetoelectronic devices. The strength of that
interaction is defined by the net moment of the
AF at the F/AF interface interacting with the magnetization MF of the ferromagnet. Exchange bias
(EB) occurs as long as the crystalline anisotropy
energy of the AF (KAF*VAF) is able to stabilize the
direction of this AF net magnetization. Below a
critical AF film thickness tCR the AF magnetization
structure will be destabilized either by thermal
excitation (near or above the thickness dependent blocking temperature TB of the AF) or by the
torque acting at the F/AF interface during magnetization reversal of the F layer.
To overcome this limitation we add to the
anisotropy energy KAF*VAF another anisotropy
energy, introduced by sandwiching the AF by a
rigid F layer on the free side of the F/AF. This rigid
F layer can be generated by using one of the
CoFe layers of an artificial antiferromagnet
(AAF). The AAF is composed of a 2.3 nm CoFe /
0.8 nm Ru / 2.3 nm CoFe sandwich fixed in a
preferred direction by a 7 nm IrMn layer. As long
as the applied magnetic field strength is smaller
than 500 Oe there are practically no angle deflections of the CoFe magnetization in contact with
the AF film under investigation.
As a result we found EB to exist far above the
usual blocking temperature TB of films without an
AAF and also obviously below the usual critical
thickness tCR. Therefore, the EB mechanism is
modified and becomes independent of the AF
crystal anisotropy. Additionally, for such film systems we found, that EB can be measured without
rotational AF high field energy losses. Such losses, essentially contributing to the enhanced film
coercivity, always accompany the EB effect in film
systems without an AAF because they come from
interactions with the crystal anisotropy KAF.
Our films were prepared using a 10 target UHV
sputtering system. We used the following stacks:
F/AF: 4 nm Ta / 16 nm NiFe / x nm IrMn / 3 nm
Ru, and F/AF/AAF: 4 nm Ta / 16 nm NiFe / x nm
IrMn / 2.3 nm CoFe / 0.8 nm Ru / 2.3 nm CoFe /
7 nm IrMn / 3 nm Ru (the 7 nm IrMn is for stabilizing the AAF, the 3 nm Ru is a cap and Ta a
buffer layer). Magnetic characterization was
made with a Kerr effect loop tracer at room temperature (loop shift HE = J/(MF*tF) with the thickness tF of the F) and by torquemetry at 10 K to
380 K (J and rotational energy loss E2π).
Fig. 1.8 shows that the exchange bias effect at
T > 150 K exists only in the F/AF/AAF system.
Fig. 1.9 demonstrates the reduction of the critical
thickness tCR at room temperature from 2.0 nm to
1.2 nm due to the AAF, and in Fig. 1.10 we see
Fig. 1.8: Temperature dependence of the coupling energy J for the systems F/AF (open symbols) and F/AF/AAF (full symbols).
Fig. 1.9: Exchange bias field HE as a function of
the IrMn film thickness tAF for the systems F/AF
(open symbols) and F/AF/AAF (full symbols).
Fig. 1.10: Temperature dependence of the coupling energy J (full symbols) and of the energy
loss E2π (open symbols) for the F/AF/AAF system.
that for films with an AAF at T > 230 K a coupling
energy J is found without rotational losses E2π.
Summarizing the results, we stabilized the AF
state by using the additional anisotropy energy of
an AAF deposited on the F/AF system, thus beating its superparamagnetic limit.
21
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
1.2.7
Characterization of AF symmetry and
of coupling strength distribution in
F/AF exchange bias systems
(Klaus Steenbeck, Roland Mattheis)
Although the discovery of exchange bias was
made a long time ago and the effect has been
used in applications for ten years a detailed
understanding is still missing. This is due to the
statistical nature of the F/AF interaction (F ferromagnet, AF antiferromagnet) caused by the from
grain to grain strongly varying coupling strength j.
In order to give more insight into these phenomena we study by torquemetry at low temperatures
the reversal behaviour of polycrystalline NiFe/
IrMn coupled systems for low thickness tAF ≤ 1.2
nm of the IrMn. In this thickness range interactions between AF grains can be neglected. By
cooling the samples in a rotating magnetic field
the exchange bias interaction is averaged allowing the study of the hysteretic behaviour only. All
AF grains with a j value between j1 = qKAFtAF and
j2 = 2qj1 contribute to the hysteresis which can
be described by the Stoner-Wohlfarth model for
a q-axial AF anisotropy energy density KAF. The
largest hysteresis will be caused by grains with a
j near j1, whereas increasing j the hysteresis
reduces and vanishes at j2. The value of q can be
directly determined from our measurements.
Fig. 1.11 shows the torque for clockwise (cw) and
counterclockwise (ccw) rotation of a magnetic field
large enough to saturate the F film. At the angular
distance ∆Φ from the reversal point the reversal
curve coincidences with the reversible curve in the
ccw direction. ∆Φ is determined by q. For 1-axial,
2-axial and 3-axial symmetry this value is 90°, 135°
and 150°, respectively. Our normalized difference
plot in Fig. 1.12 clearly indicates q = 3 which is
compatible with the <111> texture that we have in
our films. The distribution of coupling energies j is
reflected by curvature of the angular dependence
in Fig. 1.12. This distribution is important for the
understanding of exchange bias and its thermal
stability and is not directly measurable, in our experience, by any other method.
22
Fig. 1.11: Torque as a function of the field angle
Φ, before (cw) and after (ccw) reversal of the
rotation direction.
Fig. 1.12: Normalized deviation of the torque
curve ccw after rotation reversal from the
reversible ccw curve.
1.2.8
Temperature stability of high-Tc
superconducting thin films
(Henrik Schneidewind)
Large area high-Tc superconducting (HTS) thin
films are of great interest in the field of high frequency applications, as e.g. filters in wireless
communication or antennas for magnetic resonance imaging. The outstanding performance of
superconducting devices is based on their very
low rf surface resistance (Rs) compared to the
best metals. For operation in technical systems rf
filters will be mounted in tight metal housings.
The placing of the devices will be done by welding and afterwards the housings will be evacuated. Therefore the knowledge of HTS films stability is of great importance in vacuum as well as
against heating in air. Furthermore, the measurement after heat treatment is a method to accelerate possible degradation mechanisms. In practical application devices are demanded to be stable for years.
We investigated YBa2Cu3O7 (YBCO) as well as
Tl2Ba2CaCu2O8 (Tl) HTS thin films prepared on
2 inch and 3 inch sapphire substrates. The heat
treatment at air was done in a furnace at ambient
atmosphere and the vacuum treatment using a
heater at a pressure below 10–5 mbar. The duration of each temperature processing was 30 min
plus heat-up and cooling-down time.
Fig. 1.13 shows the result of critical current density (Jc) measurement at 77 K. The Tl-HTS film is
very stable in air, thus permitting welding technology for device mounting. The critical temperature
(Tc) remains constant at 103 K till 600 °C.
Comparing the data obtained from YBCO- and
Tl-HTS films both exposed to elevated temperatures in vacuum the onset of the Jc decay for
YBCO starts earlier and continues in a smaller
temperature region as for Tl-HTS films. The
onset for YBCO is between 220 and 240 °C and
the superconductivity is lost already at 280 °C
whereas Tl-HTS show a remarkable Jc decay at
about 280 °C losing superconducting behavior at
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
470 °C. The degradation finds its expression in
the dependence of Rs on the temperature of heat
treatment too.
The mechanism of degradation for YBCO is thermally activated oxygen loss from the chains. XRD
measurements proved an extension of the YBCO
c-axis from (11.684 ± 0.007) Å (as prepared) to
(11.735 ± 0.014) Å after the final heat treatment
at 280 °C, where the film showed no more superconductivity. The oxygen out-diffusion from TlHTS is much lower.
The effect after heating Tl-HTS in air is a different
one. Above 550–600 °C thallium oxide evaporates from the film and the crystal lattice begins
to decompose. The evaporation of thallium oxide
was measured by differential thermal analysis.
Heating experiments in pure oxygen at 1 bar
show similar results as in air.
an edge size of 55 mm with high quality can be
prepared (D. Litzkendorf).
The general demand from the application is to
enlarge the monoliths and to improve the magnetic properties. One approach we investigated
is the multi-seeding technique. Here several
seeds are placed on the monoliths. Growing
together of two individually grown grains is the
aim. Our experiments indicate that both <110>
and <100> growth fronts can be used (J.
Bierlich). In the trapped field profile a transport
current > 90% across the grain boundaries is
observed. Seed orientation and distance are critical parameters for a further improvement of this
technique.
Fig. 1.13: Critical current density at 77 K of
YBCO- and Tl-HTS thin films after heat treatment
in vacuum and air. The curves are only a guide to
the eye.
Fig. 1.14: Undisturbed micro-structure
welding of YBCO using silver.
1.2.9
Preparation, characterization and
application of melt-textured YBCO
(Wolfgang Gawalek,
Tobias Habisreuther)
The focus of our work on bulk superconductors is
the system integration of melt-textured YBCO
function elements in applications. Our specialty is
a stable technology to prepare high quality material combined with an adapted characterization
technology. Material improvement can be
achieved by basic research to understand the
influences of the preparation conditions on the
material structure and its magnetic properties. A
solid base of projects, supported by the DFG,
BMBF, BMWA, and the EU, is present to continue
our work, combined with a variety of contacts to
international partners in research and industry.
General material development
The main pillar is the preparation of standard
material in our established batch process. Here
we concentrated on the further improvement of
reproducibility and quality. Larger monoliths up to
after
The other technique, where we have experience,
is welding using either Rare-Earth Barium
Copper Oxides with lower peritectic decomposition temperatures than YBCO or using silver. In
the frame of the EU-SOKRATES program E.
Krokos from the University of Athens focused
his experiments for the diploma on this topic at
the IPHT. His new results in combination with
our previous experience will be combined to
optimize this technique. An example of a silver
welded sample is shown in Fig. 1.14. After the
welding procedure the welding zone does not
differ from the rest of the material, e.g. twin
boundaries cross the welding zone without disturbances.
The funding of the EFFORT consortium was
granted, so we have the possibility to exchange
and discuss the latest developments and results
with all European specialists.
Levitation and magnetic bearings
In 2004 the demand on material for these applications was reduced compared to 2003. The reason for this fact is that the function model of a
man loading transport system, designed and
completed by MAI Moscow, now is tested for
engineering parameters, for example reliability,
23
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
guidance forces and long term stability of material and electronics. In the continuation of this project we will be partner for HTS material development and supply.
In the Dynastore project in 2004 mainly the final
detailed system design was realized after the
components, magnetic bearing, electric energy
converter, fly-wheel, and power electronics,
achieved their requirements. To fulfill the project
targets an extension was necessary. The new
task of our group is to finish the monoliths for the
embedding into the bearing. The system will be
built and tested in 2005.
Motor activities
In 2004 the BMBF-project “Hochdynamischer
HTSL Motor” started. Tests on previous HTS
motors showed the extremely high dynamics of
these machines. So new applications for electric
motors are possible. In the new project we and
our project-partners, Oswald Elektromotoren
GmbH, MAI Moscow, and Arburg GmbH, will
investigate rotating and linear motors with HTS
material. In 2004 design work on the machines
was the major task.
The EU TMR project “Supermachines” was finished. In co-operation with ICMAB Barcelona,
Oxford University, the new University of Lisbon,
Cambridge University, and S.U.P.R.A.T.E.C.S.
Liège we constructed and tested a new motor
design, a squirrel cage motor. The final meeting
with the demonstration of the machine was held
in Lisbon. S. Kracunovska finished her experiments on the relation between preparation and
microstructure (also our long term co-operation
with SAS Kosice). She will defend her PhD in
2005.
In the frame of the POWER SCENET W.
Gawalek leads the working group “Rotating
machines”.
24
Superlife
In 2004 the EU-project “SUPERLIFE” started. In
the frame of the European science week this is a
so-called demonstration project. In co-operation
with the Budapest University for Technology and
Economics (co-ordination), ICMAB Barcelona,
ISMRA Caen, Oxford University, Ben-Gurion
University of the Negev, S-Metall Budapest, and
Sydcraft several function models with HTS materials were build. Here our long term contacts and
principal investigations on the systems with the
Budapest University in the frame of WTZ and the
Thuringian-Hungarian co-operation could be
transferred. Our material was applied in an inductive fault current limiter, a small Maglev model,
in a chess game with levitated chessmen, and a
X-Y conveyor (Fig. 1.15).
From November 22–25, 2004 the exhibition was
shown in Budapest. Several thousand visitors
were counted during the four days. In 2005 and
2006 the exhibition will be hosted by the project
partners in their country.
Fig. 1.15: Visitors at the Superlife exhibition testing levitated chessmen.
Demonstrations
Beyond the Superlife exhibition we contributed to
“Highlights der Physik” 21.06.2004–26.06.2004
in Stuttgart and to the re-opening of the Siemens
Forum at the “Milestones & more” 9.10. in Munich
with our people levitator. Also we participated at
the BMBF Nano-Truck visit at the Campus in
November.
1.2.10 Investigation of magnetic properties
of MgB2
(Wolfgang Gawalek, Tobias Habisreuther,
Matthias Zeisberger)
Our long-term co-operation with the ISM Kiev will
be continued in the frame of WTZ. A new project
was granted from 2004–2007. We prepared function elements for a reluctance motor from MgB2
monoliths. The machining of this material
occurred to be problematic due to the hardness
of MgB2 and the development of toxic gases,
when water as coolant was used.
In our co-operation with the Budapest University
an improved method of machining was tested.
No toxic substances occurred and the speed of
machining accelerated, so the method can be
applied for further activities.
At the MAI Moscow the experimental set-up for
motor tests at 21 K was constructed. Motor tests
will start in 2005.
Low temperature levitation force measurements in
the range from 15 K to 37 K were performed on
bulk material from EDISON S.p.a., Milano. Fig
1.16 shows the temperature dependence of zfc
forces measured in a distance of 1 mm. At 25 K
the zfc forces are saturated. In the force measurements no hysteresis can be detected so this temperature seems sufficient for bearings with MgB2.
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
Fig. 1.16: Temperature dependence of zfc levitation forces on MgB2 measured in a distance of
1 mm.
glass crystallisation method were continued and
a new project in this field started in the DFG-priority program in October. A maghemite FF with a
mean magnetic particle size of 13nm (see
Fig. 1.18) and magnetic losses in the order of
100 W/g (Hmax = 11 kA/m) (see Fig. 1.19) was
obtained. Investigations on preparing larger particles in the 20 nm-range with improved magnetic
losses for medical or rheological applications
were started by glass crystallization as well as by
wet chemical precipitation. Structural investigations of such particles were carried out by
Mössbauer spectroscopy in the frame of a common WTZ-project with R. Zboril (University
Olomouc, CZ). Glass crystallized particles show
probably a core-shell structure of Fe3O4/γ-Fe2O3.
Magnetic investigations in cooperation with partners were done as well on Co-particles, encapsulated particles (DFG-program), Ni3Al-type
nanoparticles and Ni3Si-alloy (ETH Zürich) and
iron oxide particles by solid state reactions (WTZproject).
Fig. 1.17: Levitated rotor in MgB2 (covered by
super-insulation).
Using a refrigerator and a vacuum chamber a
functional model of a magnetic bearing was built.
Fig. 1.17 shows the levitated rotor, MgB2 is covered
with superinsulation. The rotor was accelerated
up to 14.000 rpm. All these results are promising
for applications of MgB2 at 21K.
Fig. 1.18: TEM image of the dried 13 nm-ferrofluid (bar: 50 nm).
1.2.11 Magnetic materials
(Robert Müller)
In the frame of the DFG-priority program investigations on ferrofluids (FF) with glass crystallised
Ba-ferrite BaFe12–2xTixCoxO19 as magnetic particles in the transition range from superparamagnetic to stable single domain behaviour were
finished. There is still some final work to be done
on the problem of reduced magnetisation in
nanoparticles (“magnetic dead layer”).
In connection with the innovation project of the
IPHT the transition range between uniaxial and
planar anisotropy partly superimposed by superparamagnetism was investigated. A diploma thesis in this field was very successfully finished in
January 2004 by C. Hartmann (FH Jena).
Experiments to prepare magnetite or maghemite
nanoparticles for medical applications by the
Fig. 1.19: Hysteresis losses vs. minor loop
amplitude for particles in glass (G), powder (P)
and immobilized ferrofluid.
25
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
1.2.12 Magnetic nanoparticles for tumour
therapy
(Rudolf Hergt)
26
Despite of tremendous efforts, cancer is one of
the most serious, unsolved problems of medicine
yet. In addition to conventional therapy (surgery,
chemo- and radiotherapy) different alternative
methods were tested in last years without real
breakthrough. Now, an attack by means of nanotechnology is started worldwide. In the special
field of thermoablation by means of magnetic
nanoparticles our group is leading. The specific
problems posed by this multidisciplinary
approach were successfully solved over last
years in a fruitful cooperation with the Institute for
Diagnostic and Interventional Radiology (IDIR,
Prof. W.A.Kaiser) of the Clinicum of the
University Jena. After clearing the bio-medical as
well as physical-technical preconditions for magnetic particle induced thermoablation an experimental setup was developed for therapy of
mamma carcinoma which is now ready for first
patient trials in 2005. This apparatus consist of a
15 kW AC-generator feeding the specially
designed split coil for application of a magnetic
AC-field at the tumor position. Special values of
AC-field parameters (410 kHz frequency and
10 kA/m amplitude) are chosen in order to optimise the heat output of magnetic particles which
are intratumorally injected before field application. The construction of the field coils (patent
pending) allows due its large aperture the combination of the injection of a special particle suspension (patent pending) with diagnostic means
(e.g. ultrasound) as well as the controlling of particle distribution and temperature elevation in
tumor tissue by means of a tiny thermocouple.
This versatility distinguishes the developed
equipment advantageously from approaches of
competing groups.
Besides the development of a therapy method
basing on intratumoral injection, the second generation of magnetic particle hyperthermia – the
“Antibody mediated targeting of nanoparticles
(AMTN)” – was prepared in a joint project with
IDIR and the University of Greifswald (Prof. W.
Weitschies) within the frame of the DFG-Priority
Program “Colloidal magnetic fluids”. This project
was successfully finished in this year. Since in the
case of AMTN the achievable particle concentration in the target region is orders of magnitude
lower than for direct injection much higher values
of specific loss power (SLP) are needed.
Magnetic losses in a system of magnetic
nanoparticles obey different loss mechanisms
depending in very specific way on particle structure. Therefore, a wide variety of magnetic
nanoparticle types was investigated with respect
to magnetic loss mechanisms in order to clear
the way towards further enhancement of the SLP.
Basing on our recent experimental and theoretical results the strategy for reaching this aim is
established now. It was found that common precipitation techniques of particle preparation are
unable to produce high SLP data. For this aim, a
separation of nucleation state from particle
growth state is necessary in order to achieve the
needed narrow size distribution width. It was
shown that magnetosomes (from Max-PlanckInstitute of Marine Microbiology, Bremen) delivering record values of SLP in the order of 1 kW/g
at 410 kHz and 10 kA/m may serve as model systems of high-SLP particles. Investigations were
also extended to magnetic particles with higher
magnetic moment than magnetic iron oxides (Conanoparticles from Max-Planck-Institut für Kohleforschung, Mülheim).
1.3. Appendix
Partners
National cooperation
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
AMO Aachen
Arburg GmbH+Co KG, Loßburg
B&W Trade & Technology, Jena
Bayerisches Landesamt für Denkmalpflege
(BLfD) München
Brose Hallstadt
Carl Zeiss Jena GmbH
Degussa AG, Hanau
DisplayCom GmbH, Jena
DLR Braunschweig
EAM Kassel
EAS Hanau
Eberhard Karls Universität Tübingen,
Physikalisches Institut I
EUPEC, Warstein
Fachhochschule Jena, Fachbereiche
Werkstofftechnik und Medizintechnik
Forschungszentrum Jülich GmbH
Forschungszentrum Karlsruhe
Friedrich Hagans Plastverarbeitung, Erfurt
Friedrich-Schiller-Universität Jena
• Institut für Diagnostische und
Interventionelle Radiologie
• Institut für Sportwissenschaft Klinik für
Innere Medizin III
• Physikalisch-Astronomische Fakultät und
Chemisch-Geowissenschaftliche Fakultät
FRT GmbH – Fries Research & Technology
FZ Rossendorf
Hahn Meitner Institut Berlin
HITK Hermsdorf
HL-Planar-Technik GmbH, Dortmund
Hochschule für Technik, Wirtschaft und Kultur
Leipzig
IFW Dresden
IMB Jena
IMG Institut für Maschinen, Antriebe und elektronische Gerätetechnik gGmbH Nordhausen
IMMS gGmbH, Ilmenau
Infineon AG Regensburg
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
• Infineon AG München
• INNOVENT e. V., Jena
• Institut Angewandte Optik und Feinmechanik
Jena der FhG
• JENOPTIK L.O.S. GmbH, Jena
• j-fiber GmbH Jena
• Leica Microsystems Lithography GmbH Jena
• Lucent Technologies GmbH Nürnberg
• Max-Planck-Institut für Radioastronomie Bonn
• Max-Planck-Institut für Mikrostrukturphysik
Halle
• Micro-Hybrid Electronic GmbH, Hermsdorf
• MPI für Kolloid- und Grenzflächenforschung,
Golm/Potsdam
• MPI Mülheim a.d. Ruhr
• Nanoworld Services GmbH Erlangen
• Naomi technologies AG, Mainz
• Nexans High Temperature Superconductors,
Hürth
• Novotechnik Stiftung & Co.
Messwertaufnehmer OHG, Ostfildern
• OSWALD Elektromotoren GmbH, Miltenberg
• Philips Semiconductors Hamburg
• Physikalisch-Technische Bundesanstalt,
Braunschweig
• Piller GmbH, Osterode
• PREMA Semiconductor GmbH, Mainz
• QEST GmbH, Tübingen
• Robert BOSCH GmbH, Stuttgart
• ROENTEC GmbH, Berlin
• RWE – Net, Essen
• Schenck, Darmstadt
• Schott Lithotec AG, Jena
• Sensitec GmbH, Wetzlar
• Sentech Instruments GmbH, Berlin
• SIEMENS AG Erlangen
• SIEMENS AG Regensburg
• Silicon Manufacturing Itzehoe
• Singulus Technologies AG, Kahl
• Solvay Barium Strontium GmbH, Hannover
• Supracon AG, Jena
• SurA Chemicals, Jena
• Technische Universität Hamburg-Harburg
• THEVA GmbH, München
• Thüringisches Landesamt für Archäologische
Denkmalpflege, Weimar
• Tracto-Technik GmbH, Lennestadt
• TransMIT GmbH, Gießen
• TU Braunschweig (IMAB)
• TU Dresden
• TU Ilmenau (Institut für Allgemeine und
Theoretische Elektrotechnik und Institut
Werkstofftechnik)
• TU Kaiserslautern
• TÜV Thüringen e.V., Kalibrierlabor Arnstadt
• Universitäten:
• Bielefeld
• Bochum
• Bonn
• Bremen
• Düsseldorf
• Erlangen
• Gießen
•
•
•
•
• Göttingen
• Greifswald
• Heidelberg
• Karlsruhe
• Regensburg
• Saarbrücken
• Stuttgart
• Tübingen
• Wuppertal
Vacuumschmelze GmbH & Co KG, Hanau
VeriCold Technologies Ismaning
WSK Hanau
ZFW Göttingen
• International cooperations
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
ALTIS Semiconductor, France
Anglo Operations Ltd., South Africa
Bar Ilan University, Israel
Ben-Gurion University of the Negev, Israel
Budapest University of Technology and
Economy, Hungary
Cambridge University, UK
CEA Saclay, Gif sur Yvette cedex, France
CEA/Le Ripault Monts, France
Chalmers University of Technology, Sweden
Chengdu University, China
CNRS Grenoble, France
Comenius University, Slovakia
Commissariat a l’energie atomique, France
Consiglio Nazionale Delle Ricerche, Italy
D-wave System Inc. Canada
Edison S.p.a., Milan, Italy
ETH Zürich (Inst. Appl. Phys.)
Fugro Airborne Surveys, South Africa
Geovista, Sweden
Helsinki University of Technology, Finland
Highwave Optical Technologies, France
ICMAB Barcelona, Spain
INESC, Optoelectronics and Electronic
Systems Unit, Portugal
Institute des Sciences de la Matières et du
Rayonnement Caen-Cedex, France
Institute for Superhard Materials, Kiev, Ukrain
Institute of Crystallography Moscow, Russia
Institute of Radio Engineering and Electronics
Moscow, Russia
Institute of Solid State Physics Moscow,
Russia
Lawrence Livermore National Lab Berkeley,
USA
MAI Moscow, Russia
Moscow Engineering Physics Institute (State
University), Russia
Moscow University, Russia
National Physical Laboratory, Teddington, UK
New University of Lisbon, Portugal
Novosibirsk University, Russia.
Oxford University, UK
Palacky University Olomouc, Czech Republik
Philips Research Lab. Eindhoven, Netherlands
S.U.P.R.A.T.E.C.S., Liege, Belgium
27
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
SAS Kosice, Slovakia
SNR Mechatronics, Annecy, France
SPEZREMONT, Moscow, Russia
SpinTron Grenoble, France
Swiss Federal Institute of Technology
Lausanne, Institute of Applied Optics (IOA),
Suisse
Sydkraft, Sweden
Technical Research Centre of Finland
TU Delft, The Netherlands
Universita di Roma Tre, Italy
Université des Sciences et Technologies de
Lille, France
Université Paris-Sud, France
Universiteit Twente, The Netherlands
University College London, UK
University of Cambridge, Department of
Materials Science, UK
University of Sheffield, UK
University of Veszprem, Hungary
University of Viena (Atominstitut), Austria
Vienna Institute for Archaeological Science,
Austria
Publications
V. Schultze, D. Drung, R. IJsselsteijn,
H.-G. Meyer:
“A high-Tc SQUID gradiometer with integrated
homogeneous field compensation”
Superconductor Science and Technology, 17
(2004), 165–169
R. Boucher, U. Hübner, W. Morgenroth, H. Roth,
H.-G. Meyer, M. Schmidt, M. Eich:
“Etching of sub-micron high aspect ratio holes in
oxides and polymers”
MNE 2003, 73–74C (2004), pp. 330–335
R. Boucher, W. Morgenroth, H. Roth,
H.-G. Meyer, C. Liguda, M. Eich:
“Etching of submicron holes in SiO2, Ta2O5 and
Nb2O5”
J. Vac. Sci. Technol. B 22 (2004) 519
M. Grajcar, A. Izmalkov, E. Il’ichev, Th. Wagner,
N. Oukhanski, U. Hübner, T. May, I. Zhilyaev,
H. E. Hoenig, Ya.S. Greenberg, V. I. Shnyrkov,
D. Born, W. Krech, H.-G. Meyer, Alec Maassen
van den Brink, M. H. S. Amin:
“Low-frequency measurement of the tunneling
amplitude in a flux qubit”
Physical Review B 69 (2004), 060501
A. Izmalkov, M. Grajcar, E. Il’ichev, N. Oukhanski,
Th. Wagner, H.-G. Meyer, W. Krech, M. H. S. Amin,
A. Maassen van den Brink, A. M. Zagoskin:
“Observation of macroscopic Landau-Zener transitions in a superconducting device”
Europhysics Letters 65 (2004), 844
28
A. Izmalkov, M. Grajcar, E. Il’ichev, Th. Wagner,
H.-G. Meyer, A. Yu. Smirnov, M. H. S. Amin,
Alec Maassen van den Brink and A. M. Zagoskin:
“Evidence for entangled states of two coupled
flux qubits”
Phys. Rev. Lett. 93 (2004), 037003
E. Il’ichev, A. Yu. Smirnov, M. Grajcar,
A. Izmalkov, D. Born, Th. Wagner, W. Krech,
A. Zagoskin:
“Radio-frequency method for investigation of quantum properties of superconducting structures”
Fizika Nizkikh Temperatur 30 (2004), 823
or Low Temperature Physics 30 (2004), 620
M. Amin, M. Grajcar, E. Il’ichev, A. Izmalkov,
Alec Maassen van den Brink, G. Rose,
A. Smirnov, A. Zagoskin:
“Superconducting
Quantum
Storage
and
Processing”
Proceedings of IEEE 2004 International SolidState Circuits Conference, pp. 296 (2004), 529
A. Golubov, M. Yu. Kupriyanov, E. Il’ichev:
“Current-phase relations in Josephson junctions”
Rev. Mod. Phys. 76 (2004), 411
D. Born, V. I. Shnyrkov, W. Krech, Th. Wagner,
E. Il’ichev, M. Grajcar, U. Huebner, H.-G. Meyer:
“Reading-out the state inductively and microwave
spectroscopy of an interferometer-type charge
qubit”
Phys. Rev. B 70 (2004), 180501
S. N. Vdovichev, B. A. Gribkov, S. A. Gusev,
E. Il’ichev, A. Yu. Klimov, Yu. A. Nozdrin,
G. L. Pahomov, V. V. Rogov, R. Stolz,
A. A. Fraerman:
“Josephson junctions in the inhomogeneous
magnetic field of the ferromagnetic particles”
JETP Letters 80 (2004), 758 (in Russian)
R. Stolz, V. Zakosarenko, M. Schulz, A. Chwala,
L. Fritzsch, H.-G. Meyer, E. O. Köstlin:
“Magnetic Full Tensor SQUID Gradiometer
System for Geophysical Applications”
Proceedings of SEG 2004, Vol. 1 (2004), pp.
786–789
S. Linzen, T. Robertson, T. Hime,
B. L. T. Plourde, John Clarke:
“Low noise computer controlled current source
for quantum coherence experiments”
Review of Scientific Instruments 75 (2004),
2541–2544
N. Oukhanski, H.-G. Meyer:
“Low Noise Temperature PHEMT Readout for
Quantum Devices”
Proceedings of Sixth European Workshop on
Low Temperature Electronics (WOLTE-6),
European Space & Technology Centre, Keplerlaan 1, 2201 AZ Noordwijk (The Netherlands),
23–25 June 2004
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
N. Oukhanski, E. Hoenig:
“Ultrasensitive radio-frequency pseudomorphic
high electron mobility transistor readout for quantum devices”
Appl. Phys. Lett. 85 (2004), 2956
S. Queste, S. Dubourg, O. Acher, K.-U. Barholz,
R. Mattheis:
“Exchange bias anisotropy effect on the dynamic
permeability of thin NiFe layers”
J. Appl. Phys. 95 (2004), 6873
K. Steenbeck, R. Mattheis, M. Diegel:
“Antiferromagnetic energy loss and exchange
coupling of IrMn/CoFe films: experiments and
simulations”
J. Magn. Magn. Mater. 279 (2004), 317
J. McCord, D. Elefant, R. Mattheis:
“Dynamic magnetic anisotropy at the onset of
exchange bias: The NiFe/IrMn ferromagnet/antiferromagnet system”
Phys. Rev. B 70 (2004), 094420
M. Diegel, R. Mattheis, E. Halder:
“360° domain wall investigation for sensor applications”
IEEE Trans. Magn. 40 (2004), 2655
A. Franz, Y. Koval, D. Vasyukov, P. Müller,
H. Schneidewind, D. A. Ryndyk, J. Keller, and
C. Helm:
“Thermal fluctuations in ultrasmall intrinsic
Josephson junctions”
Phys. Rev. B 69 (2004), 014506
J. Scherbel, M. Mans, F. Schmidl,
H. Schneidewind, P. Seidel:
“Low-frequency voltage noise in mesa-shaped
stacks of intrinsic high-Tc Josephson junctions”
Physica C 403 (2004), 37
P. A. Warburton, A. R. Kuzhakhmetov,
O. S. Chana, G. Burnell, M. G. Blamire,
H. Schneidewind, Y. Koval, A. Franz, P. Müller,
D. M. C. Hyland, D. Dew-Hughes, H. Wu,
C. R. M. Grovenor:
“Josephson fluxon flow and phase diffusion in
thin-film intrinsic Josephson junctions”
J. Appl. Phys. 95 (2004), 4941
H. Schneidewind, T. Stelzner, E. Gaganidze,
J. Halbritter:
“Microwave surface resistance of Hg-1212 thin films
prepared through a Tl / Hg substitution process“
Physica C 411 (2004), 152
J. Scherbel, M. Mans, H. Schneidewind,
U. Kaiser, J. Biskupek, F. Schmidl, and P. Seidel:
“Texture and electrical dynamics of micrometer
and submicrometer bridges in misaligned
Tl2Ba2CaCu2O8 films“
Phys. Rev. B 70 (2004), 104507
J. Dellith, M. Wendt:
“Electron excited M X-ray spectra of the elments
55 ≤ Z ≤ 58”
Microchim. Acta 145 (2004), 25
M. Wendt, J. Dellith:
“M spectra of the rare-earth elements measured
with an ultra – thin window Si(Li) detector”
Microchim. Acta 145 (2004), 261
T. Prikhna, W. Gawalek, Ya. M. Savchuk,
V. E. Moshchil, N. V. Sergienko, T. Habisreuther,
M. Wendt, R. Hergt, C. Schmidt, J. Dellith,
V. S. Melnikov, A. Assmann, D. Litzkendorf,
P. A. Nagorny:
“High pressure synthesis of MgB2 with additions
of Ti”
Physica C 402 (2004), 223
T. Prikhna, J. Rabier, A. Proult, X. Chaud,
W. Gawalek, A. V. Vlasenko, J.-L. Soubeyroux,
R. Tournier, F. Sandiumnege, Ya. M. Savchuk,
V. E. Moshchil, P. A. Nagorny, N. V. Sergienko,
V. S. Melnikov, S. Kracunovska, D. Litzkendorf,
S. N. Dub:
“Structure and properties of melt-textured
YBa2Cu3O7-δ, high pressure-high temperaturd
treated and oxygenated under evaluated oxygen
pressure”
Supercond. Sci. Technol. 17 (2004), S515
W. Gawalek, T. Habisreuther, M. Zeisberger,
D. Litzkendorf, O. Surzhenko, S. Kracunovska,
T. A. Prikhna, B. Oswald, L. K. Kovalev,
W. Canders:
“Batch-processed melt-textured YBCO with
improved quality for motor and bearing applications”
Supercond. Sci. Technol. 17 (2004), 1185
R. Müller, H. Steinmetz, R. Hiergeist, W. Gawalek:
“Magnetic particles for medical applications by
glass crystallisation”
J. Magn. Magn. Mater. 272–276 (2004), 1539
V. Wagner, H. Ahlers, Th. Klupsch, R. Müller:
“Magnetization reversal in Ba-ferrite glass ceramics observed by neutron depolarization techniques”
Physica B Vol. 345 (2004), 169
E. Romanus, N. Matoussevitch, S. Prass,
J. Heinrich, R. Müller, D. V. Berkov,
H. Bönnemann, P. Weber:
“Magnetic characterisation of cobalt nanoparticles by temperature-dependent magnetic relaxation measurements”
Appl. Organometal. Chem. 18 (2004), 548
D. Mukherji, R. Müller, R. Gilles, P. Strunz,
J. Rösler and G. Kostorz:
“Nano-crystalline Ni3Al-type intermetallic phase
powder from Ni-base superalloys”
Nanotechnology 15 (2004), 648
29
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
R. Hergt, R. Hiergeist, M. Zeisberger, G. Glöckl,
W. Weitschies, L. P. Ramirez, I. Hilger,
W. A. Kaiser:
“Enhancement of AC-losses of magnetic nanoparticles for heating applications”
J. Magn. Magn. Mater. 280 (2004), 358
R. Hergt, R. Hiergeist, I. Hilger, W. A. Kaiser,
Y. Lapatnikov, S. Margel, U. Richter:
“Maghemite nanoparticles with very high AClosses for application in RF-magnetic hyperthermia”
J. Magn. Magn. Mater. 270 (2004), 345
P. Görnert, T. Aichele, A. Lorenz, R. Hergt,
J. Taubert:
“Liquid phase epitaxy (LPE) grown Bi, Ga, Al
substituted iron garnets with huge Faraday rotation for magneto-optic applications”
phys. stat. sol. (a) 201 (2004), 1398
I. Hilger, A. Kiessling, E. Romanus, R. Hiergeist,
R. Hergt, W. Andrä, M. Roskos, W. Linß,
P. Weber, W. Weitschies, W. A. Kaiser:
“Magnetic nanoparticles for selective heating of
magnetically labelled cells in culture: preliminary
investigation”
Nanotechnology 15 (2004), 1027
W. Andrä, H. Danan, M. E. Bellemann:
„Physical and medical limits of the heating power
used for remote controlled drug release in the
gastrointestinal tract“
Biomedizinische Technik 49 (2004), Ergänz.
Band 2, 714
S. Liebisch, W. Andrä, H. Danan, S. Dutz, M. E.
Bellemann:
„Remote controlled release of agents by hysteresis losses of magnetic powders in alternating
magnetic fields“
Biomedizinische Technik 49 (2004), Ergänz.
Band 2, 716
S. Dutz, W. Andrä, H. Richert, M. E. Bellemann:
„Design and evaluation of methods for the controlled movement of magnetic markers in viscous media and biomaterials”
Biomedizinische Technik 49 (2004), Ergänz.
Band 2, 722
S. Knauft, W. Andrä, C. Werner, M. E. Bellemann:
„Remote controlled release of agents by friction
losses of a rotating permanent magnetic sphere
in a viscous medium“
Biomedizinische Technik 49 (2004), Ergänz.
Band 2, 724
30
C. Werner, W. Andrä, M. E. Bellemann:
„A novel method for out-patient magnetic marker
monitoring in the colon“
Biomedizinische Technik 49 (2004), Ergänz.
Band 2, 732
Talks/Posters
H.-G. Meyer, R. Stolz, A. Chwala, V. Schultze:
“SQUID Technology for Geophysical Exploration”
Tagung Kryoelektronische Bauelemente, September 12–14, 2004, Goslar, oral presentation
V. Schultze, T. Schüler:
“Der Einsatz von SQUIDs für die schnelle,
hochauflösende geomagnetische Prospektion”
Archäologisches Projekt Nasca – Palpa, Entwicklung und Adaption archäometrischer Techniken
zur Erforschung der Kulturgeschichte, Feldkonferenz in Palpa, Peru, September 17–22,
2004, oral presentation
A.Chwala, R. Stolz, M. Schulz, V. Zakosarenko,
L. Fritzsch, N. Oukhanski, R. Wright, T. Hage,
H.-G. Meyer:
“Airborne Application of a Full Tensor SQUID
Gradiometer”
Conference on Applied Superconductivity (ASC),
Jacksonville, USA, October 3–8, 2004, oral presentation
A.Chwala, H.-G. Meyer, R. Stolz, V. Schultze:
„SQUID-Systeme für die geophysikalische
Erkundung“
Deutsche Kälte-Klima-Tagung 2004, November
17–19, 2004, oral presentation
M. Schubert, G. Wende, T. May, H.-G. Meyer:
“A Lumped Array Josephson Pulse Quantizer
or Quantum-based Arbitrary Waveform Synthesizers”
24th Conference on Precision Electromagnetic
Measurements (CPEM), June 27–July 2 July,
2004, London, UK, poster
M. Schubert, G. Wende, T. May und H.-G. Meyer:
“Eine impulsgesteuerte Josephson Serienschaltung zum Einsatz in einem Quantensynthesizer“
Tagung Kryoelektronische Bauelemente, September 12–14, 2004, Goslar, poster
M. Schubert, G. Wende, T. May, H.-G. Meyer:
“A cross-type SNS junction array for a Josephson
pulse quantizer”
Applied Superconductivity Conference (ASC),
Jacksonville, FL, USA, October 3–8, 2004, poster
A. Izmalkov, M. Grajcar, E. Il’ichev, N. Oukhanski,
Th. Wagner, H.-G. Meyer, W. Krech,
M. H. S. Amin, A. Maassen van den Brink,
A. M. Zagoskin:
“Observations of macroscopic Landau-Zener
transitions in superconducting device”
Quantum Technologies, Canada, March 30–31,
2004, poster
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
A. Izmalkov, M. Grajcar, E. Il’ichev, Th. Wagner,
N. Oukhanski, U. Hübner, T. May, I. Zhilyaev,
H. E. Hoenig, Ya. S. Greenberg, V. I. Shnyrkov,
D. Born, W. Krech, H.-G. Meyer, M. H. S. Amin,
A. Maassen van den Brink:
“Characterization of flux qubits by impedance
measurements”
Quantum Technologies, Vancouver, Canada,
March 30–31 2004, poster
E. Il’ichev:
“Experimental investigation of superconducting
qubits using a resonant tank circuit”
Frühjahrstagung des Arbeitskreises Festkörperphysik (AKF) der DPG, Regensburg, March
08–12, 2004, talk
A. Izmalkov, M. Grajcar, E. Il’ichev, Th. Wagner,
H.-G. Meyer, A. Yu. Smirnov, M. H. S. Amin,
Alec Maassen van den Brink, A. M. Zagoskin:
“Evidence for entangled states of two coupled
flux qubits”
Tagung Kryoelektronische Bauelemente, September 12–14, 2004, Goslar, poster
E. Il’ichev, M. Grajcar, A. Izmalkov , Th. Wagner,
D. Born, N. Oukhanski, H.-G. Meyer,
M. H. S. Amin, Alec Maassen van den Brink,
A. M. Zagoskin:
“Adiabatic measurement of the tunneling amplitude in flux qubit”
Applied Superconductivity Conference (ASC),
Jacksonville, FL, USA, October 3–8, 2004, poster
A. Izmalkov, M. Grajcar, E. Il’ichev, N. Oukhanski,
Th. Wagner, H.-G. Meyer, W. Krech,
M. H. S. Amin, Alec Maassen van den Brink,
A. M. Zagoskin:
“Observation of macroscopic Landau-Zener transitions in a superconducting device”
Applied Superconductivity Conference (ASC),
Jacksonville, FL, USA, October 3–8, 2004, poster
M. Grajcar, A. Izmalkov, S.Linzen, E. Il’ichev,
Th. Wagner, and H.-G. Meyer, S. Uchaikin,
A. Yu. Smirnov, A. M. Zagoskin:
“Steps towards adiabatic quantum computation
with superconducting flux qubits”
Bad Honnef, November 28–December 1, 2004,
poster
M. Grajcar, A. Izmalkov, E. Il’ichev, H.-G. Meyer:
“Adiabatic quantum evolution of superconducting
flux qubits”
Quantum Information Processing, Herrsching,
September, 2004, talk
S. Linzen, B. L. T. Plourde, T. L. Robertson,
T. Hime, P. A. Reichardt, C. E. Wu, F. Wilhelm,
John Clarke:
“Investigation of a superconducting flux qubit with
SQUID readout”
Spring-Meeting of the German Physical Society,
Regensburg, March 8–12, 2004, talk
S. Linzen, E. Il’ichev, M. Grajcar, Th. Wagner,
A. Izmalkov, N. Oukhanski, U. Hübner, T. May,
H.-G. Meyer, D. Born, W. Krech:
“Untersuchung supraleitender Quantenbits mittels Impedanz-Meßmethode”
Tagung Kryoelektronische Bauelemente, September 12–14, 2004, Goslar, poster
S. Anders, T. May, V. Zakosarenko, L. Fritzsch,
R. Boucher, E. Kreysa, W. Esch, H.-G. Meyer:
“Supraleitende Bolometer mit integrierter SQUIDAuslesung”
Tagung Kryoelektronische Bauelemente, September 12–14, 2004, Goslar, oral presentation
T. May, V. Zakosarenko, E. Kreysa, W. Esch,
S. Anders, L. Fritzsch, R. Boucher, R. Stolz,
J. Kunert, H.-G. Meyer:
“On-chip integrated SQUID readout for superconducting bolometers”
Applied Superconductivity Conference (ASC),
Jacksonville, FL, USA, October 3–8, 2004, poster
R. Stolz, V. Zakosarenko, S. Anders, L. Fritzsch,
H.-G. Meyer, A. Fleischmann, C. Enss:
“SQUID Gradiometer Arrays for Ultra-Low
Temperature Magnetic Micro-Calorimeters”
Conference on Applied Superconductivity (ASC),
Jacksonville, USA, October 3–8, 2004, oral presentation
R. Stolz, V. Zakosarenko, M. Schulz, A. Chwala,
L. Fritzsch, H.-G. Meyer, E.O. Köstlin:
“Magnetic Full Tensor SQUID Gradiometer
System for Geophysical Applications”
Annual Meeting of the Society of Exploration
Geophysicists (SEG), Denver, USA, October
10–15, 2004, oral presentation
N. Oukhanski, H.-G. Meyer:
“High sensitive bipolar- and high electron mobility
transistor read-out electronics for quantum
devices”
The 8th International Workshop “From Andreev
Reflection to the International Space Station”,
Björkliden, Kiruna, Sweden, March 20–27, 2004,
oral presentation
N. Oukhanski, H.-G. Meyer:
“Low Noise Temperature PHEMT Readout for
Quantum Devices”
Sixth European Workshop on Low Temperature
Electronics (WOLTE-6), European Space &
Technology Centre, Keplerlaan 1, 2201 AZ
Noordwijk (The Netherlands), 23–25 June 2004,
oral presentation
N. Oukhanski, H.-G. Meyer:
“Low Noise Temperature PHEMT Readout for
Quantum Devices“
Tagung Kryoelektronische Bauelemente, September 12–14, 2004, Goslar, poster
31
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
K.-U. Barholz, R. Mattheis:
“A critical comparison of rotating field and hysteresis loop techniques for determination magnetic anisotropies in the NiFe/IrMn system”
9th Joint MMM/INTERMAG Conference, Anaheim,
CA, January 5–9, 2004
A. Assmann, M. Wendt:
“Bestimmung der Elektronenreichweite in Si
durch Sekundärelektronenabbildung dünner, keilförmiger Objekte”
35. EDO-Herbsttagung, Wuppertal, September
13–15, 2004
J. Langer, B. Ocker, W. Maass, R. Mattheis,
W. Michalke, M. Diegel:
“RBS and in-situ resistance study of ECWR oxidation for low RA-TMR”
9th Joint MMM/INTERMAG Conference, Anaheim,
CA, January 5–9, 2004
J. Dellith, M. Wendt:
“Optimierung der Nachweisbedingungen für die
wellenlängendispersive Röntgenmikroanalyse”
35. EDO Herbsttagung, Wuppertal, September
13–15, 2004
J. McCord, R. Mattheis:
“Separation of rotational and unidirectional
anisotropy in exchange biased films”
9th Joint MMM/INTERMAG Conference, Anaheim,
CA, January 5–9, 2004
J. McCord, R. Mattheis:
“Dynamic anisotropy and asymmetric magnetization reversal at the onset of exchange-bias in
Ni81Fe19-IrMn bilayer systems”
International Workshop on Exchange Bias in
Magnetic Nanostructures, September 16–18,
2004, Anglet, Frankreich
M. Diegel, R. Mattheis, E. Halder:
“360° domain wall investigation for sensor applications”
9th Joint MMM/INTERMAG Conference, Anaheim,
CA, January 5–9, 2004
S. Queste, S. Dubourg, O. Acher, K.-U. Barholz,
R. Mattheis:
“Exchange bias anisotropy effect on the dynamic
permeability of thin NiFe layers”
9th Joint MMM/INTERMAG Conference, Anaheim,
CA, January 5–9, 2004
S. Groudeva-Zotova, R. Kaltofen, D. Elefant,
V. Hoffmann, J. Thomas, C. M. Schneider,
W. Michalke, R. Mattheis:
“Magnetic properties and crystallinity of
NiMn/FeNi(CoFe) bilayer systems with different
seed layers”
Frühjahrstagung DPG DS 22.22, March 8–12,
2004
R. Mattheis, J. McCord:
“Separation der unterschiedlichen Anisotropien
(rotierbare, unidirektionale und uniaxiale) in
Exchange–Bias-Systemen bei quasistatischer
und dynamischer Anregung”
Frühjahrstagung DPG MA 10.11, March 8–12,
2004
J. McCord, R. Mattheis:
“Kerr observations of asymmetric magnetization
reversal in CoFe-IrMn bilayer systems”
Frühjahrstagung DPG MA 13.52, March 8–12,
2004
E. Halder, R. Mattheis:
“Getriebeloser Multiturn”
10th TAE Symposium „Sensoren, Signale,
Systeme“, Ostfildern, Germany, June 22–24,
2004
32
R. Mattheis, K. Steenbeck, J. McCord:
“Exchange bias below superparamagnetic AF
thickness in F/AF/AAF structures”
International Workshop on Exchange Bias in
Magnetic Nanostructures, September 16–18,
2004, Anglet, Frankreich
P. A. Warburton, A. R. Kuzhakhmetov,
M. Korsah, C. R. M. Grovenor, C. Bell,
G. Burnell, M. G. Blamire, H. Schneidewind:
“Fabrication and characterization of sub-micron
thin film intrinsic Josephson junction arrays”
Applied Superconductivity Conference (ASC),
Jacksonville FL, USA, October 3–8, 2004
R. Mattheis, K. Steenbeck:
“Beating the superparamagnetic limit of IrMn in
F/AF/AAF stacks”
49th Conference on Magnetism and Magnetic
Materials, Jacksonville, FL, November 7–11, 2004
K. Steenbeck, R. Mattheis, M. Diegel:
“Rotational loss in exchange bias systems and
their modelling”
AVS 51st International Symposium, Anaheim,
CA, November 14–19, 2004
R. Mattheis, K. Steenbeck:
“Momentum transfer in exchange bias systems of
the type F/AF/AAF”
AVS 51st International Symposium, Anaheim,
CA, November 14–19, 2004
M. Zeisberger, T. Habisreuther, D. Litzkendorf,
W. Gawalek:
“Magnetic characterization of welded YBaCuObulk samples”
Applied Superconductivity Conference (ASC),
Jacksonville FL, USA, October 3–8, 2004
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
S. Kracunovska, P. Diko, D. Litzkendorf,
T. Habisreuther, J. Bierlich, W. Gawalek:
“Crystal defects and macro-cracking in TSMG
processed YBCO superconductors”
Cambridge, Supermachines 5th Workshop,
January 3–5, 2004, England
S. Kracunovska, P. Diko, D. Litzkendorf, T. Habisreuther, J. Bierlich, S. Iliescu, F. Sandiumenge,
X. Granados, X. Obradors, W. Gawalek:
“Oxygenation and macro-cracking in melt-textured YBCO superconductors by induced holes
parallel to the c-axis”
Lisbon, Supermachines 6th Workshop, July
22–25, 2004, Portugal
S. Kracunovska, P. Diko, D. Litzkendorf, T. Habisreuther, O. Surzhenko, J. Bierlich, W. Gawalek:
“Residual tetragonal phase and macrocrack formation in melt-textured YBCO superconductors”
High Tatra-Stara Lesna, 7th EFFORT Meeting,
10–12, September, 2004, Slovak republic
R. Müller, R. Hergt, H. Steinmetz, M. Zeisberger,
W. Gawalek, R. Zboril:
“Preparation of magnetic nanoparticles for heating applications”
5th Colloquium “Magnetic fluids”, Benediktbeuern, September 2729, 2004, talk
R. Müller, R. Hergt, I. Hilger, W.A. Kaiser,
M. Zeisberger:
“Magnetic nanoparticles with large specific loss
power for heating applications”
7th Int. Conf. on Nanostructured Material, Wiesbaden, Germany, June 20–24, 2004, poster
D. Mukherji, P. Strunz, R. Gilles, R. Müller,
J. Rösler and G. Kostorz:
“A novel method to produce nano scale particles
from intermetallic phases”
7th Int. Conf. on Nanostructured Material, Wiesbaden, Germany, June 20–24, 2004, poster
R. Müller, R. Hergt, C. Schmidt, H. Steinmetz, R.
Zboril, M. Zeisberger, W. Gawalek:
“Preparation of magnetic nanoparticles with
large specific loss power for heating applications”
10th Int. Conf. on Magn. Fluids, Guaruja, Brazil,
August 2–6, 2004, poster
R. Zboril, L. Machala, M. Mashlan, J. Tucek,
R. Müller, O. Schneeweiss:
“Magnetism of amorphous Fe2O3 nanopowders
synthesized by solid-state reactions”
2nd Seeheim Conf. Magn. 2004, Seeheim, Germany
R. Zboril, M. Mashlan, L. Machala, M. Vujtek,
O. Schneeweiss, N. Pizurova, R. Müller,
M. Zeisberger:
“Nanocrystalline iron(III) oxides from thermal processes and Mössbauer spectroscopy” MSMS04,
Slusovice, Czech Republic, 2004
Th. Klupsch, P. Mühlig, R. Hilgenfeld:
“Crystal Growth of Biological Macromolecules: A
Scenario of Step Growth Kinetics from in situ
Observations by Confocal Laser Scanning
Microscopy”
Gemeinsame Jahrestagung der Deutschen
Gesellschaft für Kristallographie (DGK) und
Deutschen Gesellschaft für Kristallwachstum und
Kristallzüchtung (DGKK), March 15–19, 2004,
Jena, Germany
Th. Klupsch, P. Mühlig, R. Hilgenfeld:
“Presentation of some unpublished results of the
interdisciplinary JBCC project 2001–2003
(BioCrystallogenesisCentre) between the IMB
and the IPHT”
Gemeinsame Jahrestagung der Deutschen
Gesellschaft für Kristallographie (DGK) und
Deutschen Gesellschaft für Kristallwachstum und
Kristallzüchtung (DGKK), March 15–19, 2004,
Jena, Germany
R. Hergt, R. Hiergeist, M.Zeisberger,
D. Schüler, U. Heyen, I. Hilger, W. A. Kaiser:
“Magnetic Properties of bacterial magnetosomes
as potential diagnostic and therapeutical tools”
5. Intern. Conf. on Scientific and Clinical
Applications of Magnetic Carriers, Lyon 2004
G. Glöckl, I. Hilger, R. Hergt, W. Weitschies:
“Determination of specific loss power of magnetic nanoparticles in AC magnetic fields”
5th Coll. of the DFG Priority Program “Colloidal
Magnetic Fluids”, Benediktbeuern, 2004
I. Hilger, C. Fritsche, W. A. Kaiser, R. Hergt,
R. Hiergeist, M. Zeisberger, G. Glöckl,
W. Weitschies:
“Magnetic hyperthermia of tumors with selectively targeted magnetic nanoparticles”
5th Coll. of the DFG Priority Program “Colloidal
Magnetic Fluids”, Benediktbeuern, 2004
Invited talks
H.-G. Meyer, R. Stolz, A. Chwala,V. Schultze:
“SQUID Technology for Geophysical Exploration”
NATO Advanced Research Workshop, Warsaw,
Poland, September 8–10, 2004
H.-G. Meyer, E. Il’ichev, M. Grajcar, A. Izmalkov,
Th. Wagner, N. Oukhanski, S. Linzen, T. May,
U. Hübner, D. Born, W. Krech, A. Yu. Smirnov,
A. M. Zagoskin, S. Uchaikin:
“Impedance measurements technique for investigation of interferometer-type superconducting
qubits”
336 Wilhelm und Else Heraeus Seminar, Bad
Honnef, November 28–December 1, 2004
33
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
M. H. S. Amin, M. Grajcar, E. Il’ichev,
A. Izmalkov, A. Maassen van den Brink,
G. Rose, A. Yu. Smirnov, A. M. Zagoskin:
“Superconducting quantum storage and processing”
IEEE International Solid-State Circuits Conference 2004, San Francisco, USA, September
15–19, 2004
E. Il’ichev:
“Radio-Frequency Method for Investigation of
Quantum Properties of Superconducting Structures”
Pishift conference, Bad Münstereifel, Germany,
May 15–19, 2004
E. Il’ichev:
“Application of the impedance measurement
technique for demonstration of an adiabatic
quantum algorithm”
Quantum Technologies, Vancouver, Canada,
March 30–31, 2004
E. Il’ichev:
“Macroscopic
Quantum
Phenomena
and
Adiabatic Evolution in Interferometer Type
Superconducting Qubits”
330. Wilhelm und Else Heraeus Seminar, Bad
Honnef, Germany July 26–28, 2004
E. Il’ichev:
“Application of the impedance measurement
technique for investigation of quantum properties
of superconducting structures”
MQC2 conference, Napoli, Italy June 07–10,
2004
E. Il’ichev:
“Control of the Adiabatic Evolution of the Flux
Qubits System”
Japan Physical Society, Aomori, Japan, September 13, 2004
E. Il’ichev :
“Josephson Effect in High Tc Superconductors –
Some
Unsolved
Problems,
Fundamental
Problems of High-Tc Superconductivity”
Moscow, Russia, October 18–22, 2004
R. Mattheis:
“Reversible und irreversible Prozesse im System
FM/AFM: Experimente und Modellbeschreibung
der Phänomene Exchange Bias, Rotationsverlust
und rotierbare Anisotropie”
MINAS-Kolloquium der TU Kaiserslautern, July
22, 2004
R. Mattheis, K. Steenbeck, J. McCord:
“A unique picture of exchange bias phenomena
in polycrystalline (111) textured F/AF film structures”
34
International Workshop on Exchange Bias in
Magnetic Nanostructures, September 16–18,
2004, Anglet, Frankreich
J. McCord, R. Mattheis:
“Canted anisotropy, asymmetric magnetization
reversal and domains in ferromagnetic-IrMn
exchange-biased systems”
Joint European Magnetic Symposia, Dresden,
Germany, September 5–10, 2004
M. Wendt:
“Qualitative Röntgenmikroanalyse”
RÖNTEC – Kundenschulung, Strausberg bei
Berlin, June 14–16, 2004
M. Wendt:
“Zur Systematik der charakteristischen Röntgenspektren”
35. EDO-Herbsttagung, Wuppertal, September
13–15, 2004
W. Gawalek:
“Bulk YBCO for Flywheels and other Power
Applications”
ASSE`04 Euro Summer School, July 7–15 2004,
Budapest, Hungary
W. Gawalek, T. Habisreuther, M. Zeisberger,
D. Litzkendorf, S. Kracunovska, T. A. Prikhna,
B. Oswald, L. K. Kovalev, W. Canders:
“Bulk HTS for MAGLEV and Energy Technique
Applications”
2004 “International Cryogenic Materials Conference ICMC” University of Wollongong, Wollongong NSW, Australia, February 10–13, 2004
W. Gawalek, T. Habisreuther, M. Zeisberger,
D. Litzkendorf, S. Kracunovsk, T. O. Prikhna,
B. Oswald, L. K. Kovalev, W. Canders:
“Improved High-Temperature Superconductors
for Cryomagnetic Application”
NATO Workshop “Innovative Superhard Materials
and Sustainable Coatings”, ISM Kiev/Ukraine,
May 12–15, 2004
W. Gawalek:
“Batch-Processed Melt-Textured YBCO with
Improved Quality for MAGLEV and Energy
Technique Applications”
Southwest Jiao Tong University, China, June 25,
2004
W. Gawalek, T. Habisreuther, M. Zeisberger,
D. Litzkendorf, S. Kracunovska, T. O. Prikhna,
B. Oswald, L. K. Kovalev:
“Improved High-Temperature Superconductor
Materials for Power Applications”
Third MEE´2004 International Conference
“Materials and Coatings for Extreme Performances: Investigations, Ecologically Safe Technologies for Their Production and Utilization”,
Katsivali, Crimea, Ukraine, September 13–17,
2004
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
T. A. Prikhna, Y. A. Savchuk, W. Gawalek,
N. V. Sergienko, V. E. Moshchil, M. Wendt,
V. S. Melnikov, S. N. Dub, T. Habisreuther,
C. Schmidt, J. Dellith, P. A. Nagorny:
“High-pressure synthesized MgB2-based materials with high critical currents, Influence of Ta-,
SiC- and Zr-Additions”
Third MEE´2004 International Conference
“Materials and Coatings for Extreme Performances: Investigations, Ecologically Safe Technologies for Their Production and Utilization”,
Katsiveli, Crimea, Ukraine, September 13–17,
2004
W. Gawalek, T. Habisreuther, D. Litzkendorf,
M. Zeisberger, T. O. Prikhna, L. K. Kovalev:
“Recent Developments of Bulk Applications”
ISS 2004 – International Symposium on Superconductivity”, Niigata, Japan, November 23–25,
2004
T. Habisreuther:
“Bulk YBCO for Flywheels and other Power
Applications“
ASSE2004, Budapest July 17, 2004
T. Habisreuther:
“Processing and Characterisation of Bulk MeltTextured YBCO Monoliths and Function Elements“
KSS2004, Yongpyong Resort, Kangwondo,
August 17, 2004, Korea
T. Habisreuther:
“Activities at the IPHT Jena and in Europe“
KAERI August 19, 2004, Korea
T. Habisreuther:
“Characterisation of batch-processed MeltTextured Bulk YBCO High-Temperature Superconductors”
Scientific program during “Superlife”-Exhibition,
Budapest, November 23, 2004, Hungary
T. Klupsch:
“Static and Dynamic Light Scattering Techniques,
the Second Virial Coefficient and the Prediction
of Optimum Crystallization Conditions”
Guest-professor at the University of South
Bohemia, Ceske Budejovice, Czech Republik,
FEBS Advanced Course “Advanced Course on
Protein Crystallization”
Academic and University Center at Nove Hrady,
Czech Republik, October 1–8, 2004
T. Klupsch:
“Novel Optical Microscopical Techniques and
Characterization of Growth Processes on
Molecular Level”
Guest-professor at the University of South
Bohemia, Ceske Budejovice, Czech Republik,
FEBS Advanced Course “Advanced Course on
Protein Crystallization”
Academic and University Center at Nove Hrady,
Czech Republik, October 1–8, 2004
T. Klupsch:
“The Kinetics of Evaporating Droplets and the
Behaviour of a Macromolecular Solute”
Guest-professor at the University of South
Bohemia, Ceske Budejovice, Czech Republik,
FEBS Advanced Course “Advanced Course on
Protein Crystallization”
Academic and University Center at Nove Hrady,
Czech Republik, October 1–8, 2004
R. Hergt:
“Magnetic Nanoparticles for Hyperthermia”
Joint European Magnetic Symposia, Dresden,
September 5–10, 2004
Patents
T. May, H.-G. Meyer, M. Schubert, G. Wende:
“Kryoelektronischer Mikrowellenschaltkreis mit
koplanaren Streifenleitungen”
DE 10 2004 002 228.3 (13.01.2004)
T. Habisreuther:
“Applications of Melt-Textured YBCO Bulk HighTemperatuer Superconductors”
Industry Seminar during “Superlife”-Exhibition,
Budapest, November 24, 2004, Hungary
J. Niemeyer, M. Khabipov, G. Wende, H.-G. Meyer:
“Vorrichtung und Verfahren zur Erzeugung einer
definierten Wechselspannung”
DE 102 18 695.2 (26.04.2002)
Granted 11.11.2004
R. Müller:
“Anwendungsnahe Forschung auf dem Gebiet
der magnetischen Werkstoffe in der Abteilung
Magnetik des IPHT Jena”
Seminarvortrag am Institut für Werkstofftechnik
und Forschungsgruppe “Magnetofluiddynamik”
an der TU Ilmenau, November 10, 2004
V. Schultze:
“Verfahren und Vorrichtung zur Messung eines
Magnetfeldgradienten”
DE 103 04 225.3 (30.01.2003)
Granted 08.11.2004
S. Fegert, H. E. Hoenig, W. Andrä, V. Schultze:
“Verfahren und Vorrichtung zur Steuerung und
Positionsbestimmung eines Instruments oder
Gerätes”
DE 102 25 518 B4 (10.06.2002)
Granted 08.07.2004
35
MAGNETIK & QUANTENELEKTRONIK / MAGNETICS & QUANTUM ELECTRONICS
Membership
New equipment
Prof. H. E. Hoenig:
• Beirat Institut für Mikroelektronik und
Mechatronik Ilmenau
• Beirat Forschungszentrum für Medizintechnik
und Biotechnologie e. V. Bad Langensalza
• Scientific advisor of the Materials Science
Institutes CSIC (Spain)
• Auswahlgremium Forschungspreis des
Thüringer Ministeriums für Wissenschaft,
Forschung und Kultur
• Vorstandsvorsitzender im Verein Beutenberg
Campus e. V.
• Vorstandsvorsitzender der SUPRACON AG
Pt46Mn54 Target (300 mm x 3 mm) for GMR and
TMR systems
Dr. R. Mattheis:
• Mitglied des ITG-Fachausschusses 9.4 des
VDE
• Editorial Board IEEE Trans. on Magnetics
Diploma
Danny Schlegel
“Rauschuntersuchungen an XMR-Systemen”
Januar 2004, FH Jena
Carsten Hartmann
“Herstellung
und
Charakterisierung
von
nanokristallinen Barium-Hexaferrit-Partikeln im
Übergangsgebiet von uniaxialer zu planarer
Anisotropie” Februar 2004, FH Jena
Prof. Dr. M. Wendt:
Mitwirkung im Organisationskomitee der EDOTagungen
Andy Scheffel
“Über das Röntgen-L-Spektrum des Eisen,
gemessen an Fe und Fe3O4”
Dezember 2004, FH Jena
Prof. W. Gawalek
SCENET working group “Rotating electric HTS
machines”
Laboratory exercises
Dr. T. Habisreuther
Arbeitsgruppe K184 Supraleiter der DKE und
TC90 WG10
Freiwilliges Praktikum der FH–Studenten Marko
Pfister und Christopher Schmidt im August 2004
Lectures
Oliver Xylander und Joachim Müller, wöchentliches Seminarfach der Spezialschule Carl Zeiss,
Jena
Prof. H. E. Hoenig
Vorlesung WS 03/04, Quantencomputing
Vorlesung SS 2004, Quantencomputing
Prof. M. Wendt
Vorlesung “Einführung in die Analytische Elektronenmikroskopie”
im WS 2003/04 sowie 2004/05 an der FH Jena
Dr. H. Schneidewind
“Metallphysik”, Vorlesung an der FH Jena im WS
2004/2005
Prof. Schirrmeister, Dr. H. Schneidewind, Dr. T.
Habisreuther
“Festkörperphysik für Werkstofftechniker”, Vorlesung an der FH Jena im WS 2004/2005
Dr. T. Habisreuther
“Sonder- und Verbundwerkstoffe”
Vorlesung an der FH Jena, WS2004/2005
36
CMP (Chemical mechanical polishing) machine
for Nb technology
Herr DP A. Beck, TU Kaiserslautern 1 Woche
Events/Exhibitions
J. M. Williams et al. (NPL, UK), G. Wende etal.
(IPHT), R. Behr et al. (PTB),
“Josephson junction array systems for research
and calibration”
24th Conference on Precision Electromagnetic
Measurements (CPEM), 27th June–2nd July, 2004,
London, UK, exhibition
“SUPERLIFE” exhibition and scientific forum on
application of superconducting materials für
power applications, November 22–25 2004,
Budapest Hungary
“Highlights der Physik” June 21–26 2004 – Stuttgart, Germany
“Milestones & more” October 9 Munich, Germany
Awards
Miscellaneous
IPHT – Anerkennung für Jan Dellith zur Beiratssitzung am 22.4. 2004
Honory colloquium on the occasion of the celebration of the 80th birthday of Prof. Dr. Friedrich
Voigt with more than 50 participants at October,
8, 2004
OPTIK / OPTICS
2. Optik / Optics
Leitung/Head: Prof. Dr. H. Bartelt
[email protected]
Optische Fasern
Optical Fibers
Leitung/Head:
Dr. J. Kirchhof
[email protected]
Mikrooptik
Microoptics
Leitung/Head:
Dr. H.-R. Müller
[email protected]
Optische Mikrosysteme
Optical Microsystems
Leitung/Head:
Prof. Dr. R. Willsch
[email protected]
Mikrostrukturtechnik
Micro Structuring Technology
Dr. S. Schröter
[email protected]
Mitarbeiter des Bereiches Optik 2004 / Staff of the Optics Division in 2004.
2.1 Übersicht
2.1 Overview
Neue Ergebnisse im Bereich der photonischen
Technologien werden heute vor allem aus der
geeigneten Nutzung von Materialeigenschaften
und der Beherrschung von Mikro- oder Nanostrukturen erzielt. Mit unseren Arbeiten zu funktionellen optischen Fasern, zur Mikrooptik und zu
neuartigen faseroptischen Sensorsystemen setzen wir in besonderer Weise auf diese Kompetenzen.
Auf dem Gebiet optischer Fasern konnten wir
neben der Weiterentwicklung seltenerd-dotierter
Laserfasern uns vor allem erfolgreich auf dem
international noch neuen Forschungsfeld der
mikrostrukturierten Fasern und der photonischen
Kristallfasern etablieren. Die Ergebnisse waren
New results in the field of photonic technologies
are today achieved mostly on the basis of specific material properties and with competence in
micro- and nanostructures. Our work on functional optical fibers, micro-optics and fiber-optical
sensor systems relies on such competences to a
large extent.
In the field of optical fibers we have further
improved rare-earth-doped laser fibers, and we
have become successfully established in the
internationally growing research subject of
microstructured and photonic crystal fibers. The
results achieved so far have been an important
basis for positive recommendations and funding
decisions for projects from several different fund-
37
OPTIK / OPTICS
Fiber laser with application
example: micro marking
on steel with resolution
better than 20 µm (inset).
Fiber coupled fluorescence
measurement flow cell for
opto-chemical sensing.
Fiber Bragg grating bending sensor elements (100 nN force sensitivity) on a D-shaped fiber for H2-detection (left) and for viscosity
measurement (right).
38
OPTIK / OPTICS
eine wichtige Basis für die Bewilligung oder positive Bewertung von EU-, BMBF- und DFG-Vorhaben.
Ein Highlight bei den Faserlaser-Aktivitäten war
der neue Weltrekord von 1,3 kW cw aus einer
Faser, erreicht durch eine enge und langjährige
Zusammenarbeit der Abteilungen Mikrooptik und
Optische Fasern mit mehreren industriellen
Partnern. Damit hat sich der Bereich weiter
erfolgreich an der dynamischen Entwicklung auf
dem Gebiet der Faserlaser beteiligen können, die
vor allem auf die industrielle Materialbearbeitung
zielt. Mit einem EU-Vorhaben zu planaren optischen Add-Drop-Multiplexern konnten unsere
Kompetenzen zur Flammenhydrolyse-Schichtabscheidung und zur UV-induzierten Brechungsindexmodulation in besonders günstiger Weise
kombiniert und für die internationale Kooperation
genutzt werden. Bei der Anwendung optischer
Fasern für Sensorsysteme stellte die Entwicklung
hochtemperaturstabiler Fasergitter einen wichtigen Schwerpunkt dar. Weitere wichtige fortgeführte Aktivitäten betreffen optische FasergitterSensorsysteme für die Bahntechnik (EUVorhaben), Raumfahrt (ESA-Projekt) und Windenergieanlagen sowie optochemische Sensorlösungen für die online-Gewässeranalytik.
Neben einer Reihe von kürzerfristigen Gastaufenthalten von Wissenschaftlern konnten wir
mit dem Humboldt-Stipendiaten Prof. Kyunghwan
Oh vom Kwangju Institute of Science and
Technology in Südkorea mit einem internationalen Spezialisten der Fasertechnologie für
mehrere Monate wissenschaftlich zusammenwirken. Prof. Oh wird noch bis Februar 2005 im
IPHT als Gastwissenschaftler arbeiten und für
die Nachfolgezeit ist bereits eine weiterführende
Zusammenarbeit zwischen beiden Einrichtungen
als Teil unserer vielfältigen internationalen Kontakte geplant.
ing agencies. A highlight in our fiber laser activities was a new record result of 1.3 kW cw output
power from a single fiber, achieved by a close
cooperation between the microoptics department
and the optical fiber department with several
other industrial partners. With this result, the
Optics Division successfully participated in the
dynamic international improvement of fiber
lasers, which is directed increasingly to industrial
material processing. In a European project on
planar-optical add-drop multiplexers we took
advantage of our competences in the fields of
flame hydrolysis layer deposition and UV-induced
modulation techniques for refractive index variation. The development of fiber Bragg gratings
with high temperature stability represented an
important focus for fiber-optical sensing applications. Additional important projects were related
to fiber grating sensors in electrical trains, space
technology and wind energy converters, and to
opto-chemical sensor solutions for online water
analysis.
Besides several short-term visiting scientists, we
had the opportunity to welcome Prof. Kyunghwan
Oh from the Gwangju Institute of Science and
Technology in South Korea as a Humboldt Fellow,
and to work with this international expert on fiber
technology for several months. Prof. Oh will stay
at the IPHT as a visiting scientist until February
2005. As a result of his fellowship, the two institutions have agreed on further cooperation within
the scope of our international partnerships.
2.2
Scientific Results
2.2.1
Dopant effects in active fibers
(S. Unger, J. Kirchhof, A. Schwuchow,
S. Jetschke)
strength, low loss and power hardness, but it is a
bad host for the rare earth elements compared
with other multicomponent glasses. The interaction with rare earth elements can be improved to
a high degree by passive co-dopants (as aluminum, phosphorus, germanium, boron).
Basic investigations concerning the interaction of
rare earths and passive co-dopants have shown
that such co-dopants have manifold influences on
the laser fiber. They change the optical properties, such as the refractive index distribution, the
absorption and emission properties of the rare
earth ions, and the background loss of the fiber.
Moreover, they influence the chemical processes
of the glass preparation and such glass properties as viscosity, thermal and diffusion behavior,
and the atomic point defect concentration during
preform and fiber fabrication.
Important progress during recent years was
made with fiber lasers regarding high output
power and excellent beam quality. Such improvements were achieved thanks to new design concepts such as non-symmetric double claddings,
but also by intensive material and technology
development.
The core of active fibers is composed of one or
more rare earth oxides (ytterbium, erbium,
neodymium, thulium) and various passive codopant oxides in addition to silicon dioxide. Silica
has outstanding properties concerning fiber
39
OPTIK / OPTICS
Fig. 2.1: Absorption cross section of Yb-doped
fibers.
One example, the absorption cross section of Yb
depending on the usual co-dopants, is shown in
Fig. 2.1. It was determined by measuring absorption coefficients both on small preform slices and
small fiber pieces. Mean concentrations of Yb
were calculated by integration of the radial Yb profiles measured by X-ray microprobe analysis. As
shown in Fig. 2.1, the kind of the co-dopant influences the shape of the absorption spectrum, but
particularly the absolute absorption values. For
aluminum co-doping, the cross section was found
to be similar to that obtained without co-dopants,
whereas for phosphorus and especially for germanium co-doping, the value of the cross section is
remarkably reduced. The influence of this effect
on pump absorption has to be considered in the
design of high-power double-clad laser fibers.
2.2.2
40
the laser measurements, the fibers were
cladding-pumped with 794 nm or 913 nm (excitation of Nd or Yb, respectively).
Furthermore, by means of rate equations we
developed a model for the temporal and spatial
evolution of photon and ion excitation, taking into
account the absorption and stimulated emission of
photons by ions, the loss of photons and ion energy by intrinsic attenuation, and the energy transfer
from Nd to Yb. Model parameters are the geometrical and material parameters of the fiber (core and
cladding diameter, fiber length, intrinsic lifetimes
and concentrations of the ions, intrinsic attenuation), the absorption and emission cross sections,
the reflectivity of the laser mirrors, and the wavelength and power of the pump and laser light.
Using the model and the measured decay data,
we found the energy transfer parameters of the
investigated fibers. From these parameters we
calculated the fluorescence spectra, which compared satisfactorily with the experimental results.
The calculated laser power characteristics and
the laser wavelength also are in good agreement
with the experiments. From the model we
obtained further quantities and dependencies,
which assist the understanding of the laser
mechanism. As an example, Fig. 2.2 (below)
shows, besides the laser power characteristic,
the decreasing activity of Yb ions with increasing
output power. In case of high output power, the
laser photons are produced only by Nd ions.
(Naturally, Yb ions will contribute to the output if
they are pumped by a suitable wavelength.) As
shown in Fig. 2.2. (above), the laser wavelength
is nearly independent of the output power. From
the model it is evident that the wavelength is
essentially determined by the spectral absorption
of the Yb ions.
Investigation of Nd:Yb-codoped silica
fibers as a laser material
(U. Röpke, S. Jetschke, S. Unger)
Silica fibers codoped with neodymium (Nd) and
ytterbium (Yb) were developed for application in
high power fiber lasers based on multi-wavelength pumping. Experiments accomplished in
cooperation with partners demonstrated the
potential of this laser concept. The output power
above 1 kW, the good beam quality and the wavelength near 1090 nm correspond to the Yb highpower fiber lasers. On the other hand, the laser
process in the two-ion medium is more complex
compared to silica doped only with Yb or Nd. A
typical example is the energy transfer from stimulated Nd ions to Yb ions. For a better understanding of this laser medium we investigated the
fluorescence spectra, the fluorescence decay
and the laser characteristics both experimentally
and theoretically.
Using fibers with different concentrations of the
active ions, we analyzed the energy transfer process by exciting only the Nd ions and measuring
the fluorescence spectra and decay curves. For
Fig. 2.2: Nd:Yb fiber laser characteristics from
experiment and model calculations (only Nd
pumped with 749 nm).
2.2.3
Yb doped fiber laser beyond
the 1 kW-level
(V. Reichel, K. Mörl, S. Unger)
The output power of fiber lasers with nearly
diffraction-limited quality has been dramatically
increased during the recent two years, and the
OPTIK / OPTICS
kW-level was reached first by English Scientists
in summer 2003 (1.01 kW).
At the IPHT Jena, the development of special
double-clad fibers for such high output powers
was also continued. Additionally to the doubleclad structure and the large mode area of the Ybdoped laser-active core, a fluorine-doped silica
layer was added between the pure silica pump
core and the coating made of silicone rubber. The
preparation of the fiber was done in cooperation
with the company of CeramOptec, Bonn. The
additional layer with a refractive index between
those of the pure silica and the silicone rubber
reduces the thermal problems in the polymer
coating, because most of the pump light is guided
in the silica or doped silica layers with accordingly lower intrinsic losses.
The diameter of the D-shaped pump core was
specified as 600 µm, in agreement with the
parameters of the available fiber-coupled diode
laser systems. The fluorine-doped silica layer had
a thickness of about 65 µm. Including the approximately 100 µm thick silicone rubber coating and a
mechanical protective layer (nylon), the test fiber
had a total diameter of 1.5 mm. The laser-active
core diameter was increased to about 40 µm. The
numerical aperture was adjusted to 0.065.
This fiber was tested in cooperation with the
company of LASERLINE GmbH Mülheim-Kärlich.
A record output power of about 1.3 kW was
achieved by pumping with a total of about 2.2 kW
pump power at 940 and 975 nm (see figure 2.3).
The power was delivered by two diode laser systems of LASERLINE to both ends of the fiber. The
fiber laser output power was extracted at only one
end by a dichroic filter, whereas a highly reflective
resonator mirror was placed at the other fiber end.
The beam quality, the time behavior and the spectrum were measured at output powers of about
1 kW. An amplitude noise of about 2% and a
beam quality of better then M2 = 3 were measured. There was no evidence of Raman-shifted
components in the spectrum.
Thanks to these outstanding results, several new
fiber laser research projects have recently been
acquired from national and European research
programs.
Fig. 2.3: Cross section and slope of a Yb- doped
fiber with fluorine doped coating.
2.2.4
Modeling and preparation aspects
of passive and active doped microstructured fibers with multiple ring
core structure
(Kyunghwan Oh, Soan Kim)
In recent years index guiding holey fibers (IGHFs)
have been intensively studied due to their unique
optical properties such as endlessly single-mode
operation, anomalous dispersion characteristics,
high non-linearity, high-power delivery, to name a
few. In conventional IGHFs, the core-guidance
has been provided by a solid silica defect core by
a missing central air-hole surrounded by periodic
air-hole arrays in the cladding. Since the core
refractive index is higher than the effective
cladding index, which is an average of air holes
and background silica, light signals can be guided by total internal reflection along the silica
defect core. Mode propagation conditions along
IGHF depend on the ratio between the air hole
diameter D and the pitch Λ and single mode
operation has been reported with an appropriate
D/Λ ratio.
IGHFs have been used not only as passive transmission medium but also as a waveguide structure for rare earth doped fiber lasers. Prior laser
cavities, however, have confined the rare earth
ions only to the silica defect core to increase the
signal-rare earth and pump-rare earth spatial
overlaps, which could, however, deteriorate
amplification efficiency of high peak power
pulsed lasers requiring a larger modal area to
reduce gain saturation and fiber damage. In the
case where chromatic dispersion or polarization
properties are selectively of primary interest
whilst suppressing non-linearity, modal area control in IGHFs have been also one of critical
issues. A large modal area in optical fibers has
been achieved in two ways, one is to expand the
Gaussian-like beam while the other is to provide
annulus ring mode. In previous IGHFs, different
sets of hole arrays had to be used to increase the
effective area of core, which required elaborate
process control to keep the different size holes
intact during fiber drawing. In order to facilitate
modal area control in IGHFs, a new degree of
freedom in fiber structure design is, therefore, in
need to provide consistency and flexibility in
waveguide design along with their unique chromatic and polarization characteristics.
Utilizing a novel hollow ring core defect, as shown
in Fig. 2.4, we are able to introduce a new set of
design parameters in a IGHF structure. The central silica defect in prior IGHFs is replaced by a
high-index ring surrounding the central air-hole,
which provides three new parameters, the airhole diameter, D, the outer ring core diameter
Wring, and the refractive index difference, ∆.
Utilizing this layered hollow structure as a defect,
we have theoretically analyzed its annulus mode
area, mode cut-off and chromatic dispersion
properties.
41
OPTIK / OPTICS
We also prepared air core fibers with up to five air
rings to achieve photonic band gap light propagation.
Fig. 2.6: Micrographs of an air core PCF and a
high-NA small-core index-guiding PCF.
Fig. 2.4: Schematic of the refractive index profile
and of the ring core structure composed of the
central air hole with diameter of D, the high-index
ring core with outer diameter Wring. and refractive
index difference ∆.
2.2.5
One interesting PCF type we have fabricated and
tested is the so-called endlessly single mode
fiber. This index-guiding fiber with unique behavior allows light of all silica transmitting wavelengths (UV…NIR) to be propagated in a truly
single mode regime.
By shifting the air fraction and hole dimensions
within a narrow span, the fiber property can also
be “switched” from endlessly SM to a conventional single/multimode propagating regime for the
different transmitting wavelengths.
Preparation of silica based microstructured fibers
(J. Kobelke, J. Kirchhof, K. Schuster,
K. Gerth, K. Mörl)
The rapid development of novel designs of
microstructured optical fibers (MOFs) and photonic crystal fibers (PCFs) as well as various
material concepts open up improved technical
possibilities for fiber functionality, e.g. for fiber
lasers, amplifiers, frequency filters, and switching
modules. We prepared and investigated various
designed silica-based MOFs, index-guiding multiring air hole fibers, and large core fibers with a
single air ring, but cobweb design of the silica
bridges.
Fig. 2.7: Mode propagation behavior of a fourring index-guiding PCF (d: hole diameter, Λ:
pitch, core diameter: 9 µm, square: d/Λ = 0.35,
circle: d/Λ = 0.42).
2.2.6
42
Fig. 2.5: Micrograph of an air-clad index-guided
PCF.
Microstructured fiber lasers
(K. Schuster, St. Grimm, J. Kobelke,
J. Kupis, C. Aichele, K. Mörl, S. Unger,
J. Kirchhof)
The periodic arrangement of air holes in
microstructured fibers offers the opportunity to
create unique properties in fiber lasers. Within
the great structural variety of different shapes,
sizes and distributions of air holes we favor two
fiber structures. One is an air-clad structure with
very high numerical aperture for efficient pump
light use. Additionally, there is a decoupling of the
OPTIK / OPTICS
polymer coating from the optical system for better
power stability. The other is an index-guided multiple ring structure, which offers the chance of a
special dispersion design and an improvement of
the destruction threshold for high-power applications and reduction of nonlinear effects by large
core sizes and increased mode field diameters
(Fig. 2.8).
Fig. 2.8: Microstructured fiber with active doped
core.
Presently, active doped cores with a diameter of
1.5 mm can be produced by the MCVD technique:
the core is stacked together with capillary rings
and drawn into the microstructured laser fiber.
However, for the use of these doped materials in
PCF structures, a long-time etching process is
necessary. This process can lead to diameter fluctuations and increased surface roughness.
Despite this fact we prepared an Yb3+-doped
microstructured fiber with air-clad structure, with a
loss of 9 dB/km at a wavelength of 1.3 µm. The
laser efficiency is about 65%. These values are
comparable to the loss and the laser efficiency of
solid D-shaped double-clad fiber lasers.
For the fabrication of large doped cores with
comparable properties regarding the loss and
laser characteristics, we developed a new manufacturing method based on silica powder followed
by sintering processes. The resulting doped
material will be prepared as a preform in a conventional way by vitrification and jacketing.
Fig. 2.9 shows the refractive index profile and the
doping level of a corresponding preform. This
preform has a Yb3+/Al3+ doped core and a
matched cladding and shows a relatively homogeneous distribution.
A task for the next future is the reduction of the
fiber loss of the powder-based materials. Up to
now, the basic loss is about one order of magnitude higher than that of standard materials
(MCVD). The influence of the atmosphere during
the sintering steps has been shown to be crucial
for the material properties and will be investigated in detail.
2.2.7
Modeling and measurements
of fundamental properties
of photonic crystal fibers (PCFs)
(K. Mörl)
Compared to the classical optical fibers,
microstructured or photonic crystal fibers (PCFs)
afford much more opportunities to design very
special optical properties. The basis for this is the
structure, i.e. the size (d) and distance (= pitch Λ)
of the air holes.
Fig. 2.10: Dispersion characteristics as function
of air-fraction of different fibers.
Fig. 2.9: Refractive index profile of a preform
based on a powder and jacketing process.
In particular, there is the chance to design
extraordinary dispersion properties. For example,
it is possible to shift the zero dispersion to the
region below the transition of material dispersion
to the visible range. Fig. 2.10 shows the dispersion behavior of different air hole structures computed by means of the beam propagation
43
OPTIK / OPTICS
method. We compared the experimentally
obtained dispersion properties with those predicted theoretically, and found a very good agreement. Other interesting applications of microstructured fibers are the so-called air-clad fibers
for high-power fiber lasers as shown in Fig. 2.11.
For optimum pump power launching, the numerical aperture (NA) of the pump cladding must be
maximized. Measurements and computations
show that NAs higher than those of the usually
employed polymer coatings can be achieved only
in the case of very small struts (smaller than the
light wavelength).
Fig. 2.11: Typical air-clad structure of a high
power laser fiber.
The preferred Ormocer coating protects the fiber
at temperatures up to 250 °C. At this temperature, the reflectivity of type I FBGs is still stable.
At temperatures over 400 °C, commercial polymer coatings will decompose. Concurrently, the
reflectivity of the FBG, i.e. the index modulation,
will decay more or less rapidly.
We have shown with our FBG inscription technology that type II FBGs can be made with a smooth
spectrum and a spectral width of approximately
1 nm, which can withstand temperatures up to
800 °C for long-term, and 1000 °C for short-time
applications. In some cases, a more Gaussian
shape of the reflectivity spectrum, compared with
the type II FBG, will be advantageous for analyzing the Bragg wavelength. Therefore, FBGs of
type IIa (overexposed type I FBGs) have been
investigated. Fig. 2.13 shows such a grating,
which changes its shape dramatically during the
first temperature increase and then becomes stable and more Gaussian-like, and shows no decay
of reflectivity. These properties correspond to the
application requirements. The understanding of
these phenomena, including the strong Bragg
wavelength shift during annealing at constant
temperature requires more detailed investigations.
Fig. 2.12 shows the dependence of the numerical
aperture on the width of struts relative to wavelength.
Fig. 2.13: Reflectivity spectra of an overexposed
FBG during the annealing.
Fig. 2.12: Dependence of numerical aperture
(NA) on the strut width (s)/wavelength (λ) relation
of air-clad fibers.
2.2.8
44
Metal coatings and Bragg gratings
in fibers for high temperature
applications
(C. Chojetzki, I. Latka, K. Schuster,
H. Porwol)
The application of fiber Bragg gratings (FBGs) as
sensor elements at high temperatures requires
their mechanical robustness and optical stability.
Only metals will form stable coatings for high
temperature applications. We have the facility to
metallize fiber sections up to 7 cm with aluminum
or gold by sputtering (Fig. 2.14). The coating
thickness is up to 1 µm. Such a gold-coated fiber
with a type II FBG, when tested in a temperature
cycle of heating up to 800 °C five times, showed
good accuracy and no debonding between the
glass surface of the fiber and the gold coating.
In first trials, we have started to coat an optical
fiber continuously with aluminium. It is a big challenge to apply such a metal coating during the
fiber drawing process and to inscribe FBGs of
type II at the same time. This will be the focus for
further investigations.
OPTIK / OPTICS
Fig. 2.14: Aluminum coated fiber section with
FBG.
2.2.9
Thermal poling of silica
(A. Strauss, U. Röpke)
Many basic functions in optical information processing like switching or modulation require nonlinear optical effects. But glasses, amorphous
centrosymmetric materials, naturally exhibit no
second-order optical susceptibility (χ(2)). An interesting way to enable such useful effects as e.g.
second harmonic generation in silica is the poling
of the material in the optically active region.
During thermal poling we applied a high voltage
(kV-range) to a planar silica sample previously,
heated to 270–330 °C. The thickness of such a
sample is typically 200–500 µm. After cooling and
switching off the voltage, a frozen-in electric field
exists in the material (EDC ~ 107 V/m). This electric field breaks the inversion symmetry, and in
combination with the intrinsic third-order nonlinearity an effective susceptibility χ(2)eff ~ χ(3) EDC arises.
These poled samples were characterized by second-harmonic generation (SHG) measurements.
The SHG-signal is affected by the poling parameters. Figure 2.15 depicts this signal as a function
of the poling temperature. An essential condition
for a successful poling-process is a temperature
of at least 270 °C.
Fig. 2.15: Second-harmonic signal of a poled
Herasil1-sample as a function of poling temperature.
The applied voltages are between 3 kV and –8
kV, and increasing the voltage causes a growth of
the second-harmonic signal. The χ(2)eff, created by
poling, did not show any degradation for several
months.
By heating up the poled samples without any voltage applied, the second-harmonic signal disappears, and thus the created second-order susceptibility is erased. Repoling of the same sample reproduces this susceptibility.
A second way to erase the second-order susceptibility is by UV-irradiation of the sample. Here
also, repoling the sample reproduces the susceptibility. The method has a potential to be used for
the position-dependent, specific UV-irradiation of
poled samples in, quasi-phase-matched processes.
An important task is to find out the thickness of
the nonlinear region (l0) and the value of χ(2)eff.
Therefore we used the ’stack’-Maker’s-fringetechnique. From the ratio of the second-harmonic power of a stack of two poled samples compared to the second-harmonic power of one
poled sample, we obtained the thickness l0 and
χ(2)eff. For example, we poled 500-µm thick
Herasil1-samples at 4 kV and 270 °C for 20 minutes. Thus we obtained a nonlinear layer of 6 µm
and an effective second-order susceptibility of
0.02 pm/V.
2.2.10 Index-matched layers for UV
inscription made by FHD
(C. Aichele, St. Grimm, M. Köhler)
The flame hydrolysis deposition method (FHD)
allows the implementation of high-quality thin
glass films in terms of refractive index, film thickness, homogeneity of both, low waveguide losses, reduced birefringence, and capability to be
structured for the production of integrated optical
devices in SOS (silica on silicon) technology.
In conjunction with the development of the UV
direct writing technique of waveguides for planar
optical devices, the photosensitivity of the lightguiding glassy layer had to be adapted to the
higher requirements. Waveguide generation by
direct UV writing within a material system having
a rather high index contrast between the core and
cladding layers, leads to elliptical mode profiles
for these waveguides. Therefore, the development and optimization of index-matched, highly
UV-photosensitive planar glass films, especially
for UV direct writing, was required. The FHD
technology is convenient for developing such new
kinds of high-quality layers with relatively low
expenditure of time and cost.
The index-matched core layer developed is characterized by equal refractive indices of the thermal oxide buffer SiO2 and the FHD cladding layers of about 1.449 at 1300 nm, and a Ge content
of about 3.5 mol% with a sharp boundary at both
sides of the core, which means a near-zero Ge
45
OPTIK / OPTICS
content in the cladding and the thermal oxide
buffer. Measurements with a microprobe analyzer
to characterize the chemical composition, dopant
distribution and film homogeneity showed a high
quality of index-matched layers, nearly comparable to the standard core layers deposited in the
past.
Although the Ge content, responsible for the photosensitivity of the material, is not optimized to be
as high as possible up to now, the photosensitivity was high enough for the inscription of waveguides at around 248 nm by our project partners,
as shown in Fig. 2.16.
Fig. 2.16: UV-written waveguide in IPHT indexmatched FHD layers.
2.2.11 Planar technology for optical
net-works (PLATON)
(M. Rothhardt, C. Aichele, M. Becker,
U. Hübner, W. Morgenroth)
The EU-funded PLATON project is based on the
evaluation and development of a UV-photosensitive planar technology for the generation of integrated optical devices for high data rate telecommunication. The main subject of interest is
demonstrating the feasibility of the technology for
making components like channel waveguides,
multimode interferometers, Mach-Zehnder structures, Bragg gratings, and thermo-optical switches. The work aims at a reconfigurable optical
add-drop multiplexer (OADM) which will be the
final demonstrator.
The IPHT contribution in this project is the implementation of a chain of key technology steps
which will go into prototypes. These are planar
waveguide structures based on silica layers produced by flame hydrolysis deposition (FHD), photolithography and reactive ion etching of channel
waveguide and electrode structures. Further UVprocessing procedures are performed based on
the permanent refractive index change occurring
in doped silica under UV irradiation around 240
nm. For device implementation it includes direct
UV patterning of waveguides and more complex
optical components, and the generation of photoimprinted Bragg gratings. These technologies
require detailed materials research, waveguide
characterization, lifetime predictions, photosensitivity characterization, and Bragg grating characterization. The IPHT provides UV-induced Bragg
grating inscription, and fixed fiber array pigtailing
to the integrated optical chips as well as packaging of the devices.
The study, design and implementation of the
devices is optimized through permanent feedback with industrial partners providing design
guidelines, device assessment, testing and
implementation.
The PLATON Project implies collaboration and
permanent feedback with a variety of European
research partners, Université des Sciences et
Technologies de Lille (France), Université Paris
Sud (France), Ecole Polytechnique Fédérale de
Lausanne (Switzerland), Technische Universität
Hamburg Harburg (Germany), Instituto de
Engenharia de Sistemas e Computadores do
Porto (Portugal), and two industrial partners,
Lucent
Technologies
GmbH
(Nürnberg,
Germany) and Highwave Optical Technologies
(France).
Fig. 2.18: SEM picture of a planar waveguide
sample made by flame hydrolysis deposition and
reactive ion etching at IPHT.
46
Fig. 2.17: Scematic of a reconfigurable optical
add/drop multiplexer (OADM) and the two parts
of it, thermo-optic switch and add/drop multiplexer.
OPTIK / OPTICS
2.2.12 Advanced photonic crystal
waveguide components in Ta2O5
(S. Schröter, T. Glaser, S. Fehling,
U. Hübner, R. Boucher, W. Morgenroth,
H. Bartelt)
Institute für Kohlenforschung in Mühlheim. In this
case, photonic crystal devices with low losses
can be implemented at a considerably reduced
etching depth, see Fig. 2.21.
We have improved the fabrication technology and
the optical characterization methods for photonic
crystals in Ta2O5. The spectral transmission properties of straight and 60° double-bent photonic
crystal waveguides were investigated in detail for
a variety of design modifications. Fig. 2.19
shows, for example, the narrow-band transmission properties of a W3 pc waveguide with two
60° bends and of a straight W1 pc waveguide,
respectively. SEM pictures of both devices are
shown in Fig. 2.20.
Fig. 2.21: SEM picture of a 500 nm thick Ta2O5
photonic crystal waveguide with a trigonal lattice
of air holes etched about 300 nm deep into the
mesoporous silica layer on a silicon substrate.
Fig. 2.19: Measured transmissions for TE-polarized light of a double-bent W3 pc waveguide
(black curve) and of a straight W1 pc waveguide
(gray curve) with 3 dB bandwidths of about 7 nm.
Fig. 2.20: SEM pictures of a W3 pc waveguide
with two 60° bends (left) and of a straight W1 pc
waveguide (right) with 360 nm air holes, etched
1500 nm deep into 500 nm Ta2O5 on 2000 nm
SiO2 atop a silicon substrate.
Best transmission values of 3 dB/mm for a
straight W3 pc waveguide, 30 dB/mm for a
straight W1 pc waveguide, and 2.5 dB additional
losses per W3 bend were demonstrated.
In order to minimize the losses at the interface
between the Ta2O5 waveguide and the silica substrate, deep etching into the substrate is required.
We have also investigated an alternative
approach using a layer of mesoporous silica with
a very low refractive index of 1.14 as substrate
material, which was prepared at the Max Planck
Measurements have confirmed that the losses of
photonic crystal components implemented in this
layer system are almost independent of the etching depth and are comparable to the devices with
holes deeply etched into conventional silica substrates.
2.2.13 Intrinsic optical fiber grating
pH-sensor based on evanescent
field interaction
(S. Bierschenk, W. Ecke)
An evanescent field-coupled fiber Bragg grating
(FBG) sensor allows the measurement of refractive indices by spectral measurement of its Bragg
wavelength, using the advantages of multiplexibility, neutrality to intensity drifts, and, e.g., electrical insulation.
The principle of the actual pH sensor is based on
the subsequent interaction between the analyte,
the pH-sensitive transducer layer (polyaniline,
PA), the evanescent field of the guided light, and
the FBG.
The set-up of this new principle of a fiber-optic
pH sensor is shown in Fig. 2.22.
Fig. 2.22: Set-up of the pH sensor.
47
OPTIK / OPTICS
The single mode fiber is side-polished to obtain
optical contact between FBG 1 and the transducer layer. A second FBG 2 monitors the temperature of the sensor. Some characteristic sensor
parameters: thickness of PA – 70 nm, length of
interaction – 2 mm, theoretical volume of active
analyte – 100 pl.
The complex refractive index of PA was measured in an ellipsometer to be nPA = 1.616 +
0.115 · i at pH = 7, and it changes by about
0.01–0.02· i per pH unit of the outside analyte.
The resulting Bragg wavelength shifts δλB1 of the
evanescent field-coupled FBG 1 (temperature
compensated by consideration of shifts δλB2),
allow calibration to the pH value of the analyte.
Fig. 2.23 shows the sensor response to stepwise
changes of pH values within pH = 4...10.
required force resolution of about 2N) made it
necessary to place a temperature sensor very
close to every strain sensor for compensation of
temperature effects. This led us to the construction of a ‘unified sensor head’ which includes two
FBGs, one for strain and the other for temperature sensing.
Four of such sensor heads are necessary in
order to monitor one current collector. As a pantograph has two current collectors, 16 FBGs have
to be monitored at a 500 Hz measurement frequency.
The development of an interrogation unit that fits
all parameters specified by our railway partners
SNCF and BLS has been the task of CEA, another partner in the project. Besides the sensor construction, IPHT developed interrogation units for
sensor testing and for use in the first two test
runs. The second test run took place in August
2004 in Spiez (Switzerland). An example of the
measured signals is given in figure 2.25. It shows
the measured force in driving direction when the
locomotive was passing a region with strong
inhomogeneities in the contact line (line crossings at the Iselle station).
The results prove that the measurement concept
allows the monitoring of such fast events under
realistic operation conditions.
Fig. 2.23: Bragg wavelength response to stepwise pH changes.
Further investigations are directed at enhancing
the sensitivity by additional measurements of
light intensity dependencies.
2.2.14 Fiber Bragg gratings for contact
force measurements in railway
pantographs
(K. Schröder, W. Ecke)
48
Train operators are interested to optimize the
interface between the overhead contact line
(OCL) and the pantograph to increase train
speed, minimize service costs and monitor OCL
conditions.
We have developed sensor elements for this purpose using fiber Bragg gratings (FBG).
To measure the contact forces and line positions,
we attached fiber optic strain sensors at the bottom of the aluminum profile of the current collector (see Fig. 2.24) and measured its bending
curve. Because of the weak bending, we got a
small strain signal and had to optimize sensors
and interrogation units to meet the challenge.
The main cross sensitivity of the FBG strain sensors used is that to temperature. The resulting
sensitivity of the attached FBG is 22 pm/K (at
840 nm). Comparing this with a required wavelength resolution of 1 pm (recalculated from the
Fig. 2.24: Bent current collector with calculated
strain distributions. Strain and temperature sensors are attached inside the aluminum profile at
its bottom.
Fig. 2.25: Measurement example from the 2nd
test run. The strong force peaks due to inhomogeneities in the contact line are easily visible.
OPTIK / OPTICS
2.2.15 Toward photonic crystal fiber-based
distributed chemosensors
(H. Lehmann, G. Schwotzer)
The use of optical fibers as intrinsic fiber-optic
evanescent field absorption sensors (EFAS) for
chemical species is a perennial topic in optical
chemosensing and an object of research and
development for many years.
Recently, photonic crystal fibers and other
microstructured fibers were investigated with
respect to their advantages in optochemical
sensing. The fiber development was aimed both
at fibers featuring an enhanced evanescent field
on the outer boundary of the fiber core for EFAS,
as well as at holey fibers, in which the waveguiding fiber region can be filled with a chemical
specimen.
An increased evanescent field outside the fiber
core was expected especially for hollow fibers
with a light-guiding silica ring core and a polymer
cladding, as shown in Fig. 2.26.
It has been found that, depending on ring core
thickness and compared to a solid-core step index
fiber of the same core diameter, the sensitivity of
a ring core sensor fiber may be increased up to a
factor of two for uniform core mode excitation, and
up to a factor of more than ten for an appropriate
excitation of higher modes in the ring core.
Another approach to increasing the sensitivity of
intrinsic fiber optic chemosensors is to use holey
fibers, either as air-clad liquid core fibers, in
which a large hollow, analyte-filled liquid core is
surrounded by an air-filled capillary cladding, or
as photonic crystal fibers (PCF), which are
roughly characterized by a pattern of air holes
running along a small solid or air-hole core for the
entire length of the fiber. Here, the preferred
application may be found among gas sensors. A
solid core PCF with a core diameter D = 25 µm,
average hole diameters d = 5 µm and an average
pitch Λ = 6 µm (Fig. 2.28) was tested as a fiberoptic gas sensor using natural gas (methane) as
sample.
Fig. 2.28: Micrograph of the PCF gas sensor fiber.
Fig. 2.26: Ring core fiber, 200/38 µm ring core.
The evanescent field interaction between sensor
fiber and sample has been investigated by
immersing ring core fibers with varied core thicknesses but identical outer core diameters in benzene-containing water samples (Fig. 2.27).
Fig. 2.27: Extinction of benzene in water, measured with several ring core sensor fibers.
For making the sensor, a piece of sensor fiber
was attached to step-index fibers, with an air gap
of several micrometers between launching and
sensor fiber. This air gap allows filling the sensor
fiber with the gas sample. An NIR absorption
spectrum of methane obtained by this sensor
fiber is shown in Fig. 2.29.
Fig. 2.29: Methane spectrum, obtained by the
sensor fiber shown in Fig. 2.28.
49
OPTIK / OPTICS
Because this gas sensor is end-fed, it is only able
to collect a sample from a single point. For distributed fiber sensors it is necessary to provide
access to the sample over the whole length of the
sensor fiber. This requires access to the holes in
the PC structure through the fiber cladding. The
development of side-fed fibers for distributed and
for space-resolving quasi-distributed gas sensors
will be the next step in the development of fiber
optic chemosensors based on microstructured
fibers.
2.3
1. Industrial partners
•
•
50
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Schott Lithotec AG, Jena
Siemens AG, CT Erlangen und München
SUPERLUM Ltd. Moskau
SurA Chemicals GmbH Jena
Thales Avionics Massy/Frankreich
Thales Research and Technology
Orsay/Frankreich
TETRA GmbH Ilmenau
Lucent Technologies Nürnberg
unique mode AG Jena
VITRON Spezialwerkstoffe GmbH Jena
Wahl optoparts GmbH, Neustadt
4H Jena Engineering GmbH
Appendix
Partners
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Agfa-Gevaert AG Gera
Advanced Optic Solutions GmbH, Dresden
Alcatel SEL AG, Stuttgart
Analytik Jena AG
BARTEC Meßtechnik & Sensorik GmbH
Carl Zeiss Jena, Oberkochen
CeramOptec GmbH, Bonn
Crystal Fibre A/S Lyngby, Dänemark
DaimlerChrysler AG, Forschungszentrum Ulm
Electro-optics Industries Ltd., Israel
EPSA GmbH Saalfeld/Jena
j-Fiber GmbH,Jena
FiberTech GmbH, Berlin
fibreware GmbH, Berlin
FISBA Optik, St. Gallen/Schweiz
GESO GmbH, Jena
GRINTECH GmbH Jena
Heraeus Quarzglas GmbH & Co. KG
Heraeus Tenevo AG
Hottinger Baldwin Messtechnik GmbH,
Darmstadt
I.D. FOS Research, Geel, Belgien
Infineon Technologies AG, München und
Regensburg
Infos Moskau
Jenoptik Laserdiode GmbH
Jenoptik L.O.S. GmbH
Jenoptik LDT GmbH, Gera
Jenoptik Mikrotechnik GmbH
Jena-Optronik GmbH
JETI GmbH Jena
Kayser & Threde GmbH München
Laserline GmbH Mühlheim-Kärlich
Layertec GmbH Mellingen
Leica Microsystems Lithography GmbH, Jena
Leica Microsystems Wetzlar
Lucent Technologies Nürnberg
Mikrotechnik & Sensorik GmbH Jena
NTECH Technology, Novara, Italy
ONERA Paris Palaiseau /Frankreich
OVD Kinegram Corp., Zug, Schweiz
piezosystem jena GmbH
pyramid optics, Lederhose
ROFIN SINAR Laser GmbH Hamburg
Schott Glas, Mainz
2. Scientific partners
• Bundesanstalt für Materialprüfung und
-forschung (BAM), Berlin
• DBI Gas- und Umwelttechnologie GmbH,
Leipzig
• EMPA Dübendorf/Schweiz
• ESO European Southern Observatory,
Garching
• Fachhochschule Giessen-Friedberg
• Fachhochschule Jena
• Ferdinand-Braun-Institut für
Höchstfrequenztechnik Berlin
• Fraunhofer Heinrich-Hertz-Institut für
Nachrichtentechnik Berlin
• Fraunhofer Institut Angewandte Optik und
Feinmechanik Jena
• Fraunhofer Institut für Silicatforschung
Würzburg
• Fraunhofer Institut Lasertechnik Aachen
• Fraunhofer INT, Euskirchen
• GKSS Forschungszentrum Geesthacht
• Image Processing Systems Institute, Samara,
Russia
• INNOVENT e.V. Jena
• INESC Porto/Portugal
• Institut für Angewandte Photonik, Berlin
• S.I. Vavilov State Optical Institute,St.
Petersburg, Russia
• Institut für Bioprozess- und
Analysenmesstechnik (IBA) Heiligenstadt
• Institut für Fügetechnik und Werkstoffprüfung
GmbH Jena
• Institute für Radiotechnik und Elektronik in
Moskau und Prag
• Laser Zentrum Hannover
• Max-Planck-Institut für Kohlenforschung
Mühlheim
• Max-Born-Institut für Nichtlineare Optik und
Kurzzeitspektroskopie, Berlin
• Physikalisch-Technische Bundesanstalt
Braunschweig
• Technische Universität Berlin
• Technische Universität Darmstadt
• Technische Universität Dresden
• Technische Universität Hamburg-Harburg
• Technische Universität Ilmenau
• Universität Braunschweig
• Universität Jena
OPTIK / OPTICS
•
•
•
•
•
•
•
•
•
University of Leeds, U.K.
University of Pardubice, Tschech. Republik
University of Rio de Janeiro (PUC), Brasilien
University of Southampton, U.K.
Verfahrenstechnisches Institut Saalfeld
Universite Catholique de Louvain/Belgien
Universite Paris-Süd/Frankreich
Universite de Lille/Frankreich
Gwangju Institute of Science and Technology,
South Korea
Publications
C. Cojetzki, T. Klaiberg, S. Grimm, H. Bartelt:
“Faser-Bragg-Gitter mit anormalem Temperaturverhalten “
DGaO Jahrestagung 2004, Bad Kreuznach,
01.–05. Juni 2004; DGaO-Proceedings (2004)
J. Kirchhof, J. Kobelke, K. Schuster, H. Bartelt,
R. Iliew, C. Etrich, F. Lederer:
“Photonic crystal fibers”
in “Photonic Crystals: Advances in Design,
Fabrication, and Characterization”,
Ed. K. Busch, S. Lölkes, R.B. Wehrspohn,
H. Föll, Wiley-VCH 2004, pp. 266–288
J. Kobelke, K. Gerth, J. Kirchhof, K. Schuster,
K. Mörl, C. Aichele:
“Mechanical and optical behavior of index
guiding photonic crystal fibers”
Proc. SPIE 5360 (2004) 287–298
T. Pertsch, U. Peschel, J. Kobelke, K. Schuster,
S. Nolte, A. Tünnermann, H. Bartelt, F. Lederer:
“Nonlinearity and disorder in fiber arrays”
Phys. Rev. Lett 93 (2004) 053901, 1–4
J. Kirchhof, S. Unger, A. Schwuchow, S. Jetschke,
B. Knappe:
“Spatial distribution effects and laser efficiency in
Er/Yb doped fibers”
Proc. SPIE 5350 (2004) 222–233
V. N. Philippov, A. V. Kiryanov, S. Unger:
“Advanced configuration of erbium fiber passively Q-switched laser with Co2+: ZnSe crystal as
saturable absorber”
IEEE Photon. Technol. Lett. 16 (2004) 57–59
J. Kirchhof, S. Unger, J. Dellith:
“Diffusion of phosphorus doped silica
for active optical fibers”
J. Non-Cryst. Solids 345–346 (2004) 234–238
T. Glaser, S. Schröter, S. Fehling, R. Pöhlmann,
M.Vlcek:
“Nanostructurierung of organic and chalcogenide
resists by direct DUV laser beam writing”
Electronics Letters 40 (2004) 176–177
C. Chojetzki, J. Ommer, St. Grimm, H. Bartelt:
“Temperature Dependence of Type I–IA Dualfibre Bragg Gratings”
Electronics Letters 40 (2004) 1576–1578
K. Mörl, H.-R. Müller, J. Kobelke, K. Schuster,
H. Bartelt:
“Optische Charakterisierung und Eigenschaften
aktiver und passiver Photonische Kristallfasern
(PCFs)”
DGaO Jahrestagung 2004, Bad Kreuznach,
01.06.–05.06.2004, DGaO-Proceedings (2004)
N. Theune, T. Bosselmann, R. Röckelein,
K. Schleicher, W. Ecke, K. Schröder:
“FEM of strain and thermal load of a train current
collector with contact force during interaction with
catenary”
Computers in Railways IX: Computer Aided
Design, Manufacture and Operation in the
Railway and Other Advanced Mass Transit
Systems, in Series: Advances in Transport, Vol
15, pp. 880–885, Wessex Institute of Technology
Press, UK, 2004
U. C. Müller, L. Raffaelli, A. Reutlinger, I. Latka,
W. Ecke, G. Tumino, H. Baier:
“Integration and Operation of Fiber Optic
Sensors into Cryogenic Composite Tank
Structures”
Proc. of 2nd European Workshop on Structural
Health Monitoring, DEStech Publications Inc.,
Lancaster, pp. 1270–1277, 2004
I. Latka, W. Ecke, B. Höfer, C. Chojetzki,
A. Reutlinger:
“Fiber optic sensors for the monitoring of cryogenic spacecraft tank structures”
Proceedings of SPIE Vol. 5579 “Photonics North
2004: Photonic Applications in Telecommunications, Sensors, Software, and Lasers”, pp.
195–204 (2004)
T. Wieduwilt, G. Schwotzer, R. Willsch:
“Optical Fiber Pressure Sensor with Micromechanical Transducer”
Proceed. O.M.P. OPTO-2004 Conference
Nuremberg (AMA Publ.) 57–62
J. Vogel, G. Schwotzer, R. Willsch, M. Koch,
K. Bley:
“Nitrate determination in natural waters by spectral photometry with a miniaturized fiber-coupled
flow cell”
Proceed. SPIE Vol. 5502 (2004) 402–405
V. Reichel, S. Unger, S. Jetschke, K. Mörl,
H.-R. Müller, J. Kirchhof, H. Bartelt, A. Liem:
“Seltenerd-kododiertes Glas für Hochleistungslaser”
DGaO-Jahrestagung 2004, Bad Kreuznach,
01.06.–05.06.2004, DGaO-Proceedings (2004)
51
OPTIK / OPTICS
H. Bartelt:
“Microstructured fibers for increased functionality”
Proceedings International Symposium on
Advances and Trends in Fiber Optics and
Applications, Chonqing/China 79–83 (2004)
G. Schwotzer, J. Kaiser:
“Entwicklungen zur optochemischen Sensorik für
die Mikroverfahrenstechnik”
Dechema Plenumssitzung, Frankfurt
11.03.2004
(eingelad. Vortrag)
K. Mörl, H.-R. Müller, J. Kirchhof J. Kobelke,
K. Gerth, K. Schuster, H. Bartelt:
“Optical properties of microstructured optical
fibers”
Proc. SPIE Vol. 5595 (2004) 66–77
J. Kirchhof, S. Unger, B. Knappe, J. Dellith:
“Diffusion von Lichtleiterdotanden in Kieselglas”,
DGG, Fachausschuss “Physik und Chemie des
Glases”
Würzburg, 15.03.2004
(Vortrag)
S. Brückner, C. Chojetzki, H. Bartelt:
“Materialuntersuchung und -bearbeitung mit
157 nm Laserstrahlung“
4. Jenaer Lasertagung, Jena,
18.11.–19.11.2004, Stand und Perspektiven in
der Lasermaterialbearbeitung, DVS-Berichte
Band 230 (2004) 195-200
R. Willsch:
“Technische Nervensysteme aus Glasfasern:
Faseroptische Sensorsysteme und ihre Anwendungen”
JENAer Carl-Zeiss-Optikkolloquium
Jena, 20 .01.2004
(eingelad. Vortrag)
W. Ecke, K. Schroeder, M. Kautz, P. Joseph,
S. Willett, T. Bosselmann M. Jenzer:
”Smart current collector basing on embedded
fiber grating sensors for monitoring train interface
to electrical overhead contact line”
SPIE's 11th International Symposium on Smart
Structures and Materials, Conference “Smart
Sensor Technology and Measurement Systems”,
14.03.–18.03. 2004, San Diego/USA
J. Kobelke, K. Gerth, J. Kirchhof, K. Mörl,
C. Aichele:
“Mechanical and optical behavior of index guiding photonic crystal fibers (PCF)”
Photonics
West,
San
Jose,
CA/USA,
25.01–29.01.2004
(Vortrag)
W. Ecke:
“Fiber Optic Sensors- Obstacles and Opportunities” Invited Talk to Panel Discussion at SPIE’s
11th International Symposium on Smart
Structures and Materials, Conference “Smart
Sensor Technology and Measurement
Systems”, 14.03.–18.03.2004, San Diego/USA
J. Kirchhof, S. Unger, A. Schwuchow,
S. Jetschke, B. Knappe:
“Spatial distribution effects and laser efficiency in
Er/Yb doped fibers”
OE 2004, Photonics West 2004, San Jose,
CA/USA, 26.01–29.01.2004
(Poster)
K. Schröder, W. Ecke, R. Willsch, S. Birkle:
“Optochemical Fiber Bragg Grating Sensors
Based on Evanescent-Field Interaction Using
Thin-Film Transducers”,
European Conference on Optical Chemical
Sensors and Biosensors “Europtrode VII”,
Madrid,
04.04.–07.04.2004
(Vortrag)
Presentations/Posters
A. Liem, J. Limpert, T. Schreiber, S. Nolte,
H. Zellmer, A. Tünnermann, J. Broeng,
G. Vienne, A. Peterson, C. Jakobsen, T. Peschel,
V. Guyenot, V. Reichel, S. Unger:
“Air-clad large-mode area photonic crystal fibers:
power scaling concepts up to the kW-range”
Photonics West (2004)
(Vortrag)
52
K. Schuster, J. Kobelke, K. Gerth, J. Kirchhof:
“Herstellungstechnologie von mikrostrukturierten
Lichtleitfasern auf Quarzglasbasis”
Gemeinsames Seminar der BAM u. des IfG,
Berlin, 24.03.2004
(Vortrag)
C. Chojetzki, M. Rothhardt:
“Zugtests und thermische Belastung als Qualitätskriterien von Faser-Bragg-Gittern für Sensoranwendungen”
GESA-Expertenforum, Berlin,
27.01.–28.01.2004,
(Vortrag)
C. Chojetzki, D. Betz, T. Klaiberg, J. Ommer,
M. Rothhardt:
“Fiber Bragg Gratings for High Temperature
Sensing Applications“
OPTO, Nürnberg, 25.05.–27.05.2004,
(Poster)
C. Chojetzki, T. Klaiberg, S. Grimm, H. Bartelt:
“Faser-Bragg-Gitter mit anormalem Temperaturverhalten“
DGaO Jahrestagung 2004, Bad Kreuznach,
01.06.–05.06. 2004;
(Poster)
OPTIK / OPTICS
S. Brückner, C. Mühlig, C. Chojetzki, H. Bartelt:
“Characterisation and material processing in the
DUV/VUV”
326. WE-Heraeus-Seminar, Bad Honnef,
07.06–09.06 2004
(Poster)
T. Wieduwilt, G. Schwotzer, R. Willsch:
“Optical Fibre Pressure Sensor with Micromechanic Transducer”
OPTO 2004, Conference Nürnberg
25.05.–27.05.2004
(Vortrag)
C. Chojetzki, I. Latka, M. Kautz, M. Rothhardt,
K. Schuster, J. Kobelke:
“Measurement Systems for Temperature, Strain
and Vibration based on Fiber-Bragg-Gratings“
2nd European Workshop on Structural Health
Monitoring, München, 07.07.–09.07 2004
(Poster + Kurzvortrag)
S. Schuster, J. Kobelke, C. Aichele, K. Mörl,
H. Lehmann, J. Kirchhof, H. Bartelt:
“Spektroskopische Untersuchungen an Photonischen Kristallfasern unter sensorischen Anwendungsaspekten”,
105 Jahrestagung der DGaO, Bad-Kreuznach,
01.06.–05.06.2004
(Poster)
G. Schwotzer, R. Willsch
“Faseroptische Sensoren mit mikrostrukturierten
Fasern und Komponenten”
Workshop IFG/BAM, Berlin-Adlershof
24.03.2004
(eingelad. Vortrag)
H. Lehmann, U. Lubenau, G. Schwotzer,
R. Willsch:
“BTEX Monitoring in groundwater Remediation
applying UV Fiber Optic Evanescent Field
Sensors”,
7th Europtrode Conference Madrid, Spain
04.04.–07.04.2004
(Vortrag)
J. Kirchhof, K. Gerth, J. Kobelke, K. Schuster:
“The transient state of rod and capillary stretching with respect to photonic crystal fiber fabrication”,
7th ESG Conf. on Glass Sci. and Techn.,
Athens, Greece, 25.04.–28.04.2004
(Poster)
A. Liem, J. Limpert,H. Zellmer, A.Tünnermann,
V. Reichel, K. Mörl, S. Jetschke, S. Unger,
H.-R. Müller, J. Kirchhof T. Sandrock,
A. Harschak:
“1,3 kW Yb-doped fiber laser with excellent beam
quality”,
Conference on Laser and Electro-Optics,CLEO,
San Francisco, USA
16.05.–21.05.2004,
Post-deadline paper CPDD-2
N. Theune, T. Bosselmann, R. Röckelein,
K. Schleicher, W. Ecke, K. Schröder:
“FEM of strain and thermal load of a train current
collector with contact force during interaction with
catenary”
Proceedings of 9th International Conference on
Computer Aided Design, Manufacture and
Operation in the Railway and Other Advanced
Transit Systems CompRail2004, Dresden, May
17.05.–19.05.2004
M. Amberg, S. Schröter, H. Bartelt, St. Sinzinger:
“Realisierung von diffraktiven Strukturen auf
Faserstirn- und D-förmigen Faserendflächen”
105. Jahrestagung der DGaO, Bad-Kreuznach,
01.06.–05.06. 2004
(Poster)
K. Mörl, H.-R. Müller, J. Kobelke, K. Schuster:
“Optische Charakterisierung und Eigenschaften
aktiver und passiver PCFs”,
105. Jahrestagung der DGaO,
Bad Kreuznach, 01.06.–05.06.2004
(Vortrag)
T. Sandrock, A. Harschack, V. Reichel, S. Unger,
H.-R. Müller, J. Kirchhof, B.Skutnik:
“Rare-earth-doped multi-clad silica glass fibers
for high power fiber lasers”
SS DLTR Conf. Albuquerque (USA)
8.06.–10.06.2004, Poster P27
(Poster)
V. Reichel, K. Mörl, S. Jetschke, H.-R. Müller,
J. Kirchhof, H. Bartelt, T. Sandrock, A. Harschak,
A. Liem, J. Limpert, H. Zellmer, A. Tünnermann:
“Fiber-laser power scaling beyond the 1-kilowatt
level by Nd: Yb co-doping”
High Power Lasers Conference Prag (2004)
(Vortrag)
J. Vogel, G. Schwotzer, R. Willsch, M. Koch,
K. Bley:
“Nitrate determination in natural waters by spectral photometry with a miniaturized fiber-coupled
flow cell”
2nd European Workshop on Optical Fiber Sensors EWOFS’04 Santander, Spain
09.06.–11.06.2004
(Poster)
R. Willsch:.
“Faseroptische Sensorsysteme und ihre Anwendungen”
Seminar FSU Jena, Institut für Angewandte
Optik, Jena 23. 06. 2004
(eingelad. Vortrag)
53
OPTIK / OPTICS
U.C. Müller, L. Raffaelli, A. Reutlinger, I. Latka,
W. Ecke, G. Tumino, H. Baier:
“Integration and Operation of Fiber Optic Sensors into Cryogenic Composite Tank Structures”
2nd European Workshop on Structural Health
Monitoring, München, 07.–09.07.2004
J. Kirchhof, S. Unger, B. Knappe, J. Dellith
“Diffusion coefficients of boron in vitreous
silica at high temperatures”
International Congress on Glass ICG,
Kyoto, Japan, 26.09.–01.10.2004
(Poster)
K. Mörl, S. Unger, V. Reichel, J. Kirchhof,
H. Bartelt, H.-R. Müller, T.Sandrock,
A. Harschak, A. Liem:
“Fibers for kilowatt-output fiber lasers”
EPS-QEOD-Europhoton-Conf.
Solid-State and Fiber Coherent Light
Sources, Lausanne/Switzerland
29.08.–03.09.2004
(Vortrag)
I.Latka, W.Ecke B.Höfer, C.Chojetzki,
A. Reutlinger:
“Fiber optic sensors for the monitoring of cryogenic spacecraft tank structures” Photonics
North Conference “Fiber Optic Sensors”,
Ottawa/Canada, 28.09.–29.09.2004,
paper 5579-26
(Vortrag)
T. Glaser, S. Schröter, S. Fehling, U. Hübner,
R. Boucher, H. Bartelt, C. Etrich, R. Illiew,
F. Lederer:
„Photonic crystal structures in Ta2O5“
Proceedings of the 10th Microoptics Conf. Jena,
01.09.–03.09.2004, paper B3
M. Duparre, R. Kowarschik, B. Lüdge, S. Schröter:
“On-line control of laser beam quality by means
of diffractive optical correlation filters“
Proceedings of the 10th Microoptics Conference,
Jena,
01.09.–03.09.2004
(Poster)
H. Bartelt:
“Optical Properties of microstructured optical
fibers”,
Konferenz SPIE Photonics East/ITCOM 2004
Philadelphia /USA
24.10.–28.10.2004
(eingelad. Vortrag)
S. Schröter, M. Vlcek, R. Pöhlmann, T. Glaser,
H. Bartelt:
“Micro- and nanostructuring of amorphous
schalcogenide glasses by direct writing laser and
electronbeam lithography for micro-optical elements”
Proceedings of the 10th Mikrooptics Conference,
Jena, 01.09.–03.09.2004
(Poster)
J. Kirchhof, J. Kobelke, K. Schuster, K. Gerth,
S. Unger, C. Aichele:
“Preparation of silica-based microstructured
fibers”,
OptoNet Workshop “Photonische Kristallfaser”
Jena, 10.11.2004
(Vortrag)
H. Bartelt:
“Faseroptische Sensorsysteme-Messtechnik
mit Glasfasern und Licht”
Jenaer Technologietag 2004
13.09.2004
H. Lehmann, J. Kobelke, K. Schuster,
G. Schwotzer, R. Willsch:
“Microstructured Optical Fibers for Opto-chemical Sensors”,
OptoNet-Workshop “Photonische Kristallfasern”
Jena,10.11.2004
(Vortrag)
M. Rothhardt, C. Chojetzki, H.-R. Müller:
“High mechanical strength single-pulse draw
tower gratings”
Photonics North 2004, Ottawa, Kanada
26.09.–29.09.2004
(Vortrag)
54
H. Bartelt
“Microstructured fibers for increased functionality”
International Symposium on Advances and
Trends in Fiber Optics and Applications (ATFO)
Chonqing/China
09.10.–17.10.2004
(eingelad. Vortrag)
I. Latka, W. Ecke, B. Höfer, C. Chojetzki,
A. Reutlinger:
“Fiber optic sensors for the monitoring of cryogenic spacecraft tank structures”
Photonics North 2004, Ottawa, Kanada
26.09.–29.09.2004
(Vortrag)
K. Schuster, J. Kobelke, K. Gerth, C. Aichele,
S.Unger, J. Kirchhof, K. Mörl:
“Index guiding PCF for signal transmission/
Optical and mechanical properties and applicative aspects”,
53rd International Cable and Wire Symposium
ICWS, Philadelphia, USA
14.11.–17.11.2004
(Vortrag)
OPTIK / OPTICS
V. Reichel, S. Brückner, K. Mörl. S. Jetschke,
S. Unger, H.-R. Müller:
“Hochleistungsfaserlaser in kW-Bereich auf der
Basis neuartiger Material- und Pumpprozesse”,
4. Jenaer Lasertagung
Jena,18.11.–19.11.2004,
(Vortrag)
S. Brückner, C. Chojetzki, H. Bartelt
“Materialbearbeitung und Charakterisierung
optischer Komponenten im Vakuum UV“
4. Jenaer Lasertagung, Jena,
18.11.–19.11.2004,
(Poster)
L. Bergmann
Fachhochschule Jena, Fachbereich Elektrotechnik:
“Konstruktion und Aufbau eines Spektrometers
mit CMOS-Imager zur Definition der Einsatzbereiche in mehrkanaligen Fasergittersystemen”
22.01.2004
R. Bitter
Masterarbeit
“Entwurfsverfahren für optische Breitbandfasern
im Spannungsfeld technologischer und applikativer Anforderungen”
FH Jena, 01.07.2004
Laboratory exercises
Patents
K. Schuster, J. Kirchhof, K. Gerth, J. Kobelke:
“Anordnung und Verfahren zur Herstellung von
strukturhomogenen mikrooptischen Fasern”
DE 10 2004 059 868.1 (08.12.2004)
W. Ecke, K. Schröder:
“Fasergitter-Sensorsystemen”
DE 103 26 516.3 (10.06.2003)
Granted 07.09.2004
PCT/DE 2004/001179 (08.06.2004)
Th. Frangen
K. Hintz
L. Kröckel
R. Roth
A. Voitsch
Y. Eberhardt
T. Klaiberg
T. Rathje,
M. Kraft
S. Fleck
N. Westphal
M. Reuter
01.03.04–31.12.04
01.04.04–31.12.04
01.03.04–31.12.04
26.04.04–31.12.04
03.04.04–31.12.04
01.03.03–31.05.04
01.04.03–31.05.04
01.03.04–31.05.04
01.06.04–02.07.04
21.07.03–29.02.04
12.07.04–30.07.04
04.10.04–31.12.04
Lectures
Prof. Dr. H. Bartelt:
Wahlvorlesung
Friedrich-Schiller-Universität Jena
Optische Nachrichtentechnik
Winter-Semester 2003/2004
und 2004/2005
Guest scientists
Wahlvorlesung
Friedrich-Schiller-Universität Jena
Mikrooptik und integrierte Optik
Sommer-Semester 2004
Yunsong, Jeong
student, Gwangju Institute of Science
and Technology, Korea
15.06.–15.07.2004
Prof. Dr. R. Willsch:
Fachhochschule Jena,
Fachbereiche/Studienrichtungen
Elektrotechnik/Informationstechnik,
Physikalische Technik, Umwelttechnik und
Biotechnologie, “Sensortechnik”
Wintersemester 2003/2004 und 2004/2005
Pham, Vanhoi
Scientist,Vietnam
14.07.–23.07.2004
Dr. W. Ecke:
Fachhochschule Jena,
Masterstudiengang Laser- und Opto-Technologien LOT “Faseroptik” Sommersemester 2004
Dr. Aleksey Tchertoriski,
Insitute for Radio Engineering and Electronics of
Russian Academy of Sciences
Ulyanovsk, Russia
28.04.–26.07.2004
Prof. Kyunghwan Oh
Gwangju Institute of Science and Technology,
Korea
15.06.–15.09.2004
01.12.04.–28.02.2005
Prof. John P. Dakin
University of Southampton, U.K.
06.12.–17.12.2004
Diploma
E. Droske:
“Temperaturmessung und -regelung für einen
miniaturisierten optoelektronischen Taupunktsensor”
TU Dresden Februar 2004
55
OPTIK / OPTICS
Memberships
Prof. Dr. H. Bartelt:
• Deutscher Vertreter in WG7 der ISO zum
Thema “Diffractive Optics”
• Mitglied im Arbeitskreis Mikrooptik der
Deutschen Gesellschaft für Angewandte Optik
• Mitglied des Editorial Board der Fachzeitschrift
“Optik”
• Vorstandsmitglied des Mikrotechnik Thüringen
e.V.
• Mitglied im Kuratorium der Stiftung für
Forschung und Technologie STIFT
• Mitglied im wissenschaftlichen Beirat der
Jenaer Technologietage 2004 und 2005
• Mitglied im Beirat des BioRegio Jena e.V.
• Mitglied im Beirat des Technologie- und
Innovationspark Jena
Prof. Dr. R. Willsch:
• Mitglied des Redaktionsbeirates der Fachzeitschrift “SENSOR report”
• Member of Optical Fibre Sensors (OFS)
International Steering Committee, Conference
Technical Chair OFS-17 May 2005 Bruges,
Technical Program Committee 2nd European
Workshop EWOFS’04 (Group Chairman)
June 2004, Santander/Spain
• Member of Technical Program Committee of
International Conference “Advances and
Trends
in
Fiber
Optics”,
ATFO-2004
Chongqing, Three-Gorges/China, October
2004
• Member of Technical Program Committee of
Photonics Asia-2004 Conference on Advanced
Sensor
Systems
and
Applications,
Beijing/China, November 2004
• Mitglied im Kongressbeirat und SessionChairman OPTO-Kongress Nürnberg, Mai
2004
• Stellv. Vorsitzender AMA-Fachausschuss “Optische Sensorik”
Dr. W. Ecke:
• Member of Technical Program Committee of
International Optical Fiber Sensors Conference
OFS-16 (Nara/Japan, October 2003), Technical
Program Chair of OFS-17 (Bruges/Belgien,
May 2005)
• Member of Technical Program Committee of
SPIE Photonics North Conference “Fiber Optic
Sensors”, Ottawa/Canada, September 2004
• Member of Program Committee of SPIE
International Conference on Smart Structures
and Materials “Smart Sensor Technology and
Measurement Systems”, San Diego/CA, USA,
March 2004
• Conference Co-Chair of SPIE International
Conference on Smart Structures and Materials
“Smart Sensor Technology and Measurement
Systems”, San Diego/CA, USA, March 2005
56
• Member of Program Committees of SPIE
Europe Congress on Optics & Optoelectronics,
Conferences Optical
Fibers I: Technology, and Optical
Fibers II: Applications;
Warsaw (Poland), August 2005
Participation in fairs/expositions
– Ausstellung zur 10th Microoptics Conf. Jena
01.-03.09.2004
– Optonet Workshop
“Photonische Kristallfasern”
10.11.2004, IPHT, Jena
MIKROSYSTEME / MICROSYSTEMS
3. Mikrosysteme / Microsystems
Leitung/Head: Dr. H. Dintner
e-mail: [email protected]
Biotechnische Mikrosysteme
Biotechnical Microsystems
Leitung/Head: Dr. W. Fritzsche
[email protected]
Mikroanalytische Systeme
Microanalytical Systems
Leitung/Head: Dr. R. Riesenberg
[email protected]
Thermische Mikrosensoren
Thermal Sensors
Leitung/Head: Dr. E. Keßler
[email protected]
Mikrotechnologien / Microtechnologies
Leitung/Head: Dr. A. Lerm, [email protected]
3.1 Überblick
3.1 Overview
Der Forschungsbereich hat sich im vergangenen
Jahr trotz des zunehmend schwierigen wirtschaftlichen Umfeldes und der sich weiter verschärfenden Förderbedingungen insgesamt gut
behaupten können. In allen Arbeitsrichtungen
konnten interessante, weiter führende Ergebnisse erzielt und der Fachwelt präsentiert werden. Damit hat der Bereich seine Position im
internationalen Vergleich weiter festigen und ausbauen können. Auf dieser Grundlage gelang es,
zusätzliche Forschungsvorhaben zu akquirieren,
so dass die Summe der eingeworbenen Drittmittel deutlich höher als im Jahr zuvor lag und
trotz des Abschlusses mehrerer gewichtiger
Projekte die personelle Kontinuität weitgehend
gewahrt werden konnte.
In den nachfolgenden Abschnitten werden die
Fortschritte des vergangenen Jahres für die drei
Arbeitsrichtungen des Bereiches – Biotechnische Mikrosysteme, Mikroanalytische Systeme
und Thermische Mikrosensoren – dargestellt.
Deshalb seien an dieser Stelle nur einige herausragende Ergebnisse beispielhaft genannt:
Although the outer conditions for projects are still
being worse off, the division has, all in all, well
asserted itself last year. In all working fields a lot
of interesting and promising results were
achieved and presented to the scientific community. By this, the scientific position of the division
within the international landscape has further
strengthened and extended. On this basis, several additional research projects could be acquired
resulting in a higher sum of project resources
compared to the previous year and – although
some weighty projects have been finished in this
time – in a continuity in staff.
Because in the following chapters the results in
the research fields of the division – Biotechnical
Systems, Microanalytical Systems and Thermal
Microsensors – will be presented in more detail,
here only a few of the most important scientific
results shall be shortly mentioned:
In the field of Biotechnical Microsystems the
joint project “PCR Chip” was successfully completed in 2004. By demonstrating the PCR
57
MIKROSYSTEME / MICROSYSTEMS
Fig. 3A: Measurement of liquid-liquid two-phase flow in microchannels by µ-Particle Image
Velocimetry (µPIV).
Symmetrical flow fields are induced by translation of microdroplets
through straight microchannels. Mixing is suppressed. The global flow
of the droplet (left) and the internal flow inside the microdroplet (right)
are shown for a microchannel with dimensions of 780 × 260 µm.
Curved microchannels may be used to induce a circular flow in the
microdroplet. Mixing is enhanced.
Translation of droplets trough winding channels at high velocity
induces complex internal flows for efficient mixing.
58
MIKROSYSTEME / MICROSYSTEMS
Fig. 3B: Results of the MULTIGAS project: A
2-element (top left) and a 4-element (top right)
thermopile sensor chip as well as a 64-element linear thermopile sensor array chip
(down) for IR-based gas detection.
Fig. 3C: 60 nm metal nanoparticles (white structures in the upper AFM images) on the surface of human
lymphocyte chromosomes before laser irradiation (left) are disappeared afterwards (right).
Fig. 3D: Imaging of stars on the sky with very high contrast (left) and improved result (simulation) by redundant photon multiplexing processed by new aperture sequences (right).
59
MIKROSYSTEME / MICROSYSTEMS
Bei den Biotechnischen Mikrosystemen wurde
2004 das Verbundprojekt „PCR-Chip“ erfolgreich
abgeschlossen. Mit der PCR in freien sub-µlTropfen mit oberflächenaktiver Mikrofluidik und
integrierter in-situ Fluoreszenzdetektion konnte
ein absolut innovatives System demonstriert werden. Das in dem gleichfalls 2004 abgeschlossenen Projekt MINIKULT entwickelte mikrofluidische Verfahren zur seriellen Kompartimentierung in Zweiphasensystemen (segmentierter
Fluss) liefert über das Projekt hinaus eine
generelle methodische Basis für mikrofluidische
Systemkonzepte und begründet damit eine
strategische Arbeitsrichtung des Bereiches auf
dem Gebiet der Mikrofluidik. Im Projekt NanoCut
konnte der prinzipielle Nachweis erbracht werden, dass der verfolgte Weg ein aussichtsreiches
Konzept hin zu einer universellen Methode zum
nanolokalen Schneiden von Biomolekülen darstellt. Gleichzeitig gelang mit diesem Projekt der
Einstieg des Bereiches in das zukunftsweisende
Gebiet der molekularen Plasmonik.
Die Arbeiten zu Mikroanalytischen Systemen
führten im Projekt OMIB zu einem miniaturisierten UV-Ramanspektrometer mit deutlich
verbesserten Leistungsparametern im Vergleich
zu kommerziell erhältlichen Geräten. Daneben
lieferten die Untersuchungen zur Einbeziehung
der Kohärenzeigenschaften des Lichtes interessante Ansätze für künftige erweiterte Systemlösungen in Verbindung mit Mikroapertur-Arrays.
Bei den Thermischen Mikrosensoren konnten
mit den 2004 abgeschlossenen Projekten MULTIGAS und Mikrokalorimeter die anspruchsvollen
Zielsetzungen hinsichtlich Sensordaten und technologischer Umsetzung erreicht werden. Die
dabei etablierte SU 8-Technologie bietet zugleich
die Plattform für zahlreiche mikromechanische
Chipkonzepte, auch über die Thermosensorik
hinaus.
Zu der fachlichen Fokussierung des IPHT mit
einem optischen und einem elektronischen
Schwerpunkt hat der Bereich ein Konzept zur
„Biophotonik in mikro- und nanoskaligen Strukturen“ als sein avisiertes wissenschaftliches
Profil erarbeitet und in die Diskussion zur künftigen Positionierung des Institutes eingebracht.
Ausgehend von den erarbeiteten Kompetenzen
zur Optik, Mikrosystemtechnik sowie zu biochemischen und molekularbiologischen Assays
wird dabei die methodische und technologische
Expertise des Bereiches zusammen gefasst und
mit einem wissenschaftlich attraktiven und
langfristig tragfähigen Gebiet der modernen
Optikforschung verknüpft.
60
in a free sub-µl drop with a surface-active microfluidics and an integrated in-situ fluorescence
detection an utterly innovative system could be
realized. In the project MINIKULT, also finished in
2004, a microfluidic method for serial compartmentalization within a liquid/liquid two-phase-system (segmented flow) has been developed which
will provide an enabling technology for microfluidic systems and, by this, establish a strategic
topic of the division on the field of microfluidics.
In the project NanoCut it was experimentally
proved by principle that the investigated way
should be a promising concept toward an universal and highly paralleled method for nanolocal
cutting of biomolecules. Furthermore, with this
project the door to the future research field on
molecular plasmonics has been opened, now.
The work on Microanalytical Systems within the
project OMIB has lead to an extremely miniaturized UV-Raman spectral sensor with a performance well above the data of any commercial
device on the market. Moreover, investigations on
the implementation of the coherence properties
of light into the concepts of the system provide –
in combination with microaperture arrays – highly interesting approaches for extended solutions
for future optical instruments.
In the Thermal Microsensors the demanding
goals of the two projects MULTIGAS and Microcalorimeter, also finished in 2004, could be
achieved in a remarkable manner with respect to
sensor data and technological realization. Additionally, the SU 8 technology established in the
course of the projects will provide a general technological platform for further micromachined chip
approaches – also beyond the thermosensorics.
Beyond the scientific focusing of the IPHT on an
optical and an electronic profile the division has
developed a conception on “Biophotonics in
Nano- and Microscaled Structures” as its future
main scientific focus which is now part of the discussion on the positioning of the institute in the
next years. Starting from the present know how of
the division on optics, microsystem technology
and biochemical and molecular biological assays,
the methodical and technological expertise is
advantageously bundled by this approach and
connected to a highly important and long-term
attractive scientific field of modern optics
research.
MIKROSYSTEME / MICROSYSTEMS
3.2 Scientific Results
3.2.1 Biotechnical microsystems
(W. Fritzsche)
The core expertise of the department comprises
the design, realization and characterization of
microtechnical components and systems for applications in (bio)chemistry and molecular biology.
This knowledge allows for the control of small
molecular ensembles down to individual molecules as a central goal. Microsystem technology
is applied to manage processes as e.g. amplification or detection of biomolecules with high accuracy and only minimal sample volume requirement. This is achieved both by miniaturization of
the reaction volume using micro-reactors and by
segmentation of the liquid flow or the definition of
reaction compartments by substrate immobilization, assisted by defined temperature programs. The approach realizes a high degree of
control of molecular processes. Examples are
cell detection in segmented flow streams, DNA
amplification in a sub-micro liter reaction volume,
or the parallel detection using DNA microarrays.
These applications are complemented and
extended towards a higher degree of control by
attachment of the molecules to substrate surfaces. Such constructs are applied in the department for developments in DNA chip detection and
in molecular nanotechnology. While the extension of the detection limit down to individual particle or the characterization of substrate surfaces
represent further progress in DNA chip detection
technology, the application of individual molecules for molecular construction in combination
with metal nanoparticles are important contributions for a molecular nanotechnology. The aim is
a technology platform for a defined immobilization, positioning and integration of individual DNA
molecules with bioconjugated metal nanoparticles into planar-technical arrangements. The
inclusion of microstructured substrates based on
the core competence of the division presents an
outstanding advantage because it allows overcoming the integration problem of molecular
technologies: the difficulties to interface molecular structures with a macroscopic technical environment.
Microfluidics plays an important role as a platform
and enabling technology for further development
in the department. In recent years, reliable control of liquid-liquid two-phase flow was successfully used for the establishment of new approaches for high throughput sample proces-sing.
Beside further optimization and develop-ment of
microchannel systems with integrated functional
nodes for segmented sample stream processing,
the research in this field focuses on the development and application of signal and feature based
methods of image processing for monitoring and
analysis of phase-internal transport phenomena
in microchannels.
Photonic technologies represent a growing part
of the research and development activities in the
department. This includes the establishment of
an online control of biochemical reactions using
fluorescence detection as for the PCR chip, the
characterization of liquid transport in microfluidic
systems, and first steps into the field of molecular plasmonics as e.g. illustrated by the use of
metal nanoparticles as highly localized (and
specifically positioned) nano energy converters
from light into thermal energy. The combination of
these optical approaches with the extended
expertise in micro-systems and -fluidics enables
successful future R&D work.
A.
Molecular and cellular manipulation
in microreactors
PCR chips for processing of sub-µl samples
and real-time detection of PCR products
(I. Bieber, J. Felbel, J.Seilwinder,
M. Kielpinski, A. Sondermann)
The BMBF funded a joint project between the
Advalytix AG, the Biofrontera Pharmaceuticals
AG and the IPHT to develop a real-time PCR chip.
This project has been successfully completed in
September 2004. In 2003, a common platform
has been developed to combine the thermal and
fluidic management of the PCR chip. To prevent
evaporation of the PCR samples on the exposed
surfaces, the nanodroplets were covered with
mineral oil resulting in a self-organized reaction
vessel by generating a two-phase system.
The actual work was focused on implementation
of an online detection system for the analysis of
PCR samples with volumes less than 800 nl,
which are too small for proper measurements by
electrophoresis. A blue power-LED for excitation
and a photomultiplier as detector combined with
different optical elements like lenses, filters and
mirrors were used to configure a real-time detection of PCR products. Additionally, a camera was
incorporated into this assembly to monitor the
location of the PCR droplet on the thermal transducers in the optical path during the PCR process. For the signal readout and the integrated
analysis as well as the report of the PCR results
specific software was developed. Besides the
control of the camera it allows the signal detection in more than one mode by the use of different reference measurements. The bleaching
effect of fluorescent dyes during the measurements can be eliminated by this calculative analysis (Fig. 3.1).
For the automation of time-consuming calibration
processes of the thermal transducers a software
was developed, which controls the calibrating
oven, performs the measurement of up to 18
channels with protocols for up to 6 different temperatures and calculates the line of best fit for the
61
MIKROSYSTEME / MICROSYSTEMS
relation of temperature and resistance. The
results are then imported in the control software
of the chips.
Fig. 3.2: Stationary working PCR chip (left) with
two integrated optical windows, one for PCR (No.
1) and the other for a following hybridization (No.
2). Fluorescence image of the hybridization
results (right): No. 1, 2 – directly labeled oligonucleotides to check the covalent bond on the
chip, No. 3 – spotting solution (KOH) as control of
unspecificly bound DNA, No. 4 – hybridization of
the PCR sample to the probe of exon 6, p53
gene.
Microfluidic technology
(Th. Henkel, G. Mayer, J. Albert, M. Urban)
Fig. 3.1: Real-time detection of the PCR product
from the exon 6 of p53 gene using SybrGreen as
a fluorescent intercalating dye (upper). Optical
setup for real-time detection (left). Electrophoresis was used as a control method to proof
the PCR and its specificity (right): DNA ladder
(lane 1), result of the conventional cycler without
oil (lane 2), conventional cycler with oil (lane 3),
PCR chip (lane 4).
After optimization of surface modifications of the
planar chips and of the determination of additives to the PCR composition, the results of the
chip-PCR are comparable to those of the commercial PCR devices. Besides the real-time
detection, the on-chip hybridization was developed to provide the evidence of the PCR specificity for small PCR volumes. Therefore, several
DNA oligonucleotides (probes or controls) were
spotted onto the surface of a second optical window. The surface of this window was modified for
DNA immobilization. After the PCR using a fluorescent labeled primer, the sample was transferred to the hybridization window. There the
PCR product could hybridize to its complementary probe and the fluorescent read-out of the
spots successfully verified the PCR specificity
(Fig. 3.2).
62
We are able to successfully amplify PCR samples
in the nl-range with a concurrent analysis within
30 min, i.e. in half of the time of a commercial
cycler, which was the aim of the project. The project partners will realize the commercialization
and market launch of the PCR chips.
Monitoring of microfluidic processes in optical
transmission calls for transparent microchannels. For a reliable transport of a liquid-liquid twophase flow a microchannel geometry with a nearly circular cross section without edges is the optimum. These requirements conflict with classical
methods in microsystem technology. As a solution, a technology for alignment and anodic bonding of two glass substrates, each carrying an
isotropically etched half channel, was developed. Our approach consequently extends
known technologies by use of a nickel-chromium
bond support layer, which can be removed after
bonding by wet etching. It allows for preparation
of optical transparent microchannels with optimized properties for monitoring and control of liquid-liquid two-phase flows and provides thereby
the base for a successful development of chip
modules for segmented-flow-based, serial highthroughput microchemical applications (Fig. 3.3).
Fig. 3.3: Microchannel prepared by anodic bonding of two isotropically etched glass half channels. Left: cross section, right: detail showing the
nickel chromium bond support layer between
both substrates and the alignment precision at
the edges of both of the glass half channels.
Microfluidic R&D depends on automation and
highly precise flow control. Within a joint project
with Cetoni GmbH Korbußen a syringe pump-
MIKROSYSTEME / MICROSYSTEMS
based, 4-channel micro flow control unit was
developed. This device is optimized for the R&D
of microfluidic applications and is commercially
available at Cetoni GmbH (Fig. 3.4). It allows an
independent control of up to 4 fluid streams with
flow rates down to 1 nl/s. This work was complemented by the development of a flow sensor and
a control unit for precise measurement of the flow
rate and flow pulsation at flow rates down to
10 nl/s (Fig. 3.5).
rapid chemical reactions encounter mixing limitation. For efficient mixing it is necessary to minimize the diffusion path length. In microcompartments this can be realized using the compartment-internal flow, which is induced in curved
channel sections. Thereby, the characterization
of a phase-internal flow inside translated microcompartments becomes essential for the design
of fluidic systems for rapid microchemical operations in microcompartments.
Two-dimensional flow fields of the internal flow
inside transported microcompartments with a volume of 60 nl were measured. Our results show
the axial-symmetric flow field, which is induced in
linear channel sections and prevents lamination
of two fluid components. In contrast, circular flow
is induced by compartment transport in curved
microchannels (see Fig. 3A on colour pages).
Fig. 3.4: Micro Flow Control unit CeDoSys-4, for
R&D of microfluidic applications, available at
cetoni GmbH http://www.cetoni.de.
Fig. 3.5: Flow sensor with electrical and fluidic
snap in interface.
Particle analysis in microfluidics
(Th. Henkel, M. Stahl, R. Merthan)
Microparticle image velocimetry (µ-PIV) was
used for quantitative analysis of the phase-internal flow in microdroplets during their translation in
microchannels. Together with the Digital Image
Processing Group (Computer Science, Friedrich
Schiller University Jena), signal-based methods
of image analysis have been developed and
extended for displacement analysis inside translated microdroplets.
As known from the literature and our own experiences, the mixing of two liquids within a transported microcompartment during its translation in
microchannels is limited. As a consequence,
Detection and counting of small objects like cells
or microparticles is required for monitoring of biological, biochemical, and chemical processes in
microchannels. The optical setup developed for
µ-PIV image acquisition was used for monitoring
the growth of cells in microchannels.
In a total volume of 180 nl cell numbers ranging
from 5 up to 10,000 cells can be measured. The
method is available and used for monitoring the
cell growth in microcompartments and for counting cells during in-situ microflow PCR in
microchannel systems (Fig. 3.6).
Abb. 3.6: Left: cell suspensions at different cell
concentrations in a micro channel volume of
180 nl, Right: Number of detected cellular
objects, dependent on the total number of cells in
the measured volume of 180 nl.
Microstructured hydrogel supports
for array technology
(Th. Henkel, U. Klenz)
The development of microstructured hydrogel
arrays as supports for the immobilization of functional molecules has been continued.
They are used for the development of sensor
arrays for incorporation in a microfluidic environment. After immobilization of fluorescence
labeled sensor molecules for flavor analytics they
are applied in the development of ChemoChipsTM
for a multi-component analysis of flavor molecule
mixtures by optical readout.
63
MIKROSYSTEME / MICROSYSTEMS
On the other hand, these films are utilized for the
functionalization of magnetic carrier chips with
hydrogel-based resins for a solid-phase organic
synthesis and a combinatorial synthesis of substance libraries. These carriers can be used
according to the new, patented Syn&Sort strategy for efficient synthesis of chemical libraries. In
contrast to the Split&Mix, where the individuality
of the synthesis carrier is lost after each mixing
process, the identity of each carrier is preserved
during the complete multi-step synthesis.
Thereby, the Syn&Sort approach enables a distinct assignment of a synthesized product to an
individual carrier and avoids additional expensive
labeling strategies.
B.
Molecular nanotechnology
Integrating molecular structures
on microstructured chips
(A. Wolff, R. Kretschmer, A. Csáki, W. Fritzsche)
After the successful realization of a true parallel
integration of individual molecular structures into
pre-structured microelectrode arrays in the previous year, such molecular structures were used for
a nanoelectronic demonstrator. Therefore, metal
nanoparticles were specifically deposited along
these individual DNA-structures that were positioned in the electrode gaps (Fig. 3.7).
Fig. 3.7: Conductivity measurement on individual DNA structures (positioned in two-electrode
gaps) after metallization with nanoparticles. AFM
images (top) of 3 structures with different discontinuity in the metallic chain and the respective
conductivities (bottom).
64
Such nanoscale-separated metal islands are
known for interesting (e.g. single electron)
effects. The experiments yielded an inhomogeneous coverage of the template DNA with
metal particles, resulting in stretches of “naked”
DNA structures of 200–500 nm in length.
Because the DNA structures were integrated in
the microelectrode array, electrical wiring was
easily accomplished. Low-temperature measure-
ments were conducted and yielded Ohmic behavior with high resistances in the GOhm range.
However, the resistance correlated with the
length of the uncovered DNA stretches. The successful measurement – and especially the ease
of electrical access to the molecular structure –
demonstrated the suitability of this novel
approach.
Plasmonic effects on molecular structures
(A. Steinbrück, A. Csáki, W. Fritzsche)
Small metal nanostructures, particularly metal
nanoparticles, show interesting optical properties like plasmon excitation (oscillation of their
conduction electrons). This feature depends on
material characteristics, particle size, form, clustering, and different proximity factors like biomolecule ligands. Single particle spectroscopy
was used to study the photonic properties of surface-immobilized nanoparticles (Fig. 3.8). The
observed variations in plasmon spectra indicated
different particle shapes in the population of the
synthesized gold nanoparticles. In collaboration
with the Max Born Institute (Berlin), experiments
are under way in order to correlate ultra-microscopic (AFM) images of individual particles with
their spectra.
Fig. 3.8: Single particle spectroscopy. Spectra of
three different gold nanoparticles (inset: AFM
image of such particles).
The effect of a near-infrared two-photon fs-laserbeam on metal nanoparticles was studied by
optical and scanning force microscopy (AFM) in
the framework of a project with JenLab GmbH as
part of the Nanobiotechnology initiative of the
BMBF (FKZ 0312013B). For wavelengths near
the surface plasmon resonance of the particles,
a heating of the metal nanostructures can be
observed. In order to study this laser-induced
temperature rise, a heat-sensitive polymer support was used. Decreased particle heights (point-
MIKROSYSTEME / MICROSYSTEMS
ing to a sinking into the polymer) and even particle ablation as well as cavities surrounding the
particles were observed in dependence on
parameters such as the power of the laser beam
per surface unit, the particle material, and the
particle diameter (Fig. 3.9). Threshold values
were successfully determined for the parameters
in order to avoid irreversible destruction of the
particles, but to achieve a significant temperature
rise as deduced from observed damages in the
surrounding polymeric material.
system represents a major breakthrough for a
further application-oriented development in this
field (Fig. 3.10). The next step is the establishment of highly sensitive and low-background protocols for parallel electrical DNA detection in collaboration with both bioanalytical companies and
research institutions.
Fig. 3.9: Metal nanoparticle (60 nm) on a polymeric surface (PMMA) before (A) and after (B)
the laser exposure.
Similar experiments were conducted with nanoparticles positioned on metaphase chromosomes with the objective to determine the
degree of localization of particle-induced
destruction in a biological environment (see
Fig. 3C on colour pages). As visible in ultramicroscopic images of the very same chromosome
surface region before and after exposure, laser
irradiation results in disappearance of the particles and the generation of cavities at their previous positions. The remaining surface regions
(background) are not significantly altered, pointing to a highly localized destructive effect of the
approach.
C.
DNA-chip technology
Spotting technology for DNA biochip fabrication
(R. Möller, G. Festag, R. Kretschmer,
W. Fritzsche)
DNA chip technology promises miniaturized and
highly paralleled detection. A key factor for their
production represents high-quality liquid transfer
tools and procedures. This is especially important in the context of the electrical DNA chip
detection system that was established in the previous years at the IPHT because here the locations of the measuring sides are fixed by the
design of the electrode array and not as flexible
as in the case of standard fluorescence arrays.
Commercial spotters did not provide the required
variability regarding design-driven positioning.
Therefore, the successful adaptation of automatic and high precision spotting procedures to this
Fig. 3.10: A: The precision of the spotting procedure is illustrated by fluorescence-labeled DNA
microarrays. B: Spotted arrays (squares) on electrodes of the electrical DNA-chip. C: Zoom of B
showing one spot positioned on top of an electrode gap.
Optics with subwavelengths apertures
and nanoparticles
(A. Csáki, T. Glaser, S. Schröter, W. Fritzsche)
Apertures with subwavelength size are of high
interest both for the elucidation of nanooptical
effects and for potential application in high-sensitivity (single molecule) bioanalytics. Experiments
were conducted with arrays of nanoapertures
(hole diameter 150 nm, period 1 µm) in metal
films fabricated by e-beam lithography. Selected
holes were filled with metal nanoparticles, and
the array was characterized by optical and ultramicroscopic methods (Fig. 3.11).
Fig. 3.11: Subwavenlength nanoapertures fabricated in thin metal films. A: Optical micrograph of
an aperture array (inset: zoom). B: One aperture
(center) filled with a 30 nm nanoparticle, three
other particles are also visible. AFM image.
65
MIKROSYSTEME / MICROSYSTEMS
3.2.2
Microanalytical systems
(R. Riesenberg)
Last year, the topic of the report was ultra-sensitive optical sensing technique made with spatial
light modulators. Now, in the report 2004 a special spatial light modulator – the optical aperture
array – and its application are considered in more
detail.
Microaperture arrays in optics
Past activities of the group regarding sensing
systems with microaperture array devices (optical MEMS) were dedicated to incoherent illumination and multiplexing. On the one hand, this
work is being continued, on the other hand, new
investigations are concerned with the effects of
coherent or partly coherent illumination to be
used advantageously in analytical systems.
In the incoherent case, special aperture arrays
such as microslit arrays are applied for the superposition of different sources (multiplexing), for
the coding of light spectra (adaptive/intelligent
ultra-sensitive detection, see report 2003), and
for the generation of sub-pixel information in
high-resolution and high-throughput spectrometers (super-resolution systems). Examples of
systems employing these techniques with 2Daperture arrays are Raman spectral sensors (see
also report 2003) or optical readers for biotechnology. Another new development is the tunable
filter, a spectrally structured light source for an
infrared multiple gas sensor (see below).
In case of partly coherent or coherent systems
with microaperture arrays, additional interference
properties contain information about path differences or wavefront phases, respectively. This
can, for instance, be used to implement lenseless
imaging systems similar to synthetic aperture
imaging systems as known from radar technology.
By extending principles known from incoherent
multiplexing, new advantageous sys-tems will be
possible.
Fig. 3.12 shows an optical aperture consisting of
two pinholes of diameters of about 1 µm. It is the
most simple version of an aperture array made
by microtechnology and can be used to investigate basic effects under coherent or partially
coherent illumination under practical conditions.
In the plane of the apertures the image of the
pinholes was taken (Fig. 3.12a and d). Intensity
distributions behind the plane of the pinholes for
illumination are shown in Fig. 3.12b, c and e with
different coherence properties for a distance of
15 µm to the aperture plane.
(R. Riesenberg, A. Grjasnow, J. Bergmann)
66
Fig. 3.12: Short introduction of microaperture
devices and aperture arrays as photonic sources
and its optical functions:
Experimentally yielded images of two pinholes
with a diameter of 1.4 µm and a distance of 4 µm
(a) and 10 µm (d), respectively, prepared in a thin
metal film. It is shown the image of incoherent
illumination at a distance of 15 µm above the
aperture plane (b) and of the coherent illumination at the same distance above the aperture
plane (c). If the distance of pinholes is increased
(10 µm) only diffraction remains and the interference vanishes (e). Pinhole arrays with 300 nm
holes (f) realize functions like a two-dimensional
photonic crystal.
For applications with high throughput properties
the holes are mostly replaced by microslits.
Further results concerning microaperture arrays
are:
A. A new class of sequences for redundant photon multiplexing and operation principle was
derived for simultaneous detection of high- and
low-intensity objects. The cross talk can be
reduced, the errors of detection can be corrected, and changes of data with time during measurement can be accepted. Fig. 3D on colour
pages shows a simulated example (an image of
the Kithara Observatorium, JP): detected stars
on the sky with very high contrast by classical
multiplexing (left) and processed by redundant
aperture sequences (right).
(A. Wuttig)
MIKROSYSTEME / MICROSYSTEMS
B. A miniaturized UV-Raman spectral sensor for
biophotonics was developed (Fig. 3.13). The sensor was designed near the diffraction limit of the
grating with a spectral resolution of 0.035 nm in
the UV region (245 nm … 360 nm) and a throughput of about 50%, based on 2D microslit arrays
and coded microaperture arrays (both patents
pending). The device is about 4 times smaller
(length) than commercial sensors with the same
performance. (BMBF project OMIB, together with
the University of Jena, the IOF of the FhG,
Kayser-Threde and Zeiss Jena GmbH)
(R. Riesenberg, A. Wuttig)
Fig. 3.13: Miniaturized UV-Raman spectral sensor for biophotonics based on coded 2D microslit
arrays.
C. A new spectral fluorescence bioreader for realtime PCR together with Analytik Jena AG is being
developed. It uses a system of fiber arrays, lens
arrays and microaperture arrays for parallel illumination as well as highly parallel spectral detection.
(G. Nitzsche)
D. A spectrally structured infrared light source as
a tunable filter based on an inverse grating spectrometer was developed (Fig. 3.14). The entrance
was made with a multislit aperture. From the radiation of a thermal source different wavelengths
with different spectral intensities are selected and
superposed. Different gases can be illuminated by
a selected set of spectral lines and detected
simultaneously including a reference wavelength.
The experimental example represents three
infrared absorption spectra (with a minimum of
4.2 µm wavelength caused by CO2) generated by
the 3 single slits of the multislit array. For the
“Multivalent NDIR Spectrophotometer” project
the pseudo-white light source was designed for
the superposition of 7 wavelengths. It operates
with only one single high-sensitive detector. The
system replaces the commercial set of interference filters.
(R. Riesenberg, G. Nitzsche, A. Grjasnow)
Fig. 3.14: Spectrally structured infrared light
source as a tunable filter based on an inverse
grating spectrometer. The entrance is made with
a multislit aperture (see text).
Systems and applications of entrance aperture
arrays are
• operational principles for highly spatial and
spectral resolution measurement techniques
and microscopy,
• imaging techniques,
• adaptive intelligent optical sensors with a priori
knowledge,
• enhanced mobility and miniaturized ultra-sensitive optical sensing systems with high throughput and reduction of cost, simultaneously
• arrays as a local coherent and incoherent photon source, also for generation of a structured
set of signals for microanalytics
• optical devices for forming and homogenization
of light rays as well as for its splitting,
• spectral filtering for structured illumination.
Summarizing, the micro-aperture array devices
are useable for adapted signal generations as
well as for signal detection in connection with
commercial optical macrosystems.
67
MIKROSYSTEME / MICROSYSTEMS
3.2.3
Thermal microsensors
(J. Müller)
In 2004, two projects (Chip Calorimeter and
MULTIGAS) were finished, a new one (MICROTHERM) could be started, and two proposals are
under expert evaluation now. The results of the
finished projects are encouraging: In both cases
the utilization of the outcome becomes clearly
visible.
In March 2004, the space experiment ROSETTA
was started successfully by an Ariane 5 rocket:
Spaceborne several thermopile infrared radiation sensors are arranged, developed and manufactured by the IPHT. After a flight time of about
ten years they shall be used for measurements
of temperature and analysis of the material
constituents of the Churyumov-Gerasimenko
comet.
In 2004, also the worldwide first commercial production of instruments for non-contact temperature measurements in high-temperature surroundings up to 180 °C was started for which the
successful development of high-temperature
resistant thermopile sensors in the frame of the
recent project HOBI has provided the basis.
Meanwhile besides the former project partner
RAYTEK GmbH further manufacturers have
already announced their big interest in such sensors, too.
Multi-element infrared radiation sensors
for gas detection (MULTIGAS project)
(U. Dillner, V. Baier, E. Kessler)
68
Gas monitoring is a key issue in process control,
environmental/pollution
monitoring,
medical
applications, and other emerging markets. The
MULTIGAS project dealt with the development of
a new class of multi-element thermopile infrared
radiation sensors for gas detection by infrared
absorption characterized by an enhanced sensitivity and detectivity in comparison to their stateof-the-art CMOS-based counterparts. Such an
improvement is highly welcome in the majority of
gas detection applications since the available
radiation intensity is often severely limited by the
optical throughput of an IR spectrometer or by
the necessary IR narrow bandpass filters in a
NDIR device.
Research and development within the scope of
the MULTIGAS project was done in cooperation
with Micro-Hybrid Electronic GmbH Hermsdorf.
The key solutions for enhancing the sensitivity
and detectivity of the multi-element sensors were
the use of group-V semimetal-based thermoelectric materials showing a high thermoelectric
figure of merit in order to improve the efficiency
of the thermoelectric transduction of the sensor
and the optimization of the sensor layout by the
application of thermal simulation calculations
based on finite element analysis.
The MULTIGAS project was finished at the end of
2004. With regard to the state of the project given
in the last annual report (see IPHT Annual Report
2003) – where the development of a 64-element
thermopile linear array with a detectivity of about
109 cmHz1/2/W suited for a spectrometric arrangement in a vacuum environment and the development of a high-sensitivity 4-element thermoelectric infrared sensor in a small package were
reported – these sensors were redesigned to
improve their technological reliability. Moreover,
as a third sensor type, a dual-element thermoelectric IR sensor was added to the new class of
high-sensitivity thermopile multi-element infrared
radiation sensors. Compared to state-of-the-art
dual-element sensors in a small (typically TO-5)
N2-backfilled package represented, e.g., by the
Quad Thermopile TPS 2534 of PerkinElmer
Optoelectronics, the specific detectivity of the
new dual-element sensor (2.6 × 108 cmHz1/2/W
without filter) is about one and a half times higher while the sensitivity (105 µVm2/W) is nearly
two times higher at a cross-talk of about 1% (see
Fig. 3B on colour pages).
High-sensitive thermopile heat power sensor
for micro-flow calorimetry
(V. Baier, R. Födisch, A. Ihring, E. Kessler)
Last year, the calorimeter chip was improved with
respect to an enhanced mechanical reliability and
chemical stability maintaining the high thermal
sensitivity. Therefore, the epoxy-based negative
photoresist SU-8 with its very good properties
was introduced into manufacturing of the revised
micro-flow chip calorimeter. The SU-8 films (as
passivation and isolation layers) were applied by
spin-on technology. The thermal conductivity of
SU-8 was measured to 0.25 Wm–1K–1.
When SU-8 films are patterned by utilizing their
negative-photoresist behavior in a wet process
(UV-exposure, post-exposure bake and develop-
Fig. 3.15: Thermopile chip module inserted into
the two-stage thermostat.
MIKROSYSTEME / MICROSYSTEMS
ment) very steep side walls with a slight undercut
are typically obtained. To achieve reliable electrical contacts to outer functional layers it is necessary to get smoothly beveled edges. Therefore,
investigations were carried out in patterning SU8 by dry etching in oxygen plasma utilizing the
resist mask cut back.
The improved thermopile nano calorimeter chip
module in SU-8 technology for isolation and passivation layers was mounted inside a two-stage
thermostat with a temperature stability better
than 100 µK (Fig. 3.15). Biochemical processes
like enzyme-catalyzed reactions can be investigated with heat power detection limit < 100 nW.
The calorimeter system was developed in cooperation with the TU Bergakademie Freiberg.
New generation of micro-thermopiles
with high detectivity
(E. Kessler, V. Baier, U. Dillner, A. Ihring,
J. Müller)
The main goal of the project MICRO-THERM,
started in July 2004, is the development of microthermopiles for high-resolution low-temperature
radiation thermometry (spectral range 8 to
14 µm). The work is carried out in close cooperation with Optris GmbH, Berlin and Mikrotechnik
& Sensorik GmbH, Jena.
Essential specifications of this new generation of
detectors are reduced dimensions of the receiving area (diameters ranging from 100 to 150 µm),
thus permitting the enhancement of the distance
ratio and the optical resolution of pyrometers
even with small optics, high specific detectivities
above 1 × 109 cm Hz1/2/W and comparatively low
thermal time constants in the range of 100 ms.
These features shall be achieved by a thermally
optimized thermopile arrangement on a floating
membrane with supporting bridges smaller than
10 µm (Fig. 3.16) and reduced thicknesses of
active and passive layers, thereby reducing parasitic thermal conductances and masses, and, as
an inalienable condition, the detector operating in
a high-vacuum ambiance.
The floating membrane pattern is generated by
dry etching processes. In a first run, several types
of thermopiles comprising four and eight thermocouples of BiSb and Sb with leg widths of 2 and
4 µm, respectively, deposited on stress-controlled
silicon nitride, have been tested. Under vacuum
conditions, responsivities of up to approximately
3000 V/W and specific detectivities of 1.4 × 109
cm Hz1/2/W were measured.
A significant potential for a further increase in
responsivity and detectivity arises from substituting the p-material Sb by the high figure of merit
material BiSbTe and by the application of a new
membrane technology.
Fig. 3.16: Thermopile arrangement on floating
membrane with circular receiving area of 150 µm
diameter.
The scaled-down geometrical dimensions of the
micro-thermopiles connected to the accomplishable high detectivities are an important first step
towards the development of thermopile arrays
with high spatial resolution, hence, this project is
of particular importance for the further development of thermopile sensors at the IPHT.
3.3. Appendix
Partners
• National cooperation
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Advalytix AG, Brunnthal
Analytik AG, Jena
Applikationszentrum Mikrotechnik (AMT), Jena
ART-Photonics GmbH, Berlin
Bartec Componenten und Systeme GmbH,
Gotteszell
Biofrontera Pharmaceuticals AG, Leverkusen
Bosch und Siemens Hausgeräte GmbH,
Traunreuth
Bundesanstalt für Materialprüfung (BAM),
Berlin
Cetoni GmbH, Gera-Korbußen
CLONDIAG-Chip Technologies GmbH, Jena
Deutsches Kunststoff-Institut, Darmstadt
Electronic Engineering Erlenwein, Denkingen
Entec GmbH, Ilmenau
eta_max space GmbH, Braunschweig
Fachhochschule Brandenburg, FB Technik
Fachhochschule Hannover, FB Elektrotechnik
Fachhochschule Wiesbaden, FB
Physikalische Technik
Fachhochschule Jena, FB Medizintechnik
Faseroptik GmbH, Jena
Friedrich-Schiller-Universität Jena
– Institut für Physikalische Chemie
– Institut für Virologie
Hans-Knöll-Institut (HKI), Jena
69
MIKROSYSTEME / MICROSYSTEMS
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
HL-Planartechnik, Dortmund
IBT.Infrabiotech GmbH, Freiberg
IL Metronic Sensortechnik GmbH, Ilmenau
IMPAC Infrared GmbH, Frankfurt/Main
Industrieanlagen-Betriebsgesellschaft mbH,
Ottobrunn
Institut für Bioprozess- und Analysenmesstechnik e.V. (iba), Heiligenstadt
Institut für innovative Mikroelektronik,
Frankfurt/O.
Institut für Mikrotechnik Mainz (IMM), Mainz
Institut für Molekulare Biotechnologie (IMB),
Jena
JenaBioScience GmbH, Jena
JENOPTIK Laser, Optik, Systeme GmbH, Jena
JENOPTIK Mikrotechnik GmbH, Jena
Kayser-Threde GmbH, München
Labor Diagnostik Leipzig GmbH, Leipzig
Max-Born-Institut, Berlin
Micro-Hybrid Electronic GmbH, Hermsdorf
Mikrotechnik + Sensorik GmbH, Jena
Nano-Filtertechnik GmbH, München
Optris GmbH, Berlin
PTB Braunschweig, Labor „Wechsel-GleichTransfer“
Quantifoil Instruments GmbH, Jena
Raytek GmbH, Berlin
Scanbec GmbH, Halle/Saale
Seleon GmbH, Dessau
SurA Chemicals GmbH, Jena
Technische Universität Dresden, Lehrstuhl für
Mech. Verfahrenstechnik
Technische Universität Bergakademie Freiberg
– Institut für Keramische Werkstoffe
– Institut für Physikalische Chemie
Technische Universität Ilmenau
– Physikalische Chemie/Mikroreaktionstechnik
– Zentrum für Mikro- und Nanotechnologien
Technische Universität Leipzig
VirtualFab Technologie GmbH, Jena
International co-operation
70
• ACREO AB, Kista, Sweden
• ALBEDO Technologies, Razès, France
• Anhui Institute of Optics and Fine Mechanics,
Hefei, China
• Bundesamt für Eich- und Vermessungswesen
(BEV), Wien, Austria
• CAL-Sensors, Inc., Santa Rosa, CA, USA
• Centro National de Metrologia (CENAM),
Querétaro, Mexico
• Foster-Miller, Waltham, MA, USA
• Hebrew University, Jerusalem, Israel
• Institutul National de Metrologie (INM)
Bukarest, Romania
• IR System Co. Ltd., Tokyo, Japan
• Istituto Elettrotecnico Nazionale (IEN), Turin,
Italy
• Key Techno Co., Ltd. Tokio, Japan
• Nanoprobes, Inc., Yaphank, NY, USA
• National Institute of Metrology (NIMT),
Bangkok, Thailand
• National Measurement Institute (MNI),
Lindfield, Australia
• National Metrology Laboratory (NML),
Sepang, Malaysia
• National Research Counsil (NRC), Ottawa,
Canada
• Országos Mérésügyi Hivatal (OMH),
Budapest, Hungary
• Silesian University of Technology, Gliwice,
Poland
• Slovenian Institute of Quality and Metrology
(SIQ), Ljubljana, Slovenia
• Standards, Productivity and Innovation Board
(SPRING), Singapore
• Ukrmetrteststandart (UkrCSM), Kiev, Ukraine
• Ulusal Metroloji Enstitüsü, Gebze, Turkey
• University Warsaw, Institute of Micromechanics
and Photonics, Warsaw, Poland
• Usinas y Trasmisiones Electricas (UTE),
Montevideo, Uruguai
Editor
B. Culshaw, A. G. Mignani, R. Riesenberg:
“Optical Sensing”,
Chairs/Editors Proc. SPIE 5459, 2004
W. Fritzsche:
“DNA-Based Molecular Electronics – AIP”
Proceedings Vol. 725
(American Institute of Physics, 2004)
Publications
U. Dillner, V. Baier, E. Kessler, J. Müller,
A. Berger, D. Behrendt, H.-A. Preller:
“A High Sensitivity Single-chip 4-element Thermo-electric Infrared Detector”
OPTO & IRS2 2004 Proceedings, 149-153
J. Felbel, I. Bieber, J. Pipper, J. M. Köhler:
“Investigations on the compatibility of chemically
oxidized silicon (SiOx)-surfaces for applications
towards chip-based polymerase chain reaction”
Chem. Engn. J. 101 (2004), 333–338
W. Fritzsche, G. Maubach, A. Csáki, D. Born,
U. Klenz:
“Multi-level self organization process for a parallel fabrication of aligned metal structures in
microelectrode gaps using DNA and metal nanoparticles”
AIP Conference Proceedings 725: DNA-Based
Molecular Electronics (Jena, May 2004, ed. W.
Fritzsche), p. 9–13
W. Fritzsche, A. Csáki, G. Maubach, R. Möller,
K. König, F. Garwe:
“Integrating Molecular Structures Into the Macroscopic World by a Combination of Microsystem
technology and Self-Assembly Methods”
in H. Knobloch and Y. Kaminorz, eds. MicroNano
Integration. Springer. book section, 2004, pages
127–133
MIKROSYSTEME / MICROSYSTEMS
W. Fritzsche
“Metal Nanoparticles”
in Encyclopedia of Nanoscience and Nano-technology (Ed. by J. A. Schwarz, C. C., and K.
Putyera), American Scientific Publishers, 2004,
955–962. book section
W. Fritzsche:
“An approach to molecular electronics by self
organization of molecular units”
in “Lecture Notes in Informatics (LNI)-Proceedings” Vol. P-41, Gesellschaft für Informatik,
Köllen Druck+Verlag, Bonn 2004
T. Funck, M. Kampik, E. Kessler, M. Klonz,
H. Laiz, R. Lapuh:
“Realization of the ac-dc voltage transfer scale at
low frequencies with high dynamic range PMJTCs”
In: Digest Conf. on Prec. Electrom. Meas. CPEM
2004, London, UK, 27.6.–2.7.2004, pp. 581–582,
June 2004
C. Holste, A. Sondermann, R. Möller, W. Fritzsche:
“Coupling G-wires to metal nanoparticles”
AIP Conference Proceedings 725: DNA-Based
Molecular Electronics (Jena, May 2004, ed. W.
Fritzsche), p. 53–57
A. Grodrian, J. Metze, T. Henkel, K. Martin,
M. Roth, J. M. Köhler:
“Segmented flow generation by chip reactors for
highly parallelized cell cultivation”
Biosensors&Bioelectronics 19 (2004), 1421
M. Günther, S. Schneider, J. Wagner,
R. Gorges, Th. Henkel, M. Kielpinski, J. Albert,
R. Bierbaum, J. M. Köhler:
“Characterization of residence time and residence
time distribution in chip reactors with modular
arrangements by integrated optical micro devices”
Chem. Engn. J. (2004)
T. Henkel, T. Bermig, M. Kielpinski, A. Grodrian,
J. Metze and J. M. Köhler:
“Chip modules for generation and manipulation of
fluid segments for micro serial flow processes”
Chem. Engineering Journal 101 (2004) 439–445
T. Kirner, J. Albert, M. Günther, G. Mayer,
K. Reinhäckel, J. M. Köhler:
“Static micro mixers for modular chip reactor
arrangements in two step reactions and photochemical activated processes”
Chem. Engn. J. (2004)
J. M. Köhler, W. Fritzsche:
“Molecular Planar Technology”
in Encyclopedia of Nanoscience and Nanotechnology (Ed. by H.S: Nalwa), American
Scientific Publishers, 2004, Vol. 5, 703–722. book
section
J. M. Köhler, W. Fritzsche:
“Nanotechnology”
Wiley VCH, Weinheim, 2004, book
J. M. Köhler, Th. Henkel, A. Grodrian, Th. Kirner,
M. Roth, K. Martin, J. Metze:
“Digital reaction technology by micro segmented
flow – components, concepts and applications”
Chem. Engn. J. (2004)
J. M. Köhler, J. Albert, G. Mayer:
“Mikrostrukturiertes Silizium für Anwendungen in
der Biotechnologie und der Chemie”
Freiberger Forschungshefte B 327 (2004), 125
K. König, F. Garwe, A. Csáki, G. Maubach,
I. Riemann, W. Fritzsche:
“Nanoprocessing of DNA with Femtosecond
Laser”
Conference proceedings Photonics Europe.
SPIE Europe, Strassburg (Frankreich), 2004,
pages 27–36
R. Kretschmer, W. Fritzsche:
“Pearl Chain Formation of Nanoparticles in
Microelectrode Gaps by Dielectrophoresis”
Langmuir 20 (2004) 11797–11801
R. Kretschmer, W. Fritzsche:
“Manipulation of metal nanoparticles in micrometer electrode gaps by dielectrophoresis”
AIP Conference Proceedings 725: DNA-Based
Molecular Electronics (Jena, May 2004, ed. W.
Fritzsche), p. 85–88
H. Laiz, M. Klonz, E. Keßler, M. Kampik,
R. Lapuh:
“Low-frequency ac-dc voltage transfer step-up
with new high sensitivity and low power coefficient thin-film multijunction thermal converters”
IEEE Trans. Instr. Meas., Vol. 52 (2003) No. 2
(April), pp. 350–354
G. Maubach, W. Fritzsche:
“Precise Positioning of Individual DNA Structures
in Electrode Gaps by Self-Organization onto
Guiding Microstructures”
Nano Letters 4 (2004), 607–611
J. Müller, U. Dillner, E. Keßler, V. Baier,
A. Berger:
“Thermopile-Infrarot-Sensoren: Nun auch steigende Nachfrage für die Gas-Analyse-Messtechnik”
SENSOR MAGAZIN 3 (2004), 9–12
J. Reichert, J. M. Köhler:
“Characterization of lithographically patterned
organosilane monolayers by preferential adsorption of dye molecules”
Biosensors&Bioelectronics 19 (2004), 1387
71
MIKROSYSTEME / MICROSYSTEMS
L. Scarioni, M. Klonz, E. Keßler:
“Conversor térmico de multiuniones de peliculas
delgadas sobre un chip de cuarzo para altas frequencias”
Resumés Simposio de Metrologia 2004, Octubre
25–27, 2004, Santiago de Quérétaro, México, pp.
65
J. Wagner, T. Kirner, G. Mayer, J. Albert,
J. M. Köhler:
“Generation of metal nano particles in a microchannel reactor”
Chem. Engn. J. 101 (2004), 251–260
G.-J. Zhang, R. Möller, R. Kretschmer, A. Csáki,
W. Fritzsche:
“Microstructured Arrays with Pre-synthesized
Capture Probes for DNA Detection Based on
Metal Nanoparticles and Silver Enhancement”
Journal of Fluorescence 14 (2004), 369–375
Invited talks
W. Fritzsche, A. Csaki, R. Möller, G. Maubach,
R. Kretschmer:
“Molekulare Konstruktion mit DNA und Nanopartikeln – Anwendungen in Nanotechnologie
und Biologie”
2. Workshop “Chemische und biologische Mikrolabortechnik”, Ilmenau, 17.–19.02.2004
W. Fritzsche, R. Möller:
“Electronic detection of molecular interactions
using metal enhancement and resistance measurements”
ANALYTICA, München, 11.–14.5.2004
W. Fritzsche:
“Bridging molecular constructs with the macroscopic world: Concepts based on a combination
of biomolecular self organization and microsystem technology”
• Tokyo University, Institute of Industrial
Science (Japan)
• Tokyo University, Department of Mechanical
Engineering (Japan)
November 2004
R. Riesenberg:
“Adaptive ultra-sensitive sensing using micro
aperture arrays”
Max Planck Forschergruppe, Institut für Optik,
Information und Photonik (Prof. G. Leuchs),
Erlangen, July 2004
R. Riesenberg, A. Wuttig:
“Adaptive ultrasensitive Farbsensorik”,
Kompetenznetzwerk Optische Technologien
“Optence”, Wetzlar, April 2004
R. Riesenberg:
“MEMS and Grating Spectrometer”
Warszawa University of Technology (Prof. M. Kujawinska), 09.03.2004
W. Fritzsche:
“Electrical DNA detection and molecular nanotechnology based on DNA-conjugated metal
nanoparticles”
Workshop “Electronic Recognition of DNA”, Liege
(Belgium), 1.–3.9.2004
R. Riesenberg:
“Adaptive ultrasensitive Detektion mit Spektralsensoren”
TU Darmstadt, (Prof. T. Tschudi), February 2004
W. Fritzsche, J. M. Köhler, T. Kirner, J. Wagner,
A. Csáki, R. Möller:
“DNA nanoparticle adducts for chip based nanotechnology”
EMRS, Strasbourg (France), 24.–25.5.2004
V. Baier, R. Födisch, A. Ihring, E. Kessler,
J. Lerchner, G. Wolf, J.M. Köhler, M. Nietzsch,
M. Krügel:
“High sensitive thermopile heat power sensor for
microfluid calorimetry of biochemical processes”
XVIII. EUROSENSORS, Rom (Italy), 12.–15.9.
2004, poster
W. Fritzsche:
“Devices Based on DNA-Nanotechnology for
Applications in Nanoelectronics and Nanophotonics“
National Dong Hwa University, Hualien (Taiwan)
November 2004
72
W. Fritzsche:
“DNA-nanoparticle-conjugates for novel bioanalytical and nanotechnological applications”
• ISIR-Sanken, Osaka University (Japan)
• Graduate school of Frontier Bioscience,
Osaka (Japan)
• Academica Sinica, Taipeh (Taiwan)
November 2004
Presentations/Posters
I. Bieber, J. Felbel, J. Pipper, A. Sondermann,
J. Seilwinder:
“Real-time PCR in Nanotropfen auf Chipoberflächen”
12. Heiligenstädter Kolloquium “Technische
Systeme für Biotechnologie und Umwelt”,
27.9.–29.9. 2004, Abstracts 62, poster
MIKROSYSTEME / MICROSYSTEMS
A. Csáki, G. Maubach, D. Born, and W. Fritzsche:
“DNA-based construction for nanoelectronics”
Ultimate Lithography and Nanodevice Engineering Conference, LITHO2004. Phantoms Foundation, Agelonde (France) 12.–16.6.2004, talk
A. Csáki, G. Maubach, D. Born, G. Festag,
A. Steinbrück, A. Wolff, W. Fritzsche:
“A toolbox for molecular construction based on
DNA, metal nanoparticles and microstructured
surfaces”
• Third Symposium “Micro- and Nanostructures
of Biological Systems”, Halle, 7.–8.6.2004,
poster
• International Workshop “DNA-based
Molecular Electronics”, Jena, 13.–15.5.2004,
poster
U. Dillner, V. Baier, E. Kessler, J. Müller,
A. Berger, D. Behrendt, H.-A. Preller:
“A High Sensitivity Single-chip 4-element
Thermoelectric Infrared Detector”
8th Int. Conference for Infrared Sensors and
Systems, Nürnberg, 25.–26.5.2004, talk 1.3
J. Felbel, I. Bieber, A. Sondermann,
J. Seilwinder, J. Pipper, J. M. Köhler:
“Real-Time PCR auf stationären Chipthermocyclern”
BioPerspectives, Wiesbaden, 4.–6.5.2004, poster
G. Festag, R. Möller, A. Csáki, W. Fritzsche:
“Characterization of silver enhancement methods for nanoparticle-based DNA microarrays”
3rd International Workshop “Scanning Probe
Microscopy in Life Sciences”, Berlin, 13.10.2004,
poster
W. Fritzsche:
“An approach to molecular electronics by self
organization of molecular units”
ARCS 2004, Workshop “Selbstorganisation in
Physik und Informatik”, Augsburg, 25.–26.3.
2004, talk
W. Fritzsche, G. Maubach, A. Csaki, D. Born:
“A parallel approach to DNA nanotechnology:
Step-by-step self assembly of metal nano-structures in microelectrode arrangements using a
DNA template”
International Workshop “DNA-based Molecular
Electronics”, Jena, 13.–15.5.2004, talk
W. Fritzsche:
“Mikrosystemtechnik zur Integration von nanoskaligen biomolekularen Konstrukten in technische Umgebungen für bioanalytische und nanotechnologische Anwendungen“
Mikrosysteme für Life Sciences, St. Augustin,
18.6.2004, talk
W. Fritzsche, A. Csáki, A. Steinbrück,
G. Maubach, F. Garwe, K. König, M. Raschke:
“Eine Nanopartikel-basierte photonische Nanobiotechnologie als Vermittler zwischen molekularer Welt und technischer Umgebung”
12. Heiligenstädter Kolloquium “Technische
Systeme für Biotechnologie und Umwelt”,
27.9.–29.9. 2004, Abstracts 21, talk
W. Fritzsche:
“Integration of single-molecular constructs in
microsystems for optical applications”
10th International Workshop on “Single Molecule
Detection and Ultrasensitive Analysis”, Berlin,
22.–24.9.2004, talk
T. Funck, M. Kampik, E. Keßler, M. Klonz, H. Laiz,
R. Lapuh:
“Realization of the ac-dc voltage transfer scale at
low frequencies with high dynamic range
PMJTCs”
Conf. on Prec. Electrom. Meas. CPEM 2004,
London (U.K.) 27.6.–2.7. 2004, talk
T. Henkel, M. Kielpinski, G. Mayer, A. Grodrian,
T. Schön, J. Metze, J. M. Köhler, K. Martin,
M. Roth:
“Chipmodule für das Dosieren und Mischen von
Reagenzien im segmentierten Fluss”
2. Workshop “Chemische und biologische Mikrolabortechnik”, Ilmenau, 17.–19.2.2004, talk
T. Henkel, R. Merthan, M. Stahl, M. Kielpinski,
H. Süße, K. Martin, M. Roth:
“Mikrofluidische Bauelemente zur Kontrolle segmentierter Probenströme”
12. Heiligenstädter Kolloquium “Technische
Systeme für Biotechnologie und Umwelt”,
27.9.–29.9. 2004, Abstracts 45, talk
E. Keßler, V. Baier, U. Dillner, A. Ihring,
J. Müller:
“Thermische Infrarot-Sensoren in mikrotechnischer Realisierung”
EUROPRACTICE/LICOM-Workshop “Mikrotechnische
thermische
Sensoren”,
VillingenSchwenningen, 21.10.2004, talk
M. Kielpinski, R. Merthan, M. Stahl, H. Süße,
G. Mayer,J. Albert, Th. Henkel:
“Chipsysteme zur Kontrolle mikroskaliger Reaktionsräume in mikrofluidischer Umgebung”
4. Chemitz/Hamburger Colloquium (CHC) MikroStrömungen, Hamburg-Harburg, 11.–12.11.
2004, talk
J. M. Köhler, J. Wagner, G. Mayer, I. Bieber,
A. Csáki, W. Fritzsche:
“Nanoparticles and Chipreactors – Planar Technology and Flow-Through Chemistry at the
Nanoscale”
Chem03 – Biannual Conf. on Chemistry, Kairo
(Egypt), 1.–4.3.2004, talk
73
MIKROSYSTEME / MICROSYSTEMS
J. M. Köhler, J. Wagner, J. Albert, G. Mayer,
U. Hübner:
“Bildung von Metallnanopartikeln in statischen
Mikromischern in Gegenwart biogener Makromoleküle”
12. Heiligenstädter Kolloquium “Technische
Systeme für Biotechnologie und Umwelt”,
27.9.–29.9.2004, Abstracts 51, talk
J. M. Köhler, T. Henkel, J. Felbel, I. Bieber,
K. Martin, M. Roth, H. Hermann, T. Schön,
J. Metze:
“Mikroserielle Screeningprozesse: Zum Konzept
einer molekularen Charakterisierung biogener
Objekte in Mikrodurchflußsystemen”
12. Heiligenstädter Kolloquium “Technische
Systeme für Biotechnologie und Umwelt”,
27.9.–29.9.2004, Abstracts 42, talk
J. M. Köhler, T. Henkel, T. Kirner, J. Wagner:
“Chemie in mikrostrukturierten Reaktionsräumen”
Kolloquium im ZMN Ilmenau, 21.1.2004, talk
K. König, G. Maubach, A. Csáki, W. Fritzsche:
“Specific Cutting of DNA with NIR fs-Laser”
Photonics Europe. SPIE Europe, Strassburg
(France), 26.–30.4.2004, talk
K. König, F. Garwe, O. Krauss, B. Wang,
W. Fritzsche, I. Riemann:
“Nanoprocessing of DNA, Cells and Tissues”
Photonics Europe. SPIE Europe, Strassburg
(France), 2004, 26.–30.4.2004, talk
R. Kretschmer, W. Fritzsche:
“Dielektrophorese von Gold-Nanopartikeln im
Elektrodenspalt”
2. Workshop Chemische und Biologische Mikrolabortechnik, Ilmenau 17.–19.2.2004, poster
R. Kretschmer, W. Fritzsche:
“Dielectrophoresis of gold nanoparticles in microelectrode gaps”
• 12. Heiligenstädter Kolloquium “Technische
Systeme für Biotechnologie und Umwelt”,
27.9.–29.9.2004, Abstracts 64, poster
• International Workshop“DNA-based Molecular
Electronics”, Jena, 13.–15.5.2004, poster
R. Kretschmer, W. Fritzsche:
“Reaktionskammern für die DNA-Hybridisierung”
• 12. Heiligenstädter Kolloquium “Technische
Systeme für Biotechnologie und Umwelt”,
27.9.–29.9. 2004, poster
• 2. Workshop Chemische und Biologische Mikrolabortechnik, Ilmenau 17.–19.2.2004, poster
74
J. Lerchner, G. Wolf, V. Baier, R. Födisch,
E. Kessler, J.M. Köhler, I. Fernandez, V. Torra:
“A new thermopile chip for micro-sized flowthrough calorimeters”
ICTA 13, Chia Laguna/Sardinien (Italy), September 2004, poster
J. Lerchner, G. Wolf, M. Nietsch, M. Krügel,
V. Baier, R. Födisch:
“A silicon chip based flow-trough calorimeter for
bio-chemical and screening applications”
ICTA 13, Chia Laguna/Sardinien (Italy), September 2004, poster
K. Martin, M. Roth, Th. Henkel, A. Grodrian,
M. Hottenrott, J. M. Köhler, J. Metze:
“Kultivierung und Screening von Mikroorganismen im segmentierten Fluss”
2. Workshop Chemische und Biologische Mikrolabortechnik, Ilmenau, 17.–19.2. 2004, talk
R. Möller, W. Fritzsche:
“Elektrische Detektion von DNA in miniaturisierter und parallelisierter Ausführung: Aktuelle
Entwicklungen auf dem Gebiet elektrische DNAChips”
12. Heiligenstädter Kolloquium “Technische
Systeme für Biotechnologie und Umwelt”,
27.9.–29.9.2004, Abstracts, 58 , talk
J. Müller:
“Therm(oelektr)ische IR-Strahlungssensoren –
Aktuelles aus dem IPHT Jena”
Vortrag bei Gesellschaft für Thermische Analyse
e.V. – Arbeitskreis “Thermophysik”, Westsächsische Hochschule Zwickau, 26.–27.2.2004,
talk
G. Nitzsche, R. Riesenberg, U. Dillner, A. Wuttig:
“Empfindlichkeitssteigerung beim spektralen
Monitoring durch angepasste Eingangsspaltarrays”
DGaO-Jahrestagung, Bad Kreuznach,
01.–05.06.2004, talk
J. Pipper:
“PCR in nanodroplets”
2. Workshop “Chemische und biologische Mikrolabortechnik”, Ilmenau, 17.–19.02.2004, talk
R. Riesenberg, A. Wuttig, T. Tschudi:
“Optical sensing systems made by MEMS-spatial
light modulators”
ICO Intern. Conf. Optics & Photonics Technology
Frontiers, Tokyo (Japan), 12.–15.7.2004, Technical
Digest, pp. 65–66
R. Riesenberg:
“Ultra-sensitive biospecific analytics and monitoring”
Workshop “Mikrosystemtechnik in Lifescience
und Biotechnology”, Sankt Augustin, 18.06.04,
talk
L. Scarioni, M. Klonz and E. Keßler:
“New generation of crystal quartz thin-film multijunction thermal converters”
CPEM 2004 Conf. on Prec. Electrom. Meas.,
London (U.K.), 27.6.–2.7.2004, talk
MIKROSYSTEME / MICROSYSTEMS
T. Schön, A, Grodrian, K. Lemke, J. Metze,
T. Henkel, J. M. Köhler, K. Martin, M. Roth:
“Mikroreaktorik für die High-Throughput-Einzelzellkultivierung von Mikroorganismen”
BioPerspectives 2004, Wiesbaden, 4.–6.5.2004,
talk
T. Schön, A. Grodrian, J. Metze, T. Henkel,
J. M. Köhler, K. Martin, M. Roth:
“Systementwicklung für die mikroreaktorische
High-Throughput-Einzelzellkultivierung im segmentierten Fluss”
2. Workshop Chemische und Biologische Mikrolabortechnik, Ilmenau, 17.–19.2. 2004, talk
A. Steinbrück, G. Maubach, W. Fritzsche:
“Positioning of gold nanoparticles along extended DNA”
4th International Symposium on Physics, Chemistry and Biology with Single Molecules, Kloster
Banz/Staffelstein, 22.–25.2.2004, poster
A. Wolff, G. Maubach, W. Fritzsche:
“A method for reproducible and highly parallel
positioning of individual DNA fibers in electrode
gaps”
4th International Symposium on Physics, Chemistry and Biology with Single Molecules, Kloster
Banz/Staffelstein, 22.–25.2.2004, poster
A. Wolff, G. Maubach, A. Csáki, R. Möller,
W. Fritzsche:
“Integration von Biomolekülen auf mikrostrukturierten Siliziumoberflächen”
9. Augustusburg Conference of Advanced Science
“Das Si-Zeitalter”, Augustusburg, 23.–25.9.2004,
poster
A. Wuttig, R. Riesenberg:
“Error correction by means of redundant multiplexing for optical sensing”
ICO Intern. Conf. Optics & Photonics Technology
Frontiers, Tokyo (Japan), 12.–15.7.2004, Technical
Digest, pp. 61–62
Patents
R. Riesenberg, A. Wuttig, J. Popp:
“Ultrakompaktes Raman-Spektrometer”
DE 10 2004 034 354.3 (12.07.2004)
G. Gastrock, A. Grodrian, T. Henkel,
M. Kielpinsky, M. Köhler, K. Lemke, K. Martin,
J. Metze, M. Roth, T. Schön, V. Baier:
“Vorrichtung und Verfahren zur Strukturierung
von Flüssigkeiten und zum Zudosieren von
Reaktionsflüssigkeiten zu im Separationsmedium
eingebetteten Flüssigkeitskompartimenten”
PCT/DE 2004/001056 (18.05.2004)
G. Gastrock, A. Grodrian, T. Henkel,
M. Kielpinsky, M. Köhler, K. Lemke, K. Martin,
J. Metze, M. Roth, T. Schön, V. Baier:
“Vorrichtung und Verfahren zum Positionieren
und Ausschleusen von im Separationsmedium
eingebetteten Fluidkompartimenten”
PCT/DE 2004/001055 (18.05.2004)
J. Albert, A. Albrecht, T. Henkel, M. Kallenbach,
G. Mayer, A. Schober, H. Wurmus:
“Magnetische Greif-Halte-Anordnung”
DE 100 65 148 B4 (22.12.2000)
Granted 22.01.2004
K. Böhm, W. Fritzsche, F. Jahn, H. Porwol,
E. Unger, W. Vater:
“Verfahren zur Herstellung von Nanometer
Strukturen, insbesondere für Bauelemente der
Nanoelektronik”
DE 198 52 543.5 (11.11.1998)
Granted 27.12.2004
Lectures
W. Fritzsche:
“(Bio)Molekulare Methoden in der Nanotechnologie”
FSU Jena, Physikalisch-Astronomische Fakultät,
Sommersemester 2004
W. Fritzsche:
“Nanocharakterisierung”
TU Ilmenau, Fakultät für Mathematik und
Naturwissenschaften, Wintersemester 004
R. Riesenberg:
“Physics of modern Grating Spectrometers and
Instrumentation”
Warszawa University of Technology, March 2004
Doctoral Theses
Michael Berg:
“Mikroreaktorentwicklung und -charakterisierung
zur Erschließung physikalisch-chemischer Parameter in der Proteinkristallisation”
Universität Karlsruhe, 15.07.04
Andreas Wuttig:
“Optisches Multiplex-Detektionsverfahren mit
räumlichen Lichtmodulatoren”
Friedrich-Schiller-Universität Jena, 02.11.04
Diploma Theses
Rainer Födisch:
“Optimierung eines Chip-Kalorimeters zur online-Detektion biomolekularer Prozesse hinsichtlich mechanischer Stabilität und chemischer
Resistenz mittels Su-8”
Technische Universität Ilmenau, Fakultät für
Maschinenbau, 02/04
75
MIKROSYSTEME / MICROSYSTEMS
Marco Stahl:
“Entwicklung von bildanalytischen Verfahren zur
Ermittlung von Strömungsfeldern in bewegten
Objekten”
Friedrich-Schiller-Universität Jena, Fakultät für
Mathematik und Informatik, 05/04
Claudia Holste:
“Molekulare Konstruktionen mit selbstassemblierenden DNA-Überstrukturen (G-wire) und
Gold-Nanopartikeln”
Fachhochschule Jena, FB Medizintechnik, 08/04
Laboratory exercises
Dirk Dobermann
“Untersuchungen von spektraler Auflösung und
Empfindlichkeit an Einzel- und Mehrfachspalt”
01.10.–15.12.04
René Merthan
practical semester, Fachhochschule Jena,
03–08/04
Marco Stumph
practical semester, Fachhochschule Jena,
03–08/04
Guest Scientist
Dr. Shin-ichi Tanaka
Graduate School of Frontier Biosciences, Osaka
University, Japan
since May 2004
Memberships
V. Baier:
Deutscher Verband für Schweißen und verwandte Verfahren e.V. (DVS), AG Waferbonden
I. Bieber:
Referee of the RSC journal “Lab on a Chip”
H. Dintner
• Member of the Thuringian VDI/VDE working
group “Mikrotechnik”
• Member of scientific council of AMA, Fachverband für Sensorik e.V.
W. Fritzsche:
• Scientific Advisory Committee of the International Society for Nanoscale Science, Computation and Engineering (ISNSCE),
• Working Committee “Micro Systems for Biotechnology”
E. Keßler:
Gesellschaft für Thermische Analyse e.V., AK
Thermophysik
76
J. Müller:
Gesellschaft für Thermische Analyse e.V., AK
Thermophysik
R. Riesenberg:
• Photonics Europe, programme committee &
chair
• IRS2, Intern. Conf. and Exhib. on Infrared
Sensors & Systems, programme committee
and chair
• CLEO Europe, 16th Intern. Conf. on Lasers and
Electrooptics Europe of the Optical Society of
America (OSA), programme committee
• Member Fachausschuss Mikrosystemtechnik
der AMA
• Participant of the Humboldt Foundation,
German-American Frontiers of Engineering in
Optics
• Personal member: SPIE, DPG
Conference Organization
W. Fritzsche
International Workshop “International Workshop
‘DNA-based molecular Electronics’ ”,
Jena, 13.–15.05. 2004
LASERTECHNIK / LASER TECHNOLOGY
4. Lasertechnik / Laser Technology
Leitung/Head: Prof. Dr. H. Stafast
e-mail: [email protected]
Laserchemie / Laser Chemistry
Leitung/Head: PD Dr. F. Falk
[email protected]
Laserdiagnostik / Laser Diagnostics
Leitung/Head: Prof. Dr. W. Triebel
[email protected]
4.1 Überblick
4.1 Overview
Der Bereich Lasertechnik nutzt Laser als subtiles
Werkzeug (Laserchemie) und als kontaktfreie
Sonde (Laserdiagnostik), mitunter sogar gleichzeitig. Die Hauptanwendungen als Werkzeug
betreffen die Laserkristallisation von Dünnschichten (Solarzellen) und die Mikrostrukturierung von Hartmetallen (innovative Werkzeuge). Die Laserdiagnostik dient hauptsächlich
zur Charakterisierung optischer Materialien und
Komponenten (Laserlithografie) sowie von
Flammen. Für die Flammendiagnostik wird auch
ein leistungsfähiges, abstimmbares UV-Scheibenlasersystem entwickelt. In allen genannten
Gebieten zeigen die konsequente Aufbauarbeit in
der Lasertechnik und ihre hohen Qualitätsstandards sehr gute Erfolge.
The division for Laser Technology applies the
laser as a subtle tool and as a remote probe,
sometimes even simultaneously. The most important applications as a tool refer to laser crystallisation of thin films (solar cells) and micromachining of hard metals (innovative tools). Laser diagnostics is essentially used to characterise optical
materials and components (laser lithography) as
well as flames. For flame diagnostics an efficient
and tuneable UV disk laser system has been
developed. Overall, the thorough building-up of
laser technology and high quality standards are
putting forth excellent results.
Die Abteilung Laserchemie arbeitet auf dem
Gebiet der Solarzellen (Design und Herstellung)
und ist in der Photovoltaik fest verankert. Die PVIndustrie hat seit mehreren Jahren zweistellige
Zuwachsraten. Die Firma Ersol in Erfurt ist inzwischen vertraglicher Industrie-Projektpartner
des IPHT. Damit erfüllte das IPHT 2004 den
The Laser Chemistry section at IPHT is active in
the field of solar cells (design and preparation)
and is well established in the photovoltaic community. PV industry has disposed of two-digit
growth for several years. Ersol company at Erfurt
has become the relevant industrial partner of
IPHT by contract. By this way IPHT has reached
the milestone of its large BMU project (1.75 Mio “,
2003–2006). Successful R&D work allowed
IPHT to achieve over 500 mV open circuit voltage
77
LASERTECHNIK / LASER TECHNOLOGY
Thin film deposition and in situ Layered Laser Crystallisation (LLC) of silicon for thin film solar cells. Electron
beam evaporation system (on the right) with laser (background) and beam shaping unit (lower left).
Different kinds of holes drilled into hard metal tungsten carbide (WC) using femtosecond laser pulses and
varying the position of the laser focus.
78
Optical table with Advanced Disk Laser (ADL)
emitting tunable UV laser pulses at 1 kHz repetition rate.
Compact ADL setup designed for its implementation into a drop capsule at the drop tower
Bremen.
LASERTECHNIK / LASER TECHNOLOGY
Meilenstein in seinem großen BMU-Projekt
(1,75 Mio “, 2003–2006). Mit erfolgreicher F&EArbeit erhöhte das IPHT die offene Klemmenspannung seiner Solarzellen auf über 500 mV,
ein Wert, den viele Fachleute mit diesem
Solarzellentyp für unerreichbar erklärten. Eine
neue Anlage mit einem ElektronenstrahlVerdampfer dient zur alternativen SiliciumSchichtherstellung mit einer 10fach höheren
Abscheiderate als mit konventioneller PlasmaCVD ausgehend von SiH4 (s. Farbbildseite).
Der Einsatz des Femtosekunden(fs)-Lasers zur
Mikrobearbeitung von Hartmetallen für die Werkzeugentwicklung hat sich zu einem stetigen Industriegeschäft entwickelt. Die Form der mit dem
fs-Laser hergestellten Mikrolöcher in Hartmetall
(s. Farbbildseite) lässt sich mit der Lage des
Laserfokus stark beeinflussen. Zusätzlich zu den
bisherigen Arbeiten mit der Grundwellenlänge
des fs-Lasers bei 800 nm werden die verstärkten
Laserpulse nun auch frequenzverdoppelt und
-verdreifacht. Damit sollen die Präzision der
Mikrostrukturierung erhöht und auch die fsLaserdiagnostik im sichtbaren und UV-Spektralbereich erschlossen werden.
Bei den im DFG-Schwerpunktprogramm SPP
1119 hergestellten Si/C/N-Hartstoffschichten
erreicht das IPHT inzwischen hohe Materialhärten und hat ein Modell zur Schichtabscheidung vorgestellt. Mit diesem lässt sich die unterschiedliche chemische Dünnschichtzusammensetzung erklären, die mit verschiedenen Ausgangsverbindungen (single source precursor) im
Plasma-CVD-Prozess erreicht wird. Die erstmals
am IPHT hergestellten Silicium-Nanodrähte
bilden den Einstieg in ein neues Arbeitsfeld mit
nanostrukturierten Halbleitern für photonische
Anwendungen.
Die Abteilung Laserdiagnostik hat mit der Schott
Lithotec AG einen neuen Rahmenvertrag abgeschlossen sowie die Zusammenarbeit mit der
Jenoptik L.O.S. GmbH und dem Fraunhofer-Institut
für Angewandte Optik und Feinmechanik (IOF)
gefestigt: Beachtenswert ist u.a. die Einwerbung
des HELD-Projektes zur Laserstabilität von CaF2,
eines der ganz wenigen Thüringenprojekte im Jahr
2004 und in der erstmaligen Partnerschaft von
Schott Lithotec, FhG IOF und IPHT. Zur etablierten
Evaluierung von UV-optischen Massivmaterialien
(synthetisches Quarzglas und CaF2) kommt
zunehmend die Charakterisierung von optischen
Komponenten und Dünnschichten. Hier zahlt sich
die 2003 getätigte Investition in einen ArF-Laser
(193 nm) mit 1 kHz-Pulsfolgefrequenz aus, u.a.
weil die Bestrahlungsbedingungen nahe an denen
der Lasermikrolithografie in Wafersteppern liegen.
Mit seiner Doktorarbeit über Vakuum-UV-spektroskopische Untersuchungen an synthetischem
Quarzglas wurde F. Kühnlenz 2004 an der
Friedrich-Schiller-Universität in Jena promoviert.
with its solar cell, a value previously declared as
unattainable by many experts for this type of
solar cell. A new setup with an electron beam
evaporator enables silicon layer deposition one
order of magnitude faster than by conventional
plasma CVD using SiH4 (cf. coloured page).
Femtosecond (fs) laser micromachining of hard
metals for tool development has become the subject of repeated industrial orders. The shape of
microholes prepared by the fs laser can be controlled by positioning of the laser focus (cf.
coloured page). In addition to the present work
with the fundamental wavelength of the fs laser
around 800 nm, the amplified fs laser pulses now
are frequency doubled and trebled. By these
means the precision of micromachining will be
enhanced and fs laser based diagnostics in the
visible and UV spectral ranges will become
amenable.
Within the DFG program SPP 1119, IPHT meanwhile has achieved Si/C/N thin films of high hardness and developed a thin film deposition model.
This model allows to interpret the different chemical compositions of thin films obtained by plasma CVD using different single source precursors.
For the first time at IPHT nanowires of silicon
have been prepared successfully and open up
the new field of nanostructured semiconductors
for photonic applications.
The Laser Diagnostics section signed a new
cooperation contract with Schott Lithotec company and intensified its cooperation with Jenoptik
L.O.S. company and the Fraunhofer Institute of
Applied Optics and Fine Mechanics (IOF): among
others the HELD project referring to the laser
durability of CaF2 could be acquired in Thuringia,
i.e. one of the very few Thuringian projects granted in 2004 and given to the novel partnership of
Schott Lithotec, FhG IOF, and IPHT. The well
established evaluation of UV optical bulk materials (fused silica and CaF2) is more and more complemented by the characterisation of optical components and thin films. In this field the investment
of 2003 in an ArF laser (193 nm) with a pulse repetition rate of 1 kHz pays out, among others due
to its irradiation capabilities being very similar to
those applied in wafer steppers for laser lithography. With his PhD thesis on vacuum UV spectroscopy of fused silica, F. Kühnlenz has graduated 2004 at Friedrich Schiller University, Jena.
The development of the tuneable disk laser system including frequency up-conversion to the UV
spectral range (ADL = Advanced Disk Laser)
showed so much progress in 2003/2004 that
DLR signed a new contract with IPHT to develop
an ADL system suited for drop tower experiments
at Bremen (cf. coloured page). This contract of
IPHT from 2004 to 2006 is handled in the experienced cooperation with IFSW (Stuttgart) and
79
LASERTECHNIK / LASER TECHNOLOGY
Die Entwicklung des abstimmbaren Scheibenlasers mit Frequenzkonversion in den UV-Bereich
(ADL = Advanced Disk Laser) machte 2003/2004
so große Fortschritte, dass das IPHT vom DLR
auch den Auftrag zur Entwicklung eines Fallturmtauglichen Systems (s. Farbbildseite) erhielt.
Diesen bearbeitet das IPHT 2004 bis 2006 in
bewährter Zusammenarbeit mit dem IFSW
(Stuttgart) und ZARM (Bremen). Der ADL erlaubt
Flammendiagnostik mit hoher Folgefrequenz
(1 kHz) unter Nutzung der laserinduzierten
Fluoreszenz und hat sich schon an einem technisch relevanten Aufbau des Öl-Wärme-Instituts
(Aachen) bewährt. 2004 kamen auch die
Untersuchungen an großen Industrieflammen für
Heraeus-Tenevo, Bitterfeld erfolgreich zum Abschluss.
Ihrer besonderen Bedeutung wegen sollen zwei
Arbeiten an der Universität Stellenbosch, Südafrika herausgestellt werden: H. Stafast betreute
als Co-Promotor die sehr gut abgeschlossene
Doktorarbeit von Christine M. Steinmann zur
hochaufgelösten
Vakuum-UV-Laserspektroskopie an seltenen CO-Isotopomeren in einer
Überschallexpansion. Die Arbeit von T. Scheidt
(Doktorand von H. Stafast) mit fs-Laser zur
Oberflächen-SHG (Frequenzverdopplung an
Oberflächen) an oxidierten Siliciumwafern erzielte neue Erkenntnisse an einem vermeintlich
schon gut verstandenen Materialsystem.
Dank besonderem Engagement aller Mitarbeiter
während und nach dem Umzug an den Beutenberg 2003 konnte der Bereich Lasertechnik 2004
sein Niveau bei den Drittmittelprojekten verbessern und bei den Veröffentlichungen in etwa
halten. Das Drittmittelaufkommen 2004 von rund
1,2 Mio “ liegt über dem Niveau des Vorjahres
(1,0 Mio “) trotz der verschärften Situation bei
den öffentlichen Fördermitteln und des allgemein
geringen Wirtschaftswachstums. Insgesamt wirkt
sich die mit dem Umzug erreichte Verbesserung
der Infrastruktur und der Arbeitsmöglichkeiten
sehr positiv aus. Zudem lassen die kurzen Wege
zu den anderen IPHT-Forschungsbereichen in
naher Zukunft einen deutlichen Zuwachs bei der
bereichsübergreifenden Zusammenarbeit
80
4.2
Selected Results
4.2.1
Laser chemistry
Laser chemistry at IPHT is essentially concerned
with the deposition of thin films and thin film systems, their physicochemical modification (particularly laser crystallisation) and some special
items like spectroscopic diagnostics of thin film
processing, nanowire preparation, and fs laser
micromachining.
ZARM (Bremen). The ADL system allows to perform flame diagnostics at high pulse repetition
rate (1 kHz) using laser induced fluorescence
and proved to be good in a technologically relevant setup of the Öl-Wärme-Institut (Aachen). In
2004 the experiments with large industrial flames
for Heraeus-Tenevo, Bitterfeld finished successfully.
With respect to their significance, two results from
the University of Stellenbosch, South Africa, are
reported: H. Stafast was co-promotor of the very
good PhD thesis of Christine M. Steinmann on
high resolution vacuum UV laser spectroscopy of
rare CO isotopomers in a supersonic jet. The
experiments of T. Scheidt (PhD student of H.
Stafast) applying a fs laser to surface SHG (second harmonic generation) on oxidized silicon
wafers revealed new results for a materials system which previously seemed to be well understood.
Due to the extraordinary efforts of all coworkers
during and after the move in 2003 to the
Beutenberg campus the division for Laser
Technology raised its project funds and nearly
maintained its level of publications. The project
funds in 2004 of about 1.2 Mio “ exceed the
amount of 2003 (1.0 Mio “) in spite of the tough
situation with governmental funds and the generally poor rate of economic growth. Overall the
move yielded relevant improvements in infrastructure and in the working conditions. In addition the short distances to the other IPHT
research divisions let one expect a considerable
strengthening of trans-divisional cooperation in
the near future.
Laser crystallisation
(Gudrun Andrä, Joachim Bergmann,
Arne Bochmann, Fritz Falk, Ekkehart Ose)
Laser crystallisation at IPHT essentially refers to
the large solar cell project granted by the Federal
Government for the 2003–2006 period with the
Hahn-Meitner-Institute (HMI) at Berlin as subcontractor and Ersol company at Erfurt as industrial
partner. The partnership with Ersol is also
embedded into INPUT Solar, a Thuringian asso-
LASERTECHNIK / LASER TECHNOLOGY
ciation of photovoltaic industrial companies and
R&D institutes.
Thin film deposition
(Fritz Falk, Herbert Stafast, Thomas Stelzner)
The activities at IPHT refer to a new type of thin
film solar cell consisting of large grain crystalline
silicon on glass. The development of this cell type
is based on silicon thin film deposition and in situ
Layered Laser Crystallisation (LLC), an IPHT
patented method. Silicon thin films are deposited
either by plasma CVD from SiH4 (13.6 MHz) or by
electron beam evaporation of bulk silicon (cf.
coloured page). Recent work addressed the optimisation of laboratory cells on 1” × 1” substrates
(Fig. 4.1) by improving light trapping, contact and
shunt resistances as well as minimising charge
carrier recombination. As a prominent result, the
open circuit voltage now exceeds 500 mV, a very
high value, previously declared as unattainable
by many experts. Furthermore – as a unique
result worldwide – LLC turned out to succeed in
the epitaxial growth of silicon at low temperature
on non-textured seed layers. These seed layers
were obtained by aluminum induced crystallisation of amorphous silicon at HMI and after their
transfer to Jena epitaxially thickened at IPHT
by conventional plasma CVD with in situ LLC.
All these results are very promising. The cooperation with Ersol company is also very fruitful and
IPHT benefits from their experience in cell design
and manufacturing. Beyond the work with silicon,
preliminary investigations aim at the laser crystallisation of GaAs, a semiconductor of high
potential in photovoltaics, optoelectronics and
microelectronics.
The deposition of Si/C/N thin films for tribological
applications by RF plasma enhanced CVD using
single source precursors is performed within the
DFG program SPP 1119 in close cooperation
with TU Darmstadt and RWTH Aachen. A main
goal of this DFG program is an integral understanding of the complex CVD processes. IPHT
contributed to the understanding by an experimental comparison of Si/C/N thin films obtained
from hexamethyldisilazane (HMDS) or bis(trimethylsilyl)carbodiimide (BTSC). Furthermore,
mass spectroscopic investigations provided a
basis for a simple 3-step deposition model with
the fragmentation of the precursor molecules in
the plasma as the first step. Looking at the mass
spectroscopic fragmentation patterns of HMDS
and BTSC (Fig. 4.2) the following molecules have
been proposed as Si/C/N film forming species:
Fig. 4.1: Thin film solar cells of crystalline silicon
on glass obtained by plasma CVD with in situ layered laser crystallisation (LLC).
Previously thin layers of amorphous silicon on
SiO2 coated glass were laser crystallised at IPHT
and subsequently thin film transistors prepared
onto it at the University of Rennes, France. After
a high electron mobility of 690 cm2/Vs has been
achieved there is now a challenge to find diffusion barrier layers of high quality on the glass
substrate.
Fig. 4.2: Time-of-flight mass spectra obtained
upon ArF laser ionisation of HMDS and BTSC.
with HMDS:
(CH3)3Si-NH-Si(CH3)3 + e– collision (plasma)
– CH3, Si(CH3)3 → H-N=Si(CH3)2
with BTSC:
(CH3)3Si-N=C=N-Si(CH3)3 + e– collision (plasma)
– CH3, Si(CH3)3 → NC-N=Si(CH3)2
In both cases, a CH3- and a Si(CH3)3-group are
abstracted from the precursor. The Si:N ratio of
81
LASERTECHNIK / LASER TECHNOLOGY
the resulting film forming species is in each case
identical with that of the related Si/C/N thin film.
This finding strongly supports the above proposal.
In order to open up a new field of research at
IPHT, nanowires of silicon were grown by thermal
and plasma enhanced CVD from SiH4 via a gold
nanodot supported vapor-liquid-solid mechanism. Evidently the conditions for the growth of
nanowires depend on the local details as silicon
wires of micro- and nanometer diameter grew
simultaneously in close neighbourhood on the
same subtrate (Fig. 4.3).
Fig. 4.3: Silicon nanowires obtained via a gold
nanodot supported vapor-liquid-solid mechanism
during plasma CVD from SiH4.
Laser ablation
(Gudrun Andrä, Fritz Falk, Rico Stober)
UV optical materials
(Siegfried Kufert, Christian Mühlig,
Gabriele Schmidl, Wolfgang Triebel)
UV laser lithography imposes severe challenges
with respect to the optical quality and laser durability on bulk and thin film materials. IPHT has
specialised for more than one decade on the
development and improvement of methods for
their characterisation. Experience in research
and development has been accumulated in the
Laser Technology division particularly in close
cooperation with Schott Lithotec company. The
cooperation has been extended to Jenoptik
L.O.S. company and the FhG IOF within the last
few years. The facilities, knowledge and experience available at these institutions and IPHT
complement each other to their mutual benefit.
The measurement standards at Jena are very
high and belong to the leading edge worldwide.
The measurement methods at IPHT using
excimer lasers at 248, 193, and 157 nm comprise
(i) UV laser beam transmission, (ii) direct measurement of volume absorption by the LID
method (see below), (iii) laser induced fluorescence (LIF), (iv) pulsed UV laser Raman spectroscopy, and (v) vacuum UV spectroscopy. The
latest IPHT development consists of a new LID
device using the laser induced deflection (LID) of
a probe laser beam for direct absorption measurements. This device was improved to achieve
a considerably higher sensitivity than the former
setup as is demonstrated in Fig. 4.4. This high
sensitivity turned out to be sufficient to determine
differences in the absorption of excimer laser
light by high reflectivity (HR) optical coatings prepared from precursor materials of different quality
Femtosecond (fs) laser ablation has been applied
to micromachining of hard metal tools. This work
is a spin-off from INPROSYS, a project of
InnoRegio South Thuringia 2002–2003 and currently based directly on contracts with industry. To
demonstrate the potential of fs laser micromachining, different kinds of holes were prepared in
tungsten carbide (WC) as shown on the coloured
page. Anticipated applications of this micromachining method are innovative mechanical tools
for conventional and micro mechanics.
4.2.2 Laser diagnostics
82
The Laser Diagnostics section applies different
types of lasers as remote and contactless probe
particularly to characterise optical materials,
components, and thin films and to investigate
flames. Recently, its R&D scope has been
extended to the development of solid state lasers
dedicated to flame diagnostics.
Fig. 4.4: Sensitivity of the new LID device for
measuring volume absorption relative to that of
the previous device as shown by ArF laser
absorption measurements with fused silica under
comparable conditions.
LASERTECHNIK / LASER TECHNOLOGY
(purity). These LID measurements used the temperature gradient that built up between the HR
coating and the inner parts of the substrate bulk
material.
Combustion processes
(Alfons Burkert, Dirk Müller, Wolfgang Paa,
Wolfgang Triebel)
Pulsed UV laser Raman spectroscopy previously
was demonstrated to be a powerful method to
determine absolutely the H2 content of fused silica within a short measurement time. This method
has been extended to the determination of SiF
bond structures in “dry” fused silica (Fig. 4.5).
Laser diagnostics is applied to investigate steady
state burner flames and dynamic flames during
self-ignition of fuel droplets with special emphasis on gas temperature measurement in cool and
hot flames. With the newly developed all-solidstate disk laser system (ADL) with its high pulse
repetition rate of 1 kHz the investigation of turbulent flames has also become accessible.
During two-step self-ignition of fuel droplets,
formaldehyde (H2CO) and CO are formed in the
cool flame regime. H2CO is easily detected by
laser induced fluorescence (LIF). The detection
of CO is possible by LIF in the vacuum UV region
which, however, is impossible to realise in flames
or the atmosphere around droplets. As an alternative IR laser absorption using a quantum cascade laser has been verified. A suitable IR laser
set-up was implemented into a drop capsule at
IPHT and successfully tested to enable CO
detection in future tests in the drop-tower at
Bremen (DROP-COS B project).
Fig. 4.5: Pulsed UV laser Raman spectrum of
“dry” fused silica showing clearly the SiF valence
band.
Vacuum UV absorption spectra of high quality
fused silica were recorded during and immediately after excimer laser irradiation, which affected
the absorption band tail. Its change was quantified by the optical band gap EO and the Urbach
energy EU, i.e. the position and the flatness of the
absorption band tail, respectively. In the PhD thesis of F. Kühnlenz it was shown that fused silica
under ArF laser irradiation can be considered as
a host guest system, with the SiO2 matrix as host
and the local defects as guests. Extrapolation of
the Urbach energy tail down to the ArF laser
wavelength revealed that one photon laser
absorption by the matrix is negligible but is based
on the interaction with laser generated local
defects. By this way it was confirmed that the LIF
signal is a measure of (unwanted) laser absorption. This is the basis of Schott Lithotec for its
optimisation of fused silica following the LIF factor as a guideline.
The well-established detection of OH, O2, and
NO by LIF was applied to characterise flames of
industrial burners by scanning the excitation laser
light sheet along the vertical flame axis.
Preliminary experiments with flames containing
particles (loaded flames) revealed that LIF imaging is feasible. These measurements required,
however, to use rapidly alternating laser excitation wavelengths and appropriate data processing to separate the relatively weak LIF signals
from the high level background.
The breadboard model of the advanced disk
laser system (ADL) at IPHT Jena was improved
and tested to generate 2D-LIF images of
formaldehyde in flames. Its high pulse repetition
rate was applied to study turbulent flames generated within a cool flame reactor of the Öl-WärmeInstitut (Aachen) near the fuel injection nozzle.
This reactor operates very closely under technically relevant conditions and serves for the
homogeneous mixing of fuel and air (Fig. 4.6).
Applying the 1 kHz pulse repetition rate of ADL,
turbulences in the cool flame reactor can be
detected and recorded near the fuel injection
nozzle. 2D-LIF images of H2CO are portrayed in
Fig. 4.7. It is clearly visible that droplets pass the
light sheet region within the first 2 ms. The
extended bright areas reflect the spatial distribution of H2CO and its temporal development.
Evidently strong turbulences occur on the ms
time scale of the laser diagnostics.
83
LASERTECHNIK / LASER TECHNOLOGY
ed. The set-up at IPHT is capable to investigate
low pressure Xe/He discharge tubes. The irreversible Xe consumption during operation
(102–103 hours) is a crucial problem. The experiments at IPHT Jena showed, however, that Xe
consumption is a reversible process and part of
the Xe can be recovered under “normal” discharge conditions dependent on the gas composition. Xe recovery with noble gases is demonstrated in Fig. 4.8.
Fig. 4.6: Cool flame setup (Öl-Wärme-Institut,
Aachen) for the generation of homogeneous
fue/-air mixtures used at IPHT Jena to study turbulent flames near the fuel injection nozzle.
Fig. 4.8: Recovery of Xe from previously Xe
“loaded” discharge tube dependent on the gas
filling.
4.3 Appendix
Partners (in alphabetical sequence)
Fig. 4.7: 2D-LIF images of H2CO in the cool
flame reactor shown in Fig. 4.6 recorded with
ADL excitation at 1 ms time intervals.
In principle excimer lasers with hazardous and
toxic F2 gas can be replaced by all-solid-state
lasers for combustion research in space (e.g. on
the ISS). As an intermediate step, a new ADL
model was designed, developed and established
in a drop capsule unit to be used in the droptower at Bremen. This step is visualised on the
coloured page showing the transition from the
breadboard model on the optical table at IPHT
Jena to the compact setup with the multiply folded resonator. The oscillator, amplifier, and frequency conversion unit are distributed over three
platforms of the drop capsule.
Diagnostics in a gas discharge lamp
(Hans-Peter Linke, Lutz Redlich, Herbert Stafast)
84
Within the BMBF program “Optics – Technology
of the 21st Century” new types of efficient gas
discharge lamps without mercury are investigat-
in Jena and Thuringia:
• Biolitec AG, Jena
• Ersol Solar Energy AG, Erfurt
• Fachhochschule (University of Applied
Sciences) Jena
• Fachhochschule (University of Applied
Sciences) Mittweida
• Fraunhofer-Institut für Angewandte Optik und
Feinmechanik (IOF), Jena
• Friedrich-Schiller-Universität, Jena
– Institut für Festkörperphysik und Astrophysikalisches Labor
• Institut für Fügetechnik und Werkstoffprüfung
(IFW), Jena
• Institut für Molekulare Biotechnologie (IMB),
Jena
• ITP GmbH, Weimar
• Jenoptik Laser.Optik.Systeme GmbH, Jena
• Jenoptik Laserdiode GmbH, Jena
• Layertec GmbH, Mellingen
• Leica Lithographie Systeme Jena GmbH
• LLT Applikation GmbH, Ilmenau
• MWS Schneidwerkzeuge GmbH & Co. KG,
Schmalkalden
LASERTECHNIK / LASER TECHNOLOGY
• PV Silicon GmbH, Erfurt
• Schott Lithotec AG, Jena
• Technische Universität Ilmenau, Institut für
Werkstofftechnik
• U. Speck Sensorsysteme GmbH, Jena
in Germany:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Carl Zeiss Oberkochen GmbH (CZO)
Carl Zeiss SMT AG
DLR Verbrennungsforschung, Stuttgart
Hahn-Meitner-Institut (HMI), Berlin
Heraeus Tenevo, Bitterfeld
Innovavent GmbH, Göttingen
Lambda Physik AG, Göttingen
Laser Labor Göttingen (LLG)
Laser Zentrum Hannover (LZH)
Leica Microsystems Wetzlar GmbH
Max-Planck-Institut für Mikrostrukturphysik,
Halle
Microlas Lasersystem GmbH, Göttingen
Neon Products GmbH (NP), Aachen
Neon Technik Leipzig GmbH (NEL)
Öl-Wärme-Institut gGmbH, Aachen
Ruhr-Universität Bochum, Institut für
Anorganische Chemie
Schott FT, Mainz
Technische Universität München, Lehrstuhl für
Thermodynamik
TUI Laser AG, Germering
Universität Erlangen, Lehrstuhl für Technische
Thermodynamik
Universität Erlangen, Institut für Materialwissenschaften
Universität Stuttgart, Institut für Strahlwerkzeuge
Universität Stuttgart, Institut für Thermodynamik
TU Dresden, Lehrstuhl für Verbrennungsmotoren
Zentrum für Angewandte Raumfahrttechnik
and Mikrogravitation (ZARM), Universität
Bremen
in foreign countries:
• NASA, Glenn Research Center, Cleveland,
Ohio, USA
• University of Rennes I, France, Sciences et
Propriete de la Matiere
• University of Stellenbosch, South Africa,
Physics Department
• University of Vigo, Spain, Dept. of Applied
Physics
Publications
G. Andrä, J. Bergmann, F. Falk, E. Ose:
“Multicrystalline Silicon Thin Film Solar Cells on
Glass”
Proc. 19th Europ. Photovoltaic Solar Energy
Conf., Paris, 2004, pp 872–875
G. Andrä, J. Bergmann, F. Falk, E. Ose:
“Multicrystalline LLC-Si Thin Film Solar Cells on
Low Temperature Glass”
3rd World Conf. Photovoltaic Energy Conversion
2003, Osaka, Proc. CD (2004), Paper 4P-B4-04
G. Andrä, J. Bergmann, F. Falk, E. Ose:
“Multikristalline LLC-Si-Dünnschichtzellen auf
Glas”
Photovoltaik: Materialforschung in Deutschland,
Workshop PV-Uni-Netz, Forschungsverbund
Sonnenenergie 2003 (2004), pp 170–177
A. Burkert, W. Triebel, C. Eigenbrod:
“Imaging of carbon monoxide distributions
around igniting n-heptane droplets after excitation with a quantum cascade laser at 4.6 µm”
Proc. SPIE Vol. 5459 (2004) 69–75
A. Hedler, S. Urban, T. Kups, U. Kaiser, W. Wesch:
“Laser irradiation of ion beam synthesized Ge
nanocrystals in SiC”
Nucl. Instr. Methods Phys. Res. B 218 (2004)
337–342
F. Kühnlenz, H. Stafast, W. Triebel:
“Vakuum-UV-Spektroskopie an synthetischem
Quarzglas unter UV-Pulslaserbestrahlung”
Internet Proc. 105. Annual Meeting DGaO, Bad
Kreuznach 2004,
www.dgao-proceedings.de, talk B21
C. Mengel, D. Müller, W. Triebel:
“Zweidimensionale laserinduzierte Fluoreszenzmessungen von Formaldehyd in der Mischzone
von flüssigen Brennstoffen mit vorgewärmter
Luft”
VDI-Berichte Vol. 1863 (2004) 73–80
C. Mühlig, S. Kufert, W. Triebel:
“Direkte Messung der Volumenabsorption
hochtransparenter optischer Materialien mittels
laserinduzierter Teststrahlablenkung (LID)”
Internet Proc. 105. Annual Meeting DGaO, Bad
Kreuznach 2004,
www.dgao-proceedings.de, talk B 22
C. Mühlig, S. Kufert, W. Triebel, F. Coriand,
L. Parthier, A. Voitsch:
“Bulk absorption measurements of highly transparent DUV/VUV optical materials”
Proc. SPIE Vol. 5457 (2004) 701–712
W. Paa, W. Triebel:
“Use of a novel tunable solid state disk laser as a
diagnostic system for laser induced fluorescence
(ADL)”
Proc. SPIE Vol. 5460 (2004) 91–98
85
LASERTECHNIK / LASER TECHNOLOGY
W. Paa, D. Müller, A. Gawlik, W. Triebel,
C. Eigenbrod:
“The “Advanced disk laser” (ADL) as a new tool for
kilohertz PLIF-diagnostics under µg-conditions”
Spacebound 2004, Toronto, Canada,
Proc. ISPS 2004, pp 62–63
W. Paa, W. Triebel:
“Der “Advaned Disk Laser” als neues Diagnostiksystem in der Verbrennungsforschung und erste
Anwendung auf laserinduzierte Fluoreszenzmessungen von Formaldehyd mit kHz-Folgefrequenz”
VDI-Berichte Vol. 1863 (2004) 133–140
W. Paa, W. Triebel:
“Yb:YAG-Scheibenlasersystem als kHz-Pulslaserquelle für die Prozessdiagnostik”
DVS-Berichte Bd. 230 (2004) 36–39
W. Paa, W. Triebel:
“A Nanosecond Pulsed Disk Laser System for
Planar Laser Induced Fluorescence in
Combustion Diagnostics”
Proc. VSJ-SPIE 04, pp 106–107, 3-A3-3
A Saboundji, T. Mohammed-Brahim, G. Andrä,
J. Bergmann, F. Falk:
“Thin film transistors on large single crystalline
regions of silicon induced by cw laser crystallization”
J. Non-Cryst. Solids 338–340 (2004) 758–761
A. Saboundji, J. F. Michaud, T. MohammedBrahim, O. Bonnaud, G. Andrä, J. Bergmann,
F. Falk:
“Impact of the use of the second harmonic cw
Nd:YVO4 laser to crystallize amorphous silicon
films on the TFTs performance”
Proc. 2004 International Workshop on ActiveMatrix-Liquid-Crystal Displays, Tokyo, pp 303–306
T. Scheidt, E. G. Rohwer, H. M. von Bergmann,
H. Stafast:
“Charge-carrier dynamics and trap generation in
native Si/SiO2 interfaces probed by optical second-harmonic generation”
Phys. Rev. B 69 (2004) 165314–165321
T. Scheidt, E. G. Rohwer, H. M. von Bergmann,
H. Stafast:
“Optical second harmonic imaging of zinc oxide
thin films grown by metal organic chemical
vapour deposition (MOCVD)”
phys. stat. sol. (c) 1–7 (2004) /DOI 10.1002/pssc.
200404830
86
T. Scheidt, E.G. Rohwer, H.M. von Bergmann,
H. Stafast:
“Optical second harmonic imaging: a versatile
tool to investigate semiconductor surfaces and
interfaces”
Europ. Phys. J. 27 (2004) 393–397
R. Stober, A. Bochmann, G. Andrä, F. Falk:
“fs-Materialbearbeitung – materialspezifische
Aspekte”
DVS-Berichte Bd. 230 (2004) 65–71
Presentations (Talks and Posters)
G. Andrä, J. Bergmann, F. Falk, E. Ose:
“Multicrystalline LLC silicon thin film solar cells on
glass”
Talk at 3rd a-Si-Net Workshop, Bratislava,
February 25–27, 2004
G. Andrä, J. Bergmann, F. Falk, J. F. Michaud,
A. Saboundji, T. Mohammed-Brahim:
“Using a cw laser to crystallize silicon for high
performance polysilicon TFTs”
Poster at 3rd a-Si-Net Workshop, Bratislava,
February 25–27, 2004
A. Burkert, W. Triebel, C. Eigenbrod:
“Imaging of carbon monoxide distributions
around igniting n-heptane droplets after excitation with a quantum cascade laser at 4.6 µm”
Talk at Photonics Europe, Strasbourg, France,
April 26–30, 2004
C. Mühlig, S. Kufert, W. Triebel, F. Coriand,
L. Parthier, A. Voitsch:
“Bulk absorption measurements of highly transparent DUV/VUV optical materials”
Talk at Photonics Europe, Strasbourg, France,
April 26–30, 2004
W. Paa, W. Triebel:
“Use of a novel tunable solid state disk laser as a
diagnostic system for laser induced fluorescence
(ADL)”
Talk at Photonics Europe, Strasbourg, France,
April 26–30, 2004
W. Paa, D. Müller, A. Gawlik, W. Triebel,
C. Eigenbrod:
“The “Advanced disk laser” (ADL) as a new tool
for kilohertz PLIF-diagnostics under µg-conditions”
Poster at Spacebound 2004, Toronto, Canada,
May 23–27, 2004
F. Kühnlenz, H. Stafast, W. Triebel;
„Vakuum-UV-Spektroskopie an synthetischem
Quarzglas unter UV-Pulslaserbestrahlung“
Talk at Jahrestagung DGaO, Bad Kreuznach,
June 01–05, 2004
C. Mühlig, S. Kufert, W. Triebel:
“Direkte Messung der Volumenabsorption
hochtransparenter optischer Materialien mittels
laserinduzierter Teststrahlablenkung (LID)”
Talk at Jahrestagung der DgaO, Bad Kreuznach,
June 01–05, 2004
LASERTECHNIK / LASER TECHNOLOGY
G. Andrä, J. Bergmann, F. Falk, E. Ose:
„Multicrystalline Silicon Thin Film Solar Cells on
Glass“
Poster at 19th Europ. Photovoltaic Solar Energy
Conf., Paris, June 7–11, 2004
G. Andrä, J. Bergmann, F. Falk:
“cw laser crystallized multicrystalline silicon thin
films on glass“
Talk at Polyse 2004, Potsdam, September 06–10,
2004
Th. Stelzner, M. Arold, F. Falk, H. Stafast,
D. Probst, H. Hoche:
“Single source precursors for plasma-enhanced
CVD of SiCN films, investigated by mass spectrometry”
Poster MoP18 at PSE 2004, Garmisch-Partenkirchen, September 13–17, 2004
C. Mengel, D. Müller, W. Triebel:
“Zweidimensionale laserinduzierte Fluoreszenzmessungen von Formaldehyd in der Mischzone
von flüssigen Brennstoffen mit vorgewärmter
Luft”
Talk at 4. Konferenz über Optische Analysenmesstechnik in Industrie und Umwelt, VDIOptische Technologien, VDI-Haus, Düsseldorf,
October 07–08, 2004
W. Paa, W. Triebel:
“Der “Advanced Disk Laser” als neues
Diagnostiksystem in der Verbrennungsforschung
und erste Anwendung auf laserinduzierte
Fluoreszenzmessungen von Formaldehyd mit
kHz-Folgefrequenz”
Poster at 4. Konferenz über Optische Analysenmesstechnik in Industrie und Umwelt, VDIOptische Technologien, VDI-Haus, Düsseldorf,
October 07–08, 2004
H. Stafast:
“Der Laser als Sonde”
Samstagsvorlesung der Physikalisch-Astronomischen Fakultät, Friedrich-Schiller-Universität
Jena, November 13, 2004,
http://mmz-srv4.rz.uni-jena.de/ramgen/mmz/
SamVL13 11 04.rm
W. Paa, W. Triebel:
“Yb:YAG-Scheibenlasersystem als kHz-Pulslaserquelle für die Prozessdiagnostik”
Invited talk at 4. Jenaer Lasertagung, November
18–19, 2004
R. Stober, A. Bochmann, G. Andrä, F. Falk:
“fs-Materialbearbeitung – materialspezifische
Aspekte”
Talk at 4. Jenaer Lasertagung, Jena, November
18–19, 2004
W. Paa, W. Triebel:
“A Nanosecond Pulsed Disk Laser System for
Planar Laser Induced Fluorescence in
Combustion Diagnostics”
Talk at VSJ-SPIE 04 Int. Conf. on Adv. Optical
Diagn. in Fluids, Solids and Combustion, Tokyo,
Japan, December 04–06, 2004
W. Triebel:
“LIF and direct absorption measurements of
DUV/VUV optical materials and coatings“
Talk at Komatsu Research Division Ltd, Hiratsuka
(Japan), December 7, 2004
Patents
W. Paa, M. Schnepp, W. Triebel:
“Schmalbandig emittierende Laseranordnung mit
Umschaltung zwischen vorgebbaren Laserwellen“
DE 10 2004 008 673.7 (20.02.2004)
Lectures
H. Stafast:
“Angewandte Lasertechniken”, 2-stündige Wahlvorlesung über 4 Semester an der FriedrichSchiller-Universität, Winter 2003/2004 bis Winter
2004/2005
F. Falk
“Akustik”, 2-stündige Wahlvorlesung an der
Friedrich-Schiller-Universität, Sommer 2004
F. Falk
“Photovoltaik”, 2-stündige Wahlvorlesung an der
Friedrich-Schiller-Universität, Winter 2004/2005
Diploma Theses
Matthias Schnepp
“Alternierender Zwei-Wellenlängen-Betrieb für
ein Scheibenlaser-Systems mit kHz Repetitionsrate”
University of Applied Sciences, Jena
Supervisor: Dr. W. Paa
Rico Stober
“Bohren von Mikrolöchern mittels fs-Laser”
University of Applied Sciences, Mittweida
Supervisors: Dr. F. Falk/Dr. G. Andrä
Constanze Döring
“Excimerlaser-Kristallisation von Galliumarsenid
auf Fremdsubstraten”
Honoured with Gerhard Neumann Award of
University of Applied Sciences, Mittweida
Supervisors: Dr. F. Falk/Dr. G. Andrä
Laboratory Exercises
M. Kaiser, Technical University of Ilmenau
S. Barth, M. Richter, F. Herold, Carl-Zeiss-Gymnasium (Spezialklasse), Jena
87
LASERTECHNIK / LASER TECHNOLOGY
J. Grassmann, O. Pabst, D. Rettig, Carl-ZeissGymnasium (Spezialklasse), Jena
G. Zentgraf, Carl-Zeiss-Gymnasium (Spezialklasse), Jena
M. Aubel, Staatl. Berufsbildendes Schulzentrum
Jena Göschwitz, Höhere Berufsfachschule
Award
H. Stafast, professor extraordinary of University
of Stellenbosch, South Africa
Exhibitions
Nanotechnology Days, Beutenberg Campus,
Jena, November 4–5, 2004
Committees
W. Triebel
– Topical Team of European Space Agency:
“Instabilities in Lean Gas Phase Combustion”
– Advisory Board of “Optical Technology and
Image Processing for Fluids and Solids
Diagnostics”, SPIE, Tokyo, Dec. 2004
– STIFT, Referee in “Businessplan Wettbewerb
2004”
G. Andrä
R&D Executive Board of INPUT Solar e.V.
88
New Equipment
– Frequency conversion unit for femtosecond
laser amplifier
– Polychromator for optical multichannel analyser (OMA)
– Excimer laser (Lambda Physik) and beam
shaping unit for laser crystallisation
INNOVATIONSPROJEKT / INNOVATION PROJECT
E. Innovationsprojekt 2004 / Innovation Project 2004
DNA affinity sensor based on Bragg gratings
in planar waveguides
(M. Rothhardt, M. Becker, I. Latka, C. Aichele,
S. Grimm, U. Hübner, W. Morgenroth,
R. Boucher, G. Festag, R. Möller, W. Fritzsche)
Introduction
Chip-based methods are gaining constantly more
importance in detecting biomolecules, because
of the ability of these methods to analyze probes
quickly with a minimum use of material in a
miniaturized and parallelized setup. Today, the
readout of biochips is usually based on labeling
with fluorescent dyes, but these dyes have serious disadvantages: They are harmful to health
and may bleach, which makes a reliable readout
very complicated. Also, the equipment costs for
fluorescence readout are very high. So there is a
constant search for new detection schemes
which avoid those disadvantages. One new way
of detecting the interaction between biomolecules might be the use of optical Bragg gratings in combination with planar waveguides. This
principle allows the utilization of key advantages
of optical methods such as parallelization and
highly developed signal processing capabilities,
in addition to the miniaturization potential.
Bragg grating sensors have been chosen
because of their multiplexing capabilities. This
gives the possibility to line up several sensors
working at different wavelengths, which can be
read out in one step.
Sensing principle
The surface areas on top of these Bragg gratings
represent the measurement spots on the chip.
These sensor fields have no cladding layer to
give access to the evanescent field. On the sensitive surface regions, captured molecules are
immobilized. The binding of its complementary
target leads to a concentration change close to
the waveguide layer. Consequently, the effective
index of the guided mode changes and affects
the Bragg wavelength, which can be detected
online.
Sensor fabrication
The waveguide system used consists of three
layers: (1) a thermal oxidized silica layer as a
buffer, (2) a doped, glassy silica layer produced
by flame hydrolysis deposition (FHD), and (3) the
cladding layer, made by room-temperature
Plasma Enhanced Chemical Vapor Deposition
and a lift-off technique (where the mask prohibits
SiO2 deposition in the chamber area), comprises
the reaction chambers shown in figure E1, which
are located directly on top of the sensing spots.
Fig. E1: First sensing chambers for system tests.
The chamber sizes are 1 × 5 mm2 and 1 µm in
depth.
The Bragg gratings are made by the well-established holographic photo imprinting technology
using an argon-ion laser operating at 244 nm.
Adequate photosensitivity was achieved with
hydrogen loading (200 bar, 20 °C).
Biocompatibility test
The compatibility of the utilized glass with techniques for DNA attachment and hybridization was
tested using immobilization systems. Therefore,
DNA was attached to the glass substrates using
silane chemistry, and thereafter functionally characterized by hybridization of labeled DNA.
Fig. E2: Immobilization of directly fluorescencelabeled captured DNA samples on Ge-doped silicon
oxide,
visualized
by
fluorescence
microscopy.
First demonstrator
First implementation of the Bragg grating-assisted evanescent field sensor in a planar waveguide
shows the feasibility of the optical detection system consisting of a non-structured planar waveguide without cladding layer, comprising a single
Bragg grating (5 mm x 0.5 mm, transmission
coefficient about 50%, peak wavelength at 1544
nm). Characterization is performed using a tunable laser source, which is coupled via a double
prism system (figure E3).
89
INNOVATIONSPROJEKT / INNOVATION PROJECT
Moreover, it was possible to measure the interaction of adsorbed 30 nm gold nanoparticle on the
waveguide surface with transmitted light. In the
wavelength region at 530 nm (working point of a
simple green laser diode) a transmission loss of
10 percent is detectable.
Fig. E3: Sketch of the two-prism readout principle.
The measurement example shown in figure E4
demonstrates the sensitivity of the grating to the
exposure to different substances at the surface.
The measuring range of the sensor lies between
the refractive index of air at 1.00 and that of the
core layer at n = 1.46. Actual measuring times
are 10 s per scan.
Fig. E4: The dependence of transmitted light on
the refractive index of the surrounding medium.
90
Outlook
These experiments present a proof of principle
for a Bragg grating-based bio-detection technology that works without the use of fluorescent dyes
and allows the online detection of the binding
reaction. Together with the miniaturization potential enabling portable and at the same time parallel measurement devices, this technology is a
promising development towards future point-ofcare diagnostics.

Documentos relacionados