3.5. Fresnelsche Formeln - Anfängerpraktikum

Transcrição

3.5. Fresnelsche Formeln - Anfängerpraktikum
4.5 Fresnelsche Formeln
331
4.5. Fresnelsche Formeln
Ziel
Bestätigung der fresnelschen Formeln zur Reflexion und Transmission von elektromagnetischen Wellen an ebenen Grenzflächen. Betrachtet wird im Experiment ein Spezialfall,
nämlich die Drehung der Schwingungsebene linear polarisierten Lichtes durch Reflexion
an der Grenzfläche Luft/Glas.
Hinweise zur Vorbereitung
Die Antworten auf diese Fragen sollten Sie vor der Versuchdurchführung wissen. Sie sind
die Grundlage für das Gespräch mit Ihrer Tutorin/Ihrem Tutor vor dem Versuch. Informationen zu diesen Themen erhalten Sie in der unten angegebenen Literatur.
1.
• Was ist der Brechungsindex und wie geht er ins Snelliussche Brechungsgesetz
ein?
• Was ist Polarisation des Lichts? Welche verschiedenen Möglichkeiten der Polarisation gibt es?
• Worüber machen die fresnelschen Formeln (rein qualitativ) eine Aussage?
• Welche Voraussetzungen müssen erfüllt sein, damit die fresnelschen Formeln
angewendet werden können?
und die magnetische Flussdichte
• Wie verhalten sich die elektrische Feldstärke E
an Grenzflächen?
B
• Was ist der Brewster-Winkel?
2.
• Falls noch nicht bekannt, machen Sie sich vor dem Versuch mit dem Ablesen
eines Nonius vertraut.
Zubehör
• Optische Bank mit Drehtisch und Halbwinkelführung
• Glasprisma
• Quecksilberdampflampe
• drei Sammellinsen f = 65 mm, 200 mm, 300 mm
• Okular 10× (entspricht f = 25 mm) mit Fadenkreuz
• verstellbarer Spalt
• zwei Polarisationsfilter
• Interferenzfilter λ = 546 nm
© Physikalisches Anfängerpraktikum der Universität Konstanz — zum internen Gebrauch bestimmt
Diese Anleitung ersetzt NICHT den Grundlagenteil Ihres Praktikumsberichtes! Haben Sie Verbesserungsvorschläge?
Dieser Abschnitt: Revision: 749 , Date: 2016-12-14 16:55:39 +0100 (Mi, 14 Dez 2016)
Gesamtversion: kompiliert am 17. Januar 2017 um 9:48 Uhr
332
4. Versuche zur Optik
Grundlagen
4.5.0.4. Reflexion und Brechung
Trifft Licht auf eine Grenzfläche, so wird im Allgemeinen ein Teil reflektiert werden,
wobei der Reflexionswinkel gleich dem Einfallswinkel ist. Ein anderer Teil durchdringt die
Grenzfläche, man sagt, er wird transmittiert. Dabei gilt das Snelliussche Brechungsgesetz
nt
sin α
=
sin β
ni
mit
α
β
ni
nt
=
=
=
=
(4.5.1)
Einfallswinkel,
Brechungswinkel,
Brechungsindex im Bereich des einfallenden Strahls,
Brechungsindex im Bereich des transmittierten Strahls.
Es ist sicherlich eine wichtige Frage, zu welchen Teilen jeweils reflektiert und transmittiert
wird und von welchen Parametern das abhängt.
Polarisation
und
Licht ist eine elektromagnetische Welle. Die Vektoren der elektrischen Feldstärke E
der magnetischen Flussdichte B stehen dabei an jeder Stelle senkrecht auf dem Wellenvektor k. Es handelt sich also um eine transversale Welle, so dass zusätzliche Information über
die Stellung der Vektoren zueinander nötig ist, um die Welle vollständig zu beschreiben.
zeitlich
Ein wichtiger Spezialfall ist eine Lichtwelle, bei der die elektrische Feldstärke E
und räumlich stets in einer festen Ebene liegt. Man nennt solches Licht linear polarisiert
und bezeichnet die Ebene, in der alle E-Vektoren
liegen als Schwingungsebene.1 Trifft
Licht auf eine Grenzfläche, so stellt sich die Frage, ob die Schwingungsebene des Lichtes
1
Die Entdeckung, dass Licht eine transversale Welle ist und unterschiedliche Polarisationszustände annehmen kann, ist älter als die Erklärung des Lichtes durch elektromagnetische Wellen. Historisch
wurde deshalb eine Polarisationsebene“ festgelegt, bevor klar war, um was es sich dabei genau han”
deln würde. Nachträglich stellte sich heraus, dass man die Ebene des magnetischen Feldes der Welle
gewählt hatte. Insbesondere in älteren Büchern findet man daher den Begriff der Polarisationsebe”
ne“ linear polarisierten Lichtes für die Ebene des magnetischen Feldvektors. Es ist nun aber so, dass
die Wechselwirkung des Lichtes mit Materie mehr vom elektrischen als vom magnetischen Feld der
Welle bestimmt wird. Daher wird häufiger auf die Ebene des elektrischen Feldvektors Bezug genommen. Sie wird dann meist als Schwingungsebene“ bezeichnet. Man spricht andererseits auch davon,
”
dass Licht parallel polarisiert“ sei, wenn die Schwingungsebene parallel zur Einfallsebene ist (auch
”
wenn die historische Polarisationsebene“ dann gerade senkrecht auf der Einfallsebene steht. . . ). In
”
der neueren Literatur vermischen sich die Begriffe ohnehin etwas. Manchmal wird dabei der Begriff
Polarisationsebene“ auch für die Ebene des elektrischen Feldvektors verwendet. Gewisse Verwirrun”
gen sind quasi unvermeidlich. Es ist daher ratsam, sich stets zu vergewissern, welche Nomenklatur in
einem Text verwendet wird.
In diesem Skript wird der Begriff Polarisationsebene“ aus den genannten Gründen bewusst vermie”
den.
© Physikalisches Anfängerpraktikum der Universität Konstanz — zum internen Gebrauch bestimmt
Diese Anleitung ersetzt NICHT den Grundlagenteil Ihres Praktikumsberichtes! Haben Sie Verbesserungsvorschläge?
Dieser Abschnitt: Revision: 749 , Date: 2016-12-14 16:55:39 +0100 (Mi, 14 Dez 2016)
Gesamtversion: kompiliert am 17. Januar 2017 um 9:48 Uhr
4.5 Fresnelsche Formeln
333
für den Reflexions- und Transmissionsvorgang eine Rolle spielt. Dies ist tatsächlich der
Fall, wie in diesem Versuch experimentell untersucht werden soll. Man bezeichnet die zur
Beschreibung dieser Vorgänge verwendeten Gleichungen als fresnelsche Formeln.
Die Voraussetzungen
Bei unserer Herleitung der fresnelschen Formeln setzen wir voraus, dass
• die Grenzfläche eben ist,
• die betrachteten Medien linear, isotrop und homogen sind, und
• die betrachteten Medien rein dielektrisch sind, also weder magnetische Eigenschaften
haben, noch die elektromagnetische Welle dämpfen.
Es scheint zunächst, dass das sehr viele Voraussetzungen sind, aber sie sind in vielen wichtigen Fällen tatsächlich erfüllt. Die letzte Bedingung kann übrigens aufgehoben werden,
wenn man die Betrachtung etwas verallgemeinert, was den Rahmen des Praktikumsversuchs aber sprengen würde.
Herleitung der fresnelschen Formeln
Die hier vorgestellte Herleitung der fresnelschen Formeln beruht im Wesentlichen auf
• dem Energieerhaltungssatz für die ein- und ausfallenden Wellen und
• der Stetigkeit der Tangentialkomponente des elektrischen Feldes an der Grenzfläche.
Abbildung 4.5.1.: Skizze zur Berechnung der Bündelquerschnitte.
Zur eindeutigen Kennzeichnung der Wellen werden die Indices i“ (engl. incident = ein”
fallend), r“ (engl. reflected = reflektiert, zurückgeworfen) und t“ (engl. transmitted
”
”
= transmittiert, durchgelassen) verwendet.
Die Vorgänge der Reflexion und Brechung spielen sich in einer dünnen Schicht um die
Grenzfläche zweier Medien ab, so dass wir im Folgenden nur diese Schicht untersuchen
© Physikalisches Anfängerpraktikum der Universität Konstanz — zum internen Gebrauch bestimmt
Diese Anleitung ersetzt NICHT den Grundlagenteil Ihres Praktikumsberichtes! Haben Sie Verbesserungsvorschläge?
Dieser Abschnitt: Revision: 749 , Date: 2016-12-14 16:55:39 +0100 (Mi, 14 Dez 2016)
Gesamtversion: kompiliert am 17. Januar 2017 um 9:48 Uhr
334
4. Versuche zur Optik
müssen. Betrachten wir Abbildung 4.5.1, so stellen wir fest, dass die Bündelquerschnitte
der ein- und ausfallenden Wellen gegeben sind durch
Ai
Ar
At
mit
AG
α
β
sin α
sin β
= AG · cos α ,
= AG · cos α ,
= AG · cos β
(4.5.2)
(4.5.3)
(4.5.4)
= beleuchtete Fläche auf der Grenzfläche,
= Einfalls- und Reflexionswinkel,
= Brechungswinkel,
nt
(Snelliussches Brechungsgesetz).
=
ni
(4.5.5)
Die räumliche Energiedichte eines elektrischen Feldes ist gegeben durch ε · E 2 . Der Energieerhaltungssatz besagt, dass alle von der einfallenden Welle an die Grenzfläche heran
transportierte Energie durch die reflektierte und die transmittierte Welle gemeinsam wieder abtransportiert werden muss, da ja keine Dämpfung stattfinden soll:
Pi = Pr + Pt
.
(4.5.6)
Die Strahlungsdichte2 Si und Leistung Pi der einfallenden Welle sind gegeben durch
c
ε0 εri
2
· εi · E i =
· E2
(4.5.7)
Si =
ni
μ0 μri i
ε0 εri
· E 2 · AG · cos α
(4.5.8)
Pi = Si · Ai =
μ0 μri i
Analog ergeben sich die anderen Leistungen, so dass man schließlich schreiben kann
ε0 εri
ε0 εri
ε0 εrt
2
2
· Ei · AG cos α =
· Er · AG cos α +
· E 2 · AG cos β .(4.5.9)
μ0 μri
μ0 μri
μ0 μrt t
Unter den oben angeführten Voraussetzungen vereinfacht sich diese Gleichung wesentlich,
denn es gilt z. B. μri = μrt = 1. Man erhält so
εrt
2
2
· Et2 · cos β
(4.5.10)
Ei · cos α = Er · cos α +
εri
cos β
εrt
2
2
· Et2 ·
(4.5.11)
⇒ Ei − Er =
εri
cos
α
nrel
fα
Dabei wurden die neuen Abkürzungen nrel für den relativen Brechungsindex und fα für
das Verhältnis der Bündelquerschnitte eingeführt. Die elektrischen Feldvektoren kann man
jeweils in eine Komponente E⊥ senkrecht zur Einfallsebene und eine Komponente E parallel bzw. tangential zur Einfallsebene zerlegen3 . Gleichung (4.5.11) muss für jede dieser
=E
×H
(manchmal auch mit
Si entspricht dem Betrag des häufig verwendeten Poyntingvektors S
bezeichnet), dessen Pfeilspitze in die Richtung des Energietransports zeigt.
dem Symbol Π
3
Die folgenden Bezeichnungen sind für linear polarisierte Wellen in der Literatur gebräuchlich:
2
© Physikalisches Anfängerpraktikum der Universität Konstanz — zum internen Gebrauch bestimmt
Diese Anleitung ersetzt NICHT den Grundlagenteil Ihres Praktikumsberichtes! Haben Sie Verbesserungsvorschläge?
Dieser Abschnitt: Revision: 749 , Date: 2016-12-14 16:55:39 +0100 (Mi, 14 Dez 2016)
Gesamtversion: kompiliert am 17. Januar 2017 um 9:48 Uhr
4.5 Fresnelsche Formeln
335
Komponenten separat gelten. Abbildung 4.5.2 veranschaulicht die Richtungen der elektrischen und magnetischen Feldvektoren für die beiden Komponenten.
Abbildung 4.5.2.: Richtungen der elektrischen und magnetischen Feldvektoren [Hec94]:
links: Schwingungsebene senkrecht zur Einfallsebene (s-polarisiert),
rechts: Schwingungsebene parallel zur Einfallsebene (p-polarisiert).
(Die in der Skizze eingezeichneten Winkel θi =θr und θt entsprechen dem
Einfallswinkel α und Brechungswinkel β im Text.)
Betrachten wir zunächst die Komponente E⊥ , die zugleich Tangentialkomponente
bezüglich der Grenzfläche ist und als solche an der Grenzfläche stetig sein muss. Es folgt
Ei⊥ + Er⊥ = Et⊥
.
(4.5.12)
Teilt man Gleichung (4.5.11) durch Gleichung (4.5.12), so erhält man
Ei⊥ − Er⊥ = nrel · Et⊥ · fα
.
(4.5.13)
liegt senkrecht zur Einfallsebene:
• E
– ⊥ ,
– s- oder σ-polarisiert (von senkrecht“ — auch in der englischen Literatur üblich!),
”
– TE-Welle (von transversal elektrisch“ bzw. engl. transverse electric).
”
liegt in der Einfallsebene:
• E
– ,
– p- oder π-polarisiert (von parallel“ bzw. engl. parallel ),
”
– TM-Welle (von transversal magnetisch“ bzw. engl. transverse magnetic).
”
© Physikalisches Anfängerpraktikum der Universität Konstanz — zum internen Gebrauch bestimmt
Diese Anleitung ersetzt NICHT den Grundlagenteil Ihres Praktikumsberichtes! Haben Sie Verbesserungsvorschläge?
Dieser Abschnitt: Revision: 749 , Date: 2016-12-14 16:55:39 +0100 (Mi, 14 Dez 2016)
Gesamtversion: kompiliert am 17. Januar 2017 um 9:48 Uhr
336
4. Versuche zur Optik
Aus den letzten beiden Gleichungen lässt sich wahlweise Et⊥ oder Er⊥ eliminieren. Die
Endergebnisse für die Amplitudenkoeffizienten4 der Reflexion ⊥ und der Transmission
τ⊥ lauten dann
'
$
Er⊥
nrel · fα − 1
nt cos β − ni cos α
sin(α − β)
=−
=−
=−
Ei⊥
nrel · fα + 1
nt cos β + ni cos α
sin(α + β)
2
n2rel − sin2 α − cos α
= −
,
n2rel − 1
2 cos α · sin β
Et⊥
2
2 ni cos α
=
=
=
=
Ei⊥
1 + nrel · fα
nt cos β + ni cos α
sin(α + β)
2 cos α · n2rel − sin2 α − 2 cos2 α
=
.
n2rel − 1
⊥ =
τ⊥
(4.5.14)
(4.5.15)
(4.5.16)
(4.5.17)
&
%
Von den unterschiedlichen Formulierungen ist je nach Anwendungszweck mal die eine,
mal die andere bequemer.
Auf ganz ähnliche Weise kann man auch die entsprechenden Verhältnisse für die Komponente parallel zur Einfallsebene berechnen und erhält
'
$
Er
tan(α − β)
nrel − fα
nt cos α − ni cos β
=
=
=
Ei
nrel + fα
nt cos α + ni cos β
tan(α + β)
n2rel cos α − n2rel − sin2 α
=
,
n2rel cos α + n2rel − sin2 α
Et
2 cos α · sin β
2
2 ni cos α
=
=
=
=
Ei
nrel + fα
nt cos α + ni cos β
sin(α + β) · cos(α − β)
2 nrel · cos α
=
.
n2rel cos α + n2rel − sin2 α
=
τ
(4.5.18)
(4.5.19)
(4.5.20)
(4.5.21)
&
%
Die Gleichungen (4.5.14)–(4.5.21) werden meist als fresnelsche Formeln bezeichnet5 .
Die Ergebnisse sind in Abbildung 4.5.3 graphisch dargestellt.
4
Mit den Begriffen Reflexions- bzw. Transmissionskoeffizient werden in der Literatur manchmal die
auch hier verwendeten Amplitudenverhältnisse bezeichnet, manchmal allerdings auch die quadrierten
2
. Letztere heißen bei anderen Autoren wiederum Reflexions- bzw. TransmissiAusdrücke 2⊥ und τ⊥
onsgrad. Die Verwendung des Wortes Amplitude“ in der Bezeichnung hilft daher, Missverständnisse
”
zu vermeiden.
5
Leider ist die Fachliteratur in diesem Punkt nicht vereinheitlicht, so dass man fast jede Vorzeichenvariation finden kann. Wichtig ist also in jedem Fall eine eindeutige Skizze oder eine entsprechende
r und E
t bzw. die Vorzeichen ihrer Beträge verstanden
i, E
Erklärung im Text, wie die Richtungen von E
werden sollen.
© Physikalisches Anfängerpraktikum der Universität Konstanz — zum internen Gebrauch bestimmt
Diese Anleitung ersetzt NICHT den Grundlagenteil Ihres Praktikumsberichtes! Haben Sie Verbesserungsvorschläge?
Dieser Abschnitt: Revision: 749 , Date: 2016-12-14 16:55:39 +0100 (Mi, 14 Dez 2016)
Gesamtversion: kompiliert am 17. Januar 2017 um 9:48 Uhr
4.5 Fresnelsche Formeln
337
Abbildung 4.5.3.: Graphische Darstellung der vier Amplitudenkoeffizienten für Reflexion
und Transmission an einer dielektrischen Grenzfläche als Funktion des
Einfallswinkels α.
Polarisationsdrehung durch Reflexion
Im Praktikumsversuch soll nun aber nicht der Anteil an reflektierter oder transmittierter
Intensität einer wie auch immer polarisierten Welle gemessen werden, sondern die Drehung
der Polarisationsebene linear polarisierten Lichtes bei der Reflexion an der Grenzfläche
Luft/Glas. Wie kommt diese Drehung zustande?
Ist das einfallende Licht linear polarisiert und steht seine Schwingungsebene unter einem
bestimmten Winkel ϕi gegen die Einfallsebene, so lässt sich die einfallende elektrische
i in die Komponenten parallel und senkrecht zur Einfallsebene zerlegen:
Feldstärke E
,
(4.5.22)
Ei = Ei , Ei⊥
(4.5.23)
Ei = Ei · cos ϕi ,
(4.5.24)
Ei⊥ = Ei · sin ϕi .
Die Reflexion erfolgt entsprechend der fresnelschen Formeln (4.5.15) und (4.5.19), danach kann man sich die reflektierte Welle wieder aus den zwei Komponenten zusammengesetzt denken:
,
(4.5.25)
Er = Er , Er⊥
Er = · Ei · cos ϕi ,
(4.5.26)
Er⊥ = ⊥ · Ei · sin ϕi .
(4.5.27)
Da aber die beiden Komponenten im Allgemeinen unterschiedlich stark reflektiert werden,
r meist nicht mehr in die gleiche Richtung wie der Vektor
zeigt der resultierende Vektor E
© Physikalisches Anfängerpraktikum der Universität Konstanz — zum internen Gebrauch bestimmt
Diese Anleitung ersetzt NICHT den Grundlagenteil Ihres Praktikumsberichtes! Haben Sie Verbesserungsvorschläge?
Dieser Abschnitt: Revision: 749 , Date: 2016-12-14 16:55:39 +0100 (Mi, 14 Dez 2016)
Gesamtversion: kompiliert am 17. Januar 2017 um 9:48 Uhr
338
4. Versuche zur Optik
i der einfallenden Welle. Misst man die Winkel ϕi und ϕr beide mit Blick entgegen der
E
Strahlrichtung6 (vgl. Abbildung 4.5.5), so gilt
Er⊥
Er
= K · tan ϕi
tan ϕr =
mit
⊥
K =
nrel · fα − 1 nrel + fα
·
= −
nrel · fα + 1 nrel − fα
(4.5.28)
(4.5.29)
(4.5.30)
.
(4.5.31)
Man muss außerdem beachten, dass die Tangensfunktion eine Periodizität von 180◦ hat,
es gilt also z. B. tan(+100◦ ) = tan(−80◦ ). Physikalisch gibt es aber durchaus einen Unterschied zwischen diesen beiden Fällen. Sie beschreiben Wellen, deren Phasen gegeneinander
um 180◦ bzw. π verschoben sind. Eine solche Verschiebung entspricht gerade dem Phasensprung, der unter bestimmten Bedingungen bei der Reflexion auftritt (negatives Vorzeichen von ⊥ bzw. ). Einfallende und reflektierte Welle sind also entweder in Phase, oder
haben einen scheinbaren Gangunterschied“ von einer halben Wellenlänge. Berücksichtigt
”
man diese Tatsache, so kommt man zu der Darstellung in Abbildung 4.5.6.
Abbildung 4.5.4.: Skizze des Aufbaus zur Polarisationsdrehung durch Reflexion.
Die Polarisationsdrehung ϕr − ϕi kann experimentell relativ einfach gemessen werden
und zeigt volle Übereinstimmung mit der Theorie.
6
In der Literatur wird ϕr meist tatsächlich mit Blick entgegen der Strahlrichtung, ϕi allerdings manchmal
mit Blick in die Strahlrichtung gemessen. Einen tieferen Grund hierfür scheint es nicht zu geben. Die
einzige Änderung der Formeln besteht in einem zusätzlichen Minuszeichen. Dadurch entsteht dann
allerdings der falsche Eindruck, dass bei der Reflexion unter senkrechtem Einfall die Schwingungsebene
i⊥ und
überhaupt nicht verändert würde. In Wirklichkeit kommt durch den Phasensprung zwischen E
r⊥ (negatives Vorzeichen von ⊥ ) durchaus eine Drehung der Schwingungsebene zu Stande.
E
© Physikalisches Anfängerpraktikum der Universität Konstanz — zum internen Gebrauch bestimmt
Diese Anleitung ersetzt NICHT den Grundlagenteil Ihres Praktikumsberichtes! Haben Sie Verbesserungsvorschläge?
Dieser Abschnitt: Revision: 749 , Date: 2016-12-14 16:55:39 +0100 (Mi, 14 Dez 2016)
Gesamtversion: kompiliert am 17. Januar 2017 um 9:48 Uhr
4.5 Fresnelsche Formeln
339
Abbildung 4.5.5.: Skizze zur Definition der Winkel ϕi und ϕr bei der Polarisationsdrehung durch Reflexion. Die Einfallsebene ist in dieser Abbildung vertikal dargestellt, liegt beim im Praktikum verwendeten Aufbau allerdings
horizontal.
Abbildung 4.5.6.: Abhängigkeit der Schwingungsebene der reflektierten Strahlung vom
Einfallswinkel α für verschiedene Schwingungsebenen der einfallenden
linear polarisierten Strahlung.
Polarisationsfilter
Es gibt eine ganze Reihe von Methoden zur Herstellung linear polarisierten Lichtes. In
diesem Experiment werden Polarisationsfilterfolien aus Kunststoff verwendet. Die Funktionsweise kann in der Literatur (z. B. [GGG78] S. 515) nachgelesen werden (siehe Aufga-
© Physikalisches Anfängerpraktikum der Universität Konstanz — zum internen Gebrauch bestimmt
Diese Anleitung ersetzt NICHT den Grundlagenteil Ihres Praktikumsberichtes! Haben Sie Verbesserungsvorschläge?
Dieser Abschnitt: Revision: 749 , Date: 2016-12-14 16:55:39 +0100 (Mi, 14 Dez 2016)
Gesamtversion: kompiliert am 17. Januar 2017 um 9:48 Uhr
340
4. Versuche zur Optik
benteil).
Versuchsdurchführung
Der Aufbau ist in Abbildung 4.5.4 skizziert.
1. Leuchten Sie den Beleuchtungsspalt mit Hilfe der Kondensorlinse (f = 65 mm)
möglichst gut aus.
2. Machen Sie den Strahlengang mit Hilfe einer Sammellinse (f = 200 mm) parallel,
indem Sie diese im Abstand ihrer eigenen Brennweite vom Spalt aufstellen. Überprüfen Sie die Parallelität mit dem Verfahren der Autokollimation.7
3. Belassen Sie das Interferenzfilter während des ganzen Versuches im Strahlengang.
Es ist nötig zur Auswahl eines kleinen Wellenlängenbereichs, da der Brechungsindex
des Prismas und somit nach den fresnelschen Formeln auch die Reflexion und
Transmission wellenlängenabhängig sind. Gleichzeitig reduziert es die auf das Auge
fallende Lichtintensität auf ein vernünftiges Maß, sofern der Beleuchtungsspalt nicht
zu weit geöffnet ist.8
4. Entfernen Sie das Prisma vom Drehtisch, stellen die optische Bank gerade und
positionieren Sie die dritte Sammellinse (f = 300 mm) so auf dem beweglichen
Arm, dass Sie den Beleuchtungsspalt durch das Okular scharf erkennen können.
5. Stellen Sie das Prisma so auf den Prismentisch, dass der parallele Strahl an einer
der drei Basisflächen reflektiert wird und so ins Okular gelangt.
6. Überprüfen Sie die Halbwinkelführung und die Position des Prismas.
Bewegen Sie dazu den Schwenkarm über den ganzen Schwenkbereich und kontrollieren Sie, ob das Bild des Spaltes in allen Stellungen durch das Okular sichtbar ist.
Justieren Sie gegebenenfalls so nach, dass das Prisma stets um den halben Winkel
gedreht wird, um den Sie den Schwenkarm bewegen, und dass außerdem die reflektierende Fläche stets vom einfallenden Strahl getroffen wird. Achten Sie dabei auf
7
Bei der Autokollimation wird in einem beliebigen Abstand hinter der Sammellinse ein ebener Spiegel
aufgestellt, der das Licht durch die Linse auf den Spalt zurückwirft. Als Spiegel eignet sich z. B. gut
die verspiegelte Seite eines Interferenzfilters. Die Linse wird nun so lange verschoben, bis das Bild
des Spaltes wieder genau auf den Spalt fällt (bzw. bei leicht gegen die Strahlrichtung verdrehter
Spiegelfläche ein kleines Stück daneben auf die Spaltbegrenzung, was leichter zu kontrollieren ist).
Dann ist der Strahl zwischen Linse und Spiegel parallel, denn eine Linse wandelt ja Licht, das von
einem beliebigen Punkt der Brennebene kommt in einen Parallelstrahl um bzw. bündelt umgekehrt
einen Parallelstrahl in einem Punkt der Brennebene.
8
Es ist auch möglich, das Einbringen der beiden Polarisationsfilter in den Strahlengang schon an dieser
Stelle vorzunehmen, auch wenn es eigentlich erst später nötig ist. Dadurch bekommt man eine sehr
bequeme Möglichkeit, durch gegenseitiges Verdrehen der Filter die durchgelassene Intensität variabel
abzuschwächen.
© Physikalisches Anfängerpraktikum der Universität Konstanz — zum internen Gebrauch bestimmt
Diese Anleitung ersetzt NICHT den Grundlagenteil Ihres Praktikumsberichtes! Haben Sie Verbesserungsvorschläge?
Dieser Abschnitt: Revision: 749 , Date: 2016-12-14 16:55:39 +0100 (Mi, 14 Dez 2016)
Gesamtversion: kompiliert am 17. Januar 2017 um 9:48 Uhr
4.5 Fresnelsche Formeln
341
den toten Gang“ der Halbwinkelführung.9
”
7. Stellen Sie je ein Polarisationsfilter vor und hinter das Prisma in den Bereich des
parallelen Strahlengangs.10,11
8. Stellen Sie die Schwingungsebene des auf das Prisma auftreffenden Lichtes mit Hilfe
des ersten Polarisationsfilters auf einen Wert von 45◦ zur Einfallsebene ein.
Hinweis: Die Einfallsebene liegt beim verwendeten Aufbau horizontal!
9. Messen Sie die Drehung der Schwingungsebene des reflektierten Lichtes für den
Einfallswinkelbereich 90◦ ≥ α ≥ 45◦ in Schritten von 2.5◦ .12
10. Bestimmen Sie auf folgende Weise den Brewster-Winkel:
• Stellen Sie den Polarisator so, dass die Schwingungsebene parallel zur Einfallsebene liegt.
• Entfernen Sie den Analysator aus dem Strahlengang.13
• Bestimmen Sie unter diesen Voraussetzungen den Winkel, unter dem die Intensität der reflektierten Strahlung minimal wird.14
Auswertung
1. Zeichnen Sie ein Diagramm für die Drehung der Schwingungsebene des Lichtes als
Funktion des Einfallswinkels für einen Winkel von 45◦ zwischen Schwingungsebene
und Einfallsebene anhand der Werte, die Sie in Punkt 9 der Versuchsdurchführung
erhalten haben.
2. Berechnen Sie aus Ihrer Messung des Brewster-Winkels (Punkt 10 der Versuchsdurchführung) den Brechungsindex des Prismenglases.
9
Als toten Gang“ bezeichnet man hier den Bereich bei Änderung der Schwenkrichtung, in dem das
”
Prisma noch stehen bleibt, obwohl der Schwenkarm sich schon bewegt. Um diese Fehlerquelle auszuschalten, empfiehlt es sich, alle Winkeleinstellungen immer aus der selben Richtung kommend durchzuführen (also z. B. immer von großen zu kleinen Winkeln schwenken).
10
Die Wirkung der verwendeten Polarisationsfilter ist bei divergentem Licht etwas schlechter als bei
parallelem Licht, daher sollten beide Filter im Bereich zwischen den Sammellinsen mit f = 200 mm
und f = 300 mm aufgestellt werden.
11
Das erste Filter wird in solchen Anordungen üblicherweise als Polarisator“, das zweite als Analysator“
”
”
bezeichnet. Sie sind aber natürlich austauschbar.
12
◦
◦
◦
Der Schwenkarm bewegt sich dabei in 5 -Schritten von 0 bis 90 .
13
Der Analysator ist für die folgende Messung nicht notwendig – er stört aber auch nicht, sofern er
genauso eingestellt ist wie der Polarisator.
14
Eigentlich sollte die Intensität bei Reflexion unter dem Brewster-Winkel völlig verschwinden, aber
das ist experimentell nicht so einfach zu erreichen. Ein Problem dabei ist, dass das Auge ein sehr
empfindliches Nachweisinstrument darstellt, so dass einem auch geringe Lichtintensitäten noch als
hell“ erscheinen. Man führt die Messung am besten so durch, dass man den Schwenkarm relativ
”
zügig mehrmals hin- und herbewegt. Dabei bekommt man ein gutes Gefühl dafür, wo das Minimum
liegt, denn Helligkeitsänderungen können vom Auge wesentlich besser erfasst werden als absolute
Helligkeiten.
© Physikalisches Anfängerpraktikum der Universität Konstanz — zum internen Gebrauch bestimmt
Diese Anleitung ersetzt NICHT den Grundlagenteil Ihres Praktikumsberichtes! Haben Sie Verbesserungsvorschläge?
Dieser Abschnitt: Revision: 749 , Date: 2016-12-14 16:55:39 +0100 (Mi, 14 Dez 2016)
Gesamtversion: kompiliert am 17. Januar 2017 um 9:48 Uhr
342
4. Versuche zur Optik
3. Berechnen Sie mit Hilfe des in Punkt 2 der Auswertung erhaltenen Brechungsindex
für mindestens fünf Werte des Einfallswinkels die nach Gleichung (4.5.29) erwartete
Drehung der Polarisationsebene und zeichnen Sie sie zusätzlich in das Diagramm
aus Punkt 1 der Auswertung ein.
Bestimmen Sie aus der Unsicherheit des Brechungsindex auch jeweils die Unsicherheit der Polarisationsdrehung und zeichnen Sie diese ebenfalls ins Diagramm mit
ein. Nutzen Sie ein geeignetes Computerprogramm zur Berechnung der kombinierten Messunsicherheit. Gut geeignet ist z. B. das Programm GUM Workbench Edu,
aber auch Mathematica, Maple oder Matlab können eingesetzt werden.15
Fragen und Aufgaben
1. Wie sieht die Strahlungscharakteristik eines hertzschen Dipols aus?
Zeigen Sie unter Verwendung dieser Strahlungscharakteristik, dass die reflektierte
Intensität gleich null wird, wenn Licht unter dem Brewster-Winkel auf eine Glasfläche auftrifft und gleichzeitig seine Schwingungsebene parallel zur Einfallsebene
ist. Skizzieren Sie!
2. Erklären Sie die Funktionsweise der mechanischen Halbwinkelführung.
3. Wie funktioniert eine Polarisationsfilterfolie?
4. Ein Lichtstrahl verlaufe in Luft und treffe dann senkrecht auf eine ebene Glasfläche
mit der Brechzahl n = 1.5. Welcher Intensitätsanteil des Lichtes wird reflektiert?
Leiten Sie den entsprechenden Spezialfall aus den fresnelschen Formeln (4.5.15)
und (4.5.19) ab.
Spielt die Polarisation eine Rolle?
5. Zur Aussiebung eines schmalen Wellenlängenbereiches aus einem breiten Spektrum
kann ein sog. Christiansen-Filter verwendet werden (siehe z. B. [GGG78]). Dieses
besteht aus vielen Körnern eines im gewünschten Spektralbereich möglichst nicht
absorbierenden Stoffes, die zwischen zwei planparallelen Platten in eine Flüssigkeit
eingebettet sind. Die Flüssigkeit muss für die gewünschte Wellenlänge den gleichen
Brechungsindex wie die Körner haben, für kleinere oder größere Wellenlängen aber
einen anderen Brechungsindex.
Beschreiben Sie unter Verwendung des Ergebnisses aus Aufgabe 4 die Funktionsweise eines solchen Filters.
15
Prinzipiell könnten Sie die Formel für den Drehwinkel zur Berechnung der kombinierten Unsicherheit auch von Hand partiell ableiten, aber die Ableitung mit Software-Unterstützung ist wesentlich
einfacher zu handhaben und soll daher hier bevorzugt eingesetzt werden.
© Physikalisches Anfängerpraktikum der Universität Konstanz — zum internen Gebrauch bestimmt
Diese Anleitung ersetzt NICHT den Grundlagenteil Ihres Praktikumsberichtes! Haben Sie Verbesserungsvorschläge?
Dieser Abschnitt: Revision: 749 , Date: 2016-12-14 16:55:39 +0100 (Mi, 14 Dez 2016)
Gesamtversion: kompiliert am 17. Januar 2017 um 9:48 Uhr
4.5 Fresnelsche Formeln
343
Ergänzende Informationen
Abblendspiegel“ im Auto
”
Der innere Rückspiegel im Auto besteht aus einer keilförmigen Glasplatte, die auf der
Rückseite metallisch verspiegelt ist. Ein kleiner Teil des Lichtes wird gemäß den fresnelschen Formeln an der Grenzfläche zwischen Luft und Glas reflektiert, ein wesentlich
größerer Teil an der metallischen Rückseite. Durch die Keilform gehen die Reflexe in
leicht unterschiedliche Richtungen. Normalerweise stellt man den Spiegel so ein, dass man
das starke Spiegelbild sieht. Ist dies aber z. B. bei einer Nachtfahrt unangenehm, weil
von hinten andere Scheinwerfer blenden, dann kann man den Spiegel so kippen, dass das
schwächere Spiegelbild ins Auto gelangt und man nicht mehr geblendet wird.
Wer genau hinschaut stellt fest, dass es noch einen weiteren schwachen Reflex gibt. Die schwachen Reflexe liegen zu beiden
Seiten des starken Reflexes. Der zusätzliche Reflex entsteht, wenn das Licht die vordere Glasfläche durchläuft und dann
dreimal hintereinander reflektiert wird, nämlich zunächst an der Metallschicht, dann an der vorderen Grenzfläche zur Luft
und schließlich noch einmal an der Metallschicht.
Totalreflexion
Während sich die Intensität der einfallenden Welle an der Grenzfläche zum dichteren
Medium stets auf gebrochenen und reflektierten Strahl aufteilt, gibt es an der Grenzfläche
zum dünneren Medium auch den Fall, dass die Welle vollständig reflektiert wird. Man
bezeichnet das als Totalreflexion. Sie tritt auf, wenn der Einfallswinkel α so groß wird,
α
= nnti für keinen reellwertigen Winkel β mehr
dass das Snelliussche Brechungsgesetz sin
sin β
erfüllt ist. Bei den fresnelschen Formeln sieht man das daran, dass die Reflexions- und
Transmissionsverhältnisse ⊥ , τ⊥ , und τ komplexe Werte annehmen, weil der Ausdruck
n2rel − sin2 α in den Gleichungen (4.5.15), (4.5.17), (4.5.19) und (4.5.21) imaginär wird.
Dies kann offensichtlich nur passieren, wenn nrel = nnti < 1 ist, also bei der Reflexion am
dünneren Medium. Der Grenzwinkel αgrenz ist dann gegeben durch sin αgrenz = nrel .
Literaturhinweise
Eine gut nachvollziehbare Herleitung der fresnelschen Formeln findet sich in [GGG78].
Darin wird auch auf die im Praktikum verwendete spezielle Messmethode über die Polarisationsdrehung eingegangen.
Etwas kompakter (aber dafür vielleicht auch weniger anschaulich) sind die Darstellungen
in [Hec94] und [LLT97], sowie in [Gue90] (englischer Text).
Literaturverzeichnis
[GGG78] Gobrecht, Heinrich, Jens H. Gobrecht und Klaus H. Gobrecht (Herausgeber): Bergmann-Schaefer – Lehrbuch der Experimentalphysik, Band III:
Optik. Walter de Gruyter, Berlin, 7. Auflage, 1978.
[Gue90]
Guenther, Robert D.: Modern Optics. John Wiley & Sons, Inc., New York
Chichester Brisbane Toronto Singapore, 1. edition, 1990.
© Physikalisches Anfängerpraktikum der Universität Konstanz — zum internen Gebrauch bestimmt
Diese Anleitung ersetzt NICHT den Grundlagenteil Ihres Praktikumsberichtes! Haben Sie Verbesserungsvorschläge?
Dieser Abschnitt: Revision: 749 , Date: 2016-12-14 16:55:39 +0100 (Mi, 14 Dez 2016)
Gesamtversion: kompiliert am 17. Januar 2017 um 9:48 Uhr
344
[Hec94]
4. Versuche zur Optik
Hecht, Eugene: Optik. Addison-Wesley (Deutschland) GmbH, 2. Auflage,
1989, 1994. 3. korrigierter Nachdruck.
[LLT97] Lipson, Stephen G., Henry S. Lipson und David S. Tannhauser: Optik.
Springer-Verlag, Berlin, 1. Auflage, 1997. deutsche Übersetzung der 3. Auflage
von Optical Physics“.
”
© Physikalisches Anfängerpraktikum der Universität Konstanz — zum internen Gebrauch bestimmt
Diese Anleitung ersetzt NICHT den Grundlagenteil Ihres Praktikumsberichtes! Haben Sie Verbesserungsvorschläge?
Dieser Abschnitt: Revision: 749 , Date: 2016-12-14 16:55:39 +0100 (Mi, 14 Dez 2016)
Gesamtversion: kompiliert am 17. Januar 2017 um 9:48 Uhr

Documentos relacionados