Muskuläre Anpassungen und Leistungseffekte

Transcrição

Muskuläre Anpassungen und Leistungseffekte
“Live low – Train high”
Muskuläre Anpassungen und Leistungseffekte
BSO TrainerInnenfortbildung Höhentraining, Samstag, 25. Mai 2013
Institut für Sportwissenschaft der Universität Innsbruck
Michael Vogt, PhD
Bern/Magglingen - Switzerland
1.
Intro: Training in Hypoxie oder “live low – train high”
high”
2.
Studien mit Untrainierten
3.
4.
5.
•
Molekulare und strukturelle Anpassungen im Muskel
•
Funktionelle Anpassungen
Studien mit Trainierten
•
Molekulare Anpassungen im Muskel
•
Funktionelle Anpassungen
•
Gedanken zur Trainingsgestaltung
Zukü
Zukünftige Anwendungsformen des Hypoxietrainings?
Hypoxietrainings?
•
Hypoxie und Sprinttraining
•
Hypoxie und Krafttraining
Block Periodisierung von hochintensivem Intervalltraining
•
Nachahmung der hypoxischen Trainingsantwort?
Trainingsantwort?
1
Altitude-dependent decrease of VO2max
in Elite Cross Country Skiers
Vogt & Hoppeler. Is Hypoxia Training Good for
Muscles and Exercise Performance? Progress in
Cardiovascular Diseases 52, 525–533, 2010.
Chronic exposure to hypobaric hypoxia
Cross sectional area
VO2max
Body weight
Mitochondria
Cross sectional area
VO2max
Body weight
Howald et al. IJSM, 1990
Mitochondria
Functional & muscular adaptations
Training in hypoxia
2
altitude training concepts
Live high – Train low
Live low – Train high
•
•
•
•
> 400 h (rest)
>= 2500 m
→ red blood cells
10 – 20 h (training)
2500 – 3200 m
→ skeletal muscle
design of hypoxia training studies
•
Natural or artifical altitude conditions
•
Blind design almost not possible
•
Maximal performance & VO2max are reduced in hypoxia
•
Choise of the „right“ training intensity ?
•
Same absolute intensity (% of normoxic VO2max):
– same mechanical load (eg. power output)
– same metabolic flow (eg. O2-consumption)
– higher „training stress“ in hypoxia (eg. subjective perception, HR, lactate)
•
Same relative intensity (%VO2max at corresponding environment)
– reduced mechanical load in hypoxia
– reduced metabolic flow in hypoxia
– same „training stress“
3
Hypoxia training study
Design
Vogt et al. JAP 91:173-182, 2001
relative intensity
absolute intensity
70
•
•
•
Intensity
60
Normally active subjects
VO2max: 54.6ml/min/kg
Conditions:
40
30
20
– Normobaric hypoxia (3800m)
– Normoxia (600m)
•
50
10
0
600m high
Training:
– 30 min/session
– 5 sessions/week
– 6 weeks
3800m high
600m low
3800m low
Training condition
n:
8
7
8
7
Hypoxia training study
Summary: normoxic & hypoxic endurance training
in normally active subjects
• Similar increases in normoxic VO2max for all groups,
groups, no effect of
condition and intensity.
.
intensity
• Higher improvement of hypoxic VO2max after training in hypoxia,
hypoxia, no
effect of intensity.
intensity.
• All training groups improved PPO in normoxia,
normoxia, significant effect of
intensity.
.
intensity
• Higher improvement of hypoxic PPO after training in hypoxia,
hypoxia, no effect
of intensity.
intensity.
• VO2max and PPO were improved to a higher extent in all groups under
normoxic than under hypoxic test conditions
Vogt et al. JAP 91:173-182, 2001
4
Fribourg hypoxia training study
%changes in total muscle mitochondrial density
60%
*
50%
40%
††
†
30%
20%
*
*
*
10%
Vv(mt,f)
†
0%
600m high 3800m high 600m low
3800m low
Training condition
Vogt et al. JAP 91:173-182, 2001
Fribourg hypoxia training study:
%changes in muscle capillary length density
25%
*
20%
15%
10%
5%
Jv (c,f) (mm/mm3)
†
0%
-5%
†
-10%
-15%
600m
high
3800m
high
600m
low
3800m
low
Training condition
Vogt et al. JAP 91:173-182, 2001
5
hypoxia hypoxia study: „live low – train high“
Summary of molecular adaptations
Cox1, Cox4,
NADH6, SDH
glycolytic
PFK
beta-oxidation
MCAD
oxygen sensing
Hifalpha
%Delta
mitochondrial
global effect
3800m
Gen
500m
Pathway
3800m
500m
High
Low
intensity intensity
VT2
VT1
Hifdel
O2-transport
VEGF
80
70
60
50
40
30
20
10
0
effect hypoxia
effect training
high intensity
low intensity
Myoglobin
stress response
Hsp70
adapted from Vogt M et al., J Appl Physiol. 2001, 91(1)
<-100%
-
<-50%
<-10%
0
>10%
>50%
>100%
+
Modulation of muscle cell activity in training
Gene expression before & after 6 weeks of training
v
1
8
24
v
1
8
24
Muscle biopsy
6 Wochen Training, 5 x 30 Min
1. TE
Letzte TE
5
4
3
2
untrainiert
trainiert
1
0
vor (0)
1h nach
8h nach
24 nach
Endurance training modulates the muscular transcriptome response to acute exercise
Schmutz, Daepp, Wittwer, Vogt, Hoppeler, Flück. Pflugers Arch 2006, 451:678-687
6
Adaptation to training
performance
?
?
Elite
Trained
Moderate trained
Untrained
time
Zoll et al., JAP 100, 2006
O2-sensing
O2-transport
CHOCHO-metabolism
Mitochondrial
biogenisis
Mitochondrial
metabolism
%change in mRNA expression level after 6-week training
0%
Hif-1
ns
VEGF
ns
ns
Mb
Contractile
phenotyp
16%
32%
ns
32%
PGC-1
ns
TFAM
ns
CS
ns
MnSOD
CuZnSOD
CA3
MCT-1
MHC-I
MHC-IIX
ns
ns
ns
ns
ns
ns
120%
48%
28%
74%
36%
44%
40%
ns
ns
ns
ns
100%
60%
ns
ns
80%
26%
PFK
COX-1
60%
104%
ns
GSTpi
pH regulation
40%
Glut4
COX-4
Oxidative
stress
20%
74%
44%
Normoxia trained
Hypoxia trained
7
Studying trained athletes: Design
Author
Sports
Alt (m)
Duration
Total
Dur./Sessio
session
n (min)
Time in
hypoxia
Intensity
(min)
Dufour et al., Zoll et al.
Runners
3000
6 weeks
12
24 - 40
384
Ventura et al.
Cylists
3850
6 weeks
18
30
540
96% Hfmax
(Zone III)
>90%
Hfmax
(Zone III)
Trujens et al.
Swimmers
2500
5 weeks
12 bis 14
20
260
Cylists
2500
10 days
10
105
1050
96% Hfmax
(Zone III)
64-78%
Hendriksen & Meeuwsen
Hfmax
(Zone I)
Angermann et al.
NC Skiers
3000
6 weeks
18
30
540
(Zone III)
Studying trained athletes:
Successful to improve performance
Hypoxia training
Normoxia training
Study
Parameter
Pre
%improvement
Pre
%improvement
Dufour et al., 2006
VO2max
(ml/min/kg)
64.5
5.0%
61.5
0.7%
Vmax (km/h)
20.5
2.0%
19.8
2.0%
Tlim (sec)
541
35.0%
499
10.0%
VO2max
(ml/min/kg)
64.4
1.9
66.3
2.0
Pmax (watt/kg)
5.64
5.2
5.78
2.1
Mean power
(watt/kg)
9.8
4.1
9.8
0.2
Hendriksen &
Meeuwsen, 2003
8
Does training in hypoxia improve performance?
Hoppeler H, Klossner S, Vogt M. Training in hypoxia and its effects on skeletal muscle
tissue. Scand J Med Sci Sports. 18 Suppl 1:38-49, 2008.
Studying trained athletes:
Failed to improve performance
Hypoxia training
Normoxia training
Study
Parameter
Pre
%improvement
Pre
%improvement
Ventura et al..
2003
VO2max
(ml/min/kg)
62.1
0.6%
62.3
-0.6%
Pmax (watt)
367.7
0.8%
386
-3.6%
VO2max (l/min)
2.92
4.2%
3.05
6.4%
400m time (sec)
310.74
1.7%
301.08
1.2%
Truijens al., 2003
9
Training intensity distribution in endurance sports
The Polarized Training Model
Zone II
Zone I
Intensity distribution of
untrained or recreationally
training subjects
Zone III
Intensity distribution of
sucessful elite athletes
Zone I
Zone III
Seiler & Kjerland 2006
Zone II
Intensity distribution
% of total training session
(Percent of total training sessions)
70%
Dufour et al. 2006
60%
Ventura et al. 2003
50%
Truijens et al. 2003
40%
30%
20%
10%
0%
low
moderate
high
10
3-6 weeks, 2-3 sessions/week
1-2 weeks
6-7 sessions/week
20 – 60min/session
-120 min/session
85-95% HRmax
75-80% HRmax
2500 – 3500m (range 2000 – 5000m)
For
Fordetails:
details:
Vogt
Vogt&&Hoppeler.
Hoppeler.IsIsHypoxia
HypoxiaTraining
TrainingGood
Goodfor
forMuscles
Musclesand
and
Exercise
ExercisePerformance?
Performance?Progress
ProgressininCardiovascular
Cardiovascular
Diseases
52,
525–533,
2010.
Diseases 52, 525–533, 2010.
•
3 Gruppen: 20 RSH, 20 RSN, 10 CON
•
4 Wochen Training, 2x/Woche
•
Hypoxie: 3000m (normobar, FiO2 = 14.6%)
•
Restliches Ausdauertraining: tiefe Intensität
•
Muskelbiopsien, NIRS, EMG & Leistungstests vor und nach Studie:
– „repeated sprint ability test“
– 30s Wingate test
– „3min all out test“
11
Sprint training in hypoxia
Training design
Faiss et al. 2013
Sprint training in hypoxia
Ergebnisse
•
Repeated sprint ability test: number of sprints
– RSH: 9.4 -> 13.0; RSN: 9.3 -> 8.9; Con: 11.0 -> 10.3
•
30s Wingate test: mean power (W)
– RSH: 699 -> 718; RSN: 688 -> 723; Con: 670 -> 689
•
3min all out test:
– No changes in all groups
•
NIRS:
– RSH: increased variation in blood perfusion
•
Specific molecular adaptations in skeletal muscle
Faiss et al. 2013
12
Sprint training in hypoxia
Changes in gene expression
• RSH:
– glykolytisches Expressionsmuster
• RSN:
– oxidatives Expressionsmuster
Faiss et al. 2013
Hypoxie und Krafttraining
13
Interference of strength and endurance training
Endurance training
Resistance training
PCG-1α
mTOR
Mitochondrial biogenisis
Translational activity
Aerobic capacity
Hypertrophy
Adapted from Coffey & Hawley, Sports Med, 2007
Semenza G., Physiology 24, 2009
14
modelling training in elite sports
shock microcycle in soccer
training log
methods
• 2nd division soccer team from Norway
• group 1: 10 athletes
4x4 min intervals in dribblingdribbling-track
90 – 95% HRmax (zone III)
break:
break: at 6060-70% HRmax 3 min
• group 2: 10 athletes
28 min continuous training
70 – 75% HRmax (zone I)
• 13 interval sessions in 10 days
• VO2max test before and after
Stolen et al., Sports Med 35(6), 2005
Tag
Einheiten
Intervalle
0
Test 1
0
1
Fussballtraining
1
2
Fussballtraining
2
3
Fussballtraining
1
4
Fussballtraining
2
5
Fussballtraining
1
6
Fussballtraining
2
7
Ruhetag
0
8
Fussballtraining
1
9
Fussballtraining
2
10
Fussballtraining
1
11
Ruhetag
0
12
Fussballtraining
0
13
Fussballtraining
0
14
Fussballtraining
0
15
Fussballtraining
0
16
Test 2
0
modelling training in elite sports
shock microcycle in soccer: change in VO2max
70
69
68
67
66
65
64
63
62
61
60
vor
nach
+7.3%, p=0.001
+1.8%, n.s.
Gruppe 1
Gruppe 2
Stolen et al., Sports Med 35(6), 2005
15
Block periodization of high intensity aerobic interval training
HIT-study Engelberg 2008
•
Design
–
–
–
–
•
Training
–
–
–
–
•
National performance center in Engelberg
Elite junior skiers (m: 15, f: 6)
HIT training group (n=13)
Control group (n=8)
4 by 4 minutes intervals
Intensity: 90-95% HRmax
Volume: 15 sessions in 11 days
Bicyle ergometer and obstacle run
Tests
– Ramptest, jump tests, Swiss-Ski Power Test
– Muscle biopsies (structure, metabolism), blood volume, cardiac structure and
functioning
HIT-study Engelberg
training design
Test
Test
Test
pre
+2
+7
180
170
95% Hfmax
160
90% Hfmax
Puls
150
140
130
120
110
Belastung
Belastung
1. Wiederh.
warm up
Belastung
2. Wiederh.
Erholung
Belastung
3. Wiederh.
Erholung
4. Wiederh.
Cool down
Erholung
4 min
25
:0
0
26
:0
0
24
:0
0
22
:0
0
23
:0
0
19
:0
0
20
:0
0
3 min
21
:0
0
4 min
18
:0
0
16
:0
0
17
:0
0
3 min
15
:0
0
13
:0
0
14
:0
0
10
:0
0
11
:0
0
4 min
12
:0
0
3 min
09
:0
0
07
:0
0
08
:0
0
4 min
06
:0
0
04
:0
0
05
:0
0
03
:0
0
10 - 15 min
00
:0
0
100
01
:0
0
02
:0
0
– 4 by 4 minutes intervals
– 3 minutes break between intervals
– Intensity: 90-95 % HRmax
16
HIT-study Engelberg
results: 7 days post-training
Performance:
Breil FA, Weber SN, Koller S, Hoppeler H, Vogt M.
Block training periodization in alpine skiing: effects
of 11-day HIT on VO2max and performance.
Eur J Appl Physiol, 109(6), 2010.
Performance:
• VO2max:
• Maximal power output:
• Power output at VT2:
• 90s High-Box Jump:
+6%
+5%
+10%
+4%
Cardiac and hematological adaptations:
• Haemogloin mass:
• Maximal cardiac output:
• Myocardial mass:
+10%
+9%
unchanged
Muscular adaptations:
• Glycogen stores:
• Oxdative enzyme activity:
• Muscle buffer capacity:
• Mitochondrial density:
• Glycolytic enzyme activity:
+15%
+6%
+25%
unchanged
unchanged
Heart, Blood, Muscle data:
Gross et al., in preparation
Breil et al.., Eur J Appl Physiol, 109(6), 2010.
Lactate acts as a signaling molecule and induces
•
•
•
•
•
•
•
HIF-1α stabilization
VEGF, TGFβ
metalloproteinases
endothelial cell mobility, vascularization
increased collagen synthesis
cell proliferation
transcription of genes for proteoglycans
Hunt K. et al., Antioxid Redox Signal 9, 2007
Philp A. et al., J Exp Biol 208, 2005.
17
Increase of Hbm after HIT-block
Lactate – a signal coordinating cell and systemic function through
hypoxia dependent pathways ?
oxygen level
(e.g. hypoxia)
lactate
Hif-1
(kidney)
EPO
(kidney)
Rc
(bone marrow)
Ec / Hbm
Hunt K. et al., Antioxid Redox Signal 9, 2007
Philp A. et al., J Exp Biol 208, 2005.
Training in Hypoxie
Take home message
•
•
Intermittierende Hypoxie „live low – train high“ kann Trainingsanpassung (im Muskel):
–
modulieren/optimieren
–
verstärken
Es ist klar!!! auf muskulärer Ebene löst Hypoxie entscheidende Veränderungen aus.
–
•
Unklar!!! Effekte auf Leistungsfähigkeit in Normoxie und Hypoxie
„live low – train high“ kann beim Athleten die Leistungsfähigkeit verbessern, wenn...
–
Grundsätzliche Trainingsprinzipien berücksichtigt werden
(z.B..„Polarisierung“ der Intensitätsbereiche, Erholung, Gesundheit, Ernährung)
•
Hypoxie und Sprint- bzw. Krafttraining:
–
•
mögliche Konzepte zur Optimierung der Leistungsfähigkeit bei Athleten?
Blockperiodisierung von „high intensity interval training“:
–
Eine Möglichkeit zur effizienten Erhöhung der Hämoglobinmasse über eine nicht O2-abhängige
Aktivierung von Hypoxie induzierten Signalwegen.
18