electrónica i 2008/2009 - Escola Superior de Tecnologia de Tomar

Transcrição

electrónica i 2008/2009 - Escola Superior de Tecnologia de Tomar
Instituto Politécnico de Tomar
Escola Superior de Tecnologia de Tomar
Departamento de Engenharia Electrotécnica
ELECTRÓNICA I
Trabalho Prático N.º 1
Montagens Básicas com Amplificadores Operacionais
Efectuado
pelos
alunos:
Turma: ___
Turma: ___
Turma: ___
Turma: ___
Curso:
Data:
Grupo:
2008/2009
ELECTRÓNICA I
T.P. N.º 1
Ampop
I – Objectivos
Estudo de várias montagens com amplificadores operacionais: inversor, seguidor de tensão,
amplificador diferencial e comparador regenerativo (Schmitt trigger).
II – Material necessário
-
1 TL071
1 Resistência 1 kΩ
1 Resistência 1,5 kΩ
1 Resistência 15 kΩ
1 Resistência 22 kΩ
2 Resistências 47 kΩ
2 Resistências 100 kΩ
1 Resistência 150 kΩ
1 Resistência 1 MΩ
1 Potenciómetro 100 kΩ
Fonte de alimentação simétrica de +15V /0 /-15V e de +5V /0
Gerador de sinais
Osciloscópio
Chave de fendas de ajuste
Notas: Não se esqueça que o amplificador operacional tem que funcionar sempre alimentado.
Quando iniciar uma montagem, em primeiro lugar deverá estabelecer as ligações de
alimentação do ampop. Deverá mantê-las durante todo o trabalho, uma vez que são
comuns a todas as montagens. Todas as alterações que efectuar nos circuitos deverão ser
executadas com as fontes de sinal e de alimentação desligadas. O gerador de sinal só
deverá permanecer ligado enquanto o ampop estiver alimentado. Assim, a sequência de
operações deverá ser a seguinte:
1.
2.
3.
4.
5.
6.
7.
Com tudo desligado, efectuar as ligações necessárias.
Verificar se as ligações estão correctas, com o auxílio do docente.
Ligar a fonte de alimentação.
Ligar o gerador de sinal.
Efectuar os procedimentos e medições necessários ao trabalho.
Desligar o gerador de sinal.
Desligar a fonte de alimentação.
III – Condução do trabalho
1. Compensação do “offset”
1.1. Monte o circuito necessário (de acordo com o catálogo do fabricante) para proceder à
compensação do “offset” do ampop (TL071), com as entradas inversora e não-inversora
curto-circuitadas e ligadas à massa (0V). Não se esqueça de, em primeiro lugar, alimentar
o ampop com +15V/-15V.
1.2. Ajuste o potenciómetro por forma a obter uma tensão de saída com valor médio de 0V.
1.3. Mantenha as entradas curto-circuitadas mas ligue-as agora a uma tensão de 5VDC.
Determine o ganho de modo comum do ampop.
2/5
ELECTRÓNICA I
T.P. N.º 1
Ampop
2. Montagem inversora
2.1. Estabeleça as ligações necessárias para obter uma montagem inversora com uma
resistência de entrada de 15KΩ e um ganho teórico de 10.
2.2. Aplique na entrada do circuito uma onda sinusoidal de 50mV de amplitude com uma
frequência de 1kHz.
2.3. Com o osciloscópio, observe simultaneamente as formas de onda da tensão de entrada e de
saída do circuito. Desenhe as formas de onda visualizadas.
2.4. Visualize a tensão diferencial de entrada do ampop. Compare-a com o valor teórico
esperado.
2.5. Calcule o valor do ganho de tensão real do circuito e compare-o com o ganho ideal
(teórico).
2.6. Substitua a resistência de realimentação, Rf, por uma resistência de 1MΩ e repita os pontos
2.2 a 2.5.
2.7. Retire a resistência Rf. Verifique e explique o que sucede à saída do circuito.
3. Seguidor de tensão
3.1. Efectue as ligações necessárias para obter um seguidor de tensão.
3.2. Aplique na entrada do circuito uma tensão sinusoidal com amplitude de 100mV e uma
frequência de 1kHz.
3.3. Com o osciloscópio, observe as tensões de entrada e de saída do circuito. Desenhe as
formas de onda visualizadas. Calcule o valor do ganho de tensão real do circuito e
compare-o com o ganho ideal (teórico).
3.4. Visualize a tensão diferencial de entrada do ampop. Compare-a com o valor teórico
esperado.
3.5. Repita os passos anteriores, 3.3 e 3.4, mas agora com uma tensão de entrada com forma de
onda quadrada.
4. Amplificador diferencial
3/5
ELECTRÓNICA I
T.P. N.º 1
Ampop
100 ΚΩ
47ΚΩ
va
vb
vd
v0
47ΚΩ
100ΚΩ
4.1. Monte o circuito representado na figura.
4.2. Recorrendo ao gerador de funções aplique na entrada va um sinal sinusoidal com 1V de
amplitude e com uma frequência de 1kHz, e ligue vb à massa. Observe e desenhe as formas
de onda va e vo. Compare com o valor teórico esperado.
4.3. Repita o procedimento anterior aplicando o mesmo sinal em va e 5VDC em vb.
4.4. Repita o procedimento anterior adicionando uma componente contínua de 5VDC ao sinal va
(recorra ao botão “offset” do gerador de sinal).
4.5. Repita o procedimento 4.3 aumentando a amplitude do sinal va para 5V.
5. Comparador regenerativo (Schmitt trigger)
5.1. Execute a montagem representada na figura seguinte:
vI
v0
100ΚΩ
22kΩ
100 ΚΩ
1k Ω
5.2. Ajuste a tensão sinusoidal de entrada vI de modo a apresentar uma amplitude de 0,5V e
uma frequência de 1kHz.
5.3. Com o osciloscópio, observe e desenhe a tensão de saída v0.
5.4. Observe no osciloscópio a função de transferência v0(vI).
5.5. Altere o valor dos componentes do circuito de modo a aumentar o intervalo de histerese.
Desenhe as formas de onda obtidas. Registe o valor dos componentes que utilizou.
4/5
ELECTRÓNICA I
T.P. N.º 1
Ampop
5/5
TL071, TL071A, TL071B, TL072
TL072A, TL072B, TL074, TL074A, TL074B
LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS
SLOS080D – SEPTEMBER 1978 – REVISED AUGUST 1996
D
D
D
Low Power Consumption
Wide Common-Mode and Differential
Voltage Ranges
Low Input Bias and Offset Currents
Output Short-Circuit Protection
Low Total Harmonic Distortion
0.003% Typ
D
D
D
D
D
D
D
D
Low Noise
Vn = 18 nV/√Hz Typ at f = 1 kHz
High Input Impedance . . . JFET Input Stage
Internal Frequency Compensation
Latch-Up-Free Operation
High Slew Rate . . . 13 V/ µs Typ
Common-Mode Input Voltage Range
Includes VCC +
description
The JFET-input operational amplifiers in the TL07_ series are designed as low-noise versions of the TL08_
series amplifiers with low input bias and offset currents and fast slew rate. The low harmonic distortion and low
noise make the TL07_ series ideally suited for high-fidelity and audio preamplifier applications. Each amplifier
features JFET inputs (for high input impedance) coupled with bipolar output stages integrated on a single
monolithic chip.
The C-suffix devices are characterized for operation from 0°C to 70°C. The I-suffix devices are characterized
for operation from – 40°C to 85°C. The M-suffix devices are characterized for operation over the full military
temperature range of – 55°C to 125°C.
AVAILABLE OPTIONS
PACKAGE
TA
0°C to
70°C
VIOmax
AT 25°C
SMALL
OUTLINE
(D)†
CHIP
CARRIER
(FK)
CERAMIC
DIP
(J)
CERAMIC
DIP
(JG)
PLASTIC
DIP
(N)
PLASTIC
DIP
(P)
TSSOP
PACKAGE
(PW)
FLAT
PACKAGE
(W)
10 mV
6 mV
3 mV
TL071CD
TL071ACD
TL071BCD
—
—
—
—
TL071CP
TL071ACP
TL071BCP
TL071CPWLE
—
—
—
10 mV
6 mV
3 mV
TL072CD
TL072ACD
TL072BCD
—
—
—
—
TL072CP
TL072ACP
TL072BCP
TL072CPWLE
—
—
—
10 mV
6 mV
3 mV
TL074CD
TL074ACD
TL074BCD
—
—
—
TL074CN
TL074ACN
TL074BCN
—
TL074CPWLE
—
—
—
TL071ID
TL072ID
TL074ID
—
—
—
—
—
TL074IN
TL071IP
TL072IP
—
—
—
TL071MFK
TL072MFK
TL074MFK
—
—
TL074MJ
TL071MJG
TL072MJG
—
—
—
TL074MN
—
TL072MP
—
—
—
—
TL074MW
– 40°C to
85°C
6 mV
– 55°C to
125
C
125°C
6 mV
6 mV
9 mV
—
† The D package is available taped and reeled. Add the suffix R to the device type (e.g., TL071CDR). The PW package is only available left-ended
taped and reeled (e.g., TL072CPWLE).
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Copyright  1996, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
1
TL071, TL071A, TL071B, TL072
TL072A, TL072B, TL074, TL074A, TL074B
LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS
SLOS080D – SEPTEMBER 1978 – REVISED AUGUST 1996
TL072, TL072A, TL072B
D, JG, P, OR PW PACKAGE
(TOP VIEW)
TL071, TL071A, TL071B
D, JG, P, OR PW PACKAGE
(TOP VIEW)
1
8
2
7
NC
VCC +
3
6
OUT
4
5
OFFSET N2
1OUT
1IN –
1IN +
VCC –
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
7
3
6
4
5
VCC +
2OUT
2IN –
2IN +
1OUT
1IN –
1IN +
VCC +
2IN +
2IN –
2OUT
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
14
2
13
3
12
4
11
5
10
6
9
7
8
NC
2OUT
NC
2IN –
NC
1IN+
NC
VCC+
NC
2IN+
4
3 2 1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC – No internal connection
symbols
TL071
TL072 (each amplifier)
TL074 (each amplifier)
OFFSET N1
IN +
+
IN +
+
IN –
–
OUT
IN –
–
OUT
OFFSET N2
2
POST OFFICE BOX 655303
4OUT
4IN –
4IN +
VCC –
3IN +
3IN –
3OUT
1IN –
1OUT
NC
4OUT
4IN –
NC
1OUT
NC
VCC +
NC
NC
VCC +
NC
OUT
NC
NC
1IN –
NC
1IN +
NC
1
TL074
FK PACKAGE
(TOP VIEW)
NC
VCC –
NC
2IN+
NC
4
NC
VCC –
NC
OFFSET N2
NC
NC
IN –
NC
IN +
NC
8
2
TL072
FK PACKAGE
(TOP VIEW)
NC
OFFSET N1
NC
NC
NC
TL071
FK PACKAGE
(TOP VIEW)
1
2IN–
2OUT
NC
3OUT
3IN–
OFFSET N1
IN –
IN +
VCC –
TL074, TL074A, TL074B
D, J, N, OR PW PACKAGE
TL074 . . . W PACKAGE
(TOP VIEW)
• DALLAS, TEXAS 75265
4IN+
NC
VCC –
NC
3IN+
TL071, TL071A, TL071B, TL072
TL072A, TL072B, TL074, TL074A, TL074B
LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS
SLOS080D – SEPTEMBER 1978 – REVISED AUGUST 1996
schematic (each amplifier)
VCC +
IN +
64 Ω
IN –
128 Ω
OUT
64 Ω
C1
18 pF
ÎÎÎ
ÁÁÁ
ÁÁÁ
ÁÁÁ
1080 Ω
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
1080 Ω
VCC –
OFFSET
NULL
(N1)
OFFSET
NULL
(N2)
TL071 Only
All component values shown are nominal.
COMPONENT COUNT†
COMPONENT
TYPE
Resistors
Transistors
JFET
Diodes
Capacitors
epi-FET
TL071
TL072
TL074
11
14
2
1
1
1
22
28
4
2
2
2
44
56
6
4
4
4
† Includes bias and trim circuitry
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
3
TL071, TL071A, TL071B, TL072
TL072A, TL072B, TL074, TL074A, TL074B
LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS
SLOS080D – SEPTEMBER 1978 – REVISED AUGUST 1996
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†
Supply voltage, VCC + (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 V
Supply voltage, VCC – (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 18 V
Differential input voltage, VID (see Note 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 30 V
Input voltage, VI (see Notes 1 and 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±15 V
Duration of output short circuit (see Note 4) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . unlimited
Continuous total power dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . See Dissipation Rating Table
Operating free-air temperature range, TA: C suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0°C to 70°C
I suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 40°C to 85°C
M suffix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 55°C to 125°C
Storage temperature range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . – 65°C to 150°C
Case temperature for 60 seconds: FK package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: J, JG, or W package . . . . . . . . . . . . 300°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, N, P, or PW package . . . . . . . . . 260°C
† Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VCC+ and VCC – .
2. Differential voltages are at IN+ with respect to IN –.
3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage or 15 V, whichever is less.
4. The output may be shorted to ground or to either supply. Temperature and /or supply voltages must be limited to ensure that the
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
4
PACKAGE
TA ≤ 25°C
POWER RATING
DERATING
FACTOR
DERATE
ABOVE TA
TA = 70°C
POWER RATING
TA = 85°C
POWER RATING
TA = 125°C
POWER RATING
D (8 pin)
680 mW
5.8 mW/°C
33°C
465 mW
378 mW
N/A
D (14 pin)
680 mW
7.6 mW/°C
60°C
604 mW
490 mW
N/A
FK
680 mW
11.0 mW/°C
88°C
680 mW
680 mW
273 mW
J
680 mW
11.0 mW/°C
88°C
680 mW
680 mW
273 mW
JG
680 mW
8.4 mW/°C
69°C
672 mW
546 mW
210 mW
N
680 mW
9.2 mW/°C
76°C
680 mW
597 mW
N/A
P
680 mW
8.0 mW/°C
65°C
640 mW
520 mW
N/A
PW (8 pin)
525 mW
4.2 mW/°C
70°C
525 mW
N/A
N/A
PW (14 pin)
700 mW
5.6 mW/°C
70°C
700 mW
N/A
N/A
W
680 mW
8.0 mW/°C
65°C
640 mW
520 mW
200 mW
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
VO = 0,
VO = 0
VO = 0
Temperature
coefficient of input
offset voltage
Input offset current
Input bias current§
αVIO
IIO
IIB
POST OFFICE BOX 655303 • DALLAS, TEXAS 75265
25°C
VIC = VICRmin,
RS = 50 Ω
VO = 0,
VCC = ± 9 V to ± 15 V,
VO = 0,
RS = 50 Ω
VO = 0
0,
AVD = 100
Unity-gain
bandwidth
Input resistance
Common-mode
rejection ratio
Supply-voltage
rejection ratio
(∆VCC ± /∆VIO)
Supplyy current
(each amplifier)
Crosstalk
attenuation
B1
ri
CMRR
kSVR
ICC
VO1/ VO2
25°C
25°C
25°C
25°C
Full range
25°C
Full range
70
70
15
120
14
1.4
100
100
25
2.5
80
120
14
1.4
100
100
1012
1012
200
3
75
25
50
±13.5
–12
12
to
15
65
5
18
3
TYP
3
200
±10
25
±12
±12
±10
±13.5
±12
±11
±12
–12
12
to
15
±11
MIN
TL071AC
TL072AC
TL074AC
25
2.5
7
200
2
100
7.5
6
MAX
80
75
25
50
±10
±12
±12
±11
MIN
120
14
1.4
100
100
1012
3
200
±13.5
–12
12
to
15
65
5
18
2
TYP
TL071BC
TL072BC
TL074BC
25
2.5
7
200
2
100
5
3
MAX
80
75
25
50
±10
±12
±12
±11
MIN
120
14
1.4
100
100
1012
3
200
±13.5
–12
12
to
15
65
5
18
3
TYP
TL071I
TL072I
TL074I
25
2.5
20
200
2
100
8
6
MAX
dB
mA
dB
dB
Ω
MHz
V/mV
V
V
nA
pA
nA
pA
µV/°C
mV
UNIT
† All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified.
‡ Full range is TA = 0°C to 70°C for TL07_C,TL07_AC, TL07_BC and is TA = – 40°C to 85°C for TL07_I.
§ Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in Figure 4. Pulse techniques must be used
that maintain the junction temperature as close to the ambient temperature as possible.
VO = ±10 V
V,
No load
25°C
Large-signal
differential voltage
amplification
AVD
RL ≥ 2 kΩ
RL ≥ 10 kΩ
VOM
25°C
Maximum peak
eak
output voltage
swing
25°C
7
200
25°C
Full range
10
100
13
10
MAX
Full range
65
5
25°C
3
TYP
18
MIN
Full range
Full range
Common-mode
Common
mode
input voltage range
RL ≥ 2 kΩ
RS = 50 Ω
RS = 50 Ω
25°C
TA‡
VICR
RL = 10 kΩ
VO = 0
0,
Input offset voltage
TEST CONDITIONS†
VIO
PARAMETER
TL071C
TL072C
TL074C
electrical characteristics, VCC± = ±15 V (unless otherwise noted)
TL071, TL071A, TL071B, TL072
TL072A, TL072B, TL074, TL074A, TL074B
LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS
SLOS080D – SEPTEMBER 1978 – REVISED AUGUST 1996
5
TL071, TL071A, TL071B, TL072
TL072A, TL072B, TL074, TL074A, TL074B
LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS
SLOS080D – SEPTEMBER 1978 – REVISED AUGUST 1996
electrical characteristics, VCC ± = ± 15 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS†
TL071M
TL072M
TA‡
MIN
VIO
Input offset voltage
VO = 0
0,
RS = 50 Ω
αVIO
Temperature coefficient of
input offset voltage
VO = 0,
RS = 50 Ω
IIO
Input offset current
VO = 0
IIB
Input bias current‡
VICR
Common-mode input
voltage range
VOM
Maximum
M
i
peak
k output
t t
voltage swing
25°C
TYP
MAX
3
6
Full range
MIN
TYP
3
9
Full range
18
25°C
5
Full range
VO = 0
TL074M
RL ≥ 10 kΩ
100
5
20
65
25°C
±11
–12
to
15
±11
–12
to
15
25°C
±12
±13.5
±12
±13.5
25°C
200
65
±12
±12
±10
±10
35
9
200
35
mV
µV/°C
18
25°C
Full range
RL ≥ 2 kΩ
MAX
15
50
RL = 10 kΩ
UNIT
100
pA
20
nA
200
pA
50
nA
V
V
200
AVD
Large-signal
g
g
differential
voltage amplification
VO = ±10 V
V,
B1
Unity-gain bandwidth
TA = 25°C
3
3
ri
Input resistance
TA = 25°C
1012
1012
Ω
CMRR
Common-mode rejection
ratio
VIC = VICRmin,
VO = 0,
RS = 50 Ω
25°C
80
86
80
86
dB
kSVR
Supply-voltage rejection
ratio (∆VCC ± /∆VIO)
VCC = ± 9 V to ± 15 V,
RS = 50 Ω
VO = 0,
25°C
80
86
80
86
dB
ICC
Supply current (each
amplifier)
VO = 0,
25°C
RL ≥ 2 kΩ
No load
15
V/mV
15
1.4
2.5
1.4
MHz
2.5
mA
VO1/ VO2 Crosstalk attenuation
AVD = 100
25°C
120
120
dB
† Input bias currents of a FET-input operational amplifier are normal junction reverse currents, which are temperature sensitive as shown in
Figure 4. Pulse techniques must be used that will maintain the junction temperature as close to the ambient temperature as possible.
‡ All characteristics are measured under open-loop conditions with zero common-mode voltage unless otherwise specified. Full range is
TA = – 55°C to 125°C.
6
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL071, TL071A, TL071B, TL072
TL072A, TL072B, TL074, TL074A, TL074B
LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS
SLOS080D – SEPTEMBER 1978 – REVISED AUGUST 1996
operating characteristics, VCC ± = ± 15 V, TA = 25°C
PARAMETER
TL07xM
TEST CONDITIONS
SR
Slew rate at unity gain
VI = 10 V,
CL = 100 pF,
RL = 2 kΩ,
See Figure 1
tr
Rise time overshoot
factor
VI = 20 mV,,
CL = 100 pF,
RL = 2 kΩ,,
See Figure 1
Vn
Equivalent
q
input noise
voltage
RS = 20 Ω
In
Equivalent input noise
current
RS = 20 Ω,
f = 1 kHz
THD
Total harmonic
distortion
VIrms = 6 V,
RL ≥ 2 kΩ,
f = 1 kHz
AVD = 1,
RS ≤ 1 kΩ ,
MIN
TYP
5
13
ALL OTHERS
MAX
MAX
UNIT
MIN
TYP
8
13
V/µs
µs
0.1
0.1
20%
20%
18
18
nV/√Hz
4
4
µV
0.01
0.01
0.003%
0.003%
f = 1 kHz
f = 10 Hz to 10 kHz
pA/√Hz
PARAMETER MEASUREMENT INFORMATION
10 kΩ
–
VI
+
CL = 100 pF
1 kΩ
VO
RL = 2 kΩ
+
RL
IN –
CL = 100 pF
Figure 2. Gain-of-10 Inverting Amplifier
Figure 1. Unity-Gain Amplifier
–
TL071
OUT
IN +
N2
+
VI
–
VO
N1
100 kΩ
1.5 kΩ
VCC –
Figure 3. Input Offset Voltage Null Circuit
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
7
TL071, TL071A, TL071B, TL072
TL072A, TL072B, TL074, TL074A, TL074B
LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS
SLOS080D – SEPTEMBER 1978 – REVISED AUGUST 1996
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
IIB
Input bias current
vs Free-air temperature
4
VOM
Maximum output voltage
vs Frequency
vs Free-air temperature
vs Load resistance
vs Supply voltage
5, 6, 7
8
9
10
AVD
Large signal differential voltage amplification
Large-signal
vs Free-air temperature
vs Frequency
11
12
Phase shift
vs Frequency
12
Normalized unity-gain bandwidth
vs Free-air temperature
13
Normalized phase shift
vs Free-air temperature
13
CMRR
Common-mode rejection ratio
vs Free-air temperature
14
ICC
Supply current
vs Supplyy voltage
g
vs Free-air temperature
15
16
PD
Total power dissipation
vs Free-air temperature
17
Normalized slew rate
vs Free-air temperature
18
Vn
Equivalent input noise voltage
vs Frequency
19
THD
Total harmonic distortion
vs Frequency
20
Large-signal pulse response
vs Time
21
Output voltage
vs Elapsed time
22
VO
8
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
TL071, TL071A, TL071B, TL072
TL072A, TL072B, TL074, TL074A, TL074B
LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS
SLOS080D – SEPTEMBER 1978 – REVISED AUGUST 1996
TYPICAL CHARACTERISTICS†
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREQUENCY
INPUT BIAS CURRENT
vs
FREE-AIR TEMPERATURE
100
± 15
VOM
VOM – Maximum Peak Output Voltage – V
IIIB–
IB Input Bias Current – nA
VCC± = ± 15 V
10
1
0.1
0.01
– 75
– 25
0
25
50
75
100
ÎÎÎÎÎ
ÎÎÎÎÎ
± 10
VCC ± = ± 10 V
± 7.5
VCC ± = ± 5 V
±5
± 2.5
125
0
100
1k
TA – Free-Air Temperature – °C
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREQUENCY
± 12.5
± 10
± 15
RL = 2 kΩ
TA = 25°C
See Figure 2
VCC ± = ± 10 V
± 7.5
ÁÁ
ÁÁ
ÁÁ
±5
VCC ± = ± 5 V
± 2.5
0
100
1k
10 k
100 k
f – Frequency – Hz
1M
10 M
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREQUENCY
1M
10 M
VOM
VOM – Maximum Peak Output Voltage – V
VOM
VOM – Maximum Peak Output Voltage – V
ÎÎÎÎÎ
ÎÎÎÎÎ
VCC ± = ± 15 V
10 k
100 k
f – Frequency – Hz
Figure 5
Figure 4
± 15
RL = 10 kΩ
TA = 25°C
See Figure 2
± 12.5
ÁÁÁ
ÁÁÁ
– 50
VCC ± = ± 15 V
± 12.5
± 10
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ
VCC ± = ± 15 V
RL = 2 kΩ
See Figure 2
TA = 25°C
TA = – 55°C
± 7.5
±5
ÁÁÁ
ÁÁÁ
ÁÁÁ
TA = 125°C
± 2.5
0
10 k
Figure 6
40 k 100 k
400 k 1 M
f – Frequency – Hz
4M
10 M
Figure 7
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
9
TL071, TL071A, TL071B, TL072
TL072A, TL072B, TL074, TL074A, TL074B
LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS
SLOS080D – SEPTEMBER 1978 – REVISED AUGUST 1996
TYPICAL CHARACTERISTICS†
MAXIMUM PEAK OUTPUT VOLTAGE
vs
LOAD RESISTANCE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
FREE-AIR TEMPERATURE
± 15
RL = 10 kΩ
ÎÎÎÎ
ÎÎÎÎ
± 12.5
VOM
VOM – Maximum Peak Output Voltage – V
VOM – Maximum Peak Output Voltage – V
VOM
± 15
RL = 2 kΩ
± 10
± 7.5
±5
ÁÁ
ÁÁ
± 2.5
VCC ± = ± 15 V
See Figure 2
0
– 75
– 50
– 25
0
25
50
75
100
125
VCC ± = ± 15 V
TA = 25°C
See Figure 2
± 12.5
± 10
± 7.5
±5
ÁÁ
ÁÁ
± 2.5
0
0.1
0.2
TA – Free-Air Temperature – °C
0.4
4
7 10
Figure 9
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
MAXIMUM PEAK OUTPUT VOLTAGE
vs
SUPPLY VOLTAGE
± 15
VOM
VOM – Maximum Peak Output Voltage – V
2
RL – Load Resistance – kΩ
Figure 8
1000
RL = 10 kΩ
TA = 25°C
400
AVD
A
VD – Large-Signal Differential
Voltage Amplification – V/mV
± 12.5
± 10
± 7.5
ÁÁ
ÁÁ
ÁÁ
0.7 1
±5
± 2.5
200
100
40
20
10
4
2
0
0
2
4
6
8
10
12
14
16
1
– 75
VCC ± = ± 15 V
VO = ± 10 V
RL = 2 kΩ
– 50
– 25
0
25
50
75
100
TA – Free-Air Temperature – °C
|VCC ±| – Supply Voltage – V
Figure 11
Figure 10
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
10
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
125
TL071, TL071A, TL071B, TL072
TL072A, TL072B, TL074, TL074A, TL074B
LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS
SLOS080D – SEPTEMBER 1978 – REVISED AUGUST 1996
TYPICAL CHARACTERISTICS†
LARGE-SIGNAL
DIFFERENTIAL VOLTAGE AMPLIFICATION
AND PHASE SHIFT
vs
FREQUENCY
VCC± = ± 5 V to ± 15 V
RL = 2 kΩ
TA = 25°C
105
0°
104
Differential
Voltage
Amplification
103
45°
Phase Shift
AVD
A
VD – Large-Signal Differential
Voltage Amplification
106
90°
102
Phase Shift
101
135°
1
1
10
100
1k
10 k 100 k
f – Frequency – Hz
1M
180°
10 M
Figure 12
NORMALIZED UNITY-GAIN BANDWIDTH
AND PHASE SHIFT
vs
FREE-AIR TEMPERATURE
1.03
Unity-Gain Bandwidth
1.2
1.01
1.1
1
Phase Shift
1
0.9
0.8
0.7
– 75
1.02
0.99
VCC ± = ± 15 V
RL = 2 kΩ
f = B1 for Phase Shift
– 50
– 25
0
25
50
75
100
TA – Free-Air Temperature – °C
Normalized Phase Shift
Normalized Unity-Gain Bandwidth
1.3
0.98
0.97
125
Figure 13
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
11
TL071, TL071A, TL071B, TL072
TL072A, TL072B, TL074, TL074A, TL074B
LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS
SLOS080D – SEPTEMBER 1978 – REVISED AUGUST 1996
TYPICAL CHARACTERISTICS†
SUPPLY CURRENT PER AMPLIFIER
vs
SUPPLY VOLTAGE
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
2
VCC ± = ± 15 V
RL = 10 kΩ
ICC± – Supply Current Per Amplifier – mA
I CC
CMRR – Common-Mode Rejection Ratio – dB
89
88
87
86
85
83
– 75
1.6
1.4
1.2
1
0.8
ÁÁ
ÁÁ
84
– 50
– 25
0
25
50
75
100
TA = 25°C
No Signal
No Load
1.8
0.6
0.4
0.2
0
125
0
2
TA – Free-Air Temperature – °C
4
Figure 14
10
12
14
VCC ± = ± 15 V
No Signal
No Load
1.8
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
250
VCC ± = ± 15 V
No Signal
No Load
225
200
175
TL074
150
125
ÎÎÎ
ÎÎÎ
100
TL072
75
TL071
50
25
– 50
– 25
0
25
50
75
100
125
0
– 75
– 50
TA – Free-Air Temperature – °C
– 25
0
25
50
75
100
TA – Free-Air Temperature – °C
Figure 16
Figure 17
† Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.
12
16
TOTAL POWER DISSIPATION
vs
FREE-AIR TEMPERATURE
PD
PD – Total Power Dissipation – mW
ICC± – Supply Current Per Amplifier – mA
I CC
2
0
– 75
8
Figure 15
SUPPLY CURRENT PER AMPLIFIER
vs
FREE-AIR TEMPERATURE
ÁÁÁ
ÁÁÁ
ÁÁÁ
6
|VCC ±| – Supply Voltage – V
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
125
TL071, TL071A, TL071B, TL072
TL072A, TL072B, TL074, TL074A, TL074B
LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS
SLOS080D – SEPTEMBER 1978 – REVISED AUGUST 1996
TYPICAL CHARACTERISTICS
NORMALIZED SLEW RATE
vs
FREE-AIR TEMPERATURE
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
Vn
V
nV/ Hz
n – Equivalent Input Noise Voltage – nV/Hz
Normalized Slew Rate – V/µ s
1.15
VCC ± = ± 15 V
RL = 2 kΩ
CL = 100 pF
1.10
1.05
1
0.95
0.90
0.85
– 75
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
50
VCC ± = ± 15 V
AVD = 10
RS = 20 Ω
TA = 25°C
40
30
20
10
0
– 50
– 25
0
25
50
75
100
10
125
40 100
TA – Free-Air Temperature – °C
Figure 18
6
VCC ± = ± 15 V
AVD = 1
VI(RMS) = 6 V
TA = 25°C
0.1
0.04
0.01
0.004
0.001
100
400
1k
4 k 10 k
f – Frequency – Hz
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
VI and VO – Input and Output Voltages – V
THD – Total Harmonic Distortion – %
0.4
40 k 100 k
Figure 19
TOTAL HARMONIC DISTORTION
vs
FREQUENCY
1
400 1 k
4 k 10 k
f – Frequency – Hz
40 k 100 k
VCC ± = ± 15 V
RL = 2 kΩ
CL = 100 pF
TA = 25°C
4
Output
2
0
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÎÎÎ
ÎÎÎ
–2
Input
–4
–6
0
0.5
1
1.5
t – Time – µs
2
2.5
3
3.5
Figure 21
Figure 20
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
13
TL071, TL071A, TL071B, TL072
TL072A, TL072B, TL074, TL074A, TL074B
LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS
SLOS080D – SEPTEMBER 1978 – REVISED AUGUST 1996
TYPICAL CHARACTERISTICS
OUTPUT VOLTAGE
vs
ELAPSED TIME
28
24
VO
V
O – Output Voltage – mV
Overshoot
20
90%
16
12
ÁÁÁ
ÁÁÁ
8
4
VCC ± = ± 15 V
RL = 2 kΩ
TA = 25°C
10%
0
tr
–4
0
0.1
0.2 0.3 0.4 0.5
t – Elapsed Time – µs
0.6
Figure 22
14
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
0.7
TL071, TL071A, TL071B, TL072
TL072A, TL072B, TL074, TL074A, TL074B
LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS
SLOS080D – SEPTEMBER 1978 – REVISED AUGUST 1996
APPLICATION INFORMATION
Table of Application Diagrams
PART
NUMBER
FIGURE
0.5-Hz square-wave oscillator
TL071
23
High-Q notch filter
TL071
24
Audio-distribution amplifier
TL074
25
100-kHz quadrature oscillator
TL072
26
AC amplifier
TL071
27
APPLICATION DIAGRAM
RF = 100 kΩ
VCC +
–
Output
–
TL071
CF = 3.3 µF
Input
R1
R2
C3
+
– 15 V
C1
+ 2p
C2
9.1 kΩ
1
R
F
C
+ R2 + 2R3 + 1.5 MW
C1 + C2 + C3 + 110 pF
2
1
+ 1 kHz
f +
2p R1 C1
R1
R3
O
F
Figure 23. 0.5-Hz Square-Wave Oscillator
Figure 24. High-Q Notch Filter
VCC +
–
1 MΩ
TL074
VCC +
+
VCC –
–
1 µF
TL074
VCC +
+
100 kΩ
Output B
VCC –
VCC +
VCC +
100 kΩ
TL074
Output C
+
100 µF
TL074
VCC –
100 kΩ
+
100 kΩ
–
Input
Output A
–
f
Output
VCC –
1 kΩ
3.3 kΩ
TL071
+
15 V
3.3 kΩ
VCC –
Figure 25. Audio-Distribution Amplifier
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
15
TL071, TL071A, TL071B, TL072
TL072A, TL072B, TL074, TL074A, TL074B
LOW-NOISE JFET-INPUT OPERATIONAL AMPLIFIERS
SLOS080D – SEPTEMBER 1978 – REVISED AUGUST 1996
APPLICATION INFORMATION
1N4148
18 kΩ (see Note A)
6 sin ωt
– 15 V
18 pF
1 kΩ
18 pF
VCC +
–
–
+
6 cos ωt
TL072
VCC –
+
88.4 kΩ
VCC +
88.4 kΩ
TL072
18 pF
VCC –
1 kΩ
15 V
18 kΩ (see Note A)
1N4148
88.4 kΩ
NOTE A: These resistor values may be adjusted for a symmetrical output.
Figure 26. 100-kHz Quadrature Oscillator
VCC +
0.1 µF
10 kΩ
10 kΩ
1 MΩ
IN –
–
TL071
50 Ω
+
IN +
0.1 µF
10 kΩ
N2
N1
100 kΩ
Figure 27. AC Amplifier
16
POST OFFICE BOX 655303
• DALLAS, TEXAS 75265
OUT
IMPORTANT NOTICE
Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.
TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.
Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).
TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.
Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.
Copyright  1996, Texas Instruments Incorporated

Documentos relacionados

PDF

PDF Jack In Mono / Jack

Leia mais