O relatório técnico do projeto pode ser - JIE

Transcrição

O relatório técnico do projeto pode ser - JIE
TECHNICAL REPORT
RELATÓRIO TÉCNICO
Advanced Cementitious Composite Materials for application on Cracks in Concrete
Dams
Materiais Compósitos Cimentícios Avançados para aplicação em Fissuras em Barragens de Concreto
Arizona State University - ASU
Tempe, AZ, USA
October of 2015 / Outubro de 2015
SUMMARY
SUMÁRIO
1. Introduction / Introdução ............................................................................................................................ 1
2. Objective / Objetivo ........................................................................................................................................ 2
3. Historic / Histórico.......................................................................................................................................... 3
4. Related literature / Literatura correlata ................................................................................................ 5
5. Experimental Program / Programa Experimental.............................................................................. 6
5.1. Infra-structure / Infraestrutura ............................................................................................................ 7
5.2. Methodology / Metodologia .................................................................................................................... 7
5.3. Materials / Materiais ................................................................................................................................. 7
5.4. Samples / Amostras .................................................................................................................................... 9
5.3.1. Specimens type B’ / Espécimes tipo B’ ............................................................................................ 9
5.3.2. Specimens type A and B / Espécimes tipos A e B ...................................................................... 11
5.3.3. Specimens type AA / Espécimes tipo AA...................................................................................... 13
5.3.4. Specimens type M / Espécimes tipo M ......................................................................................... 13
5.5. Testing / Ensaios ...................................................................................................................................... 14
5.4.1. Bond tests for assessment / Testes de aderência para avaliação ...................................... 14
5.4.2. Digital Image Correlation – DIC / Correlação Digital de Imagens – CDI.......................... 17
5.4.3. TRC Tension tests / Ensaios de tensão do TRC .......................................................................... 20
5.4.4. F-M Bond tests / Ensaios de aderência F-M ............................................................................... 20
5.4.5. Fatigue tests (cyclic) / Ensaios de fadiga (cíclico) ................................................................... 21
5.4.6. Mortar compression tests / Ensaios de compressão de argamassa .................................. 21
6. Results and discussions / Resultados e discussões ........................................................................... 21
7. Conclusions / Conclusões ........................................................................................................................... 26
8. Upcoming steps / Próximos passos ........................................................................................................ 27
9. Acknowledgements / Agradecimentos ................................................................................................. 27
References / Referências ..................................................................................................................................... i
Appendix A / Apêndice A ..................................................................................................................................... I
Appendix B / Apêndice B .................................................................................................................................. IV
Appendix C / Apêndice C...................................................................................................................................... I
TECHNICAL REPORT
RELATÓRIO TÉCNICO
1. Introduction / Introdução
Crack formation in concrete structures is quite
common due to the intrinsic behavior of the
material. Moreover, the cracks are a path for
the access of deleterious substances, which
may reduce the useful life of structures. The
theme of this project is on implementation of
advanced cementitious composite materials for
applications on cracks in concrete dams.
Fissura em estruturas de concreto é bastante comum, devido ao comportamento intrínseco do
material. Além disso, as fissuras são um caminho
para o acesso de substâncias deletérias, o que
pode reduzir a vida útil de tais estruturas. O tema
deste projeto é sobre a implementação de materiais compósitos cimentícios avançados para
aplicação em fissuras em barragens de concreto.
This project was initiated by an invitation to
Eletrobras and its affiliates to participate in the
program of Science without Border sponsored
by the Brazilian Government. Under the terms
of this agreement, researchers at Itaipu Binacional, Itaipu Technological Park, and Arizona State University (ASU) initiated the project on March of 2015. The research project
was conducted by a postdoctoral research appointment by Dr. Étore Funchal de Faria.
Este projeto foi iniciado por um convite para a
Eletrobras e suas afiliadas para participar no
programa Ciência sem Fronteiras patrocinado
pelo governo brasileiro. Nos termos desse acordo,
pesquisadores de Itaipu Binacional, do Parque
Tecnológico Itaipu e da Arizona State University
(ASU) iniciaram o projeto em março de 2015. O
projeto foi conduzido através de um compromisso de pesquisa de pós-doutorado feito com o
Dr. Étore Funchal de Faria.
The theme of the research is directly linked to
the activities of Dam Safety in Itaipu, namely:
O tema da pesquisa tem ligação direta com as atividades de segurança de barragens em Itaipu,
quais sejam:
a. Studies of the Itaipu dam structural behavior
using instrumentation and visual inspections;
b. Analysis and monitoring of the cracks based
on the surveys conducted on the concrete
structures;
c. Technical support to the activities of concrete repair and maintenance procedures in
terms of materials development and characterization methodologies by the Laboratory
of Concrete Technology of Itaipu.
d. Analysis and interventions in controlling the
aging of concrete structures of Itaipu Dam,
with views of its durability.
a. Estudos através de instrumentação e de inspeções visuais do comportamento estrutural da
barragem da Itaipu;
b. Análise e acompanhamento dos resultados de
fissuras com base nos levantamentos feitos em
estruturas de concreto;
c. Apoio técnico às atividades de reparo de concretos e procedimentos de manutenção em termos de metodologias de desenvolvimento e caracterização de materiais, realizadas pelo Laboratório de Tecnologia do Concreto da
Itaipu.
d. Análise e intervenções no controle de envelhecimento das estruturas de concreto da Usina
de Itaipu, com vistas à sua durabilidade.
The main benefit to the Itaipu Binacional is the
application of innovative materials and/or
O principal benefício para a Itaipu Binacional é a
aplicação de materiais e/ou técnicas inovadoras
1
TECHNICAL REPORT
RELATÓRIO TÉCNICO
techniques that have been studied in the concrete structures of the Hydroelectric Plant.
Other benefits include:
estudadas nas estruturas de concreto da Usina
Hidrelétrica. Outros benefícios incluem:
a. Compartilhamento e aplicação dos conhecimentos adquiridos com as outras empresas do
grupo Eletrobras;
b. Aperfeiçoamento contínuo da qualificação
técnica de profissionais do Grupo Eletrobras;
c. A expansão do intercâmbio de informações entre os especialistas no tema, a nível mundial,
considerando que os EUA têm sido tradicionalmente um líder na construção de projetos de
grandes barragens e um pioneiro em estudos
de materiais para esses projetos; e
d. A disseminação de tecnologia interna desenvolvida para outros profissionais técnicos de
Itaipu e de outras empresas da Eletrobras.
a. Sharing and application of knowledge
gained with the other companies of the
Eletrobras group;
b. Continuous improvements in the technical
qualifications
of
professionals
the
Eletrobras group;
c. Expansion of information exchange among
experts in the field at a worldwide level, considering that the US has traditionally been a
leader in the construction of large dam projects and a pioneer in the studies of materials for these projects; and
d. The exchange of internal technology developed to other technical professionals of
Itaipu and other companies of Eletrobras.
Os materiais/técnicas estudadas são direcionadas a aplicações em reparos de fissuras e microfissuras, a fim de aumentar a durabilidade das estruturas de concreto da Barragem de Itaipu. Esta
ação está estreitamente ligada à segurança estrutural da barragem e a longevidade da Usina,
mantendo a sua finalidade de fornecer energia
elétrica limpa e de alta qualidade. Os resultados
obtidos no projeto fornecerão uma alternativa
para reparos de concretos e programas de manutenção na Itaipu, como para várias outras empresas do grupo Eletrobras.
The materials/techniques studied are directed
at applications in repairing cracks and micro
cracks in order to increase the durability of the
concrete structures of the Itaipu Dam. This action is closely linked to the dam’s structural
safety and the longevity of the Plant, maintaining its purpose to provide clean and high quality electrical energy. The results obtained in the
project will provide an alternative to concrete
repair and maintenance programs at Itaipu, as
well as several other companies of the
Eletrobras group.
2. Objective / Objetivo
This report is directed at partial fulfillment of
the requirements of the Process number:
232353/2014-0
Call/Notice:
Enc
Eletrobr2014-PDE-Encomenda
Eletrobras
2014 - PDE. It complies with the Planning Report since because the plan of work was previously dealt with.
Este relatório é direcionado ao preenchimento
parcial dos requisitos do Processo número:
232353/2014-0 - Chamada/Edital: EncEletrobr2014-PDE-Encomenda Eletrobras 2014 PDE. Ele compreende o Relatório de Planejamento, porque o plano de trabalho foi previamente tratado.
2
TECHNICAL REPORT
RELATÓRIO TÉCNICO
3. Historic / Histórico
Past seventy years has witnessed an era of the
greatest infrastructure development in Brazil;
several large dams have been built and the technological developments of the nation is this area
has been enormously successful. Despite such
great advances, domestic technological
knowledge has not kept pace with the available
knowledge in terms on implementation of innovative technologies. There is a currently need to
analyze the microstructural and macro-structural behavior of materials in terms of their durability as well as the structures they are utilized in. Therefore, development of collaborative projects with international consultants has
been fundamental at this time.
Os últimos setenta anos têm assistido a uma era
do maior desenvolvimento de infraestrutura no
Brasil; várias grandes barragens foram construídas e os desenvolvimentos tecnológicos da nação têm sido um enorme sucesso. Apesar de tais
grandes avanços, o conhecimento tecnológico
nacional não manteve o ritmo com o conhecimento disponível em termos de implementação
de tecnologias inovadoras. Existe atualmente
uma necessidade de analisar o comportamento
macroestrutural e microestrutural de materiais
em termos de suas durabilidades assim como as
das estruturas nas quais eles serão utilizados.
Entretanto, o desenvolvimento de projetos colaborativos com consultores internacionais tem
sido fundamental nesse momento.
Many techniques have been applied to mitigate
or minimize the problem of thermal cracking.
For example, cooling of the concrete prior to
placement and/or the use of pozzolanic material on partial replacement for cement are successful approaches in mitigation of thermal
cracking.
Muitas técnicas foram aplicadas para mitigar ou
minimizar o problema de fissuração térmica. Por
exemplo, o resfriamento do concreto antes do
lançamento e/ou o uso de material pozolânico
em substituição parcial ao cimento são abordagens bem-sucedidas na mitigação de fissuras de
origem térmica.
At the beginning of the construction of Itaipu, in
the 80s, several blocks of one of buttress dams
showed cracks in concrete which were attributed to thermal and/or mechanical origin.
This situation was addressed by the Concrete
Laboratory at Itaipu using a special study to adjust the concrete mix. A team was created especially for identifying and measuring these
cracks. More than 10,000 cracks were recorded
and monitored between 1980 and 2013. Some
of them were treated, but some are still exposed
and active since they were untreated by recommendations of Brazilian technical standards. An
important aspect of the study shows a wide variation in daily ambient temperature that may
range from 14 to 35 degrees Celsius in Foz do
No início da construção de Itaipu, na década de
80, vários blocos de uma das barragens contraforte apresentaram fissuras no concreto, de origem térmica e/ou mecânica. Esta situação foi
abordada pelo Laboratório de Concreto em
Itaipu usando um estudo especial para ajustar a
mistura de concreto. Uma equipe foi criada especialmente para identificar e medir essas fissuras.
Mais de 10.000 fissuras foram registradas e monitoradas entre 1980 e 2013. Algumas delas foram tratadas, mas algumas ainda estão expostas
e ativas (sem tratamento por recomendações de
normas técnicas brasileiras).
Um aspecto importante do estudo mostra uma
ampla variação na temperatura ambiente diária
que pode variar de 14 a 35 graus Celsius em Foz
3
TECHNICAL REPORT
RELATÓRIO TÉCNICO
Iguaçu – where the Itaipu Dam is located. Another situation of interest is the process of concrete dynamic micro cracking of Itaipu’s powerhouse caused by the vibration of generating
units. Some studies with fibers embedded in the
concrete surrounding the spiral box of hydroelectric plants have been proposed by Federal
University of Goiás, Furnas Centrais Elétricas
S.A. and COPPE/Federal University of Rio de
Janeiro, in addition to development of studies
by University of São Paulo.
do Iguaçu – onde a represa de Itaipu está localizada. Outra situação de interesse é o processo de
microfissuração dinâmica do concreto da casa
de força de Itaipu causado pela vibração das unidades geradoras. Alguns estudos com fibras embebidas no concreto, circundante caixa espiral
de usinas hidrelétricas, têm sido propostos pela
Universidade Federal de Goiás, Furnas Centrais
Elétricas SA e COPPE/Universidade Federal do
Rio de Janeiro, além do desenvolvimento de estudos pela Universidade de São Paulo.
The durability of the Itaipu Dam is critical to the
continuity of economic development of both
Brazil and Paraguay. It is a hydroelectric power
plant with a track record of superiority in energy generation: positive net financial result in
2012, with a world record in electricity annual
production near 100,000,000 MWh (2012 and
2013).
A durabilidade da Usina de Itaipu é fundamental
para a continuidade do desenvolvimento econômico do Brasil e do Paraguai, por ser binacional.
É uma usina hidrelétrica com um histórico de superioridade na geração de energia: resultado financeiro líquido positivo em 2012, com um recorde mundial de produção anual de eletricidade
perto de 100.000.000 MWh (2012 e 2013).
Considering the natural and inevitable durability and long term aging of construction materials such as concrete it is increasingly important
to search for technical alternatives of low cost
maintenance and structural health monitoring
of the dam.
Considerando a durabilidade natural e inevitável e envelhecimento a longo prazo de materiais
de construção tais como concreto é cada vez
mais importante a busca de alternativas técnicas
de baixo custo de manutenção e monitoramento
de integridade estrutural da barragem.
It is necessary to study new techniques and materials that can be applied as an alternative to
detect and monitor the durability of structures
under imposed deformations in a large-scale
structure such as the Itaipu dam. The research
focuses on addressing the main challenges of
using cement based composite materials to seal
cracks, their compatibility and adhesion to old
concrete, deformation, and their use as an indicator of the state of deformation during the
time of application. The results can be tested in
concrete structures of Itaipu.
É necessário estudar novas técnicas e materiais
que podem ser aplicados como uma alternativa
para detectar e monitorar a durabilidade das estruturas sob deformações impostas em uma estrutura de grande escala como a barragem de
Itaipu. A pesquisa centra-se na resolução dos
principais desafios da utilização de materiais
compósitos à base de cimento para selar fissuras,
a sua compatibilidade e adesão ao concreto velho, deformação, e seu uso como um indicador do
estado de deformação durante o tempo de aplicação. Os resultados podem ser testados em estruturas de concreto de Itaipu.
4
TECHNICAL REPORT
RELATÓRIO TÉCNICO
4. Related literature / Literatura correlata
An extensive literature search was carried out
on the main project themes – Textile Reinforced Concrete (TRC), TRC tension tests and
Fabric-Masonry (F-M) Bond tests – to provide
the theoretical basis for the analysis as well as
the state of the art in testing and design of TRC
materials. This literature listed in Reference
section will be used to guide future reports and
papers.
Uma extensa pesquisa bibliográfica foi realizada
sobre os principais temas do projeto – Concreto
Reforçado com Fibras Têxteis (TRC), ensaios de
tensão em TRC e ensaios de aderência entre Compósitos com Fibras Têxteis e Alvenaria – para
fornecer a base teórica para a análise, bem como
o estado da arte em testes e concepção de materiais de TRC. Esta literatura, listada na seção de
Referência, será usado para guiar relatórios e
artigos futuros.
One of the reasons for the extensive use of cement-based systems is the design versatility
that can be tailored for each application. Various constituent materials and processing techniques can be used to achieve desired performance from fresh state properties to superior
mechanical properties and durability. Numerous technical challenges remain in promotion
and use of blended cements as sustainable costsaving alternatives and value-added ingredients for concrete production [109]. However,
we must appreciate the complexity of integration of cement chemistry, early age and longterm properties, and specifications when using
cement products in construction projects [82].
Uma das razões para o uso extensivo de sistemas
à base de cimento é a versatilidade de design que
pode ser adaptado para cada aplicação. Vários
materiais constituintes e técnicas de processamento podem ser usados para obter um desempenho desejado de propriedades do estado fresco
para propriedades mecânicas superiores e durabilidade. Inúmeros desafios técnicos permanecem na promoção e utilização de cimentos compostos como alternativas sustentáveis de redução de custos e ingredientes de valor agregado
para a produção de concreto [109]. No entanto,
temos de apreciar a complexidade da integração
de química do cimento, idade precoce e as propriedades de longo prazo, e as especificações
quando se utiliza produtos de cimento em projetos de construção [82].
Fabric reinforced cement-based composites
are a new class of sustainable construction materials with superior tensile strength and ductility. These materials have the potential for becoming load-bearing structural members;
therefore, a wide array of structural and nonstructural applications are possible. The constitutive response that entails damage evolution
under tensile loading is the primary and fundamental component of mechanical response in
these systems.
Compósitos à base de cimento reforçados com tecido são uma nova classe de materiais de construção sustentável, com resistência à tração superior e ductilidade. Estes materiais têm potencial para se tornarem membros estruturais de
suporte de carga; portanto, uma grande variedade de aplicações estruturais e não estruturais
são possíveis. A resposta constitutiva que implica
a evolução do dano sob cargas de tração é o componente principal e fundamental da resposta
mecânica nestes sistemas.
In principle, there are many combinations of fiber and matrix available for textile reinforced
composites. A large range of materials choices
is available which can be used with a range of
5
TECHNICAL REPORT
RELATÓRIO TÉCNICO
manufacturing techniques. One can analyze and
design materials at the same time that the manufacturing is considered. This is in contrast
with other classes of engineering materials,
where the material is produced first and then
machined and formed into the desired shape.
The full range of possibilities for composite materials is very large. Reinforcements may consist of arrange of fibers such as S-glass, R-glass,
a wide range of carbon, boron, ceramic (e.g.,
alumina, silicon carbide), polymeric, natural,
and aramid fibers. The reinforcement can come
in the form of long (continuous) or short fibers,
disks or plates, spheres, or ellipsoids. Matrices
include a wide ranges of polymers (epoxides,
polyesters, nylons, etc.), metals (aluminum alloys, magnesium alloys, titanium, etc.), cements, and ceramics (SiC, glass ceramics, etc.).
Em princípio, há muitas combinações de fibra e
matriz disponíveis para compósitos reforçados
com têxteis. Uma grande gama de opções de materiais está disponível os quais podem ser usados
com uma variedade de técnicas de fabrico. Podese analisar e projetar materiais ao mesmo tempo
que o fabrico é considerado. Isto está em contraste com outras classes de materiais de engenharia, onde o material é produzido primeiro e,
em seguida, industrializado e modelado na
forma desejada. A gama completa de possibilidades para materiais compósitos é muito grande.
Os reforços podem consistir de uma variedade de
fibras, tais como S-vidro, R-vidro, uma vasta
gama de fibras de carbono, de boro, de cerâmica
(por exemplo, alumina, carboneto de silício), poliméricas, naturais, e de aramida. O reforço pode
vir na forma de longas (contínuos) ou curtas fibras, discos ou placas, esferas ou elipsoides. As
matrizes incluem uma ampla gama de polímeros
(epóxis, poliésteres, nylons, etc.), metais (ligas de
alumínio, ligas de magnésio, titânio, etc.), cimentos e materiais cerâmicos (SiC, cerâmica de vidro, etc.).
5. Experimental Program / Programa Experimental
As a relevant part of the project, it was necessary to gain training and familiarity with the
various safety and health related aspects of
project management in the structural Engineering Lab at ASU. Topics included chemical
safety, lab safety, waste management, as well as
administrative procedures such as machine
shop interaction as well as ordering procedures. These tasks were necessary prior to the
initiation of research work with research using
laboratories and to allow access to servers and
internal network.
Como uma parte relevante do projeto, foi necessário adquirir formação e familiaridade com os
vários aspectos relacionados com a segurança e
saúde do gerenciamento de projetos no Laboratório de Engenharia estrutural na ASU. Os tópicos incluíram segurança química, segurança do
laboratório, gestão de resíduos, bem como os
procedimentos administrativos, como a interação oficina mecânica, bem como os procedimentos para pedido. Estas tarefas eram necessárias
antes do início do trabalho de pesquisa com pesquisa utilizando laboratórios e para permitir o
acesso aos servidores e rede interna.
6
TECHNICAL REPORT
RELATÓRIO TÉCNICO
5.1. Infra-structure / Infraestrutura
The experimental program have been carried
out in two laboratories of the School of Sustainable Engineering and the Built Environment:
O programa experimental tem sido realizado em
dois laboratórios da Escola de Engenharia Sustentável e do Ambiente Construído:
Cement and Concrete Materials Laboratory:
with mixers, materials and a wet chamber. This
is where samples were prepared and cured.
Laboratório de Materiais de Concreto e Cimento:
com misturadores, materiais e uma câmara
úmida. Foi onde as amostras foram preparadas
e curadas.
Structures Lab: with several equipments for
mechanical tests, including the MTS and the Instron machines that were used to run essays of
this work.
Laboratório de Estruturas: com vários equipamentos para ensaios mecânicos, incluindo as
prensas MTS e Instron que foram usadas para
executar os ensaios deste trabalho.
Both located in the Interdisciplinary Science
and Technology Building II (ISTB 2), in the ASU.
Ambos localizados no Edifício de Tecnologia e Ciências Interdisciplinares II (ISTB 2), na ASU.
5.2. Methodology / Metodologia
The executive planning of the laboratorial program included the optimization of designs of laboratory essays and logistics activities, including procurement of materials and of equipment
eventually. The experiments has included:
O planejamento executivo do programa laboratorial incluiu a otimização de modelos de ensaios
de laboratório e atividades de logística, incluindo a aquisição de materiais e de equipamentos,
eventualmente. As experiências incluíram:
- Preparation and characterization of materials;
- Design and preparation of samples;
- Preparation of laboratory testing scheme;
and
- Experiments, focusing on tension and bond
tests.
- Preparação e caracterização de materiais;
- Projeto e preparação de amostras;
- Preparação do esquema de testes de laboratório; e
- Experimentos, com foco em tensões e testes
de aderência.
5.3. Materials / Materiais
The first issue was how to ensure that the material will bond to old concrete? From this point
on, type of fiber to be used was left to a second
stage, and the focus took a direction to how to
test it. In addition, the type of fiber should also
be analyzed from a technical and economic
A primeira questão foi: a forma de garantir que
o material se ligará ao concreto velho? Deste
ponto em diante, o tipo de fibra a ser usada foi
deixado para uma segunda fase, e o foco tomou
um rumo para como testá-lo. Além disso, o tipo
de fibra também deverá ser analisado sob o
7
TECHNICAL REPORT
RELATÓRIO TÉCNICO
point of view, and if it is easily obtained in Brazil. This is the major difference between a good
solution and a costly one.
ponto de vista técnico e econômico, e se é facilmente obtida no Brasil. Isto será o grande diferencial entre uma boa solução e uma solução
onerosa.
Considering this, at this stage we could use any
type of fiber. So, instead of PVA fibers, one type
of Alkali-resistant (AR) glass fiber was used for
testing, either in tension or in bond assays. AR
glass filament yarns were designed especially
for their high alkalinity resistance in the reinforcement of portland-cement-based materials.
AR glass contains more than 15% by mass of
zirconia. The basic materials including silica
sand, clay, and limestone are melted at temperatures up to 1350°C and pulled off the spinning
nozzle with a speed between 25 and 150 m/s
and diameters ranging from 9 to 27 m. After
spinning a coating material defined as sizing
(0.5–1.5 mass% of the fiber) of organic polymers dispersed in water is applied on the filaments. Approximately 400 to 6600 of filaments
are combined to form a yarn. The sizing is important because it protects and improves the
yarn properties as well as its adhesion with the
matrix material. Table 1 details the characteristics of fiber used.
Considerando isso, nesta fase poderíamos utilizar qualquer tipo de fibra. Assim, em vez de fibras de PVA, um tipo de fibra de vidro álcali-resistente (AR) foi utilizada para o teste, quer em
tensão, quer em ensaios de aderência. Fios de filamentos de vidro AR foram projetados especialmente por sua alta resistência à alcalinidade no
reforço de materiais baseados em cimento portland. Vidro AR contém mais do que 15% em
massa de zircônia. Os materiais básicos, incluindo areia de sílica, argila, pedra calcária, são
fundidos a temperaturas até 1350°C e puxados
para fora do bocal de fiação com uma velocidade
compreendida entre 25 e 150m/s e diâmetros
variando entre 9 e 27 de m. Depois da fiação,
um material de revestimento, definido como o
volume (0,5-1,5% de massa da fibra) de polímeros orgânicos dispersos em água, é aplicado sobre os filamentos. Aproximadamente 400 a 6600
de filamentos são combinados para formar um
fio. O volume é importante porque protege e melhora as propriedades do fio, bem como a sua
adesão com o material de matriz. A Tabela 1 detalha as características da fibra utilizada.
Table 1: Characteristics of AR Glass fiber.
Tabela 1: Características da fibra de vidro AR
Yarn Nature
Natureza do fio
Strength
Resistência
(MPa)
Young’s Modulus
Módulo de Elasticidade
(MPa)
Filament size
Tamanho do filamento
(mm)
Bundle diameter
Diâmetro do feixe
(mm)
Bundle
Feixe
1372
72000
0.014
0.30
Other materials constituents of mortars were
cement Quikrete brand Type II/V, Silica Fume
Outros materiais constituintes das argamassas
foram cimento da marca Quikrete tipo II/V, sílica
ativa Rheomac®SF100 da BASF, Volastonita,
8
TECHNICAL REPORT
RELATÓRIO TÉCNICO
Rheomac®SF100 of BASF, wollastonite, silver
sand #30, and water treated for common use.
areia normalizada #30, e água tratada para uso
comum.
5.4. Samples / Amostras
5.3.1. Specimens type B’ / Espécimes tipo B’
Samples for trial bond tests were prepared, as
shown in Figures 1 and 2, the thickness of the
TRC composite = 10mm and width the same of
the masonry block, about 4 inches (therefore,
the type B’). Two masonry blocks were put side
by side; one of them prevented from bonding to
TRC composite by a thin layer of polyethylene
film. Side fixed bars assured the final thickness
of the specimens (10mm) (Figure 1-a). AR glass
fiber meshes were cut to fit the mold of samples
(Figure 1-b).
Amostras para ensaios preliminares de aderência foram preparadas, como mostrado nas Fig. 1
e 2, com espessura do compósito de TRC = 10mm
e a mesma largura do bloco de alvenaria, em
torno de 4 polegadas (por isso o tipo B’). Dois blocos de alvenaria foram colocados lado a lado; um
deles impedido de se ligar ao compósito de TRC
por uma camada fina de polietileno. Barras laterais fixas asseguraram a espessura final dos espécimes (10 mm) (Fig. 1-a). Malhas de fibra de
vidro resistente a álcalis foram cortadas para
ajustar ao molde das amostras (Fig. 1-b).
(a)
(b)
Figure 1: Adjusting the position of blocks and fasten them together (a); and cut of fiber mesh to fit the mold of samples
(b). / Figura 1: Ajustando a posição dos blocos e apertá-los unindo-os (a); e corte das malhas de fibra para ajustar aos
moldes das amostras (b).
Mortar mix design included: cement = 850g; Fly
Ash = 150g; sand = 500g; and water to cementitious material = 0.35. Mix procedure was: homogenize dry materials within 2 minutes; put
water in 15 seconds, with the mixer on, and let
A mistura de argamassa incluiu: cimento = 850g;
Cinza Volante = 150g; areia = 500g; e água/material cimentício = 0,35. O procedimento de mistura foi: homogeneizar materiais secos por 2
9
TECHNICAL REPORT
RELATÓRIO TÉCNICO
homogenizing up to complete 5 minutes of total min.; colocar água em 15 segundos, com o mistutime.
rador ligado, e deixar homogeneizar até completar 5 minutos de tempo total.
The molding sequence of the samples was: one
layer of 3mm thickness mortar; the first layer of A sequência de moldagem das amostras foi a sefabric mesh; second layer of 3mm thickness guinte: uma camada de argamassa de 3 mm de
mortar; the second layer of fabric mesh; and the espessura; a primeira camada de fibra; segunda
last layer of mortar fitting to get 10mm thick- camada de argamassa de 3 mm de espessura; a
ness (as shown in Figure 2).
segunda camada de fibra; e a última camada de
argamassa ajustando para obter 10 mm de esLight manual pressure over fabric mesh layers
pessura (tal como mostrado na Fig. 2).
was imposed to give more internal adherence to
the fabric-cement composite (Figure 3-a). The Leve pressão manual sobre camadas de fibra foi
finishing was carried out by trowel to ensure imposta para dar mais aderência interna ao
smooth surface (Figure 3-b).
compósito de tecido-cimento (Fig. 3-a). O acabamento foi realizado por espátula para assegurar
Six samples were made at a time (Figure 4-a). A
a superfície lisa (Figura 3-b)
layer of thin polyethylene film covered the samples after start of setting (about 1 hour after Seis amostras foram feitas de cada vez (Figura 4molding) and remained until the fifth day. They A). Uma camada de filme de polietileno fina cowere demolded and the final aspect of the sam- briu as amostras após o início de pega (cerca de
ples can be seen in Figure 4-b.
1 hora após a moldagem) e permaneceu até o
quinto dia. Eles foram desmoldados e o aspecto
final das amostras pode ser visto na Figura 4-b.
Mortar
Fabric mesh
Mortar
Fabric mesh
Mortar
TRC
BLOCK
Figure 2: Layers of molding sequence. / Figura 2: Camadas da sequência de moldagem.
10
TECHNICAL REPORT
RELATÓRIO TÉCNICO
(a)
(b)
Figure 3: Light pressure over the layer of fabric mesh (a); and finishing of sample (b). / Figura 3: Leve pressão sobre a
camada de malha de fibra (a); e conclusão da amostra (b).
(a)
(b)
Figure 4: Six samples molded (a); and final aspect of sample (b). / Figura 4: Seis amostras moldadas (a); e aspecto final da
amostra (b)
5.3.2. Specimens type A and B / Espécimes tipos A e B
A second set of specimens width around 3” was
made in order to fit to the hydraulic grips of tension test machine. They were called type A, for
thickness = 5mm, and B, for thickness = 10mm.
The molding process was the same, with the
thin layer of polyethylene replaced by a plastic
strip of 0.3mm thickness. Mix design was 850g
of cement, 50g of Silica Fume, 100g of wollastonite, 1000g of sand; and water to cementitious
materials = 0.4. After molding, the samples were
covered with a damp cloth to prevent evaporation of the mixing water for 24 hours and then
Um segundo conjunto de amostras de largura em
torno de 3" foi feito a fim de se ajustarem às garras hidráulicas da máquina de teste de tensão.
Eles foram chamados de tipo A, para espessura =
5 milímetros, e de B, para a espessura = 10 mm.
O processo de moldagem foi o mesmo, sendo a camada fina de polietileno substituída por tira de
plástico de 0,3mm de espessura. A composição da
mistura foi: 850g de cimento, 50g de sílica ativa,
100g de Volastonita, 1000 g de areia; e fator
água / materiais cimentícios = 0,4. Após a moldagem, as amostras foram cobertas com pano
11
TECHNICAL REPORT
RELATÓRIO TÉCNICO
placed in a humid chamber, where they re- úmido para evitar a evaporação da água de mismained until the date of molding, being taken in tura por 24 horas e, depois, inseridas em câmara
time to become dry to the following steps.
úmida, onde permaneceram até a data de moldagem, sendo retiradas a tempo de ficaram secas
Samples to TRC tension tests were made as
para as etapas seguintes.
shown in Figure 5-a; while for F-M bond tests,
they were molded as in Figure 5-b. In this setup, As amostras para os testes de tensão em TRC fospecimens types A and B were conceived. Im- ram feitas tal como mostrado na Figura 5-a; enages of Figure 6 illustrate the final aspect of TRC quanto que para os testes de aderência de F-M,
samples – type A and type B.
elas foram moldadas como na Figura 5-b. Nesta
configuração, os espécimes tipos A e B foram
concebidos. As imagens da Figura 6 ilustram o
aspecto final das amostras de TRC – tipo A e tipo
B.
(a)
(b)
Figure 5: Mold for TRC samples (a); and for bond test samples (b). / Figura 5: Molde para amostras de TRC (a); e para
amostras de testes de aderência (b).
(a)
(b)
Figure 6: TRC samples type A (a); and type B (b). / Figura 6: Amostras de TRC tipo A (a); e tipo B (b).
12
TECHNICAL REPORT
RELATÓRIO TÉCNICO
Samples with and without a notch approximately 2 inches ("g" in Figure 7-b) were produced to evaluate the differences in adhesion
tensions and failure modes. Likewise, variations
were evaluated in the adhesion area between
the materials.
Amostras sem e com fenda de aproximadamente
2 polegadas (“g” na Figura 7-b) foram produzidas para avaliar as diferenças nas tensões de
aderência e modos de ruptura. Da mesma forma,
foram avaliadas variações da área de aderência
entre os materiais.
The dimensions of TRC samples are in Table 2
(Appendix B). Images of Figure 7-a show the final aspect of F-M samples type A (equal to type
B). Dimensions of F-M specimens were measured (Figure 7-b and Table 3 in Appendix B).
As dimensões das amostras de TRC estão na Tabela 2 (Apêndice B). As imagens da Figura 7
mostram o aspecto final das amostras F-M – tipo
A e tipo B. As dimensões dos espécimes F-M foram
medidas (Figura 8 e Tabela 3 no Apêndice B).
L
w
TRC
a
f
detail
(a)
g
d
BLOCK
c
e
notch
DETAIL
b
(b)
Figure 7: F-M samples type A (a); and dimensions of Samples for F-M Bond testing. (b). / Figura 7: Amostras de F-M tipo A
(a); e dimensões das Amostras para testes de aderência F-M (b).
5.3.3. Specimens type AA / Espécimes tipo AA
Specimens type AA were produced with the
same characteristics of type A, replacing the
masonry block by an aerated concrete block.
Os espécimes do tipo AA foram produzidos com
as mesmas características do tipo A, substituindo
o bloco de alvenaria por um bloco de concreto
aerado.
5.3.4. Specimens type M / Espécimes tipo M
The compressive strength of the mortar used in
the preparation of TRCs and of the specimens
type B', A, B, and AA was evaluated. Twentyfour specimens called M type were molded ac-
A resistência à compressão da argamassa usada
na confecção dos TRCs e dos espécimes tipo B’, A,
B e AA foi avaliada. Vinte e quarto espécimes
chamados tipo M foram moldados conforme
13
TECHNICAL REPORT
RELATÓRIO TÉCNICO
cording to ASTM 119C for 4 test ages (6 samples/age): 1, 7, 14 and 28 days. Images of Figure
8 show molds and samples type M.
ASTM 119C para 4 idades de teste (6 amostras/idade): 1, 7, 14 e 28 dias. As imagens da Figura 8 mostram os moldes e as amostras tipo M.
(a)
(b)
Figure 8: Molds for mortar samples (a); and mortar specimens (b). / Figura 5: Moldes para amostras de argamassa (a); e
espécimes de argamassa (b).
5.5. Testing / Ensaios
The parameters used in the test equipment
(presses) for bond and tension tests are in Appendix C. It is worth emphasizing that for the
tensile tests, the loading speed measured by the
actuator (ramp) was 0.015 in./Min. (0.381
mm/Min.) until 0.05 inches (12.5 mm) of displacement and 0.10 in./Min. (2.54 mm/Min.)
until the end of the test (max. displacement =
1.25 in.). These parameters were used in both
MTS and Instron presses.
For the fatigue test (cyclic), the parameters are
described in item 5.4.5.
Os parâmetros utilizados nos equipamentos de
ensaios (prensas) para os testes de aderência e
de tensão estão no arquivo do Apêndice C. Cabe
ressaltar que, para os ensaios de tração, a velocidade de carregamento medida pelo atuador
(rampa) foi de 0,015 pol./min. (0,381 mm/min.)
até 0,05 polegadas (12.5 mm) de deslocamento e
de 0,10 pol./min. (2,54 mm/min.) até o final do
ensaio (máx. = 1,25 pol.). Estes parâmetros foram utilizados tanto na prensa MTS quanto na
Instron.
Para o ensaio de fadiga (cíclico), os parâmetros
estão descritos no item 5.4.5.
5.4.1. Bond tests for assessment / Testes de aderência para avaliação
A setup was developed to perform bond test as
a tension test (Figures 9 to 11) and it was run
for assessment. The original bottom grips of the
MTS machine were changed to fit the 4 inches
width of specimen, and the final arrangement
looked like the pictures in Figure 9. Two LVDTs
Uma configuração foi desenvolvida para realizar
o teste de aderência como um teste de tensão (Figuras 9 a 11) e ele foi executado como avaliação.
As garras inferiores originais da máquina de
MTS foram alteradas para se ajustar à largura
de 4 polegadas do espécime, e o arranjo final se
14
TECHNICAL REPORT
RELATÓRIO TÉCNICO
were used: one fixed onto TRC to see the deformation of the composite; another fixed onto lateral of composite and onto the masonry block to
observe the relative displacement (debonding)
between them (Figure 9-b).
The bolt that fixed the masonry block was not
aligned to it (Figure 10-a). When testing, it was
observed that a sliding of the masonry block
was occurring and the first crack appeared
(number 1 in Figure 10-b).
As the masonry was displacing, the crack number 2 in Figure 10-b appeared and the type of
rupture, showed in Figure 11-a, was increasingly happening. As it can be seen, one type of
torsion occurred. Figure 11-a also illustrates
the position of unaligned masonry block almost
at the end of test.
The regularity of molding layers of samples is
shown in details in Figure 11-b.
pareceu com as imagens da Figura 9. Dois LVDTs
foram usados: um fixo no TRC para ver a deformação do compósito; outro fixado sobre lateral
do compósito e sobre o bloco de alvenaria para
observar o deslocamento relativo (descolamento) entre si (Figura 9-b).
O parafuso que fixava o bloco de alvenaria não
estava alinhado a ele (Figura 10-a). Ao realizar
o ensaio, foi observado que um deslizamento do
bloco de alvenaria estava ocorrendo e a primeira
fissura apareceu (número 1 na Figura 10-b).
À medida que a alvenaria foi se deslocando, a fissura número 2 na Figura 10-b apareceu e o tipo
de ruptura, mostrado na Figura 11-a, foi acontecendo cada vez mais. Como pode ser visto, um
tipo de torção ocorreu. A Figura 11-a ilustra
também a posição do bloco de alvenaria desalinhado quase no final do ensaio.
A regularidade de camadas de moldagem de
amostras é mostrada em detalhes na Figura 11b.
(a)
(b)
Figure 9: Setup for bond testing (a); and position of LVDTs (b). / Figura 9: Configuração para o ensaio de aderência (a); e
posição dos LVDTs (b).
15
TECHNICAL REPORT
RELATÓRIO TÉCNICO
1
2
(a)
(b)
Figure 10: Bolt not aligned to masonry block (a); and cracks on sample testing (b). / Figura 10: Parafuso não alinhado ao
bloco de alvenaria (a); e fissuras no ensaio da amostra (b).
(a)
(b)
Figure 11: Position of unaligned masonry block (a); and regularity of layers of the samples (b). / Figura 11: Posição do
bloco de alvenaria não alinhado (a); e regularidade das camadas das amostras (b).
After the observations of initial tests, there was
one proposal to avoid slipping of the masonry
blocks, shown in Appendix A. The adjustments
in original setup consisted of:
Após as observações dos testes iniciais, houve
uma proposta para evitar o escorregamento dos
blocos de alvenaria, mostrada no Apêndice A. Os
ajustes na configuração original consistiram de:
- Bolt an angle on the base of apparatus that
holds the masonry block;
-
16
Aparafusar uma cantoneira com a base
do aparelho que contém o bloco de alvenaria;
TECHNICAL REPORT
RELATÓRIO TÉCNICO
- Make a plate with holes to fix the masonry
block at this angle;
-
- Make another angle with holes to fix vertically
the block, to make the bolt aligned to it, aiming
to not cause any torsion force on it.
Fazer uma placa com furos para fixar o
bloco de alvenaria neste ângulo;
Fazer uma outra cantoneira com furos
para corrigir verticalmente o bloco, para
tornar o parafuso alinhado a ele, com o
objetivo de não causar qualquer força de
torção sobre o mesmo.
5.4.2. Digital Image Correlation – DIC / Correlação Digital de Imagens – CDI
The setup for DIC of some samples was used, as
seen in images of Figure 12.
A configuração para a CDI de algumas amostras
foi utilizada, como visto nas fotos da Figura 12.
About the use of Digital Image Correlation –
DIC, the thinking was to use two cameras taking
pictures of the lateral of specimen, showing effectively the deformation and the debonding of
TRC of the masonry block; and another one,
taking images of front of the TRC to see how is
its behavior under tension. The main problem
encountered until now is related to specimens,
type A and B. The face of the layer of TRC was
more distant of DIC cameras than the block
face, because of reducing width, from 4” to 3”.
Therefore, the images did not allow the analysis
by DIC. After this finding, the setup was adjusted to two cameras taking pictures of the
front of the F-M samples, only.
Sobre o uso de Correlação Digital de Imagem CDI, o pensamento era usar duas câmeras tirando fotos da lateral do espécime, mostrando
efetivamente a deformação e o descolamento do
TRC do bloco de alvenaria; e outra, tomando
imagens da frente do TRC para ver como é seu
comportamento sob tensão. O principal problema encontrado até agora está relacionado
com as amostras, do tipo A e B. A face da camada
de TRC estava mais distante das câmaras de CDI
do que a face do bloco, por causa da redução de
largura, de 4 " para 3". Portanto, as imagens não
permitiram a análise por CDI. Após esta constatação, a instalação foi ajustada para duas câmeras tomando imagens de frente das amostras FM, somente.
17
TECHNICAL REPORT
RELATÓRIO TÉCNICO
(a)
(b)
(c)
(d)
Figure 12: Support for cameras (a); type of camera used (b); setup for TRC tension test (c); and setup for F-M Bond test
(d). / Figura 12: Apoio para as câmeras (a); tipo de câmera usada (b); configuração para o ensaio de tensão em TRC (c); e
configuração para o ensaio de aderência F-M (d).
Samples were painted with a fine layer colored
white and, after dried, spackles were made with
black paint. Figure 13 illustrates the steps that
are a part of the DIC procedures.
As amostras foram pintadas com uma camada
fina de cor branca e, depois de secas, uma “nuvem” de pontos foram feitas com tinta preta. A
Figura 13 ilustra os passos que fazem parte dos
procedimentos da CDI.
18
TECHNICAL REPORT
RELATÓRIO TÉCNICO
(a)
(b)
(c)
(d)
(e)
(f)
Figure 13: TRC plates drying (a); receiving white color (b); drying again (c); after making black spacles – TRC final aspect
(d); F-M Bond samples submitted to the same procedure (e); and their final aspect. / Figura 13: Placas de TRC secando (a);
recebendo tinta branca (b); secando novamente (c); depois de fazer spacles pretos – aspecto final do TRC (d); amostras de
aderência F-M submetidas ao mesmo procedimento (e); e seus aspectos finais.
19
TECHNICAL REPORT
RELATÓRIO TÉCNICO
5.4.3. TRC Tension tests / Ensaios de tensão do TRC
TRC tension tests were run on MTS Machine after 7 days of molding. Special care was taken to
avoid sliding of the sample in the hydraulic
grips – top and bottom – by marks of reference
on samples (Figure 14-a). While running tests,
DIC images were taken. Figure 14-b shows one
specimen being subjected to this procedure.
Measurements of load, actuator displacement
and two parallel LVTDs were taken.
Ensaios de tensão em TRC foram executados na
prensa MTS após 7 dias de moldagem. Um cuidado especial foi tomado para evitar o deslizamento da amostra nas garras hidráulicas – superior e inferior – através de marcas de referência
nas amostras (Figura 14-a). Durante a execução
de testes, imagens para CDI foram tomadas. Figura 14-b mostra uma amostra que está sendo
submetido a este procedimento.
Medições de carga, deslocamento do atuador e
de dois LVDTs paralelos foram realizadas.
Reference mark to control displacement. / Marca de referência
para controle do deslocamento.
(a)
(b)
Figure 14: Displacement control of sample in hydraulic grips (a); and runnig test with DIC (b). / Figura 14: Controle de
deslocamento da amostra na garra hidráulica (a); e execução do ensaio com CDI (b).
5.4.4. F-M Bond tests / Ensaios de aderência F-M
Bottom apparatus (see Appendix A) for bond
test replaced hydraulic grips (Figure 15-a). The
tests were run at Instron machine, following
the same procedure carried on TRC tension
tests.
Um aparato inferior (ver Apêndice A) para teste
de aderência substituiu as garras hidráulicas
(Figura 15-a). Os testes foram executados na
prensa Instron, seguindo o mesmo procedimento
realizado em testes de tensão em TRC.
Measurements of load, actuator displacement
and two LVDTs were also taken. The LVDTs
were fixed: one controlling the TRC deformation (back of sample) and another controlling debonding between TRC and masonry
Também foram tomadas as medidas da carga,
deslocamento do atuador e dois LVDT. Os LVDT
foram fixados: um controlando a deformação do
TRC (parte de trás da amostra) e outro contro-
20
TECHNICAL REPORT
RELATÓRIO TÉCNICO
block (see Figure 15-b). DIC were also run for
F-M Bond tests.
lando o descolamento entre TRC e o bloco de alvenaria (ver Figura 15-b). CDI também foi realizada para os ensaios de aderência F-M.
(a)
(b)
Figure 15: Apparatus replacing bottom hydraulic grips (a); and position of LVDTs (b). / Figura 15: Aparato em substituição
à garra hidráulica inferior (a); e posição dos LVDTs (b).
5.4.5. Fatigue tests (cyclic) / Ensaios de fadiga (cíclico)
Fatigue tests were composed by three phases:
Loading 1 – actuator force speed (ramp) equal
to 0.015 in./Min. (0.381 mm/Min.) until 0.01
inches (0.254 mm) of displacement; Cyclic –
frequency = 5 Hz, 500000 cycles; and Loading 2
– speed = 0.10 in./Min. (2.54 mm/Min.) until
the end of the test.
Os ensaios de fadiga foram compostos por três
fases: Carga 1 - velocidade de carregamento do
atuador (rampa) igual a 0,015 pol./min. (0,381
mm/min.) até 0,01 polegadas (0.254 mm) de
deslocamento; Cíclico – frequência = 5 Hz,
500000 ciclos; e Carga 2 – velocidade = 0,10
pol./min. (2,54 mm/min.) até o final do ensaio.
5.4.6. Mortar compression tests / Ensaios de compressão de argamassa
Procedures used to run compression tests on
mortars as recommended by ASTM C119.
Procedimentos utilizados para executar testes de
compressão em argamassas como recomendado
pela ASTM C119.
6. Results and discussions / Resultados e discussões
The results are presented in this section.
Os resultados são apresentados nesta seção.
Tension test
Ensaio de tensão
21
TECHNICAL REPORT
RELATÓRIO TÉCNICO
“Strain-Stress” results of TRC tension tests are
shown in Figure 16. The graphs clearly show
the appearance of each crack on TRC plate (Figures 16-a and 16-b). The cracks are evident in
the specimens, as shown in the representative
images of Figures 16-c and 16-d. Note that you
can make a perfect correlation between the test
results and a sequence of images collected in
the meantime.
Each cracking of the cement matrix causes a relief in the tension imposed on the TRC and the
fiber mesh acts, resisting the tensile load. Thus,
multiple cracks appear until the final rupture of
the composite.
Os resultados “Deformação-Tensão” dos testes
de tensão em TRC são mostrados na Figura 16.
Os gráficos exibem claramente o aparecimento
de cada fissura na placa de TRC (Figuras 16-a e
16-b). As fissuras são evidenciadas nos corpos de
prova, como mostram as imagens representativas das Figuras 16-c e 16-d. Nota-se que é possível fazer uma correlação perfeita entre os resultados dos ensaios e uma sequência de imagens
coletadas durante o mesmo.
Cada fissuração da matriz cimentícia causa um
alívio na tensão imposta ao TRC e a malha de fibra atua, resistindo à carga de tração. Assim,
múltiplas fissuras aparecem até a ruptura final
do compósito.
(a)
(b)
Figure 16: Tension test results of TRC samples: type A (a) and type B (b); images showing cracks on samples (c, d). / Figura
16: Resultados de ensaios de tensão das amostras de TRC: tipo A (a) e tipo B (b); imagens mostrando fissuras nas amostras (c,
d).
22
TECHNICAL REPORT
RELATÓRIO TÉCNICO
(c)
(d)
Figure 16 (cont.): Tension test results of TRC samples: type A (a) and type B (b); images showing cracks on samples (c, d).
/ Figura 16 (cont.): Resultados de ensaios de tensão das amostras de TRC: tipo A (a) e tipo B (b); imagens mostrando fissuras
nas amostras (c, d).
Bond test
Ensaio de aderência
The number of cracks in TRC was lower in bond
tests. Lower deformations in TRCs were also
observed, although the values of the rupture
tensions do not have to change (Fig. 17).
A quantidade de fissuras no TRC foi menor nos
ensaios de aderência. Menores deformações nos
TRCs também foram evidenciadas, embora os valores das tensões de ruptura não tenham se alterado (Fig. 17).
(a)
(b)
Figure 17: Bond test results of Fabric-Masonry samples: type A (a) and type B (b). / Figura 17: Resultados de ensaios de
tensão das amostras de TRC: tipo A (a) e tipo B (b).
23
TECHNICAL REPORT
RELATÓRIO TÉCNICO
The LVDTs were tested in a few locations to ascertain which strains would be more relevant
in the specimens. Thus, for tension tests on TRC
plates, two LVDT's were used: one at each side
of the sample. And, for the bond test, one LVDT
was fixed on the back of the sample for the deformation of the composite, or plate of TRC, as
shows the Figure 18-a; and the other had its
lower part glued on masonry block and its top
on composite (Figure 18-b).
The analysis of the Digital Image Correlation
are made in specific computer programs. The
results produce images as presented on Figure
19. They clearly show the appearance of the
first crack and its strain field (Figure 19-a); and
the appearance of other cracks and the changes
in the sample deformation field (Figure 19-b).
Os LVDTs foram testados em algumas posições
para verificar quais deformações seriam mais relevantes nos espécimes. Desta forma, para os ensaios de tensão em placas de TRC, dois LVDTs foram utilizados: um em cada lateral da amostra.
E, para o ensaio de aderência, um LVDT foi fixado
no dorso da amostra, para obter a deformação
do compósito, ou placa de TRC, como mostra a
Figura 18-a; e o outro teve sua parte inferior colada no bloco de alvenaria e sua parte superior
no compósito (Figura 18-b).
As análises de Correlação Digital de Imagens são
realizadas em programas computacionais específicos. Os resultados produzem imagens como as
apresentadas na Figura 19. Elas mostram claramente o aparecimento da primeira fissura e seu
campo de deformações (Figura 19-a); e o aparecimento de outras fissuras e as alterações nos
campos de deformações da amostra (Figura 19b).
(a)
(b)
Figure 18: Position of LVDTs on specimens for bond tests: side of TRC-masonry block (a) and back of TRC (b). / Figura 18: Posição dos LVDTs no corpos de provas para o ensaio de aderência: lateral do TRC e do bloco de alvenaria (a) e nas
costas do TRC (b).
24
TECHNICAL REPORT
RELATÓRIO TÉCNICO
DIC
CDI
By this technique, one can analyze various parameters of structural analysis. In Figure 19, we
note the evolution of the cracks, with the fields
of deformation occurring during opening of a
crack.
Por esta técnica, pode-se analisar diversos parâmetros da análise estrutural. Na Figura 19, notase a evolução das fissuras, com os campos de deformações que ocorrem durante a abertura da
fissura.
(a)
(b)
Figure 19: Tension test results of TRC samples: type A (a) and type B (b); images showing cracks on samples (c, d). / Figura 19: Resultados de ensaios de tensão das amostras de TRC: tipo A (a) e tipo B (b); imagens mostrando fissuras nas amostras (c, d).
Compression test
Ensaio de compressão
The graph of Figure 20 shows the results of
compression tests on mortar used as a cement
based on the TRC. The wide dispersion is due to
random choice between samples of three
batches. Rising average compression at 28 days
may be related to the beginning of the most
pozzolanic activity period of silica fume.
O gráfico da Figura 20 apresenta os resultados
dos ensaios de compressão em argamassa usada
como matriz cimentícia no TRC. A grande dispersão se deve a escolha aleatória entre amostras
constituídas por três bateladas. A elevação da
compressão média aos 28 dias pode estar relacionada ao início do período de maior atividade
pozolânica da sílica ativa.
25
TECHNICAL REPORT
RELATÓRIO TÉCNICO
500
7000
6000
400
5000
300
4000
1 day / 1 dia
3000
kgf/cm²
Compression strenght (lbf/in²)
Resist. à compressão (libras/pol²)
8000
200
7 days / 7 dias
2000
14 days / 14 dias
100
28 days / 28 dias
1000
Mean values/Valores médios
0
0
0
5
10
15
20
25
30
days / dias
Figure 20: Compression test results of mortar samples. / Figura 20: Resultados de ensaios de compressão das amostras de
argamassa.
7. Conclusions / Conclusões
The use of textile fiber results in noticeable improvement in possible repairs of cracked surfaces. This is a fact. However, methods of testing and analysis of materials used have yet to
be improved, it can be noted that the adhesion
of the matrix in the masonry block has modified
the aspect of cracking of the composite, reducing the amount of cracking.
O uso de fibras têxteis resulta em notória melhoria em eventuais reparos de superfícies fissuradas. Isto é fato. No entanto, os métodos de ensaios e de análises dos materiais utilizados ainda
têm que ser melhorados, pois pode-se notar que
a aderência da matriz no bloco de alvenaria modificou o aspecto da fissuração do compósito, reduzindo a quantidade de fissuras.
In this sense, the main conclusion is that it new
methodologies and testing procedures was developed during the study period at ASU, but
should be improved and adjusted for materials
studies applicable in concrete structures of
dams.
Neste sentido, a principal conclusão é que novas
metodologias e procedimentos de ensaios foram
desenvolvidas durante o período de estudos na
ASU, mas que deverão ser melhoradas e ajustadas para estudos de materiais aplicáveis em estruturas de concreto de barragens.
26
TECHNICAL REPORT
RELATÓRIO TÉCNICO
8. Upcoming steps / Próximos passos
Next steps include, mainly, the preparation and
publication of scientific papers and additional
researches.
Os próximos passos incluem, principalmente, a
preparação e publicação de artigos científicos e
pesquisas adicionais.
Specimens type B with 4 layers of ARG Textile
instead of two layers, titled type "C", were
tested in the Fatigue tests. The analyzes have
not yet been completed and the results of these
tests were not included in this report. They will
be dealt with directly in technical papers.
Espécimes tipo B com 4 camadas de fibra têxtil
ARG ao invés de 2 camadas, intitulados tipo “C”,
foram testados nos ensaios de Fadiga. As análises
ainda não foram concluídas e os resultados destes ensaios não constam deste relatório. Eles serão tratados diretamente em artigos técnicos e
científicos.
9. Acknowledgements / Agradecimentos
Author would like to thank Technological Park
of Itaipu, Arizona State University, Eletrobras
and Itaipu Binacional for supporting this research; and also to thank Vikram Dey, Yiming
Yao, Xinmeng Wang, Jacob Bauchmoyer,
Brenno Martins and Anna Flávia Dias for attention, help and friendship.
O autor gostaria de agradecer ao Parque Tecnológico da Itaipu, à Universidade Estadual do Arizona, à Eletrobras e à Itaipu Binacional por
apoiar esta investigação; e também de agradecer Vikram Dey, Yiming Yao, Xinmeng Wang, Jacob Bauchmoyer, Brenno Martins e Anna Flávia
Dias pela atenção, ajuda e amizade.
Brazil, Foz do Iguaçu, PR, 10/30/2015.
Brazil, Foz do Iguaçu, PR, 30 de outubro de 2015.
_______________________________
Étore Funchal de Faria
Civil Engineer, D.Sc.
27
TECHNICAL REPORT
RELATÓRIO TÉCNICO
References / Referências
[1]
AASHTO Specification, Standard Practice for Estimating The Cracking Tendency of Concrete,
AASTHO Designation: PP.34-99, 2005.
[2]
ACI Committee 209, Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures, Building Code Requirements for Reinforced Concrete (ACI 209-92), 2002.
[3]
Alexandra Passuello, Giacomo Moriconi, Surendra P. Shah. Cracking behavior of concrete with
shrinkage reducing admixtures and PVA fibers, Cement & Concrete Composites 31 (2009) 699–
704.
[4]
Alva Peled, Barzin Mobasher, Zvi Cohen, Mechanical properties of hybrid fabrics in pultruded
cement composites, Cement and Concrete Composites, Volume 31, Issue 9, October 2009, Pages
647-657,
ISSN
0958-9465,
http://dx.doi.org/10.1016/j.cemconcomp.2009.06.002.
(http://www.sciencedirect.com/science/article/pii/S0958946509001036) Keywords: Cement composites; Hybrid; Fabric; Tension; Textile; Pultrusion.
[5]
Alva Peled, Sachiko Sueki, Barzin Mobasher, Bonding in fabric–cement systems: Effects of fabrication methods, Cement and Concrete Research, Volume 36, Issue 9, September 2006, Pages
1661-1671,
ISSN
0008-8846,
http://dx.doi.org/10.1016/j.cemconres.2006.05.009.
(http://www.sciencedirect.com/science/article/pii/S0008884606001359) Keywords: Processing; Pullout strength; Cement; Composite; Fabric.
[6]
Alva PELED and Barzin MOBASHER, THE PULTRUSION TECHNOLOGY FOR THE PRODUCTION
OF FABRIC-CEMENT COMPOSITES, In Brittle Matrix Composites 7, edited by A.M. BRANDT, V.C.
LI and I.H. MARSHALL, Woodhead Publishing, 2003, Pages 505-514, ISBN 9781855737693,
http://dx.doi.org/10.1533/9780857093103.505.
(http://www.sciencedirect.com/science/article/pii/B9781855737693500551)
[7]
American Concrete Institute. Building code requirements for structural concrete and commentary (ACI-318-05), ACI Committee 318. 2005. p. 430.
[8]
ASTM C 1157. Standard performance specification for hydraulic cement; 2008.
[9]
ASTM C 1581-09. Standard test method for determining age at cracking and induced tensile
stress characteristics of mortar and concrete under restrained shrinkage; 2009.
[10]
ASTM C 157/C 157M – 06. Standard test method for length change of hardened hydraulic-cement mortar and concrete.
[11]
Balaguru, P., and Shah, S.P., Fiber Reinforced Cement Composites, McGraw Hill, New York, 1992.
[12]
Bandyopadhyay A, De Sarkar M and Bhowmick A. Structureproperty relationship in sol-gel derived polymer/silica hybrid nanocomposites prepared at various pH. Journal of Materials Research. 2006; 41:5981-5993.
[13]
Bandyopadhyay A, De Sarkar M and Bhowmick A. Poly (vinyl alcohol)/silica hybrid nanocomposites by sol-gel technique: Synthesis and properties. Journal of Materials Science. 2005;
40:5233-5241. http://dx.doi.org/10.1007/s10853-005-4417-y
[14]
Banthia N, Yan C, Mindess S. Restrained shrinkage cracking in fiber reinforced concrete: a novel
test technique. Cem Concr Res 1996;26(1):p. 9–14.
i
TECHNICAL REPORT
RELATÓRIO TÉCNICO
[15]
Bazant, Z. P.; and Panula, L., Practical Prediction of Time-Dependent Deformation of Concrete.
Part 1: Shrinkage. Part2: Creep, Materiaux et Construction, Vol. 11, No. 65, Sept.-Oct. 1978, pp.
307-328.
[16]
Barzin Mobasher, Jitendra Pahilajani, Alva Peled, Analytical simulation of tensile response of
fabric reinforced cement based composites, Cement and Concrete Composites, Volume 28, Issue
1, January 2006, Pages 77-89, ISSN 0958-9465, http://dx.doi.org/10.1016/j.cemconcomp.2005.06.007.
(http://www.sciencedirect.com/science/article/pii/S0958946505000818) Keywords: Fabric reinforced composites; Cement composites;
Laminated composites; Pultrusion; Fibers; Fabrics; Toughness; Strength; Microcracking;
Toughening; Damage mechanics; Stress–strain; Alkali resistant glass fibers; Polypropylene
fabrics.
[17]
Barzin Mobasher, Jitendra Pahilajani, Alva Peled, Analytical simulation of tensile response of
fabric reinforced cement based composites, Cement & Concrete Composites 28 (2006) 77–89.
[18]
Bentur, A., and Mindess, S., Fiber Reinforced Cementitious Composites, Elsevier Applied Science,
London, UK, 1990.
[19]
Betterman LR, Ouyang C, Shah SP. Fiber-matrix interaction in microfiberreinforced mortar. Adv
Cem Based Mater 1995;2:p. 53–61.
[20]
Brandt, A., Li, V.C., and Marshall, I.H., Editors, Brittle Matrix Composites 6, BMC-6, Woodhead
Publishing Limited, Cambridge and Warsaw, October 2000.
[21]
Brooks JJ, Jiang X. The influence of chemical admixtures on Restrained Drying Shrinkage of Concrete. ACI SP-173 – chemical admixtures. 1994:p. 249–265.
[22]
Cerveau G, Corriu R and Lepeytre C. Organic-inorganic hybrid silica. Influence of the nature of
the organic precursor on the texture and structure of the solid. Journal of Organometallic Chemistry. 1997; 548:99-103. http://dx.doi.org/10.1016/S0022-328X(97)00257-X
[23]
Cheng Yu Li, Barzin Mobasher, Finite Element Simulations of Fiber Pullout Toughening in Fiber
Reinforced Cement Based Composites, Advanced Cement Based Materials, Volume 7, Issues 3–
4, April–May 1998, Pages 123-132, ISSN 1065-7355, http://dx.doi.org/10.1016/S10657355(97)00087-4.
(http://www.sciencedirect.com/science/article/pii/S1065735597000874) Keywords: Brittle matrix composites; Closing pressure; Composite materials; Fiber pullout; Fiber reinforced concrete; Finite element method; Fracture;
Interfacial properties; J-integral; Steel fibers; Strength; Toughening; Toughness.
[24]
Chevalier P, Corriu R, Moreau J and Man MWC. Chemistry of hybrid organic-inorganic: Access to
silica materials through chemical selectivity. Journal of Sol-Gel Science and Technology. 1997,
8:603-607. http://dx.doi.org/10.1007/BF02436908
[25]
Chote Soranakom, Barzin Mobasher, Correlation of tensile and flexural responses of strain softening and strain hardening cement composites, Cement and Concrete Composites, Volume 30,
Issue 6, July 2008, Pages 465-477, ISSN 0958-9465, http://dx.doi.org/10.1016/j.cemconcomp.2008.01.007.
(http://www.sciencedirect.com/science/article/pii/S0958946508000152) Keywords: Fiber reinforced concrete; Uniaxial tension test;
Bending test; Flexural behavior; Moment–curvature response.
[26]
Chote Soranakom, Barzin Mobasher and Saurabh Bansal, Effect of Material Non-Linearity on
the Flexural Response of Fiber Reinforced Concrete, In Brittle Matrix Composites 8, edited by
A.M. Brandt, V.C. Li and I.H. Marshall, Woodhead Publishing, 2006, Pages 85-98, ISBN
ii
TECHNICAL REPORT
RELATÓRIO TÉCNICO
9781845690311, http://dx.doi.org/10.1533/9780857093080.85. (http://www.sciencedirect.com/science/article/pii/B9781845690311500083)
[27]
Collepardi M. The New Concrete, prima edizione. Tintoretto 2006. p. 421.
[28]
Collepardi M. Il Nuovo calcestruzzo, terza edizione. Tintoretto 2003:p. 391.
[29]
David YL, Michael A, Richard JA, Vohden Junior D, Chen and David CM. Tailored nanofiber morphologies using modulated electrospinning for biomedical applications. Material Research Society Symposium Proceedings. 2003. 736:D3.8.1-D3.8.6.
[30]
Deju Zhu, Aditya Vaidya, Barzin Mobasher, Subramaniam D. Rajan, Finite element modeling of
ballistic impact on multi-layer Kevlar 49 fabrics, Composites Part B: Engineering, Volume 56,
January 2014, Pages 254-262, ISSN 1359-8368, http://dx.doi.org/10.1016/j.compositesb.2013.08.051.
(http://www.sciencedirect.com/science/article/pii/S1359836813004599) Keywords: A. Fabrics/textiles; B. Impact behavior; C. Finite element analysis (FEA).
[31]
Deju Zhu, Barzin Mobasher, Aditya Vaidya, Subramaniam D. Rajan, Mechanical behaviors of
Kevlar 49 fabric subjected to uniaxial, biaxial tension and in-plane large shear deformation,
Composites Science and Technology, Volume 74, 24 January 2013, Pages 121-130, ISSN 02663538,
http://dx.doi.org/10.1016/j.compscitech.2012.10.012.
(http://www.sciencedirect.com/science/article/pii/S0266353812003843) Keywords: A. Fabrics/textiles; B. Mechanical properties; B. Stress/strain curves; C. Deformation.
[32]
Deju Zhu, Barzin Mobasher, S.D. Rajan, Non-contacting strain measurement for cement-based
composites in dynamic tensile testing, Cement and Concrete Composites, Volume 34, Issue 2,
February 2012, Pages 147-155, ISSN 0958-9465, http://dx.doi.org/10.1016/j.cemconcomp.2011.09.011.
(http://www.sciencedirect.com/science/article/pii/S0958946511001685) Keywords: Dynamic tensile testing; Laser extensometer;
Phase-shift; Zero-crossing; Cement-based composites.
[33]
Deju Zhu, Alva Peled, Barzin Mobasher, Dynamic tensile testing of fabric–cement composites,
Construction and Building Materials, Volume 25, Issue 1, January 2011, Pages 385-395, ISSN
0950-0618, http://dx.doi.org/10.1016/j.conbuildmat.2010.06.014. (http://www.sciencedirect.com/science/article/pii/S0950061810002631) Keywords: Dynamic tensile tests; High
speed loading; Cement composites; Carbon; AR glass; Textile.
[34]
Deju Zhu, Chote Soranakom, Barzin Mobasher, S.D. Rajan, Experimental study and modeling of
single yarn pull-out behavior of kevlar® 49 fabric, Composites Part A: Applied Science and Manufacturing, Volume 42, Issue 7, July 2011, Pages 868-879, ISSN 1359-835X,
http://dx.doi.org/10.1016/j.compositesa.2011.03.017. (http://www.sciencedirect.com/science/article/pii/S1359835X1100087X) Keywords: A. Yarn; C. Analytical modelling; C. Finite
element analysis (FEA); D. Mechanical testing.
[35]
Deju Zhu, Mustafa Gencoglu, Barzin Mobasher, Low velocity flexural impact behavior of AR glass
fabric reinforced cement composites, Cement and Concrete Composites, Volume 31, Issue 6, July
2009,
Pages
379-387,
ISSN
0958-9465,
http://dx.doi.org/10.1016/j.cemconcomp.2009.04.011.
(http://www.sciencedirect.com/science/article/pii/S0958946509000699) Keywords: AR glass fabrics; Cement composite; Impact; Drop
height; Pultrusion process.
iii
TECHNICAL REPORT
RELATÓRIO TÉCNICO
[36]
Dimas Alan Strauss Rambo, Flávio de Andrade Silva, Romildo Dias Toledo Filho, Effect of steel
fiber hybridization on the fracture behavior of self-consolidating concretes, Cement and Concrete
Composites,
Available
online
12
March
2014,
ISSN
0958-9465,
http://dx.doi.org/10.1016/j.cemconcomp.2014.02.004. (http://www.sciencedirect.com/science/article/pii/S095894651400033X) Keywords: Hybrid reinforcement; Round panel test;
Cracking mechanisms; Steel fiber; Self-consolidating concrete; Rheology.
[37]
Dimas Alan Strauss Rambo, Flávio de Andrade Silva, Romildo Dias Toledo Filho, Mechanical
behavior of hybrid steel-fiber self-consolidating concrete: Materials and structural aspects, Materials & Design, Volume 54, February 2014, Pages 32-42, ISSN 0261-3069,
http://dx.doi.org/10.1016/j.matdes.2013.08.014.
(http://www.sciencedirect.com/science/article/pii/S0261306913007577) Keywords: Hybrid reinforcement; Round panel test;
Crack formation; Steel fiber; Self-consolidating concrete.
[38]
Ding B, Kim HY, Lee SC, Shao CC, Lee DD, Park SJ et al. Preparation and characterization of a
nanoscale PVA fibers aggregate produced by electro spinning method. Journal of Polymer Science
Part
B:
Polymer
Physics.
2002;
40
(13):1261-1268.
http://dx.doi.org/10.1002/polb.10191
[39]
Efrat Butnariu, Alva Peled and Barzin Mobasher, Impact Behavior of Fabric-Cement Based Composites, In Brittle Matrix Composites 8, edited by A.M. Brandt, V.C. Li and I.H. Marshall, Woodhead
Publishing,
2006,
Pages
293-302,
ISBN
9781845690311,
http://dx.doi.org/10.1533/9780857093080.293.
(http://www.sciencedirect.com/science/article/pii/B9781845690311500265)
[40]
Flávio de Andrade Silva, Barzin Mobasher, Chote Soranakom, Romildo Dias Toledo Filho, Effect
of fiber shape and morphology on interfacial bond and cracking behaviors of sisal fiber cement
based composites, Cement and Concrete Composites, Volume 33, Issue 8, September 2011,
Pages 814-823, ISSN 0958-9465, http://dx.doi.org/10.1016/j.cemconcomp.2011.05.003.
(http://www.sciencedirect.com/science/article/pii/S0958946511000849) Keywords: Natural fibers; Sisal; Pull-out; Interface; Cement based composites.
[41]
Flávio de Andrade Silva, Barzin Mobasher, Romildo Dias Toledo Filho, Fatigue behavior of sisal
fiber reinforced cement composites, Materials Science and Engineering: A, Volume 527, Issues
21–22,
20
August
2010,
Pages
5507-5513,
ISSN
0921-5093,
http://dx.doi.org/10.1016/j.msea.2010.05.007. (http://www.sciencedirect.com/science/article/pii/S0921509310005198) Keywords: Cement composites; Sisal fibres; Fatigue behavior; Microcracking; Stress–strain.
[42]
Flávio de Andrade Silva, Barzin Mobasher, Romildo Dias Toledo Filho, Cracking mechanisms in
durable sisal fiber reinforced cement composites, Cement and Concrete Composites, Volume 31,
Issue 10, November 2009, Pages 721-730, ISSN 0958-9465, http://dx.doi.org/10.1016/j.cemconcomp.2009.07.004.
(http://www.sciencedirect.com/science/article/pii/S095894650900122X) Keywords: Natural fiber; Cement composites; Crack formation;
Image analysis.
[43]
Flávio de Andrade Silva, Deju Zhu, Barzin Mobasher, Chote Soranakom, Romildo Dias Toledo
Filho, High speed tensile behavior of sisal fiber cement composites, Materials Science and Engineering: A, Volume 527, Issue 3, 15 January 2010, Pages 544-552, ISSN 0921-5093,
http://dx.doi.org/10.1016/j.msea.2009.08.013. (http://www.sciencedirect.com/science/article/pii/S0921509309009101) Keywords: Sisal fiber; High strain rate; Image analysis; Tensile strength; Strain capacity.
iv
TECHNICAL REPORT
RELATÓRIO TÉCNICO
[44]
Flávio de Andrade Silva, Romildo Dias Toledo Filho, João de Almeida Melo Filho, Eduardo de
Moraes Rego Fairbairn, Physical and mechanical properties of durable sisal fiber–cement composites, Construction and Building Materials, Volume 24, Issue 5, May 2010, Pages 777-785,
ISSN 0950-0618, http://dx.doi.org/10.1016/j.conbuildmat.2009.10.030. (http://www.sciencedirect.com/science/article/pii/S0950061809003675) Keywords: Sisal fibers; Physical
properties; Mechanical properties; Durability.
[45]
Flávio de Andrade Silva, Marko Butler, Viktor Mechtcherine, Deju Zhu, Barzin Mobasher, Strain
rate effect on the tensile behaviour of textile-reinforced concrete under static and dynamic loading, Materials Science and Engineering: A, Volume 528, Issue 3, 25 January 2011, Pages 17271734, ISSN 0921-5093, http://dx.doi.org/10.1016/j.msea.2010.11.014. (http://www.sciencedirect.com/science/article/pii/S0921509310013018) Keywords: TRC; Dynamic loading;
Strain rate; Microstructure; Fiber fracture morphology.
[46]
Flavio de Andrade Silva, Nikhilesh Chawla, Romildo Dias de Toledo Filho, An experimental investigation of the fatigue behavior of sisal fibers, Materials Science and Engineering: A, Volume
516,
Issues
1–2,
15
August
2009,
Pages
90-95,
ISSN
0921-5093,
http://dx.doi.org/10.1016/j.msea.2009.03.026. (http://www.sciencedirect.com/science/article/pii/S0921509309003505) Keywords: Natural fibers; Sisal; Fatigue; Fractography; SEM.
[47]
Flavio de Andrade Silva, Nikhilesh Chawla, Romildo Dias de Toledo Filho, Tensile behavior of
high performance natural (sisal) fibers, Composites Science and Technology, Volume 68, Issues
15–16,
December
2008,
Pages
3438-3443,
ISSN
0266-3538,
http://dx.doi.org/10.1016/j.compscitech.2008.10.001. (http://www.sciencedirect.com/science/article/pii/S0266353808003886) Keywords: A. Natural fibers; B. Mechanical properties; C. Probabilistic methods; D. Fractography; SEM.
[48]
Flávio de Andrade Silva, Barzin Mobasher and Romildo D. Toledo Filho, Tensile Fatigue Response of Sisal Fiber Reinforced Cement Composites, In Brittle Matrix Composites 9, edited by
A.M. Brandt and J. Olek, Woodhead Publishing, 2009, Pages 81-90, ISBN 9781845697754,
http://dx.doi.org/10.1533/9781845697754.81. (http://www.sciencedirect.com/science/article/pii/B9781845697754500099)
[49]
Flávio de Andrade Silva, Marko Butler, Simone Hempel, Romildo Dias Toledo Filho, Viktor
Mechtcherine, Effects of elevated temperatures on the interface properties of carbon textile-reinforced concrete, Cement and Concrete Composites, Volume 48, April 2014, Pages 26-34, ISSN
0958-9465, http://dx.doi.org/10.1016/j.cemconcomp.2014.01.007. (http://www.sciencedirect.com/science/article/pii/S0958946514000122) Keywords: Carbon fibre; Interface; Textile reinforced concrete; Pullout; Temperature.
[50]
Garcia S, Naaman AE, Pera J. Experimental investigation on the potential use of poly(vinyl alcohol) short fibers in fiber-reinforced cement-based composites. Mater Struct 1997;30(January–
February):p. 43–52.
[51]
Gettu R, Roncero J, Martin MA. Study of the behavior of concrete with shrinkage reducing admixtures subjected to long-term drying. ACI-Spec Publ Concr: Mater Sci Appl 2002;206:p. 157–166.
[52]
Grzybowski, M., and Shah, S.P.,A Model to Predict Cracking in Fiber Reinforced Concrete Due to
Restrained Shrinkage, ACI Material Journal, V. 87, 2, 1990, pp. 138-148.
[53]
Guo R, Ma X, Hu C and Jiang Z. Novel PVA-silica nanocomposite membrane for evaporative dehydration of ethylene glycol aqueous solution. Polymer. 2007; 48:2939-2945.
http://dx.doi.org/10.1016/j.polymer.2007.03.035
v
TECHNICAL REPORT
RELATÓRIO TÉCNICO
[54]
Hannant, D.J., Fiber Cements and Fiber Concretes, J. Wiley, 1978, 215 pp.
[55]
Hossain AB, Weiss J. Assessing residual stress development and stress relaxation in restrained
concrete ring specimens. Cem Concr Compos 2004;26:p. 531–540.
[56]
Huang Z-M, Zhang Y-Z, Kotaki M and Ramakrishna S. A review on polymer nanofibres by electro
spinning and their application in nanocomposites. Composites Science and Technology. 2003;
63:2223-2253. http://dx.doi.org/10.1016/S0266-3538(03)00178-7
[57]
ITAIPU BINACIONAL, Barragem Lateral Direita – Especificação para os Ensaios de Injeção das
Fissuras no Concreto, Relatório nº 4004.20.0003.P-R0A, 1980.
[58]
ITAIPU BINACIONAL, Right Wing Dam and Main Dam – Report on Cracks in Buttress Blocks –
Remedial and Preventive Measures, Report nº 4004.50.0001.I-R0C, 1981.
[59]
ITAIPU BINACIONAL, Detalhes do Procedimento de Injeção de Epóxi em Certas Fissuras nas Estruturas de Concreto da Usina Hidrelétrica de Itaipu, Relatório nº 4004.20.0004.P-R0, 1981.
[60]
ITAIPU BINACIONAL, Projeto Itaipu – Blocos de Contrafortes – Trechos D, E e I – Avaliação da
Situação das Fissuras, Relatório nº 4000.50.0003.P-R0A, 1988.
[61]
ITAIPU BINACIONAL, Estruturas de Concreto – Resumo dos Mapeamentos de Fissuras – Trechos
“D”, “E”, “F” e “I” – Volume I, Relatório nº 4004.50.0007.P-R0B, 1995.
[62]
ITAIPU BINACIONAL, Estruturas de Concreto – Resumo dos Mapeamentos de Fissuras – Trechos
“D”, “E”, “F” e “I” – Volume II – Banco de Dados de Fissuras – Relatório Geral, Relatório nº
4004.50.0007.P-R0B, 1995.
[63]
ITAIPU BINACIONAL, Estruturas de Concreto – Resumo dos Mapeamentos de Fissuras – Trechos
“D”, “E”, “F” e “I” – Volume III – Desenhos dos Mapeamentos, Relatório nº 4004.50.0007.P-R0B,
1995.
[64]
ITAIPU BINACIONAL, Projeto Itaipu – Proposta de Reavaliação dos Critérios para Acompanhamento de Fissuras nos Blocos de Concreto, Relatório nº 4004.50.0008.P-R0A, 1995.
[65]
ITAIPU BINACIONAL, Mapeamento de Fissuras no Paramento de Montante dos Blocos de Concreto, Relatório nº 4004.50.0260.P-R0, 1995.
[66]
João de Almeida Melo Filho, Flávio de Andrade Silva, Romildo Dias Toledo Filho, Degradation
kinetics and aging mechanisms on sisal fiber cement composite systems, Cement and Concrete
Composites,
Volume
40,
July
2013,
Pages
30-39,
ISSN
0958-9465,
http://dx.doi.org/10.1016/j.cemconcomp.2013.04.003. (http://www.sciencedirect.com/science/article/pii/S0958946513000504) Keywords: Durability; Natural fibers; Cementitious
composites.
[67]
Jodilson Amorim Carneiro, Paulo Roberto Lopes Lima, Mônica Batista Leite, Romildo Dias Toledo Filho, Compressive stress–strain behavior of steel fiber reinforced-recycled aggregate concrete, Cement and Concrete Composites, Volume 46, February 2014, Pages 65-72, ISSN 09589465,
http://dx.doi.org/10.1016/j.cemconcomp.2013.11.006.
(http://www.sciencedirect.com/science/article/pii/S0958946513001911) Keywords: Stress–strain behavior; Steel
fiber concrete; Construction and demolition waste (CDW); Recycled concrete.
[68]
Josep Claramunt, Mònica Ardanuy, José Antonio García-Hortal, Romildo Dias Tolêdo Filho, The
hornification of vegetable fibers to improve the durability of cement mortar composites, Cement
and Concrete Composites, Volume 33, Issue 5, May 2011, Pages 586-595, ISSN 0958-9465,
vi
TECHNICAL REPORT
RELATÓRIO TÉCNICO
http://dx.doi.org/10.1016/j.cemconcomp.2011.03.003. (http://www.sciencedirect.com/science/article/pii/S0958946511000394) Keywords: Cement mortar composites; Vegetable fibers; Durability; Hornification; Mechanical properties; Softwood pulps; Cotton linters.
[69]
Karihaloo, B.L., and Wang, J., Micromechanical Modeling and Strain Hardening and Tensile Softening in Cementitious Composites, Journal of Computational Mechanics, Vol. 19, 1997, pp. 453462.
[70]
Kim B, Weiss J. Using acoustic emission to quantify damage in restrained fiber reinforced cement
mortars. Cem Concr Res 2003;33(2):p. 207–214.
[71]
Koji N, Tomonora Y, Kenji I and Fumio S. Properties and structure of poly (vinyl alcohol)/silica
composites.
Journal
of
Applied
Polymer
Science.
1999;
74:133-138.
http://dx.doi.org/10.1002/(SICI)1097-4628(19991003)74:1<133::AID‑A PP16>3.0.CO;2-N
[72]
Koski A, Yim K and Shivkumar S. Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters. 2003, 58(3-4):493-497. http://dx.doi.org/10.1016/S0167577X(03)00532-9
[73]
Kotoky T and Dolui SK. Synthesis and characterisation of polyvinyl alcohol /silica hybrid composites derived through the sol-gel method in aqueous medium: effect of acid content, silica content and viscosity of PVA on the dispersion characteristics of silica and the physical properties of
the composites. Journal of Sol-Gel Science and Technology. 2004; 29(2):107-114.
http://dx.doi.org/10.1023/B:JSST.0000023011.15323.45
[74]
Kwon SH, Ferron RP, Akkaya Y, Shah SP. Cracking of fiber-reinforced selfcompacting concrete
due to restrained shrinkage. Int J Concr Struct Mater 2007;1(1):p. 3–9.
[75]
K. Sasipriya, R. Suriyaprabha, P. Prabu, V. Rajendran, Synthesis and Characterization of Polymeric Nanofibers Poly (vinyl alcohol) and Poly (vinyl alcohol)/Silica Using Indigenous Electrospinning Set Up, Materials Research. 2013; 16(4): 824-830.
[76]
Levine M, Ikka G and Weiss P. Relation of the critical surface tension of polymers to adhesion.
Journal of Polymer Science Part B: Polymer Physics. 1964; 2(9):915-919.
http://dx.doi.org/10.1002/pol.1964.110020918
[77]
Mane, S. A., Desai, T. K., Kingsbury, D., and Mobasher, B., Modeling of Restrained Shrinkage
Cracking in Concrete Materials, SP-206, pp. 219-242.
[78]
Maria Ernestina Alves Fidelis, Thatiana Vitorino Castro Pereira, Otávio da Fonseca Martins
Gomes, Flávio de Andrade Silva, Romildo Dias Toledo Filho, The effect of fiber morphology on
the tensile strength of natural fibers, Journal of Materials Research and Technology, Volume 2,
Issue
2,
April–June
2013,
Pages
149-157,
ISSN
2238-7854,
http://dx.doi.org/10.1016/j.jmrt.2013.02.003. (http://www.sciencedirect.com/science/article/pii/S2238785413000306) Keywords: Natural fibers; Mechanical properties; Morphology;
Statistical analysis; Scanning electron microscopy.
[79]
Maria Rita Pires de Carvalho, Eduardo de Moraes Rego Fairbairn, Romildo Dias Toledo Filho,
Guilherme Chagas Cordeiro, Nicole Pagan Hasparyk, Influence of steel fibers on the development
of alkali-aggregate reaction, Cement and Concrete Research, Volume 40, Issue 4, April 2010,
Pages 598-604, ISSN 0008-8846, http://dx.doi.org/10.1016/j.cemconres.2009.11.007.
(http://www.sciencedirect.com/science/article/pii/S000888460900338X) Keywords: Alkali-aggregate reaction (C); Fiber reinforcement (E); Mortar (E); AAR accelerated test.
vii
TECHNICAL REPORT
RELATÓRIO TÉCNICO
[80]
Maria S. Peresin, Youssef Habibi, Justin O. Zoppe, Joel J. Pawlak, and Orlando J. Rojas, Nanofiber
Composites of Polyvinyl Alcohol and Cellulose Nanocrystals: Manufacture and Characterization,
Biomacromolecules, 11, 674–681, 2010.
[81]
Menashi D. Cohen, Barzin Mobasher, Effects of sulfate and expansive clinker contents on expansion time of expansive-cement paste, Cement and Concrete Research, Volume 21, Issue 1, January 1991, Pages 147-157, ISSN 0008-8846,
http://dx.doi.org/10.1016/00088846(91)90041-F.
(http://www.sciencedirect.com/science/article/pii/000888469190041F)
[82]
Mobasher, B., Ferraris, C., “Simulation of Expansion in Cement Based Materials Subjected to
External Sulfate Attack,” RILEM International Symposium: Advances in Concrete through Sci‑
ence and Engineering, March 2004, comp. Weiss, Jason, and Shah, Surendra P. (on CD).
[83]
Moon JH, Rajabipour F, Weiss J. Incorporating moisture diffusion in the analysis of the restrained
ring test. In: Oh BH, et al., editors. Concrete under Severe Conditions: Environment & Loading,
CONSEC’04, Seoul Korea; 2004. p. 12-34.
[84]
Moon JH, Weiss J. Estimating residual stress in the restrained ring test under circumferential
drying. Cem Concr Compos 2006;28:p. 486–496.
[85]
Muller HS. New prediction models for creep and shrinkage of concrete ACI SP 135-1. Am Concr
Inst Detroit 1994:p. 1–19.
[86]
Naaman, A.E. and Jeong, S.M., Structural Ductility of Beams Prestressed with FRP Tendons. Proceedings 2nd International Symposium on Non-Metallic (FRP) Reinforcement for Concrete
Structures, L. Taerwe, Editor, Ghent, Belgium, August 1995; RILEM Proceedings 29, E & FN
Spon, London, pp. 379-386.
[87]
Naaman, A.E., and Reinhardt, H.W., Co-Editors, High Performance Fiber Reinforced Cement
Composites: HPFRCC 2, RILEM, No. 31, E. & FN Spon, London, 1996, 505 pages.
[88]
Naaman, A.E., and Reinhardt, H.W., Characterization of High Performance Fiber Reinfoced Cement Composites, in "High Performance Fiber Reinforced Cement Composites – HPFRCC 2,”
A.E. Naaman and F.W. Reinhardt, Editors, RILEM Pb. 31, E. and FN Spon, England, 1996; pp. 124.
[89]
Naaman, A.E., Fiber Reinforcement for Concrete: Looking Back, Looking Ahead, in Proceedings
of Fifth RILEM Symposium on Fiber Reinforced Concretes (FRC), BEFIB' 2000, Edited by P.
Rossi and G. Chanvillard, September 2000, Rilem Publications, S.A.R.L., Cachan, France, pp. 6586.
[90]
Naaman, A.E., Toughness, Ductility, Surface Energy and Deflection-Hardening FRC Composites,
in Proceedings of the JCI Workshop on Ductile Fiber Reinforced Cementitious Composites
(DFRCC) – Application and Evaluation, Japan Concrete Institute, Tokyo, Japan, October 2002,
pp. 33-57.
[91]
Naaman, A.E., and Reinhardt, H.W., Co-Editors, High Performance Fiber Reinforced Cement
Composites -HPFRCC 4, RILEM Proc., PRO 30, RILEM Pbs., S.A.R.L., Cachan, France, June 2003;
546 pages.
[92]
Naaman, A.E., Fiber Reinforced Concrete: State of Progress at the Edge of the New Millennium,
in Proceedings of International Conference on Concrete Engineering and Technology, Institute
of Engineersm Malysia, Kuala Lumpur, Malaysia, May 2006, 29 pages.
viii
TECHNICAL REPORT
RELATÓRIO TÉCNICO
[93]
Naaman, A.E., Engineered Steel Fibers with Optimal Properties for Reinforcement of Cement
Composites, Journal of Advanced Concrete Technology, Japan Concrete Institute, Vol. 1, No. 3,
November 2003, pp. 241 252.
[94]
Naaman, A.E., and Reinhardt, H.W., Proposed Classification of FRC Composites Based on their
Tensile Response, Materials and Structures, Vol. 39, page 547-555, 2006. Also, Proceeding of
symposium honoring S. Mindess, N. Banthia, Editor, University of British Columbia, Canada,
August 2005. Electronic proceedings, 13 pages.
[95]
Naaman, A.E., V. Likhitruangsilp, and G. Parra-Montesinos, Punching Shear Response of High
Performance Fiber Reinforced Cementitious Composite Slabs, ACI Structural Journal, Vol. 104,
No. 2, March-April 2007, pp. 170-179.
[96]
Naaman, A.E., Chapter 3, in print. High Performance Fiber Reinforced Cement Composites, in
High Performance Construction Materials – Science and Applications, Edited by Caijun and Y.L.
Mo, in print, World Scientific Publishing Co. Pte. Ltd, 2007, 68 pages.
[97]
Naaman, A.E., Deflection Softening and Deflection Hardening FRC Composites: Characterization
and Modeling, in ACI special publication Deflection and Stiffness Issues in FRC and Thin Structural Elements, to be presented at ACI Convention in Puerto Rico, October 2007, 18 pages.
[98]
Ouyang Chengsheng, Mobasher Barzin, Shah Surendra P., An r-curve approach for fracture of
quasi-brittle materials, Engineering Fracture Mechanics, Volume 37, Issue 4, 1990, Pages 901913, ISSN 0013-7944, http://dx.doi.org/10.1016/0013-7944(90)90087-W. (http://www.sciencedirect.com/science/article/pii/001379449090087W)
[99]
Park, S.Y., and Naaman, A.E., Shear Behavior of Concrete Beams Prestressed with FRP Tendons,
PCI Journal, Vol. 44, No. 1, Jan.-Feb. 1999, pp 74-85.
[100] Parra-Montesinos, G., High Performance Fiber Reinforced Cement Composites: an Alternative for
Seismic Design of Structures, ACI Structural Journal, Vol. 102, No. 5, Sept.-Oct. 2005, pp. 668675.
[101] Parra-Montesinos, G., Proposed addition to ACI Code 318-05 on shear design provisions for fiber
reinforced concrete members, personal communication, March 2006.
[102] Peng Z and Kong LX. Morphology of self assembled polyvinyl alcohol/silica nanocomposites studied with atomic force microscopy. Polymer Bulletin. 2007; 59:207-216.
http://dx.doi.org/10.1007/s00289-007-0756-y
[103] Peng Z, Kong LX and Li SD. Non-isothermal crystallization kinetics of self- assembled polyvinyl
alcohol
/silica
nanocomposite.
Polymer.
2005;
46(6):1949-1955.
http://dx.doi.org/10.1016/j.polymer.2004.12.026
[104] Radlinska A, Moon JH, Rajabipour F, Weiss J. The ring test: a review of recent developments volume changes of hardening concrete. Lyngby, Denmark; 2006:p. 20–23.
[105] Ravindra Gettu, Barzin Mobasher, Sergio Carmona, Daniel C. Jansen, Testing of concrete under
closed-loop control, Advanced Cement Based Materials, Volume 3, Issue 2, March 1996, Pages
54-71, ISSN 1065-7355, http://dx.doi.org/10.1016/S1065-7355(96)90072-3.
(http://www.sciencedirect.com/science/article/pii/S1065735596900723) Keywords: Concrete; Control systems; Failure; Servocontrol; Strain softening; Testing.
[106] Reinhardt, H.W., and Naaman, A.E., Editors, High Performance Fiber Reinforced Cement Composites, RILEM, Vol. 15, E. & FN Spon, London, 1992, 565 pages.
ix
TECHNICAL REPORT
RELATÓRIO TÉCNICO
[107] RILEM Committee on Fracture Mechanics of Concrete – Test Methods. Determination of the
fracture parameters (KIC and CTODc) of plain concrete using three-point bend tests. Mater
Struct 1990;23(6):457–60.
[108] Romildo Dias Toledo Filho, Flávio de Andrade Silva, E.M.R. Fairbairn, João de Almeida Melo
Filho, Durability of compression molded sisal fiber reinforced mortar laminates, Construction
and Building Materials, Volume 23, Issue 6, June 2009, Pages 2409-2420, ISSN 0950-0618,
http://dx.doi.org/10.1016/j.conbuildmat.2008.10.012. (http://www.sciencedirect.com/science/article/pii/S0950061808003231) Keywords: Durability; Cement; Sisal fiber; Laminates;
Mortar; Metakaolin; Calcined clay brick.
[109] Roy, D. M. (1999), “Alkali-activated cements: opportunities and challenges,” Cement and Concrete Research, 29, 249–254.
[110] Shah SP, Ouyang C, Marikunte S, Yang W, Giraudon EB. A method to predict shrinkage cracking
of concrete. ACI Mater J 1998;95(4):p. 339–346.
[111] Shah SP, Weiss WJ, Yang W. Shrinkage cracking – can it be prevented? Concr Int 1998;20(4):51–
5.
[112] Shah SP, Karaguler ME, Sarigaphuti M. Effects of shrinkage reducing admixtures on restrained
shrinkage cracking in concretes. ACI Mater J 1992;89(3):p. 288–290.
[113] Shao C, Kim HY, Gong J, Ding B, Lee D-R and Park S-J. Fibermats of poly (vinyl alcohol) /silica
composite
via
electrospinning.
Materials
Letters.
2003;
57:1579-1584.
http://dx.doi.org/10.1016/S0167-577X(02)01036-4
[114] Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A et al. Processing and structure
relationships in electrospinning of ceramic fiber systems. Journal of American Ceramic Society.
2006; 89(2):395-407. http://dx.doi.org/10.1111/j.1551-2916.2005.00807.x
[115] Simon P, Ulrich R, Spiess H and Wiesner U. Block, Copolymerceramic hybrid materials from organically modified ceramic precursors. Chemistry of Materials. 2001; 13:3464-3486.
http://dx.doi.org/10.1021/cm0110674
[116] Soranakom, C., Bakhshi M. , and Mobasher, B. Role of Alkali Resistant Glass Fibers in Suppression
of Restrained Shrinkage Cracking of Concrete Materials, 15th International Glass Fibre Reinforced Concrete Association Congress, GRC 2008, CD-Proceedings, Prague, April 20-23, 2008.
[117] Sun W, Chen H, Luo X, Qian H. The effect of hybrid fibers and expansive agent on the shrinkage
and permeability of high-performance concrete. Cem Concr Res 2001;31:p. 595–601.
[118] Supaphol P and Chuangchote S. On: The electrospinning of poly (vinyl alcohol) nanofiber mats:
a
revisit.
Journal
of
Applied
Polymer
Science.
2008;
108(2):969-978.
http://dx.doi.org/10.1002/app.27664
[119] Tejal DESAI, Rimpal SHAH, Alva PELED and Barzin MOBASHER, Mechanical Properties of Concrete Reinforced with AR-Glass Fibers, In Brittle Matrix Composites 7, edited by A.M. BRANDT,
V.C. LI and I.H. MARSHALL, Woodhead Publishing, 2003, Pages 223-232, ISBN
9781855737693, http://dx.doi.org/10.1533/9780857093103.223. (http://www.sciencedirect.com/science/article/pii/B9781855737693500277)
[120] Teo WE and Ramakrishna S. A review on electrospinning design and nanofibre assemblies. Nanotechnology. 2006; 17:R89-106. PMid:19661572. http://dx.doi.org/10.1088/09574484/17/14/R01
x
TECHNICAL REPORT
RELATÓRIO TÉCNICO
[121] Tuma, J.J., Engineering Mathematics Handbook, McGraw-Hill, 1970.
[122] UNI_EN 197/1. Cemento – parte 1: composizione, specificazioni e criteri di conformità per cementi comuni; 2006.
[123] Viktor Mechtcherine, Flávio de Andrade Silva, Steffen Müller, Petr Jun, Romildo Dias Toledo
Filho, Coupled strain rate and temperature effects on the tensile behavior of strain-hardening
cement-based composites (SHCC) with PVA fibers, Cement and Concrete Research, Volume 42,
Issue
11,
November
2012,
Pages
1417-1427,
ISSN
0008-8846,
http://dx.doi.org/10.1016/j.cemconres.2012.08.011. (http://www.sciencedirect.com/science/article/pii/S0008884612001895) Keywords: B. Microstructure; B. SEM; C. Tensile
Properties; E. Fiber Reinforcement; Temperature effect.
[124] Voigt T., Bui V.K., Shah S.P. Drying shrinkage of concrete reinforced with fibers and welded-wire
fabric. ACI Mater J 2004;101(3):p. 233–241.
[125] W. Jason Weiss, Wei Yang, and S. P. Shah, Influence of Specimen Size/Geometry on Shrinkage
Cracking of Rings, ASCE. Journal of Engineering Mechanics, Vol. 126, No.1, 2000, pp. 93-101.
[126] Weiss J., Berke N. Admixtures for reduction of shrinkage and cracking, early age cracking in cementitious systems – state of the art report. Bentur A, in press. [chapter 7.5].
[127] Weiss W.J., Shah SP. Shrinkage cracking of restrained concrete slabs. J Eng Mech 1998; 124(7):p.
765–774.
[128] Zheng Z, Feldman D. Synthetic fibre-reinforced concrete. Prog Polym Sci 1995; 20:p. 185–210.
xi
TECHNICAL REPORT
RELATÓRIO TÉCNICO
APPENDIX A / APÊNDICE A
Project of Setup for F-M Bond test / Projeto de aparato para ensaio de aderência F-M
5"
2 holes of 1/2" diameter to
be made.
3/8"
3/8"
1 3/8"
1 3/8"
Base
5 1/2"
Part #1
3/4"
3/4"
7/8"
7/8"
3/16"
2"
1 1/8"
3/16"
2"
2"
Projection of Part #1.
2 holes of 9/16" diameter to be made.
1 5/8"
2 holes of 1/2" diameter to be made.
1
7/8"
Projection of Part #1.
Ø9/16"
8"
3/4"
3/4"
Ø9/16"
7/8"
3/4"
3/4"
1 1/2"
8"
Part #3
1 5/8"
3/16"
2"
Part #2
2 thread rods of 1/2" diameter
with 8 nuts and 4 washers to
joint Part #3 to Part #2.
Part #3: steel plate 1 1/2" x
1/4" x 8", with 2 holes of 9/16".
Projection
of Masonry
block.
Existing holes in Part #1 to set
Part #4, as shown in Assembly
"B".
Part #2: steel angle 2" x 3/16" x 8", fixed
on Part #1 (Base) with 2 sets of 1 bolt, 1
nut and 1 washer of 7/16".
Assembly "A"
I
TECHNICAL REPORT
RELATÓRIO TÉCNICO
APPENDIX A / APÊNDICE A
Project of Setup for F-M Bond test / Projeto de aparato para ensaio de aderência F-M
7/8"
7/8"
3/16"
2"
3/16"
1 5/8"
1 5/8"
2"
2"
2 holes of 9/16" diameter to be made.
Part #4
Part #4: steel angle 2" x 3/16" x 8".
2 bolts of # 1/2" with 2 nuts and 4
washers to joint Part #4 to Part #1.
Projection
of Masonry
block.
Projection of Part #2.
Part #4: steel plate 5 1/2" x 5" x 1/2",
with a nut welded on its bottom to be
setup on MTS press (Base).
Assembly "B"
1) Part #1: Make 2 holes 1/2";
2) Part #2: Make one angle 2" x 3/16" x 8" with 2 holes 1/2" and 2 holes 9/16";
3) Part #3: Make one plate 1 1/2" x 1/4" x 8" with 2 holes 9/16";
4) Part #4: Make an angle 2" x 3/16" x 8" with 2 holes 9/16";
5) See drawings for details;
6) Provided a thread rod 12" lenght to be cut in two halves (6"each) to be used
in Assembly "A";
7) Provided one flat steel bar 1 1/2" x 1/4" x 36" from which one steel plate
with 8" lenght will be cut (Part #3).
8) Provided one angle plain steel 2"x 3/16"x 36" from which two angles with 8"
lenght will be cut (Part #2 and Part #4);
9) Clean up pieces to remove all the rust and grease, if needed.
II
TECHNICAL REPORT
RELATÓRIO TÉCNICO
APPENDIX A / APÊNDICE A
Project of Setup for F-M Bond test / Projeto de aparato para ensaio de aderência F-M
Part #4
Part #3
Part #2
Part #1
Perspective
(no scale)
Contact:
Étore Funchal de Faria
Civil Engineer, D.Sc.
Phone: 480 249 2141
E-mail: [email protected] ; [email protected]
III
TECHNICAL REPORT
RELATÓRIO TÉCNICO
APPENDIX B / APÊNDICE B
Tables / Tabelas
Dates in tables are in U.S. format / As datas nas tabelas estão no formato Norte-americano.
Table 2: Measures of TRC samples for tension tests.
Tabela 2: Medidas das amostras de TRC para testes de tensão.
Mix
Mistura
Sample
Amostra
Length
Comprimento
(inches)
(pol.)
Width
Largura
(inches)
(pol.)
Thickness
Espessura
(inches)
(pol.)
Volume
Volume
(in³)
(pol.³)
Area
Área
(in²)
(pol.²)
Molding
date
Data de
moldagem
A
1
15
2.88
6.00
10.20
0.68
06-17-15
A
2
15
2.85
6.30
10.60
0.71
06-17-15
A
3
15
2.80
5.60
9.26
0.62
06-17-15
A
4
15
2.80
5.60
9.26
0.62
06-17-15
A
5
15
2.90
5.50
9.42
0.63
06-17-15
A
6
15
2.85
5.90
9.93
0.66
06-17-15
B
1
15
2.90
10.50
17.98
1.20
06-18-15
B
2
15
2.85
11.70
19.69
1.31
06-18-15
B
3
15
2.80
11.50
19.02
1.27
06-18-15
B
4
15
2.90
11.00
18.84
1.26
06-18-15
B
5
15
2.80
11.50
19.02
1.27
06-18-15
B
6
15
2.80
11.50
19.02
1.27
06-18-15
IV
TECHNICAL REPORT
RELATÓRIO TÉCNICO
APPENDIX B / APÊNDICE B
Table 3: Measures of samples for F-M Bond testing.
Tabela 3: Medidas das amostras para testes de aderência F-M.
Sample
Amostra
Molding Date
Data de
moldagem
Block
Mix
Mistura
TRC
B'
1
05-28-15
--
--
--
--
0.00
0.00
--
--
--
0.00
0.00
--
--
B'
2
05-28-15
12.00
3.90
0.46
5.50
21.53
1.79
8.00
3.90
2.25
70.20
8.78
--
--
B'
3
05-28-15
12.00
3.88
0.51
5.55
23.75
1.98
8.00
3.90
2.30
71.76
8.97
--
--
B'
4
05-28-15
12.13
3.83
0.46
5.53
21.36
1.76
8.00
3.80
2.28
69.16
8.65
--
--
B'
5
05-28-15
12.10
3.87
0.41
5.50
19.20
1.59
8.00
3.81
2.28
69.49
8.69
--
--
B'
6
05-28-15
12.25
3.84
0.46
5.50
21.64
1.77
8.00
3.84
2.27
69.73
8.72
--
--
A
7
06-22-15
15.00
2.87
0.27
7.50
11.62
0.77
8.00
3.88
2.25
69.75
8.72
--
--
A
8
06-22-15
10.31
2.91
0.28
2.88
8.40
0.81
8.00
3.92
2.26
70.87
8.86
--
--
A
9
06-22-15
13.31
2.85
0.27
5.88
10.05
0.76
8.00
3.88
2.26
70.15
8.77
--
--
A
10
06-22-15
12.31
2.81
0.28
5.00
9.69
0.79
8.00
3.91
2.26
70.69
8.84
--
--
A
11
06-22-15
9.50
2.86
0.27
2.00
7.34
0.77
8.00
3.93
2.31
72.63
9.08
--
--
A
12
06-22-15
11.38
2.88
0.28
3.88
9.01
0.79
8.00
3.89
2.27
70.64
8.83
--
--
B
7
06-24-15
13.00
2.95
0.51
5.35
19.56
1.50
8.00
3.97
2.31
73.37
9.17
--
--
B
8
06-24-15
12.92
2.94
0.47
5.45
17.85
1.38
8.00
3.95
2.35
74.17
9.27
--
--
B
9
06-24-15
12.85
2.94
0.48
5.40
18.13
1.41
8.00
3.95
2.29
72.36
9.05
--
--
B
10
06-24-15
12.90
2.88
0.47
5.40
17.43
1.35
8.00
3.95
2.28
72.05
9.01
--
--
B
11
06-24-15
13.00
2.86
0.46
5.45
17.10
1.32
8.00
3.93
2.28
71.68
8.96
--
--
B
12
06-24-15
12.91
2.85
0.49
5.35
18.03
1.40
8.00
4.95
2.29
90.68
11.34
--
--
L
(in)
(pol.)
W
(in)
(pol.)
e
(in)
(pol.)
a
(in)
(pol.)
Volume
(in³)
Volume
(pol.³)
Section
(in²)
Seção
(pol.²)
b
(in)
(pol.)
c
(in)
(pol.)
d
(in)
(pol.)
Volume
(in³)
Volume
(pol.³)
Section
(in²)
Seção
(pol.²)
f
(in)
(pol.)
g
(in)
(pol.)
I
TECHNICAL REPORT
RELATÓRIO TÉCNICO
APPENDIX B / APÊNDICE B
Table 3: Measures of samples for F-M Bond testing. (cont.)
Tabela 3: Medidas das amostras para testes de aderência F-M. (cont.)
Sample
Amostra
Molding Date
Data de
moldagem
Block
Mix
Mistura
TRC
A
13
07-06-15
12.88
2.80
0.23
5.56
8.29
0.64
8.00
3.88
2.25
69.84
8.73
2.44
2.13
A
14
07-06-15
12.88
2.80
0.25
5.50
9.01
0.70
8.00
3.88
2.25
69.84
8.73
2.50
2.13
A
15
07-06-15
13.00
2.85
0.25
5.63
9.26
0.71
8.00
3.88
2.25
69.84
8.73
2.38
2.00
A
16
07-06-15
12.88
2.90
0.25
5.50
9.33
0.73
8.06
3.94
2.25
71.43
8.86
2.50
1.88
A
17
07-06-15
12.75
2.93
0.25
5.50
9.34
0.73
8.00
3.94
2.25
70.88
8.86
2.44
1.88
A
18
07-06-15
12.75
2.89
0.25
5.56
9.21
0.72
8.00
3.88
2.25
69.84
8.73
2.44
2.00
B
13
07-07-15
12.63
2.86
0.40
5.50
14.44
1.14
8.00
3.88
2.31
71.78
8.97
2.50
2.00
B
14
07-07-15
12.63
2.90
0.46
5.50
16.84
1.33
8.00
3.88
2.25
69.84
8.73
2.50
2.00
B
15
07-07-15
12.50
2.83
0.48
5.50
16.98
1.36
8.00
3.88
2.25
69.84
8.73
2.50
2.00
B
16
07-07-15
12.50
2.81
0.45
5.50
15.81
1.26
8.00
3.88
2.25
69.84
8.73
2.50
2.00
B
17
07-07-15
12.50
2.93
0.45
5.50
16.48
1.32
8.00
3.88
2.25
69.84
8.73
2.50
2.00
B
18
07-07-15
12.56
2.83
0.45
5.44
16.00
1.27
8.00
3.88
2.25
69.84
8.73
2.50
2.00
A
19
07-08-15
12.63
2.90
0.23
5.44
8.42
0.67
8.00
3.88
2.25
69.75
8.72
2.44
2.00
A
20
07-08-15
12.63
2.80
0.25
5.44
8.84
0.70
8.00
3.88
2.25
69.75
8.72
2.50
2.13
A
21
07-08-15
12.50
2.92
0.24
5.38
8.76
0.70
8.00
3.94
2.25
70.88
8.86
2.56
2.56
A
22
07-08-15
12.69
2.91
0.22
5.50
8.12
0.64
8.00
4.00
2.25
72.00
9.00
2.50
2.00
A
23
07-08-15
12.75
2.82
0.23
5.50
8.27
0.65
8.00
3.88
2.25
69.75
8.72
2.50
2.00
A
24
07-08-15
12.75
2.85
0.24
5.50
8.72
0.68
8.00
3.88
2.25
69.75
8.72
2.50
2.00
L
(in)
(pol.)
W
(in)
(pol.)
e
(in)
(pol.)
a
(in)
(pol.)
Volume
(in³)
Volume
(pol.³)
Section
(in²)
Seção
(pol.²)
b
(in)
(pol.)
c
(in)
(pol.)
d
(in)
(pol.)
Volume
(in³)
Volume
(pol.³)
Section
(in²)
Seção
(pol.²)
f
(in)
(pol.)
g
(in)
(pol.)
II
TECHNICAL REPORT
RELATÓRIO TÉCNICO
APPENDIX B / APÊNDICE B
Table 3: Measures of samples for F-M Bond testing. (cont.)
Tabela 3: Medidas das amostras para testes de aderência F-M. (cont.)
Sample
Amostra
Molding Date
Data de
moldagem
Block
Mix
Mistura
TRC
B
19
07-09-15
12.63
2.82
0.41
5.50
14.60
1.16
8.00
4.00
2.25
72.00
9.00
2.50
2.00
B
20
07-09-15
12.56
2.94
0.43
5.44
15.88
1.26
8.00
4.00
2.25
72.00
9.00
2.50
2.00
B
21
07-09-15
12.63
2.86
0.43
5.50
15.53
1.23
8.00
4.00
2.25
72.00
9.00
2.50
2.00
B
22
07-09-15
12.63
2.83
0.47
5.50
16.79
1.33
8.00
4.00
2.25
72.00
9.00
2.50
2.00
B
23
07-09-15
12.63
2.90
0.45
5.50
16.48
1.31
8.00
4.00
2.25
72.00
9.00
2.50
2.00
B
24
07-09-15
12.50
2.82
0.42
5.50
14.81
1.18
8.00
3.88
2.25
69.75
8.72
2.50
2.00
AA
1
07-23-15
12.00
2.88
0.25
5.50
8.63
0.72
7.88
3.94
2.25
69.77
8.86
2.39
2.00
AA
2
07-23-15
12.00
2.75
0.25
5.50
8.25
0.69
8.00
3.69
2.25
66.38
8.30
2.56
2.00
AA
3
07-23-15
12.00
2.75
0.25
5.56
8.25
0.69
7.88
3.75
2.25
66.45
8.44
2.44
2.00
AA
4
07-23-15
12.00
2.88
0.25
5.63
8.63
0.72
7.88
3.88
2.19
66.75
8.48
2.31
2.00
AA
5
07-23-15
12.00
2.88
0.27
5.50
9.32
0.78
8.00
3.94
2.25
70.88
8.86
2.44
2.00
AA
6
07-23-15
12.00
2.94
0.26
5.56
9.17
0.76
7.88
3.88
2.25
68.66
8.72
2.31
2.00
L
(in)
(pol.)
W
(in)
(pol.)
e
(in)
(pol.)
a
(in)
(pol.)
Volume
(in³)
Volume
(pol.³)
Section
(in²)
Seção
(pol.²)
b
(in)
(pol.)
c
(in)
(pol.)
d
(in)
(pol.)
Volume
(in³)
Volume
(pol.³)
Section
(in²)
Seção
(pol.²)
f
(in)
(pol.)
g
(in)
(pol.)
III
TECHNICAL REPORT
RELATÓRIO TÉCNICO
APPENDIX B / APÊNDICE B
Sample
Amostra
Molding Date
Data de
Moldagem
Dimesions / Dimensões
Mix
Mistura
Testing age
Idade de ensaio
Table 4: Measures of samples for compressive strength testing.
Tabela 4: Medidas das amostras para testes de resistência à compressão.
M
1
07-29-15
2.0700
1.9935
1.9905
4.1265
4.1203
3.9681
8.2139
M
2
07-29-15
2.0000
2.0365
2.0100
4.0730
4.0200
4.0934
8.1867
M
3
07-29-15
2.0055
2.0175
2.0935
4.0461
4.1985
4.2236
8.4705
2.0050
1.9765
2.0070
3.9629
4.0240
3.9668
7.9535
1 day
1 dia
L1
(in)
(pol.)
L2
(in)
(pol.)
L3
(in)
(pol.)
Area 1
(in²)
(pol.²)
Area 2
(in²)
(pol.²)
Area 3
(in²)
(pol.²)
Volume
(in³)
(pol.³)
M
4
07-29-15
M
5
07-29-15
2.0020
2.0230
2.0165
4.0500
4.0370
4.0794
8.1669
M
6
07-29-15
2.0130
2.0125
2.0300
4.0512
4.0864
4.0854
8.2239
M
7
07-29-15
2.0145
2.0055
2.0055
4.0401
4.0401
4.0220
8.1024
M
8
07-29-15
1.9870
1.9850
2.0755
3.9442
4.1240
4.1199
8.1862
M
9
07-29-15
1.9890
1.9965
2.0240
3.9710
4.0257
4.0409
8.0374
M
10
07-29-15
2.0650
1.9965
2.0015
4.1228
4.1331
3.9960
8.2517
M
11
07-29-15
1.9970
1.9980
2.0435
3.9900
4.0809
4.0829
8.1536
M
12
07-29-15
2.0070
2.0120
2.0230
4.0381
4.0602
4.0703
8.1690
M
13
07-29-15
2.0160
2.0100
2.0345
4.0522
4.1016
4.0893
8.2441
M
14
07-29-15
1.9950
2.0100
2.0110
4.0100
4.0119
4.0421
8.0640
M
15
07-29-15
2.0030
2.0040
2.0180
4.0140
4.0421
4.0441
8.1003
M
16
07-29-15
2.0205
2.0145
2.0230
4.0703
4.0875
4.0753
8.2342
M
17
07-29-15
1.9985
1.9875
2.0315
3.9720
4.0600
4.0376
8.0692
M
18
07-29-15
1.9970
1.9980
2.0440
3.9900
4.0819
4.0839
8.1556
M
19
07-29-15
1.9920
1.9925
2.0360
3.9691
4.0557
4.0567
8.0810
1.9970
1.9920
2.0005
3.9780
3.9950
3.9850
7.9580
2.0020
2.0030
1.9980
4.0100
4.0000
4.0020
8.0120
1.9770
1.9805
2.0155
3.9154
3.9846
3.9917
7.8916
7 days
7 dias
14 days
14 dias
M
20
07-29-15
M
21
07-29-15
M
22
07-29-15
M
23
07-29-15
2.0385
1.9970
2.0450
4.0709
4.1687
4.0839
8.3250
M
24
07-29-15
1.9965
1.9930
2.0020
3.9790
3.9970
3.9900
7.9660
28 days
28 dias
IV
TECHNICAL REPORT
RELATÓRIO TÉCNICO
APPENDIX C / APÊNDICE C
Parameters for testing machines / Parâmetros para as prensas.
Ensaios de tração / Tensile tests
MPT
PROCEDURE
PARAMETERS
C:\tsiis\mpt\Procs\Vikram_BASF_FWM_Tensionstatic_2.0007/15/2015 2:48:14 PM
Items preceded by an asterisk (*) have been modified.
Application Information
Name
Version
Station Information
Path
Configuration
Parameter Set
: MultiPurpose TestWare (MPT)
: 3.3B 1205
:
: TEST_dk5.cfg
: Large-Instron-Ext
*Procedure: Vikram_BASF_FWM_Tension-static_2.000
Sequencing
Procedure is done when
: Actuator Down Fast.Done
*Procedure / Data Acq: Timed Acquisition
Sequencing
Start
: <Procedure>.Start
Interrupt
: None
General
Process Enabled
: True
Execute Process
: 1 Time(s)
Counter Type
: None
Acquisition
Time Between Points
: 0.10026 (Sec)
Total Samples
: Continuous sampling enabled
Signals
: Time
: Channel 1 Displacement
: Channel 1 Force
: Aux Input 4
: Aux Input 6
Destination
Buffer Size
: 1024
Data Header
: ETORE_BOND_TEST_070815_A19
Destination
: User-specified data file
*User Data File
: ETORE_BOND_TEST_070815_A19.dat
Buffer Type
: Linear
Write First Data Header Only
: True
Output Units
V
TECHNICAL REPORT
RELATÓRIO TÉCNICO
APPENDIX C / APÊNDICE C
UAS
: Current Unit Assignment Set
Procedure / Actuator Down Slow: Segment Command
Sequencing
Start
: <Procedure>.Start
Interrupt
: None
General
Process Enabled
: True
Execute Process
: 1 Time(s)
Counter Type
: None
Command
Segment Shape
: Ramp
Rate
: 0.01500 in/Min
Adaptive Compensators
: None
Do Not Update Counters
: False
Relative End Level
: True
Channels
Channel 1
Control Mode
: Displacement
Relative End Level
: 0.05000 (in)
Procedure / Actuator Down Fast: Segment Command
Sequencing
Start
: Actuator Down Slow.Done
Interrupt
: None
General
Process Enabled
: True
Execute Process
: 1 Time(s)
Counter Type
: None
Command
Segment Shape
: Ramp
Rate
: 0.10000 in/Min
Adaptive Compensators
: None
Do Not Update Counters
: False
Relative End Level
: False
Channels
Channel 1
Control Mode
: Displacement
Absolute End Level
: 1.2500 (in)
Execution Options
Hold State Support
Resume Test After Stop
Required Power
Command Hold Behavior
Command Stop Behavior
Setpoint
: Enable Hold
: Enable Resume
: High
: Stay at Level
: Stay at Level
: Disable and Reset
VI
TECHNICAL REPORT
RELATÓRIO TÉCNICO
APPENDIX C / APÊNDICE C
Span
: Disable and Reset
Confirm actions that may affect resuming the test
: True
Specimen Options
Data File Mode
: Append
Data File Format
: Excel
Specimen Log Mode
: Append
Data File Time Stamp
: Time
Clear Counters on Reset
: True
Recovery Options
Enable saving recovery status:
: True
Upon program state change
: True
At least every:
: 60.000 (Sec)
Message Options
Message Capture
Minimum Severity
: Information
Source
: All Applications
Archive Auto Deletion
Delete Older Than
: Disabled
Control Panel Display Options
Test Progress
Run Time
: Display As HH:MM:SS
Counters
Channel Counters
: Display As Cycles
Sequence Counters
: Display As Cycles
Specimen
Procedure Name
: True
Procedure State
: True
Station Status
Power
: True
Procedure Properties
Description
:
Author
:
Unit Selection
Current UAS
: Use Station Unit Assignment Set
VII
TECHNICAL REPORT
RELATÓRIO TÉCNICO
APPENDIX C / APÊNDICE C
Ensaios de Fadiga / Fatigue tests
MPT PROCEDURE PARAMETERS - C:\tsiis\mpt\Procs\Vikram_Etore_Bond_2015_Fatigue_Tension_v1.0008/5/2015 3:06:39 PM
Items preceded by an asterisk (*) have been modified.
Application Information
Name
Version
Station Information
Path
Configuration
Parameter Set
: MultiPurpose TestWare (MPT)
: 3.3B 1205
:
: TEST_dk5.cfg
: 27fEB2013_cyclic
*Procedure: Vikram_Etore_Bond_2015_Fatigue_Tension_v1.000
Sequencing
Procedure is done when
: Hold position.Done
Procedure / Data-Loading 1: Timed Acquisition
Sequencing
Start
: <Procedure>.Start
Interrupt
: Loading 1.Done
General
Process Enabled
: True
Execute Process
: 1 Time(s)
Counter Type
: None
Acquisition
Time Between Points
: 0.09993 (Sec)
Total Samples
: Continuous sampling enabled
Signals
: Time
: Channel 1 Displacement
: Channel 1 Force
Destination
Buffer Size
: 1024
Data Header
: MSF648_0222-0711-Load-45p_11
Destination
: User-specified data file
User Data File
: MSF648_0222-0711-Load-45p_11.dat
Buffer Type
: Linear
Write First Data Header Only
: True
Output Units
UAS
: Current Unit Assignment Set
Procedure / Loading 1: Segment Command
Sequencing
Start
: <Procedure>.Start
Interrupt
: Break detect.Done
VIII
TECHNICAL REPORT
RELATÓRIO TÉCNICO
APPENDIX C / APÊNDICE C
General
Process Enabled
Execute Process
Counter Type
Command
Segment Shape
Rate
Adaptive Compensators
Do Not Update Counters
Relative End Level
Channels
Channel 1
Control Mode
Relative End Level
: True
: 1 Time(s)
: None
: Ramp
: 0.01500 in/Min
: None
: False
: True
: Displacement
: 0.01000 (in)
*Procedure / Data-Cyclic: Cyclic Acquisition
Sequencing
Start
: Loading 1.Done
Interrupt
: None
General
Process Enabled
: True
Execute Process
: 1 Time(s)
Counter Type
: None
Cycles
Master Channel
: Channel 1
Data Storage Pattern
: Linear
Relative Cycle or Segment Counts
: False
Linear Data Interval
: 50 cycles
Maximum Cycle Stored
: 500000 (cycle)
Store Data At
: 50.0, 100.0, 150.0, 200.0, 250.0,…
:… …
: 499850.0, 499900.0, 499950.0, 500000.0
: (cycle)
Store Data For
: 1.0 cycles
Acquisition
Acquisition Method
: Timed
Time Between Points
: 0.00993 (Sec)
Signals
: Time
: Channel 1 Displacement
: Channel 1 Force
Destination
Data Header
: MSF648_0222-0711-Cyclic-45p_11
Write First Data Header Only
: True
Destination
: User Data File
User Data File
: MSF648_0222-0711-Cyclic-45p_11.dat
Output Units
IX
TECHNICAL REPORT
RELATÓRIO TÉCNICO
APPENDIX C / APÊNDICE C
UAS
: Current Unit Assignment Set
Procedure / Cyclic: Cyclic Command
Sequencing
Start
: Loading 1.Done
Interrupt
: Break detect.Done
General
Process Enabled
: True
Execute Process
: 1 Time(s)
Counter Type
: None
Command
Segment Shape
: True Sine
Frequency
: 5.0000 (Hz)
Count
: 500000 cycles
Adaptive Compensators
: None
Do Not Update Counters
: False
Relative End Levels
: True
Channels
Channel 1
Control Mode
: Displacement
Relative End Level 1
: 0.01000 (in)
Relative End Level 2
: 0.09000 (in)
Phase Lag
: 0.00 (deg)
*Procedure / Data-Loading 2: Timed Acquisition
Sequencing
Start
: Cyclic.Done
Interrupt
: None
General
Process Enabled
: True
Execute Process
: 1 Time(s)
Counter Type
: None
Acquisition
Time Between Points
: 0.20003 (Sec)
Total Samples
: Continuous sampling enabled
Signals
: Time
: Channel 1 Displacement
: Channel 1 Force
Destination
Buffer Size
: 1024
Data Header
:
Destination
: User-specified data file
User Data File
:
Buffer Type
: Linear
*Write First Data Header Only
: True
Output Units
X
TECHNICAL REPORT
RELATÓRIO TÉCNICO
APPENDIX C / APÊNDICE C
UAS
: Current Unit Assignment Set
Procedure / Loading 2: Segment Command
Sequencing
Start
: Cyclic.Done
Interrupt
: Break detect.Done
General
Process Enabled
: True
Execute Process
: 1 Time(s)
Counter Type
: None
Command
Segment Shape
: Ramp
Rate
: 0.10000 in/Min
Adaptive Compensators
: None
Do Not Update Counters
: False
Relative End Level
: True
Channels
Channel 1
Control Mode
: Displacement
Relative End Level
: 0.20000 (in)
Procedure / Hold position: Dwell Command
Sequencing
Start
: Loading 2.Done
Interrupt
: None
General
Process Enabled
: True
Execute Process
: 1 Time(s)
Counter Type
: None
Command
Time
: 0.10000 (Sec)
Do Not Update Counters
: False
Channels
Channel 1
Control Mode
: Displacement
Procedure / Break detect: Data Limit Detector
Sequencing
Start
: <Procedure>.Start
Interrupt
: None
General
Process Enabled
: True
Execute Process
: 1 Time(s)
Counter Type
: None
Limits
Channel 1 Displacement
Upper Limit
: 0.2500 (in)
XI
TECHNICAL REPORT
RELATÓRIO TÉCNICO
APPENDIX C / APÊNDICE C
Lower Limit
Channel 1 Force
Upper Limit
Lower Limit
Settings
Limit Mode
Process completes when
Log Message As
Action
: -0.2500 (in)
: 0 (lbf)
: -50000 (lbf)
: Absolute
: Any selected signal exceeds its limit
: Information
: Station Power Off
Execution Options
Hold State Support
: Enable Hold
Resume Test After Stop
: Enable Resume
Required Power
: High
Command Hold Behavior
: Stay at Level
Command Stop Behavior
: Stay at Level
Setpoint
: Disable and Reset
Span
: Disable and Reset
Confirm actions that may affect resuming the test
: True
Specimen Options
Data File Mode
: Append
Data File Format
: Excel
Specimen Log Mode
: Append
Data File Time Stamp
: Time
Clear Counters on Reset
: True
Recovery Options
Enable saving recovery status:
: True
Upon program state change
: True
At least every:
: 60.000 (Sec)
Message Options
Message Capture
Minimum Severity
: Information
Source
: All Applications
Archive Auto Deletion
Delete Older Than
: Disabled
Control Panel Display Options
Test Progress
Run Time
: Display As HH:MM:SS
Counters
Channel Counters
: Display As Cycles
Sequence Counters
: Display As Cycles
Specimen
Procedure Name
: True
Procedure State
: True
Station Status
Power
: True
XII