Sergio Celaschi www.vonbraunlabs.com.br

Transcrição

Sergio Celaschi www.vonbraunlabs.com.br
Sergio Celaschi
www.vonbraunlabs.com.br
ABINEE
15 de setembro de 2009
Mission
To explore the
universe creating
opportunities on
Earth.
Wernher von Braun Research Center
Research
Environment
Wireless portable
devices Lab
Wernher von Braun Center
Development
Environment
Machine
Vision Lab
Wernher von Braun Research Center
An environment for
fostering innovation
Wernher von Braun Center
Machine Vision
AOI
Automatic Optical Inspection
Machine Vision: Industry needs
(CMs)
•
BACK-END
•
•
Applying machine vision to PCB (printed circuit
board) inspection.
Inspection areas (by human or machines)
The idea is that by inspecting the products one
can infer the process quality and improve it.
Screen printer
Chip shooter
FRONT-END line
Fine pitch
placement
Reflow
oven
SMD inspection (front-end)
Requirements
• Probe missing components to the size 0402 (1 mm X
500um);
• Inspect component misplacement and inverted diodes;
• Inspect solder paste for paste misaligment (with reference
to stencil template) and measure solder paste volume
(area and height)
• Inspection time ~ 60 seconds @ 25 micron/Pixel
• Low false negative rates;
• Design and build a low cost (BOM less than USD30k)
• Easily NPI programing and operated machine
SMD component inspection @ wvB
Labview (NI) driven
solution
Matlab driven
solution
Machine vision challenges for SMD
component inspection
•
background
paste
silk
•
•
•
pad
Separate solder paste from component, pad, board
silk and background
Inspection is made by comparing test image and its
reference (pattern matching)
vB developed new pattern matching codes together
with image alignement;
Development of support vector machine codes for
component inspection (statistical methods applied
to machine learning)
SPI: Solder Paste Inspection
Computer generated solder
paste features (using ray tracing)
2D solder
paste
inspection
AOI-PTH Components
AOI-PTH Components
•
•
•
Inspect misplacements in PTH (pin through hole)
components on PCBs (printed circuit boards) of the type:
DIMM connectors.
30% of backend failures are related to DIMM misplacement.
Defects: partial DIMM insertion and folded pins.
Component tilt resulting in lack of
proper electric join
PCB
DIMM (Dual Inline Memory
Module) connector
WvB: Inspection Interface
Machine Vision applied to ITS
(Intelligent Transportation System)
• Development of a multi-lane free flow
toll system in Brazil
• Vehicle classification is done by
counting the number of axles
• No sensors installed on lanes;
• Correctly recognize lifted wheels and
count long trucks (~30 meters), with ~9
axles
• Machine vision: Selected method for
axle counting for 4/7 operation.
Automatic axle counting based on machine
vision
RFID
Radio Frequency Identification
Elementos
• Transponder ou Tag
– Pode ser passivo ou ativo
– Pode ter aplicações específicas ou gerais
• Leitor
– Estabelece comunicação para identificar o tag e
disponibiliza a informação para outro elemento.
• Antenas
– Acoplam sinal elétrico do leitor ao espaço livre
em forma de ondas eletromagnéticas ou vice
versa.
Interação entre os elementos
•
Tag recebe o sinal. A antena do tag converte sinal EM em tensões.
Essa tensão alimenta a eletrônica do tag.
Interação entre os elementos
•
Tag energizado, transmite informações para o leitor. (uplink)
Tag / Transponder
•
Armazena dados
– EPC: Electronic Product Code
– Password de Kill e Acess
– Tag ID
– Usuário
• Von Braun desenvolve tags
customizados especiais.
Leitor Portátil
•
•
•
•
•
Intermec IP30 + Coletor de
Dados
Desenvolvido para
aplicações industriais.
Conectividade via WiFi,
Bluetooth, WWAN (3G
CDMA,EV-DO,
GSM/EDGE).
Mobilidade
Leitor von Braun
Leitor Fixo
•
•
•
•
Leitor von Braun, Sirit,
Impinj, Alien, etc.
Desenvolvidos para
aplicações industriais.
Conectividade via Ethernet,
Porta serial, etc.
Alto Desempenho, várias
antenas por leitor.
Micro-eletrônica: Aplicações
•
•
•
•
•
•
•
•
Redes de Sensores sem Fio – Veículos Inteligentes, controle de
sistemas, controles de navegação adaptativos;
RFID, Bluetooth, UWB, WiMAX – Identificação e reconhecimento de
voz, identificação de digitais, cartões inteligentes, AVI
Processamento em Redes Neurais, Criptografia e Segurança de
Redes;
Desenvolvimento e Aplicações em Telecomunicações –
Multiplexadores Ópticos SDH&PDH, Mapeadores e Processadores;
MEMS, optical MENS, RF MEMS
Desenvolvimento e arquitetura em microprocessadores;
Conversores AD/DA
Circuitos para gerenciamento.
Micro-eletrônica: Etapas de
desenvolvimento
•
•
•
•
•
•
Definição Sistemica – ASIC, SoC e FPGA
Desenvolvimento – ASIC, SoC e FPGA
Verificação - ASIC, SoC e FPGA
Pre-Layout - ASIC and SoC
Layout – ASIC and SoC
Prototipagem e testes
1
1
VoIP
VOIP solutions platform –
HW and SW design and
implementation.
Voice Codecs
VoIP Protocols
• G.711 a/µ law
• G.729 a/b ab
• SIP (RFC 3261)
• SDP
• RTP/RTCP
Echo Cancellation
• G168 line echo cancellation
VoIP Enhanced features
• VAD (Voice Activity Detection)
• CNG (Comfort Noise
Generation)
• Dynamic jitter buffer
Network Protocol
•
•
•
•
•
•
•
•
•
•
•
•
IPv4
TCP
UDP
ICMP
RARP
ARP
DNS
DHCP CLIENT
HTTP
TFTP
IP
SSH
Low cost PC for industrial automation
Nanostructured materials for
industrial applications
What is nanotechnology?
• Research and production in the nanometer scale
• Application to several fields: medicine, electronics, physics, chemistry, biology, and
materials engineering.
• It aims at building new structures and materials through atomic manipulation.
Example in microelectronics:
Intel
2
2
Current projects
1. New materials for photocatalysis and hydrogen production.
With U. College London (UK).
1. Transport properties of charge carriers in nano-SOI (silicon-on-insulator).
With U. Tokyo (Japan).
2. Properties of carbon-based materials for future transistors.
With CEA/LETI (France - awarded 3 year funding by the French government).
3. Electronic and transport properties of carbon-based materials.
With Namitec (Brazil – awarded 3+2 year funding by CNPq)
4. Nanostructured materials for solar cells.
With U. Connecticut (USA).
5. Surface and interface oxidation.
With Freescale (USA).
6. New methods for simulations.
With USP (Brazil).
• Industrial experience in
industrial R&D
• More than 50 papers published
in refereed international journals
• Authorship in large scale SW for
research
• Expertise in various fields of
materials science
New materials for photocatalysis and
hydrogen production
Estrutura cristalina do composto Ti3–δO4N
Metal/dielectric interfaces
L.R.C. Fonseca, A.L. Xavier, M. Ribeiro Jr., C.
Driemeier, and I.J.R. Baumvol, “Hydrogen
trapping in oxygen-deficient hafnium
silicates”, J. Appl. Phys. (2007).
Pt/HfO2 model interface for SiO2 and poly-Si replacement in ultra-scaled
transistors. Dark blue: Pt; Light blue: Hf; Red: O.
Semiconductor/dielectric interfaces
L.R.C. Fonseca, D. Liu, and J. Robertson, “P-type
Fermi level pinning at a Si:Al2O3 model
interface”, Appl. Phys. Lett. (2008).
Si/Al2O3 interface model, also for SiO2 and poly-Si replacement in ultra-scaled
transistors. Pink: Al; Orange: Si; Red: O; White: H.
Quantum transport in nano-structures
M. Ribeiro Jr., L. R. C. Fonseca,
“Ab-initio calculations of
transport in ultra-thin SOI
transistors: the impact of
Pb centers and hydrogen
passivation on electron and
hole transport”, to be
published.
G. Giorgi, L. R. C. Fonseca, A.
Korkin, and K. Yamashita,
“Impact of the crystal
structure of HfO2 on the
transport properties of
model HfO2/Si/HfO2 siliconon-insulator field effect
transistors: a combined
DFT-scattering theory
approach”, Phys. Rev. B 79,
235308 (2009).
Silicon on insulator (SOI) offers an excellent opportunity for nanoelectronics.
Here a typical interface defect (circle) is shown. Red: O; Orange: Si; White: H.
Nano-wires for sun light conversion to electricity
Model CdSe/CdTe coaxial nano-wire. Light conversion can be much higher than
in tradition Si-based solar panels. Red: Te; Orange: Cd; Green: Se.
New methods for interface
energy band alignment
calculation
Accurate interface band alignment calculation is
key for the development of applications that involve
interfaces. Current methods miss the experimental
alignment by a factor of two, or obtain the correct
value at an impractical computational cost. Our
method offers accuracy at a low cost.
Right: model SiO2/Si interface for testing the
method.
M.R. Jr, L.R.C. Fonseca, and L.G. Ferreira, “Accurate prediction
of interface band offset using the self-consistent ab initio
DFT/LDA-1/2 method”, Phys. Rev. B 79, 241312(R) (2009).
Recent publications:
1.
M.R. Jr, L.R.C. Fonseca, and L.G. Ferreira, “Accurate prediction of interface band offset using the self-consistent ab initio
DFT/LDA-1/2 method”, Phys. Rev. B 79, 241312(R) (2009).
2.
G. Giorgi, L.R.C. Fonseca, A. Korkin, and K. Yamashita, “Impact of the crystal structure of HfO2 on the transport properties
of model HfO2/Si/HfO2 silicon-on-insulator field effect transistors: a combined DFT-scattering theory approach”, Phys. Rev.
B 79, 235308 (2009).
3.
L.R.C. Fonseca, D. Liu, and J. Robertson, “P-type Fermi level pinning at a Si:Al2O3 model interface”, Appl. Phys. Lett. 93, 1
(2008).
4.
L.R.C. Fonseca, PY. Prodhomme, and P. Blaise, “Bridging electrical and structural interface properties: a combined DFTGW approach”, JICS 2, 94 (2007).
5.
L.R.C. Fonseca, A.L. Xavier, M. Ribeiro Jr, C. Driemeier, and I.J.R. Baumvol, "Hydrogen trapping in oxygen-deficient
hafnium silicates”, J. Appl. Phys. 102, 044108 (2007).
6.
K. Ravichandran, W. Windl, and L.R.C. Fonseca, “New understanding of contact structure formation in carbon nanotube
electronic devices”, to appear.
7.
C. Capasso, R. Gregory, D. Gilmer, L.R.C. Fonseca, M. Raymond, C. Happ, M. Kottke, S. Samavedam, P. Tobin, and B.
White, “Tantalum carbo-nitride electrodes and the impact of interface chemistry on high permittivity MOSFET device
characteristics”, J. Appl. Phys. 101, 14503 (2007).
8.
A.V. Gavrikov, A.A. Knizhnik, A.A. Bagatur’yants, B.V. Potapkin, L.R.C. Fonseca, M.W. Stoker, and J. Schaeffer, “Oxidation
of the Pt/HfO2 interface: the role of the oxygen chemical potential”, J. Appl. Phys. 101, 14310 (2007).
9.
J.K. Schaeffer, L.R.C. Fonseca, S.B. Samavedam, Y. Liang, P.J. Tobin, and B.E. White, “Contributions to the effective work
function of platinum on hafnium dioxide”, Appl. Phys. Lett. 85, 1826 (2006).
10.
L.R.C. Fonseca and A.A. Knizhnik, “First principles calculation of the TiN effective work function on SiO2 and on HfO2”,
Phys. Rev. B 74, 195304 (2006).
11.
A.A. Knizhnik, A.A. Safonov, I.M. Iskandarova, A.A. Bagatur’yants, B.V. Potapkin, L.R.C. Fonseca, and M.W. Stoker,
“Segregation trends of the metal alloys Mo-Re and Mo-Pt on HfO2: a first-principles study”, J. Appl. Phys. 100, 13506
(2006).
12.
A.A. Knizhnik, A.A. Safonov, I.M. Iskandarova, A.A. Bagatur’yants, B.V. Potapkin, L.R.C. Fonseca, and M.W. Stoker, “Firstprinciple investigation of the WC/HfO2 interface properties”, J. Appl. Phys. 99, 84104 (2006).
Summary
• The Wernher von Braun Center is a Brazilian, non-profit
private institution.
• The Center has over 10 years experience in addressing
industry needs.
• We develop innovative engineering solutions for public
and privated companies in the areas of Automation,
Machine Vision, RFID, Microelectronics, and IT.
• Innovative projects are firmly based on fundamental
research, which undergo into products, technologies and
services.
• Von Braun’s mission is to explore new frontiers in
science creating practical applications and opportunities.

Documentos relacionados