Extensive air shower muons: the key of the UHECR puzzle

Сomentários

Transcrição

Extensive air shower muons: the key of the UHECR puzzle
Extensive Air Shower Muons
The key of the UHECR puzzle
L. Cazon
L Cazon
NWPAC 29-31 Jan, 2014 Braga
1
Ultra High Energy Cosmic Rays
Detection of
Primaries
Satellites, Balloons
Detection of
Secondaries (Shower)
Ground Arrays
GZK-cutoff
2
UHE Particle Physics & UHE Astrophysics
Window of oportunity
UHECR: exciting and puzzeling.
• A few nearby sources shooting iron, with high B deflections?
• Many sources shooting protons?
• Combinations of both? Intermediate compositions He, C, N, O?
If we could separate UHECRs by composition
•
Beam for UHE particle physics
•
Dawn of UHE Charged Particle Astronomy
But changes in hadronic physics and changes in CR composition often mock each other
3
Electrons
Photons
Muons
Neutrons
protons
Electrons
Photons
Muons
Neutrons
protons
Primary:
Hadron
Hadronic shower
(mainly pions)
Muonic component
Electromagnetic shower
(electrons and photons)
Muons are the smoking gun of the
hadronic cascade which is the real
backbone of the whole shower.
L Cazon
Primary:
Photon
Hadronic skeletons

L Cazon

Hadronic reaction
NWPAC 29-31 Jan, 2014 Braga
6
L Cazon
A
A
A
A
A
A
Generation
ordered
NWPAC 29-31 Jan, 2014 Braga
7
J. Matthews Astropart.Phys.
22 (2005) 387-397
Hadronic cascade
E0
1
N ch

0

N ch2
E0
2
N tot
E0
3
N tot
N ch3
c 
20 GeV
L Cazon
E0
N tot
E 
ln  0 
c 
 E0 

nc 
 0.85 log10   
3

 c 
ln  N ch 
2

N tot
1
 N ch  N ch
2
The hadronic
cascade loses
energy that goes into
the EM cascade
8
J. Matthews Astropart.Phys.
22 (2005) 387-397
EM cascade
1
E0
2
E0 / 2
22
E0 / 22
23
E0 / 23
24
E0 / 24
L Cazon
ce  85MeV
 E0 
ln  e 
c 

nc 
ln 2
9
Composition scaling
X max
X

 E0 
 nc r ln( 2)  r ln  e 
 c 
max
 E0 
 i nc  i 0.85 log10   
 c 

 E0 
N     


 c  E0 
N     
ln(1 N ch )
 c   1  0.14

 1  N ch 
ln 

1

3
/
2



A= UHECR mass number
 E0

X max ( A)  r  ln
 ln  ce   X max  ln A
 A

L Cazon
  E / A  
ln N  ( A)  ln  A 0     ln N   (1   ) ln A
   c  
NWPAC 29-31 Jan, 2014 Braga
10
Energy balance
dE
 Ne( X )dX   dX dX Ecal
 h( X )dX  N 
EM channel ends up carrying all
the shower energy except a small
remaining fraction fraction called
“Invisible energy”
E0  Ecal  bN 
1 
N ch
p  (1  k ) E
 
1
N ch   0
2
 c  20 GeV

X max
h(X)
L Cazon
X
EM
max
Ne(X)
  0.2
 1
 1
2
kE
3
1

kE
3

k=inelasticity
EM
n
 1 
 E  1  3   E0

  1 n 
EM
E

1  1    

  3  
  0.5
Hadronic
11
Full MC simulations &
Auger data
L Cazon
Full MC simulations &
Auger data
LHC-EPOS makes a better treatement of diffraction rapidity gaps.
QGSJetII.04 could be missing additional and relevant effects that compensates Xµmax
Deficit of Nµ in all models
L Cazon
σ(Xµmax)
Events
Xµmax
L Cazon
Events
σ(Nµ)
E [eV]
NWPAC 29-31 Jan, 2014 Braga
14
E [eV]
Nµ
Event by event
Mass Separation
Xmax - Nµ plane
L Cazon
NWPAC 29-31 Jan, 2014 Braga
15
Mass / Hadronic models
Disentanglement
Mock data point
p
< Nµ > - σ (Nµ )
He
N
Fe
<Xmax> - < Nµ >
L Cazon
16
R. Conceição
Conclusions
• EM component is the most exploited sector of the air
shower to study UHECR
• Muons carry information from the hadronic skeleton of
the shower. They are experimentally underexploited.
• The momenta of Nµ , Xmax and Xµmax distributions are
very sensitive tools to high energy interaction models
and average masses
• The combined use of Nµ with Xmax event by event
could separate primaries regardless of high energy
interaction models.
• Clean(er) beam for UHE particle physics and UHE
astrophysics
17
L Cazon
NWPAC 29-31 Jan, 2014 Braga
18
X max
X


 E0 
N     
 c 
ln(1  N ch )

 1  0.14
 1  N ch 
ln 

 1  3 / 2 
 E0 
 nc r ln( 2)  r ln  e 
 c 
max
 E0 
 i nc  i 0.85 log10   
 c 
 E0
e
X max ( A)  r  ln
 ln  c   X max  ln A
 A


 E0 / A 
N  ( A)  A    A1  N 
 c 
ln N  ( A)  ln N   (1   ) ln A
L Cazon
NWPAC 29-31 Jan, 2014 Braga
19
mair
X 1 ( E )  i ( E ) 
 p air ( E )
 Aair ( E )  A p air ( E / A)
L Cazon
NWPAC 29-31 Jan, 2014 Braga
20
Multivariant analysis
Larger discrimination
power
K.H. Kampert &
M.Unger 2011
L Cazon
NWPAC 29-31 Jan, 2014 Braga
21

Documentos relacionados

72. Abundance analysis of barium and mild barium stars Smiljanic

72. Abundance analysis of barium and mild barium stars Smiljanic 72. Abundance analysis of barium and mild barium stars Smiljanic, R., Porto de Mello, G. F., da Silva, L. 2007, A&A, 468, 679 73. Anisotropy studies around the galactic centre at EeV energies with ...

Leia mais