Tese de Mestrado Nuno Gomes

Transcrição

Tese de Mestrado Nuno Gomes
Universidade do Minho
Escola de Ciências
Nuno Miguel Araújo Gomes
Construção de uma biblioteca de referência de DNA
barcodes para Isópodes marinhos (Crustacea: Isopoda) de
Portugal e da Macaronésia
Tese de Mestrado
Mestrado de Ecologia
Trabalho efetuado sob a orientação do
Professor Doutor Filipe Costa
Outubro de 2014
Agradecimentos
Gostaria agradecer ao meu orientador, Doutor Filipe Costa pela oportunidade de trabalho nas
áreas da taxonomia e DNA barcoding e pelo auxilio na elaboração desta tese.
Um agradecimento à Doutora Luísa Borges e à Mestre Sara Ferreira pelo ensino e iniciação no
trabalho laboratorial.
Gostaria também de agradecer aos colegas Marcos Teixeira, Jorge Lobo e Cláudia Hollatz pela
ajuda, companheirismo e pelo bom ambiente de trabalho.
Um agradecimento ao Pedro Vieira e ao Doutor Henrique Queiroga pela disponibilização de
espécimes e sequências de DNA, e aos Doutores Ronaldo Sousa, Marina Cunha e Susana
Carvalho pela disponibilização de material bibliográfico importantes para a realização desta tese.
Este trabalho foi financiado por Fundos FEDER através do Programa Operacional de Factores de
Competitividade - COMPETE e por Fundos Nacionais através da FCT "Fundação para a Ciência e
a Tecnologia (FCT)” / MEC no âmbito dos projetos FCOMP-01-0124-FEDER-015429 (ref. FCT:
PTDC/MAR/113435/2009) e PEst-OE/BIA/UI4050/2014.
iii
Construção de uma biblioteca de referência de DNA barcodes para Isópodes
marinhos (Crustacea Isopoda) de Portugal e da Macaronésia
Resumo
Apesar de a ordem Isopoda constituir um dos mais diversos grupos de crustáceos presentes em
vários habitats marinhos, o conhecimento sobre a sua biodiversidade ainda é insuficiente,
comprometendo o planeamento de estratégias de gestão de meios marinhos. A utilização de
bibliotecas de referência de DNA barcodes (sequências de DNA obtidas a partir da extremidade
5’ do gene mitocondrial da sub-unidade I do citocromo oxidase, COI-5P) para auxiliar a
identificação e a catalogação de macro invertebrados bentónicos marinhos tem contribuído para
a melhoria do conhecimento sobre a composição e distribuição espacial destas comunidades,
possibilitando o recurso a técnicas de sequenciação de segunda geração para agilização de
métodos de monitorização. Este estudo teve como objetivos: 1) a compilação e elaboração de
uma lista atualizada (“checklist”) de espécies de isópodes marinhos registados em Portugal
continental e nos arquipélagos dos Açores e Madeira; 2) contribuir para a construção de uma
biblioteca de DNA barcodes de isópodes marinhos das mesmas regiões. A elaboração da lista
resultou na compilação de 146 espécies registadas desde zonas de mar profundo a zonas
costeiras e estuarinas. Para a construção de uma biblioteca de referência de DNA barcodes de
isópodes foram identificados 250 espécimes e geradas 105 sequências, resultantes de
sequenciação bidirecional englobando 26 morfoespécies, distribuídas por 32 MOTU´s,
recolhidas em vários pontos do Atlântico Nordeste, maioritariamente ao longo da costa de
Portugal e da Galiza e nos arquipélagos dos Açores, Canárias e Madeira. Todos os espécimes
foram catalogados na base de dados BOLD, incluindo dados sobre identificação taxonómica,
dados de colheita e respetivas sequências e cromatogramas. De modo a garantir a qualidade
dos resultados foram compiladas 60 sequências publicadas para comparação e classificação
das sequências obtidas. As divergências intraespecíficas para os espécimes analisados variaram
entre os 0 e os 2,8%, com uma divergência interespecífica média de 29%, variando entre 12% e
59%, comprovando-se a capacidade de descriminação do fragmento COI-5P para as espécies de
isópodes em estudo. Foram encontradas 2 linhagens alopátricas de Campecopea lusitanica com
22% de divergência, e 3 linhagens de Dynamene edwardsi separadas entre a costa de Portugal e
os arquipélagos da Madeira e Canárias com divergências entre os 18% e 21%.
iv
Construction of a DNA barcode reference library for marine Isopods (Crustacea:
Isopoda) from Portugal and Macaronésia
Abstract
Although the order Isopoda constitutes one of the most diverse groups of crustaceans, ocurring
in a wide range of marine habitats and transition ecosystems, a rigorous and extensive
knowldege of its biodiversity has not been reached yet, which may compromise the informed
planning and management of the marine environment. The use of DNA barcodes (DNA
sequences from the 5´end of the mitochondrial gene cytochrome oxydase I, or COI-5P) reference
libraries to aid species identification and inventories of marine macroinvertebrates, has
contributed to an improved knowledge of the composition and distribution of these communities,
and enabled possible uses of second generation sequencing in in high-throughput monitoring
methods. The objectives of this study were: 1) the compilation of an updated checklist for marine
isopod species registed in Portuguese continental waters, and the archipelagos of Azores and
Madeira; 2) contribute to the construction of a reference library of DNA barcodes for marine
isopods from the same regions. The checklist compiles 146 species recorded in a variety of
habitats, from deep-sea to coastal, estuarine and lagunar systems. As for the construction of the
DNA barcode reference library we obtained 105 DNA sequences, resulting from bidirecional
sequencing, assigned to 26 morphospecies and distributed in 32 MOTU´s, from specimens
collected along the Northeast Atlantic, mostly along the coast of Portugal and Galiza and in the
archipelagos of Azores, Canary and Madeira. Specimens were cataloged in the BOLD database
with taxonomic information, collection data, and respective sequence and cromatograms. To
assure the quality of the obtained data, 60 published COI-5 sequences were mined to compare
and classify the sequences here generated. Intraspecific divergences ranged from 0 to 2,8% for
the analysed specimens, and mean interspecific divergence was 29%, (ranging from 12% to 59%),
globally confirming the species diagnosis ability of COI-5P barcodes for these isopod species. In
addition, we detected two alopatric lineages of Campecopea lusitanica with a divergence of 22%,
as well as three divergent lineages of Dynamene edwardsi which split among the west coast of
Portugal and the archipelagos of Madeira and Canaries with a divergence ranging between 18
and 21%. The analises of partial sequences from the nuclear gene 18s rRNA of lineagerepresentative specimens of D. edwardsi confirmed the patterns observed with COI-5P.
v
Índice
Agradecimentos ………………………………………………………………………………………………………iii
Resumo …………………………………………………………………………………………………………………iv
Abstract ………………………………………………………………………………………………………………….v
Índice …………………………………………………………………………………………………………………….vi
Índice de figuras ………………………………………………………………………………………………………vii
Índice de tabelas ………………………………………………………………………………………………………iv
Capítulo 1
Introdução geral
1.1 Diversidade, distribuição e ecologia de Isópodes marinhos (Crustacea: Isopoda)….. 2
1.2 Registo fóssil e classificação da ordem Isopoda…………………………………….…………3
1.3 Importância ecológica e impacto ambiental e económico……………………………….….4
1.4 Impedimento taxonómico e o uso de metodologias moleculares …………………………5
1.5 Objetivos gerais………………………………………………………………………………………....6
Referências……………………………………………………………………………………………….7
Capítulo 2
Checklist de Isópodes marinhos (Crustacea: Isopoda) para a costa de Portugal
continental, Açores e Madeira
2.1 Introdução………………………………………………………………………………………..…….15
2.2 Metodologia……………………………………………………………………………………….…..15
2.3 Resultados………………………………………………………………………………………….….16
2.4 Discussão………………………………………………………………………………………………37
Referências…………………………………………………………………………………………………..39
vi
Capítulo 3
Construção de uma biblioteca de referência de DNA barcodes para Isópodes
marinhos (Crustacea: Isopoda) de Portugal e da Macaronêsia
3.1 Introdução………………………………………………………………………………………………52
3.2 Metodologia……………………………………………………………………………………………53
3.2.1 Material de estudo……………………………………………………………………..53
3.2.2 Inventariação e processamento de amostras…………………………………..54
3.2.3 Extração, amplificação e sequenciação de DNA……………………………….54
3.2.4 Tratamento e análise de dados…………………………………………………….56
Alinhamento e construção de árvores filogenéticas…………………………56
Delimitação de MOTUs……………………………………………………………..57
Classificação dos DNA barcodes da biblioteca de referência…………….57
Teste de saturação de substituição nucleotídica e reconstrução
de filogenias profundas……………………………………………………………..58
3.3 Resultados……………………………………………………………………………………………..59
3.3.1 Construção e classificação da biblioteca de referência………………………59
3.3.2 Linhagens divergentes de Dynamene edwardsi………………………………..62
3.3.3 Saturação de substituição nucleotídica…………………………………………..63
3.3.4 Reconstrução filogenética……………………………………………………………64
3.4 Discussão………………………………………………………………………………………………65
3.4.1 Construção da biblioteca de referência…………………………………………..65
3.4.2 Classificação da biblioteca de referência………………………………………..65
3.4.3 Possíveis complexos de linhagens crípticas…………………………………….66
3.4.4 Reconstrução filogenética……………………………………………………………67
Referências…………………………………………………………………………………………………..67
Capítulo 4
Considerações finais…………………………………………………………………………………………..74
Anexos……………………………………………………………………………………………………………….75
vii
Índice de figuras
Figura 1.1- Locais de amostragem dos espécimes de Isópodes usados para a construção da
biblioteca de referência…………………………………………………………………….………………………..53
Figura 1.2- Árvore Neighbour-Joining compactada calculada com o modelo de substituição
nucleotídica K2P……………………………………………………………………………………..………………..60
Figura 1.3- Árvore Neighbour-Joining calculada com o modelo K2P com 10000 bootstraps para
a espécie Dynamene edwardsi…………………………………………………………………………..………..62
Figura 1.4- Árvore Neighbour-Joining construída com o modelo K2P e 10000 Bootstraps para o
gene SSU rRNA 18s…………………………………………………………………………………………………..63
Figura 1.5- Árvores radiadas utilizadas para reconstrução filogenética profunda..……………….64
Figura 2.1- Árvore Neighbour-Joining construída com o modelo K2P…………..……………………84
Figura 2.2- Árvore Maximum-Likelihood construída com o modelo GTR+G+I…………………..….88
Figura 2.3- Árvore construída por Inferência Bayesiana com o modelo GTR+G+I..………………93
viii
Índice de tabelas
Tabela 1.1- Número de espécies compiladas divididos por Sub Ordem..…………………………..38
Tabela 1.2- Espécies compiladas divididas por habitat..…………………………………….…………..38
Tabela 2.1- Literatura usada na identificação de espécimes……………………………….…………..54
Tabela 2.2- Lista de primers utilizados para amplificação do fragmento COI-5P……….…………55
Tabela 2.3- Ciclos de PCR utilizados para amplificação do fragmento COI-5P………..…………..55
Tabela 2.4- Sistema de classificação dos DNA barcodes da biblioteca de referência..…….……57
Tabela 2.5- Parâmetros utilizados para a análise de filogenias profundas..…………………..……58
Tabela 2.6- Classificação dos MOTU´s obtidos e respetiva distância interna, calculada com o
modelo K2P…………………………………………………………………………………………………………….61
Tabela 2.7- Distâncias nucleotídicas congenéricas calculadas com o modelo de sustituição
K2P………………………………………………………….…………………………………………………………….61
Tabela 2.8- Resultados do teste de saturação de substituição nucleotídica..………………………63
Tabela 3.1- Lista de sinónimos para as espécies compiladas na checklist…..…………………….75
Tabela 3.2- Lista de sequências de COI-5P compiladas em bases de dados públicas….…..….78
Tabela 3.3- Lista de espécimes com DNA barcodes..………………………………………………..…..80
ix
Capítulo 1
Introdução geral
1
Capítulo 1
Introdução geral
1.1 Diversidade, distribuição e ecologia de Isópodes marinhos
(Crustacea: Isopoda)
A ordem Isopoda é um grupo de crustáceos que contem entre 9000 a 11000 espécies
marinhas, de águas doces e terrestres (Bruce, 2001; Brusca e Brusca, 2002), distribuídas por
todo o mundo com a exceção do território terrestre Antártico (Poore e Bruce, 2012). Com 6250
espécies em ambientes marinhos e estuarinos (Poore e Bruce, 2012) são um grupo variado de
macroinvertebrados bentónicos com diversos tipos de habitat, desde a zona intertidal até zonas
de mar profundo (Poore e Bruce, 2012), e com diversas funções ecológicas como parasitismo,
predação e herbivoria (Naylor, 1972). Em ambientes marinhos a ordem Isopoda inclui oito
subordens
distintas:
Asellota,
Anthuroidea,
Cymothoida,
Epicaridea,
Limnoriidea,
Phoratopodidea, Sphaeromatidea e Valvifera. Os Isópodes são tipicamente achatados
dorsalmente, excetuando espécies da subordem Anthuroidea, apresentam o corpo dividido em
três partes: a cabeça (cephalon) com dois pares de antenas, um pereon (tórax) de sete
segmentos com sete pares de pereópodes, à excepção de espécies da família Gnathidae, e o
pleon (abdómen) formado por cinco segmentos, por vezes fundidos, e o pleotelson (Naylor,
1972). Espécies da subordem Epicaridea devido à sua natureza parasítica podem apresentar
perda de certas estruturas ou substituição por estruturas especializadas (Williams e Boyko,
2012).
Os isópodes como membros da superordem Peracarida não possuem fases larvares,
com a exceção de certos grupos de espécies parasitas (Williams e Boyko, 2012), passando
diretamente para uma fase juvenil denominada manca (Kavanagh, 2009). Tipicamente os ovos
são incubados num marsúpio ventral durante 1-2 meses dependendo da espécie (Naylor, 1972).
Durante as fases juvenis estes organismos desenvolvem o sétimo par de pereópodes e
dependendo da espécie podem adquirir dimorfismo sexual através de mudas sucessivas
(Naylor,1972). Os isópodes são crustáceos sem capacidade de nadar livremente, adotando por
isso um habitat bentónico (Naylor, 1972) possuindo baixa capacidade de dispersão, à exceção
2
de fenómenos de deriva em algas, ou rafting (Franke et al., 1999), tornando os casos de
isolamento populacional bastante acentuados (Naylor, 1972).
As espécies pertencentes aos taxa Bopyroidea e Cryptoniscoidea são conhecidas como
parasitas de outros crustáceos, incluindo Isópodes (Naylor, 1972; Ramdane et al., 2007; Shields
e Gómez-Gutierrez, 1996; Williams e Boyko, 2012), existindo ainda espécies capazes de
endoparasitismo (Hosie,2008; Kuris et al., 2004; Kuris et al., 2005; Peresan e Roccatagliata,
2005). Espécies pertencentes aos taxa Cymothooidea, Aegidae e Gnathidae são ectoparasitas de
peixes (Williams e Boyko, 2012), no entanto, as espécies pertencentes à família Gnathidae,
apenas apresentam comportamentos de parasitismo durante a sua fase larvar, denominada
praniza (Smit e Davies, 2004).
1.2 Registo fóssil e classificação da ordem Isopoda
O primeiro registo fóssil, pertencente à espécie de Hesslerella shermani, subordem
Phreatoicidea, remonta ao carbonífero superior (Schram, 1970). Os primeiros registos de
parasitismo de decápodes por bopirídeos remontam ao período Jurássico (Markham, 1986).
Fósseis encontrados ao longo de vários pontos do mundo entre os períodos Jurássico e Plioceno
(Bowman, 1971; Feldmann, 2006; Feldmann, 2009; Guinot et al., 2005 Karasawa et al., 2008)
representam maioritariamente as subordens Cymothoida e Sphaeromatidea (Poore e Bruce,
2012). Embora seja aceite que a ordem Isopoda forma um grupo monofilético, as relações com
outros crustáceos peracarídeos permanecem conflituosas ou inconclusivas (Jenner et al., 2009;
Poore, 2005; Wilson, 2009). Alguns estudos cladísticos entre grupos desta ordem indicam as
subordens Phreatoicidea, Asellota e Oniscidea como os grupos mais primitivos da ordem
Isopoda (Brusca e Wilson, 1991; Wagele, 1989). Estudos moleculares apontam para uma
possível colonização de habitats de mar profundo por espécies da sub ordem Asellota a partir de
algumas migrações de águas pouco profundas, resultando na radiação de várias linhagens de
mar profundo (Luana et al., 2012; Raupach et al., 2009), a partir do princípio do período
Pérmico (Lins et al., 2012).
3
1.3 Importância ecológica e impacto ambiental e económico
A ordem Isopoda é um dos taxa mais diversas (e.g. Carvalho et al., 2013; Cunha et al.,
1997; Cunha et al., 1999; Marques et al., 1994) entre todos os crustáceos descritos,
apresentando grande relevância para o funcionamento das comunidades marinhas devido à
grande diversidade de espécies e de nichos ecológicos que pode ocupar (Naylor, 1972; Poore e
Bruce, 2012), tendo grande importância na alimentação da fauna ictiológica (Pires, 1987) e
resiliência a fatores de stress (Bordalo et al., 2011; Prato et al., 2006), levando à possibilidade
de utilização de certas espécies de isópodes em ensaios de bioacumulação (Longo et al., 2013).
Contudo verifica-se também a existência de espécies classificadas como sensíveis nas listas de
espécies dos índices bióticos AMBI (Borja et al., 2000) e Bentix (Simboura e Zenetos, 2002),
como por exemplo as espécies pertencentes aos géneros Gnathia, Eurydice, Jaera e Cymodoce,
realçando a importância deste grupo de organismos em tarefas de monitorização e conservação
marinha.
Embora as populações nativas de Isópodes parasitas não possuam grande impacto
sobre as populações de espécies hospedeiras (Williams e Boyko, 2012), o parasitismo de
espécies de valor comercial produzidas em aquacultura pode levar ao descarte de peixe com
destino ao consumo público (Bharadhirajan et al., 2014; Nowak, 2007). No entanto, as espécies
parasitas invasoras têm um grande impacto sobre as espécies hospedeiras nativas (Dumbauld et
al., 2011). Nos Estados Unidos da América, Quénia e Tanzânia foram reportados casos de
erosão em mangais por ação do isópode perfurador Sphaeroma terebrans (Rehm, 1976;
Svavarsson et al., 2002). Outro grande impacto económico relaciona-se com isópodes
perfuradores de madeira do género Limnoria, causando danos em construções submersas e
embarcações de madeira (Bruce e Gordon, 2005; Menzies, 1957; Borges e Costa, 2014).
Devido à associação de limnorídeos a embarcações, este género encontra-se atualmente
distribuído por várias regiões (Cookson, 1991). Outras espécies invasoras registadas incluem
espécies como Cirolana harfordi, Paradella dianae e Paracerceis sculpta para a região da
Austrália (Poore e Storey, 1999), e a espécie Synidotea laticauda em Espanha (Cuesta et al.,
1996).
4
1.4 Impedimento taxonómico e o uso de metodologias moleculares
As zonas Europeias de águas pouco profundas, como zonas de fácil acesso e perto dos
grandes centros urbanos, mantêm-se como habitats bem estudados, sendo os grandes desafios
na inventariação de espécies de isópodes, as zonas de difícil acesso como zonas de mar
profundo (Poore e Bruce, 2012), e os possíveis grandes complexos de espécies crípticas dentro
de certos géneros como Dynamene ou Cymodoce (Poore e Bruce, 2012).
Embora sejam um dos grupos mais abundantes de crustáceos peracarídeos, a
identificação de certos grupos de isópodes marinhos pode levantar dúvidas relacionadas com o
elevado dimorfismo sexual de certas espécies e falta de descrições de fêmeas ou machos
adultos e juvenis (Horton, 2000). No entanto o maior problema relacionado com a taxonomia de
isópodes marinhos prende-se com a fragmentação da informação e grandes assimetrias na
cobertura geográfica e a ausência de chaves de identificação completas, ou sem descrição de
caracteres morfológicos importantes (Horton, 2000).
A taxonomia como base de investigação ecológica são fundamentais para assegurar
resultados de qualidade e com relevância para efeitos de conservação (Bortolus, 1998). O uso
de metodologias de DNAbarcoding (Hebert et al., 2003) em ambientes marinhos pode levar a
um aumento do conhecimento sobre a biodiversidade refinando e acelerando processos de
identificação de espécies através da associação de um fragmento standardizado da região 5´ do
gene mitocondrial citocromo c oxidase I (COI-5P) a uma única espécie. A escolha do gene COI5P como código de barras de DNA para espécies animais, tem como bases a herança
uniparental, contrariamente a genes nucleares, a ausência de intrões e uma taxa evolutiva
superior comparada com outros genes (Radulovici et al., 2010), levando a um grande
espaçamento entre as distâncias genéticas intra e interespecíficas, denominado de barcoding
gap. No entanto o uso do gene COI pode apresentar falta de resolução em casos de hibridização,
espécies com divergência recente (Radulovici et al., 2010), ou casos de introgressão
mitocondrial (Kemppainen et al., 2009). O uso deste gene em DNA barcoding de organismos
marinhos tem revelado resolução suficiente para a descriminação de várias espécies de isópodes
(Costa et al., 2007; Radulovici et al., 2009; Xavier et al., 2012), bem como na diferenciação de
complexos de espécies crípticas, como por exemplo a presença de duas linhagens crípticas de
Ligia oceanica no Atlântico Europeu (Raupach et al., 2014), a descoberta de três linhagens de
5
Excirolana brasiliensis na costa do Chile (Varela and Haye, 2012) e quatro linhagens do isópode
de mar profundo Chelator insignis na Islândia (Brix et al., 2014b), ou a presença de quinze
linhagens distintas de Ligia occidentalis no Pacífico, entre o sul da Califórnia e México (Markow e
Pfeiler, 2010), tendo-se demostrado também útil como ferramenta auxiliar para a descrição de
novas espécies (Brix et al., 2014a; Khalaji-Pirbalouty e Raupach, 2014). O uso do gene COI-5P
em estudos filogeográficos também pode fornecer dados importantes sobre a biologia de
organismos marinhos como a distribuição espacial da variabilidade genética de populações
(Raupach et al., 2014; Vagelli et al., 2009; Xavier et al., 2011), a conectividade e fluxo de genes
entre populações (Palero et al., 2008) ou a monitorização de invasões de espécies não
endémicas (Xavier et al., 2009).
O desconhecimento taxonómico pode resultar em identificações erradas de espécimes
levando por vezes a conclusões incorretas sobre a distribuição geográfica da espécie em questão
(Xavier et al., 2009), tornando fundamentais descrições de distribuição para fins de conservação
e investigação (Dormann, 2007). Uma das principais fontes de incerteza taxonómica deve-se à
parcialidade das identificações (Rocchini et al., 2011; Soberón e Peterson, 2004), no entanto
com o uso de metodologias de DNAbarcoding e com recurso a bibliotecas de referência de
qualidade, é possível diminuir esta imparcialidade. O uso de uma zona padronizada para
investigação torna também possível um aumento do valor comparativo entre diferentes estudos.
Deste modo, a construção de uma biblioteca de referência robusta possibilitará a identificação
de espécies invasoras (Saunders, 2009) ou de espécies de impacto económico (Borges et al.,
2012), e a aplicação de metodologias de meta barcoding de grande escala recorrendo a
sequenciação de segunda geração (Costa e Antunes, 2012), com possibilidade de uso de índices
de biodiversidade genéticos como por exemplo gAMBI (Aylagas et al., 2014).
1.5 Objetivos gerais
Com o intuito de melhorar o conhecimento da biodiversidade presente na costa de Portugal e
agilizar as tarefas de biomonitorização de macrobentos incluídas na Diretiva Quadro da Água
(Diretiva 2000/60/CE do Parlamento Europeu e do Conselho, de 23 de Outubro de 2000), é
proposto:
6
- A atualização de uma checklist de espécies marinhas de isópodes compilando informação
fragmentada sobre a distribuição geográfica na costa Portuguesa (Capítulo 2).
- A iniciação da construção de uma biblioteca de referência de DNA barcodes para a ordem
Isopoda, para ser usada em investigação, conservação e tarefas de monitorização (Capítulo 3).
- A revisão do estatuto taxonómicos através do confronto entre as identificações baseadas na
morfologia e os DNA barcodes obtidos (Capítulo 3).
Referências
Aylagas, A., Borja, A., Rodriguez-Ezpeleta, N. (2014) Environmental Status Assessment Using
DNA Metabarcoding: Towards a Genetics Based Marine Biotic Index (gAMBI). Plos One 9:
e90529.
Bharadhirajan, P., Murugan, S., Sakthivel, A., Selvakumar, P. (2014) Isopods parasites
infection on commercial fishes of Parangipettai waters, southeast coast of India. Asian
Pacific Journal of Tropical Disease 4: S268-S272.
Bordalo, M.D., Ferreira, S.M.F., Cardoso, P.G., Leston, S., Pardal, M.A. (2011) Resilience
of an isopod population (Cyathura carinata) population to multiple tress factors in a
temperate estuarine system. Hydrobiologia 671: 13-25.
Borges, L.M.S., Sivrikaya, H., leRoux, A., Shipway, J.R., Cragg, S.M., Costa, F.O. (2012)
Investigating the taxonomy and systematics of marine wood borers
(Bivalvia: Teredinidae) combining evidence from morphology, DNA barcodes and nuclear
locus sequences. Invertebrate Systematics 26: 572–582.
Borges, L.M.S., Costa, F.O. (2014) New records of marine wood borers (Bivalvia:
Teredinidae and Isopoda: Limnoriidae) from São Miguel, Azores, with a discussion of
some aspects of their biogeography. Açoreana 10: 109-116.
Borja, A., Franco, J., Pérez, V. (2000) A marine biotic index to establish the ecological quality of
soft bottom benthos within European estuarine and coastal environments. Marine
Pollution Bulletin 40: 1100-1114.
Bortolus A. (2008) Error cascades in the biological sciences: the unwanted consequences of
using bad taxonomy in ecology. AMBIO: A Journal of the Human Environment 37: 114118
Bowman, T.E. (1971) Palaega lamnae, new species (Crustacea: Isopoda) from the upper
Cretaceous of Texas. Journal of Paleontology 45: 540–541.
Brix, S., Leese, F., Riehl, T., Kihara, T.C. (2014a) A new genus and new species of
Desmosomatidae Sars, 1897 (Isopoda) from the eastern South Atlantic abyss described
7
by means of integrative taxonomy. Marine Biodiversity doi: 10.1007/s12526
−014−0218−3.
Brix, S., Svavarsson, J., Leese, F. (2014b) A multi−gene analysis reveals multiple highly
divergent lineages of the isopod Chelator insignis (Hansen, 1916) south of Iceland.
Polish Polar Research 35:225-242.
Bruce, N.L. (2001) Marine isopod crustaceans. New Zealand. Water and Atmosphere 9: 12-13.
Bruce, N.L., Gordon, D. (2005, unpublished) Interim report on degradation of marine timber by
invertebrates at Nuhaka rail bridge. NIWA Client Report: 1–4.
Brusca, R. C. and Wilson, G. D. F. (1991) A phylogenetic analysis of the Isopoda with some
classificatory recommendations. Memoirs of the Queensland Museum 31: 143-204.
Brusca, R. C. and Brusca, G. J. (2002) Invertebrates. Sinauer Associates, Sunderland,
Massachusetts.
Carvalho, S., Moura, A., Cúrdia, J., Fonseca, L.C., Santos M.N. (2013) How complementary are
epibenthic assemblages in artificial and nearby natural rocky reefs? Marine
Environmental Research 92:170-177.
Cookson, L.J. (1991) Australasian species of Limnoriidae (Crustacea: Isopoda). Memoirs of
Museum of Victoria 52: 137–262.
the
Costa, F. O., deWaard, J. R., Boutillier, J., Ratnasingham, S., Dooh, R. T., Hajibabaei, M.,
Hebert, P. D. N. (2007) Biological identifications through DNA barcodes: the case of
Crustacea. Canadian Journal of Fisheries and Aquatic Sciences 64: 272- 295.
Costa, F.O., Antunes, P.M. (2012) The contribution of the Barcode of Life initiative to the
discovery and monitoring of Biodiversity. In: Natural Resources, Sustainability
and
Humanity - A Comprehensive View. Mendonca A, Cunha A, Chakrabarti R (eds) Springer
Science+Business Media, Dordrecht, pp 37-68.
Cuesta, J.A., Serrano, L., Bravo, M.R., Toja, J. (1996) Four new crustaceans in the
Guadalquiver River estuary (SW Spain), including an introduced species. Limnética 12:
41–45.
Cunha, M. R., Sorbe, J.C.,Bernardes, C. (1997) On the structure of the neritic suprabenthic
communities from the Portuguese continental margin. Marine Ecology Progressive Series
157: 119-137.
Cunha, M. R., Sorbe, J.C., Moreira, M.H. (1999) Spatial and seasonal changes of
brackish peracaridan assemblages and their relation to some environmental
variables in two tidal channels of the Ria de Aveiro (NW Portugal). Marine Ecology
Progressive Series 190: 69-87.
Dormann CF (2007b) Promising the future? Global change projections of species
distributions. Basic and Applied Ecology 8: 387–397.
8
Dumbauld, B., Chapman, J., Torchin, M., Kuris, A. (2011) Is the collapse of mud shrimp
(Upogebia pugettensis) populations along the Pacific Coast of North America caused by
outbreaks of a previously unknown bopyrid isopod parasite (Orthione griffenis)? Estuaries
and Coasts 34: 336–350.
Feldmann, R.M., Rust, S. (2006) Palaega kakatahi n. sp., the first record of a marine fossil
isopod from the Pliocene of New Zealand. New Zealand Journal of Geology and
Geophysics 49: 411–415.
Feldmann, R.M. (2009) A new cirolanid isopod (Crustacea) from the Cretaceous of
Lebanon: dermoliths document the pre-molt condition. Journal of Crustacean Biology 29:
373–378.
Franke, H.D., Gutow,L., Janke, M. (1999) The recent arrival of the oceanic isopod Idotea
metallica Bosc off Helgoland (German Bight, North Sea): an indication of a warming
trend in the North Sea? Helgoland marine research 52: 347-357.
Guinot, D., Wilson, G.D.F., Schram, F.R. (2005) Jurassic Isopod (Malacostraca: Peracarida)
from Ranville, Normandy, France. Journal of Paleontology 79: 954–960.
Hebert, P.D.N., Cywinska, A., Ball, S.L., deWaard, J.R. (2003) Biological identifications through
DNA barcodes. Proceedings of the Royal Society of London Series B-Biological Sciences
270:313–321.
Horton, T. (2000) Ceratothoa steinddachneri (Isopoda: Cymothoidae) new to British waters with a
key to north-east Atlantic and Mediterranean Ceratothoa. Journal of the Marine Biological
Association of the UK 80: 1041-1052.
Hosie, A.M. (2008) Four new species and a new record of Cryptoniscoidea (Crustacea:
Isopoda: Hemioniscidae and Crinoniscidae) parasitizing stalked barnacles from New
Zealand. Zootaxa 1795: 1–28.
Jenner, R.A., Dhubhghaill, C.N., Ferla, M.A., Wills, M.A. (2009) Eumalacostracan
phylogeny and total evidence: limitations of the usual suspects. BMC Evolutionary Biology
9: 21
Karasawa, H., Ohara M., Kato, H. (2008) New Records for Crustacea from the Arida
Formation (Lower Cretaceous, Barremian) of Japan.Boletin De La Socidad
Geologica Mexicana 60: 101-110
Kavanagh, F.A. (2009) A catatalogue of the Asellota (CRUSTACEA: ISOPODA) off the west coast
of Ireland and Britain, From 100-5000m. Bulletin Irish biogeographical Society 33: 1475.
Kemppainen, P., Panova, M., Hollander, J., Johannesson, K. (2009) Complete lack of
mitochondrial divergence between two species of NE Atlantic marine intertidal
gastropods. Journal of Evolutionary Biology 22:2000-2011.
9
Khalaji-Pirbalouty, V., Raupach, M.J. (2014) A new species of Cymodoce Leach, 1814
(Crustacea: Isopoda: Sphaeromatidae) based on morphological and molecular data, with
a key to the Northern Indian Ocean species. Zootaxa 3826: 230-254
Kuris, A.M., Torchin, M.E., Lafferty, K.D., 2004. Parasites in the thoracic ganglion of
Pachygrapsus marmoratus (Brachyura: Grapsidae) from the coast of Portugal. Parasite
11: 425–427.
Kuris, A. M., Lafferty, K.D., Torchin, M.E. (2005) Biological control of the European green crab,
Carcinus maenas: natural enemy evaluation and analysis of host specificity. Pages 102115 in M. S. Hoddle, editor. Second International Symposium on Biological Control of
Arthropods. Forest Health Technology Enterprise Team, University of California,
Riverside.
Lins, L.S., Ho, S.Y., Wilson, G.D., Lo, N. (2012) Evidence for Permo-Triassic colonization of
deep sea by isopods. Biology Letters 8: 979-982.
the
Longo, G., Trovato, M., Mazzei, V., Ferrante, M., Conti, G.O. (2013) Ligia italica (Isopoda,
Oniscidea) as Bioindicator of Mercury Pollution of Marine RockyCoasts. PLoS ONE 8:
e58548.
Markham, J.C. (1986) Evolution and zoogeography of the Isopoda Bopyridae, parasites of
Crustacea Decapoda. In: Gore RH, Heck KL, eds. Crustacean Issues 4 Crustacean
Biogeography. Rotterdam: A.A. Balkema. pp 143–164.
Markow, T. A., Pfeiler, E. (2010). Mitochondrial DNA evidence for deep genetic divergences in
allopatric populations of the rocky intertidal isopod Ligia occidentalis from the eastern
Pacific. Phylogenetics and Evolution 56: 468-473.
Marques, J.C., Martins, I., Teles-Ferreira C., Cruz S. (1994). Population Dynamics, Life History,
and Production of Cyathura carinata (Krøyer) (Isopoda: Anthuridae) in the Mondego
Estuary. Portugal Journal of Crustacean Biology 14: 258-272.
Menzies, R.J. (1957) The marine borer Family Limnoriidae (Crustacea, Isopoda). Bulletin
of Marine Science of the Gulf and Caribbean 7: 101-200.
Naylor, E. (1972).British marine isopods: keys and notes for the identification of the species. 2nd
ed. Synopses of the British fauna (new series), 3. Academic Press: London, UK. ISBN 012-515150-0. 89 pp.
Nowak, B.F. (2007) Parasitic diseases in marine cage culture – An example of experimental
evolution of parasites? International Journal for Parasitology 37: 581-588.
Palero, F., Abelló, P., Macpherson, E., Gristina, M., Pascual, M. (2008). Phylogeography of the
European spiny lobster (Palinurus elephas): Influence of current oceanographical
features and historical processes. Molecular Phylogenetics and Evolution. 48: 708-717.
Peresan, L., Roccatagliata, D. (2005) First record of the hyperparasite Liriopsis pygmaea
(Cryptoniscidae, Isopoda) from a rhizocephalan parasite of the false king crab
10
Paralomis granulosa from the Beagle Channel (Argentina), with a redescription. Journal
of Natural History 39: 311–324.
Pires, A.M.S. (1987) The contribution of Isopods in the feeding of Sympterygia spp. (Pisces:
Rajidae) with a description of Ancinus gaucho sp. n. (Isopoda: Sphaeromatidae) Boletim
do Instituto Oceanográfico de São Paulo 35: 115-122.
Poore, G.C.B. (2005) Peracarida: monophyly, relationships and evolutionary success.
Nauplius 13: 1–27.
Poore, G.C.B., Storey, M. (1999) Soft sediment Crustacea of Port Phillip Bay. Centre for
Research on Introduced Marine Pests, CSIRO Marine Research, Technical Report 20:
150–170.
Poore, G.C.B., Bruce, N.L. (2012) Global Diversity of Marine Isopods (Except Asellota and
Crustacean Symbionts). PLoS ONE 7: e43529.
Prato, E., Biandolino, F., Scardicchio, C. (2006) Test for acute toxicity of copper, cadmium
mercury in five marine species. Turkish Journal of Zoology 30: 285-290.
and
Radulovici, A.E., Sainte-Marie, B. Dufresne, F. (2009). DNA barcoding of marine crustaceans
from the Estuary and Gulf of St. Lawrence: a regional-scale approach. Molecular Ecology
Resources 9:181-187
Radulovici, A.E., Archambault, P.. Dufresne, F. (2010) DNA Barcodes for Marine Biodiversity:
Moving Fast Forward? Diversity 2: 450-472
Ramdane, Z., Bensouilah, M. A., Trilles, J.P. (2007) The Cymothoidae (Crustacea,
Isopoda), parasites on marine fishes, from Algerian faunan. Belgian Journal of
Zoology, 137: 67-74.
Raupach, M. J., Mayer, C., Malyutina, M. Wagele, J.W. (2009) Multiple origins of deep-sea
Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data.
Proceedings of the Royal Society B 276: 799–808.
Raupach, M.J., Bininda-Emonds, O.R.P., Knebelsberger, T., Laakmann, S., Pfaender, J., Leese,
F. (2014) Phylogeographical analysis of Ligia oceanica (Crustacea: Isopoda) reveals two
deeply divergente mitochondrial lineages. Biological Journal of Linnean Society 112: 1630.
Rehm, A.E. (1976) The effect of the wood-boring isopod Sphaeroma terebrans on the
mangrove communities of Florida. Environmental Conservation 3: 47-57.
Rocchini, D., Hortal, J., Lengyel, S., Lobo, J.M., Jimenez-Valverde, A., Ricotta, C.,Bacaro, G.,
Chiarucci, A. (2011) Accounting for uncertainty when mapping species distributions: the
need for maps of ignorance. Progress in Physical Geography 35:211 –226.
Saunders, G.W. (2009) Routine DNA barcoding of Canadian Gracilariales (Rhodophyta) reveals
the invasive species Gracilaria vermiculophylla in British Columbia. Molecular Ecology
Resources 9: 140-150.
11
Simboura, N., Zenetos, A. (2002) Benthic indicators to use in ecological quality classification of
Mediterranean soft bottoms marine ecosystems, including a new biotic index.
Mediterranean Marine Science 3: 77-111.
Schram, F. R. (1970). Isopod from the Pennsylvanian of Illinois. Science 169:854-855.
Shields, J.D., Gómez-Gutierrez, J. (1996) Oculophryxus bicaulis, a new genus and species of
dajid isopod parasitic on the euphausid Stylocheiron affine Hansen. International Journal
of Parasitology 26: 261–268.
Smit, N.J., Davies, A.J. (2004) The curious life-style of the parasitic stages of Gnathiid
isopods. Advances in Parasitology 58: 289-391.
Soberón J., Peterson A.T. (2004) Biodiversity informatics: Managing and applying primary
biodiversity data. Philosophical Transactions of the Royal Society of London B 359: 689–
698.
Svavarsson, J., Osore, M.K.W., Ólafsson, E. (2002) Does the wood-borer Sphaeroma
terebrans (Crustacea) shape the distribution of the mangrove Rhizophora
mucronata? A Journal of the Human Environment 31: 574-579
Vagelli, A., Burford, M. Bernardi, G. (2009). Fine scale dispersal in Banggai Cardinalfish,
Pterapogon kauderni, a coral reef species lacking a pelagic larval phase. Marine
Genomics 1: 129–134.
Varela, A. I. and Haye, P. A. (2012) The marine brooder Excirolana braziliensis (Crustacea:
Isopoda) is also a complex of cryptic species on the coast of Chile. Revista Chilena de
Historia Natural 85: 495-502.
Williams, J.D., Boyko, C.B. (2012) The Global Diversity of Parasitic Isopods Associated with
Crustacean Hosts (Isopoda: Bopyroidea and Cryptoniscoidea). PLoS ONE 7: e35350.
Wagele, J.W. (1989) Evolution und phylogenetisches System der Isopoda. Stand der
Forschung und neue Erkenntnisse. Zoologica (Stuttgart). 140: 1–262.
Wilson, G.D.F. (2009) The phylogenetic position of the Isopoda in the Peracarida (Crustacea:
Malacostraca). Arthropod Structure & Development. 67: 159–198.
Xavier, R., Santos, A. M., Lima, F. P., Branco, M. (2009) Invasion or invisibility: using genetic and
distributional data to investigate the alien or indigenous status of the Atlantic populations
of the peracarid isopod, Stenosoma nadejda (Rezig 1989) Molecular Ecology. 18: 32833290.
Xavier, R., Zenboudji, S., Lima F. P., Harris, D. J., Santos, A. M., Branco, M. (2011).
Phylogeography of the marine isopod Stenosoma nadejda (Rezig, 1989) in North African
Atlantic and western Mediterranean coasts reveals complex differentiation patterns and a
new species. Biological Journal of the Linnean Society. 104: 419-431.
12
Xavier, R., Santos, A. M., Harris, D. J., Sezgin, M., Machado, M., Branco, M. (2012).
Phylogenetic analysis of the north-east Atlantic and Mediterranean species of the
genus Stenosoma (Isopoda, Valvifera, Idoteidae). Zoologica Scripta. 41: 386-399.
13
Capítulo 2
Checklist de Isópodes marinhos
(Crustacea: Isopoda) para a costa de
Portugal continental, Açores e Madeira
14
Capítulo 2
Checklist de Isópodes marinhos (Crustacea: Isopoda) para a costa
de Portugal continental, Açores e Madeira
2.1 Introdução
Os crustáceos marinhos da ordem Isopoda são um dos grupos mais abundantes de
peracarídeos, com uma grande variabilidade morfológica e ecológica. Embora sejam um grupo
abundante desde zonas estuarinas, intertidais e até zonas de mar profundo, o conhecimento
sobre estes organismos na costa de Portugal é sobretudo fornecido por trabalhos, em
comunidades de macrobentos (e.g. Cunha et al., 1997; Cunha et al., 1999; Marques et al.,
1982; Mucha et al., 2003; Reis et al., 1982; Sousa et al., 2006; Sousa et al., 2008),
fragmentados ao longo da costa e com maior incidência em zonas estuarinas.
A falta de conhecimento na taxonomia de certos tipos de organismos tem levado a um
desequilíbrio entre a quantidade de dados recentes e dados mais antigos, tornando a existência
de sinonímias elevada (Baselga et al., 2010), e a possibilidade de desvios nas distribuições
geográficas (Rocchini et al., 2011). Uma compilação de registos de ocorrência de isópodes
marinhos pode permitir um melhor mapeamento das distribuições geográficas, auxiliar a
identificação de certos organismos, bem como aumentar o conhecimento sobre um dos grupos
mais abundantes de macrobentos.
2.2 Metodologia
A elaboração da checklist de espécies marinhas de Isópodes presentes na costa
Portuguesa foi baseada em literatura científica, incluindo pesquisa em estudos de ecologia (e.g.
Cunha et al., 1999; Pereira et al., 2006), parasitologia (e.g. Hermida et al., 2012; Kuris et al.,
2004) descrições de espécies (e.g. Beddard, 1886; Richardson, 1911), revisões taxonómicas
(e.g. Jacobs, 1987; Nolting et al., 1998), manuais de identificação de espécies (Saldanha,
2003), catálogos de espécies Europeias, Ibéricas, Portuguesas e insulares (e.g. Borges et al.,
2010; Castelló e Junoy, 2007; Junoy e Castelló, 2003; van der Land, 2001) teses de mestrado e
doutoramento (e.g. Ferreira, 2009; Pereira, 2004) e na base de dados pública WORMS (WORMS
Editorial Board, 2014), com omissão de dados redundantes sobre local de recolha. Tendo sido
15
verificada e corrigida a validade da nomenclatura dos registos de acordo com a base de dados
WORMS (Lista de sinónimos na Tab. 3.1 em Anexo).
2.3 Resultados
Catálogo de espécies de Isópodes para a costa de Portugal e ilhas
Sub-Ordem Anthuridea (Monod, 1922)
Família Antheluridae Poor e Lew Ton, 1988
Anthelura elongata Norman e Stebbing, 1886
Espécie de águas profundas (Negoescu e Wagele, 1982) registada em Portugal (Negoescu e
Wagele), sem referência a local de recolha.
Família Anthuridae Leach, 1814
Anthura gracilis (Montagu, 1808)
Espécie intertidal (Schotte et al, 1995) registada ao longo da costa sudoeste (Pereira, 2004) e
nos Açores (Borges et al, 2010).
Cyathura carinata (Kroyer, 1847)
Espécie estuarina registada na Ria de Aveiro (Cunha et al, 1999), nos estuários dos rios Lima
(Sousa et al, 2006), Minho (Sousa et al, 2008), Douro (Mucha et al, 2003), Mondego (Marques
et al, 1994), Tejo (Salgado et al, 2004), Cávado (Carvalho e Santos, 2013) no estuário da Ria
Formosa (Cruz et al, 2003) e em Sines (Carvalho et al, 2003). Presente em profundidades entre
os 1 e os 5 metros (Schotte et al, 1995).
Família Expanathuridae Poore, 2001
Eisothistos adcentralis Knight-Jones e Knight-Jones, 2002
Espécie de águas pouco profundas (Schotte et al, 1995) descrita a partir de espécimes
recolhidos na Madeira (Knight-Jones e Knight-Jones, 2002).
16
Família Leptanthuridae Poore, 2001
Bullowanthura aquitanica Kensley, 1982
Espécie de águas profundas, 641 a 860 metros (Schotte et al, 1995), registada nas planícies
abissais do centro de Portugal e identificada como Bullowanthura cf. aquitanica (Ferreira, 2009)
Leptanthura tenuis (Sars, 1873)
Espécie registada em Portugal (Nobre, 1938), sem referência a local de recolha. Presente dos 0
aos 1500 metros de profundidade (Schotte et al, 1995)
Família Paranthuridae Menzies e Glynn, 1968
Paranthura costana Bate e Westwood, 1866
Espécie registada nos Açores (Borges et al, 2010; Castro e Viegas, 1980-1981). Presente em
profundidades entre os 0 e os 355 metros (Schotte et al, 1995).
Paranthura nigropunctata (Lucas, 1846)
Espécie registada ao longo da costa oeste (Pereira, 2004), sul (Guerra-García e Sánchez, 2009)
e nos Açores (Borges et al, 2010). Presente entre os 2 e os 50 metros de profundidade (Schotte
et al, 1995)
Sub-Ordem Asellota Latreille, 1802
Família Dendrotionidae Vanhöffen, 1914
Dendrotion elegans Lincoln e Boxshall, 1983
Espécie de águas profundas, 1600 a 2200 metros de profundidade (Schotte et al, 1995),
registada nas planícies abissais do centro de Portugal e identificada como Dendrotion cf. elegans
(Ferreira, 2009).
17
Família Desmosomatidae Sars, 1897
Chelator insignis (Hansen, 1916)
Espécie registada nas planícies abissais do centro de Portugal, identificada como Chelator cf.
insignis (Cunha et al, 2011).
Chelator verecundus Hessler, 1970
Espécie registada nas planícies abissais do centro de Portugal, identificada como Chelator cf.
verecundus (Ferreira, 2009). Presente em águas profundas, 1150 a 2500 metros (Schotte et al,
1995).
Eugerda filipes (Hult, 1936)
Espécie registada na Ria de Aveiro (Cunha et al, 1997; Cunha et al, 1999). Presente em águas
relativamente profundas, entre 34 a 1300 metros (Schotte et al, 1995).
Eugerda tetarta Hessler, 1970
Registada nas planícies abissais do centro de Portugal (Ferreira, 2009; Cunha et al, 2011).
Espécie presente em águas profundas, 530 a 2496 metros (McLaughlin et al. 2005) e com
dimorfismo sexual acentuado (Hessler, 1970).
Eugerdella ischnomesoides Hessler, 1970
Espécie de águas profundas, 1150 a 4833 metros (Schotte et al, 1995) registada nas planícies
abissais do centro de Portugal e identificada como Eugerdella cf. ischnomesoides (Ferreira,
2009).
Eugerdella pugilator Hessler, 1970
Espécie de águas profundas, 2864 a 2886 metros (Schotte et al, 1995) registada nas planícies
abissais do centro de Portugal (Ferreira, 2009).
18
Mirabilicoxa acuminata Hessler, 1970
Espécie registada nas planícies abissais do centro de Portugal, identificada como Mirabilicoxa cf.
acuminata (Ferreira, 2009). Presente em águas profundas, 3834 a 4800 metros (Schotte et al,
1995).
Mirabilicoxa gracilipes (Hansen, 1916)
Espécie registada nas planícies abissais do centro de Portugal, identificada como Mirabilicoxa aff.
gracilipes (Ferreira, 2009). Presente em águas profundas, 2194 a 2702 metros (Schotte et al,
1995).
Mirabilicoxa similis (Hansen, 1916)
Espécie registada nas planícies abissais do centro de Portugal, identificada como Mirabilicoxa cf.
similis (Ferreira, 2009).
Prochelator abyssalis (Hessler, 1970)
Espécie de águas profundas, 3459 a 4833 metros (Schotte et al, 1995), registada nas planícies
abissais do centro de Portugal e identificada como Prochelator aff. abyssalis (Ferreira, 2009).
Família Haploniscidae Hansen, 1916
Haploniscus angustus Lincoln, 1985
Espécie registada nas planícies abissais do centro de Portugal, identificada como Haploniscus cf.
angustus (Ferreira, 2009). Presente em águas profundas, 1484 a 2910 metros (Schotte et al,
1995).
Haploniscus antarcticus Vanhöffen, 1914
Espécie de águas profundas, 385 a 3397 metros (Schotte et al, 1995), registada nas planícies
abissais do centro de Portugal, identificada como Haploniscus cf. antarcticus (Ferreira, 2009).
Haploniscus foresti Chardy, 1974
Espécie de águas profundas, 1632 a 3697 metros (Schotte et al, 1995), registada nas planícies
abissais do centro de Portugal e identificado como Haploniscus cf. foresti (Ferreira, 2009).
19
Família Ischnomesidae Hansen, 1916
Ischnomesus gracilis Chardy, 1974
Espécie de águas profundas, 3178 metros (Schotte et al, 1995), registada nas planícies abissais
do centro de Portugal (Ferreira, 2009).
Ischnomesus norvegicus Svavarsson, 1984
Espécie registada nas planícies abissais do centro de Portugal, identificada como Ischnomesus
cf. norvegicus (Ferreira, 2009). Presente em águas profundas, 794 a 860 metros (Schotte et al,
1995).
Heteromesus calcar Cunha e Wilson, 2006
Espécie descrita a partir de espécimes recolhidos a 1685 metros de profundidade nas chaminés
hidrotermais de Lucky Strike Ridge (Cunha e Wilson, 2006), localizadas a sudoeste do
arquipélago dos Açores.
Heteromesus ctenobasius Cunha e Wilson, 2006
Espécie descrita a partir de espécimes recolhidos nas chaminés hidrotermais de Lucky Strike
Ridge, a 1685 metros de profundidade (Cunha e Wilson, 2006)
Heteromesus similis Richardson, 1911
Espécie descrita a partir de espécimes recolhidos nos Açores (Richardson, 1911). Presente em
águas profundas a 2995 metros (Schotte et al, 1995),
Heteromesus spinosus Beddard, 1886
Descrita a partir de espécimes recolhidos nos Açores (Beddard, 1886). Espécie de águas
profundas, 1829 metros (Schotte et al, 1995).
Família Haplomunnidae Wilson, 1976
Thylakogaster lobotourus Wilson e Hessler, 1974
Espécie de águas profundas, 1135 a 2223 metros (Schotte et al, 1995), registada em Lucky
Strike Ridge (Cunha e Wilson, 2003).
20
Família Haploniscidae Hansen, 1916
Haploniscus charcoti Chardy, 1975
Espécie descrita a partir de espécimes recolhidos nos Açores (Chardy, 1975), recolhida entre os
3360 e 3600 metros de profundidade (Chardy, 1975). Registada recentemente para as planícies
abissais do centro de Portugal (Ferreira, 2009; Cunha et al, 2011).
Haploniscus percavix Menzies, 1962
Espécie registada nos Açores (Wolff, 1962), com habitat de águas profundas, 2000 a 4885
metros (Schotte et al, 1995).
Família Janirellidae Menzies, 1956
Janirella nanseni Bonnier, 1896
Espécie registada nas planícies abissais do centro de Portugal, identificada como Janirella cf.
nanseni (Ferreira, 2009).
Família Janiridae Sars, 1897
Carpias parvus (Omer-Cooper, 1921)
Espécie de águas pouco profundas (Schotte et al, 1995) registada nos Açores (Borges et al,
2010).
Ianiropsis breviremis (Sars, 1883)
Espécie registada nos Açores (Borges et al, 2010) e na Lagoa de Óbidos (Reis et al, 1982), com
habitat entre 0 a 28 metros de profundidade (Schotte et al, 1995). Geralmente associada a
poríferos, urocordados ou em Laminaria (Naylor, 1972).
Jaera albifrons Leach, 1814
Espécie registada ao longo da costa oeste Portuguesa (Pereira, 2004; Cunha et al, 1999).
Comum em costas rochosas e estuários, entre rochas em zonas que retenham água entre
marés (Naylor. 1972).
21
Jaera hopeana Costa, 1853
Espécie registada na costa norte de Portugal (Nolting, 1995). Apresenta relação comensal com
indivíduos da espécie Sphaeroma serratum (Naylor, 1972)
Jaera nordmanni (Rathke, 1837)
Espécie registada nos Açores (Borges et al, 2010). Comum em cursos de água fresca adjacentes
à costa (Naylor, 1972).
Jaera praehirsuta Forsman, 1949
Espécie intertidal (Schotte et al, 1995) registada na costa norte de Portugal (Nolting, 1995).
Janira maculosa Leach, 1814
Registada nos Açores (Borges et al, 2010), no estuário do Rio Tejo (Gaudêncio e Cabral, 2007),
na praia da Aguda (Pereira, 2004) e no Algarve (Carvalho et al, 2013; Boaventura et al, 2006).
Espécie presente em profundidades de 0 a 2147 metros (Schotte et al, 1995), associada a
poríferos, urocordados ou em Laminaria (Naylor, 1972).
Família Joeropsididae Nordenstam, 1933
Joeropsis brevicornis Koehler, 1885
Espécie recolhida ao longo do sudoeste da costa Portuguesa (Pereira, 2004; Pereira et al, 2006)
e na Ria de Aveiro (Cunha et al, 1999). Associado a poríferos e algas coralinas de zonas
intertidais (Naylor, 1972).
Família Macrostylidae Hansen, 1916
Macrostylis abyssicola Hansen, 1916
Espécie registada nas planícies abissais do centro de Portugal e identificada como Macrostylis cf.
abyssicola (Ferreira, 2009; Cunha et al, 2011).
22
Macrostylis longiremis (Meinert, 1890)
Espécie registada nas planícies abissais do centro de Portugal, identificada como Macrostylis aff.
longiremis (Ferreira, 2009). Presente em profundidades de 149 a 228 metros (Schotte et al,
1995).
Macrostylis magnifica Wolff, 1962
Espécie registada nas planícies abissais do centro de Portugal (Ferreira, 2009; Cunha et al,
2011).
Macrostylis subinermis Hansen, 1916
Espécie registada nas planícies abissais do centro de Portugal, identificada como Macrostylis aff.
subinermis (Ferreira, 2009). Presente em profundidades de 830 a 3474 metros (Schotte et al,
1995).
Família Microparasellidae Karaman, 1933
Microcharon coineanae Galhano, 1970
Espécie descrita a partir de espécimes recolhidos no norte de Portugal (Galhano, 1970).
Família Munnidae Sars, 1899
Munna limícola Sars, 1886
Espécie registada no estuário da Ria de Aveiro (Cunha et al, 1999) e na costa sul de Portugal
(Guerra-García e Sánchez, 2009). Presente em profundidades entre os 40 e os 594 metros
(Schotte et al, 1995).
Uromunna petiti (Amar, 1948)
Espécie registada em Sines, identificada como Uromunna cf. petiti (Carvalho et al, 2003),
presente entre os 4 e os 281 metros de profundidade (Schotte et al, 1995).
23
Família Munnopsidae Lilljeborg, 1864
Amuletta abyssorum (Richardson, 1911)
Espécie de águas profundas, 2379 a 4829 metros (Schotte et al, 1995), descrita a partir de
espécimes recolhidos nos Açores (Richardson, 1911)
Bathyopsurus abyssicolus (Beddard, 1885)
Espécie de águas profundas, 3977 metros (Schotte et al, 1995), descrita a partir de espécimes
recolhidos nos Açores (Beddard, 1885).
Disconectes furcatus (Sars G. O., 1870)
Espécie registada em Aveiro, identificada como Disconectes cf. furcatus (Cunha et al 1999)
presente em águas de 150 a 2258 metros de profundidade (Schotte et al, 1995).
Disconectes phalangium (Sars, 1864)
Espécie registada em Aveiro (Cunha et al, 1997; Cunha et al, 1999), presente entre os 54 e os
1597 metros de profundidade (Schotte et al, 1995).
Ilyarachna argentina
Espécie registada em Aveiro, identificada como Ilyarachna cf. argentina (Cunha et al, 1999), no
entanto o estatuto taxonómico desta espécie encontra-se sobre revisão (WORMS, Editorial Board,
2014).
Ilyarachna longicornis (Sars G. O., 1864)
Espécie registada em Aveiro (Cunha et al, 1999), presente dos 8 aos 5233 metros de
profundidade (Schotte et al, 1995).
Munnopsurus atlanticus (Bonnier, 1896)
Espécie registada em Aveiro (Cunha et al, 1997; Cunha et al, 1999), a 299 metros de
profundidade (Cunha et al, 1997).
24
Pseudarachna hirsuta (Sars, 1864)
Espécie registada em Aveiro (Cunha et al, 1997; Cunha et al, 1999), a 299 metros de
profundidade (Cunha et al, 1997).
Sursumura atlantica (Beddard, 1885)
Espécie descrita a partir de espécimes recolhidos nos Açores (Beddard, 1885).
Família Nannoniscidae Hansen, 1916
Regabellator profugus Siebenaller e Hessler, 1981
Espécie de águas profundas, 1964 a 3797 metros (Schotte et al, 1995), registada nas planícies
abissais do centro de Portugal (Ferreira, 2009).
Família Paramunnidae Vanhöffen, 1914
Paramunna typica Tattersall, 1905
Espécie registada em Aveiro (Cunha et al, 1997; Cunha et al, 1999), recolhida dos 91 aos 299
metros de profundidade (Cunha et al, 1997).
Pleurogonium rubicundum (Sars G. O., 1864)
Espécie registada nas planícies abissais do centro de Portugal, identificada como Pleurogonium
cf. rubicundum (Ferreira, 2009), presente dos 10 aos 274 metros de profundidade (Schotte et
al, 1995).
Família Stenasellidae Dudich, 1924
Stenasellus virei Dollfus, 1897
Espécie intertidal (Schotte et al, 1995), registada em Portugal (Braga, 1942), sem referência a
local de recolha.
25
Sub-Ordem Epicaridea Latreille, 1831
Família Bopyridae Rafinesque-Schmaltz, 1815
Bopyrus squillarum Latreille, 1802
Espécie registada em Portugal (Nobre, 1938), sem referência a local de recolha. Parasita de
decápodes do género Paleomon (Brian, 1951).
Gigantione bouvieri Bonnier, 1900
Espécie descrita a partir de espécimes recolhidos nos Açores (Bonnier, 1900).
Gyge branchialis Cornalia e Panceri, 1861
Espécie registada em Portugal (Nobre, 1938), sem referência a local de recolha. Parasita em
decápodes do género Upogebia (Tucker, 1930).
Pagurocryptella paguri (Bourdon, 1979)
Espécie descrita a partir de espécimes recolhidos nos Açores (Bourdon, 1979). Parasita em
decápodes (Boyko e Williams, 2010).
Pseudione borealis Caspers, 1939
Espécie registada no norte de Portugal (Bourdon, 1981).
Pseudione confusa (Norman, 1886)
Espécie registada no cabo de São Vicente (Bourdon, 1981).
Família Cabiropidae Giard e Bonnier, 1887
Clypeoniscus hanseni Giard e Bonnier, 1893
Espécie registada no norte de Portugal (Nolting, 1995). Parasita de isópodes do género Idotea
(Nolting, 1995; Sheader, 1977).
26
Família Dajidae Sars, 1882
Branchiophryxus koehleri Nierstrasz e Brender a Brandis, 1931
Espécie descrita a partir de espécimes recolhidos em Portugal (Nierstrasz e Brender a Brandis,
1931). Parasita em crustáceos da família Euphausiidae (Shields e Gómez-Gutiérrez, 1996).
Holophryxus richardi Koehler, 1911
Espécie descrita a partir de espécimes recolhidos nos Açores (Koehler, 1911b).
Zonophryxus grimaldii Koehler, 1911
Espécie descrita a partir de espécimes recolhidos na costa sul de Portugal (Koehler, 1911b).
Ectoparasita em Heterocarpus grimaldii (Holthuis, 1949).
Família Entoniscidae Kossmann, 1881
Grapsion cavolinii (Fraisse, 1878)
Espécie registada na Ria de Mira (Kuris et al, 2004). Endoparasita em Pachygrapsus
marmoratus (Kuris et al, 2004).
Portunion maenadis (Giard, 1886)
Espécie registada na costa Portuguesa (Torchin et al, 2001). Endoparasita em Carcinus maenas
(Kuris et al, 2005).
Sub-Ordem Flabellifera Sars, 1882
Família Aegidae Leach, 1815
Aega megalops Norman e Stebbing, 1886
Espécie descrita a partir de espécimes recolhidos na costa Portuguesa (Norman e Stebbing,
1886).
Aega webbi (Guérin-Méneville, 1836)
Espécie descrita a partir de espécimes recolhidos na costa Portuguesa (Guérin-Méneville, 1836).
Presente entre profundidades de 100 a 300 metros.
27
Aegapheles deshaysiana (Milne Edwards, 1840)
Espécie registada nos Açores (Borges et al, 2010), na Madeira (Hermida et al, 2013) e na costa
continental (Nobre, 1938; Carvalho, 1944). Presente em profundidades entre os 40 e os 1105
metros (Schotte et al, 1995). Ectoparasita de peixes (Hermida et al, 2013).
Aegiochus ventrosa (M. Sars, 1859)
Espécie registada em Aveiro, identificada como Aegiochus cf. ventrosa (Cunha et al, 1999),
presente em profundidades de 539 a 1734 metros (Schotte et al, 1995).
Rocinela danmoniensis Leach, 1818
Espécie registada na Madeira, Figueira da Foz e Peniche (Hermida et al, 2013). Ectoparasita de
peixes (Hermida et al, 2013).
Rocinela dumerilii (Lucas, 1849)
Espécie registada em Viana do Castelo e Setúbal (Nobre, 1938), presente entre 60 e os 500
metros de profundidade (Schotte et al, 1995).
Xenuraega ptilocera Tattersall, 1909
Espécie descrita a partir de espécimes recolhidos nos Açores (Tattersall, 1909), presente entre
os 310 e os 1250 metros de profundidade (Schotte et al, 1995).
Família Cirolanidae Dana, 1852
Cirolana cranchii Leach, 1818
Espécie intertidal (Schotte et al, 1995) registada em Portugal (Nobre, 1938; Carvalho, 1944).
Eurydice affinis Hansen, 1905
Espécie intertidal (Schotte et al, 1995) registada nos Açores (Borges et al, 2010; Castro e
Viegas, 1983).
28
Eurydice grimaldii Dollfus, 1888
Espécie descrita a partir de espécimes recolhidos nos Açores (Dollfus, 1888), presente em
profundidades de 0 a 1700 metros (Schotte et al, 1995).
Eurydice inermis Hansen, 1890
Espécie registada em águas Portuguesas (Pierpoint, 1992).
Eurydice lusitanica Jones e Pierpoint, 1997
Espécie descrita a partir de espécimes recolhidos na praia da Amoreira (Jones e Pierpoint,
1997).
Eurydice naylori Jones e Pierpoint, 1997
Espécie intertidal (Schotte et al, 1995) registada ao longo da costa sudoeste Portuguesa (Pereira,
2004).
Eurydice pulchra Leach, 1862
Espécie intertidal (Schotte et al, 1995) registada ao longo da costa sudoeste (Pereira et al, 2006;
Cunha et al, 1999; Salgado et al, 2004) e na costa sul (Chicharo et al, 2002).
Eurydice spinigera Hansen, 1890
Espécie registada em Aveiro (Cunha et al, 1999) e em Sines (Carvalho et al, 2003).
Eurydice truncata Norman, 1868
Espécie registada em Aveiro (Cunha et al, 1999), presente entre profundidades de 50 a 200
metros (Schotte et al, 1995).
Natatolana borealis (Lilljeborg, 1851)
Espécie registada na costa sul de Portugal (Castro et al, 2005).
29
Família Cymothoidae Leach, 1818
Anilocra capensis Leach, 1818
Espécie registada em Setúbal (Nierstrasz, 1918).
Anilocra frontalis Milne Edwards, 1840
Espécie registada em águas Portuguesas (Carvalho, 1944). Ectoparasita de peixes (Innal et al,
2007).
Anilocra physodes (Linnaeus, 1758)
Espécie registada em águas Portuguesas (Carvalho, 1944; Saldanha, 2003). Ectoparasita de
peixes (Innal et al, 2007).
Ceratothoa oestroides (Risso, 1826)
Espécie registada em águas Portuguesas (Carvalho, 1944). Ectoparasita de peixes (Oktner e
Trilles, 2004).
Ceratothoa parallela (Otto, 1828)
Espécie registada em Setúbal (Nobre, 1938). Ectoparasita de peixes (Oktner e Trilles, 2004).
Ceratothoa steindachneri Koelbel, 1878
Espécie descrita a partir de espécimes recolhidos em Lisboa (Koelbel, 1878). Ectoparasita de
peixes (Oktner e Trilles, 2004).
Nerocila bivittata (Risso, 1816)
Espécie registada em águas Portuguesas (Nobre, 1938). Ectoparasita de peixes (Oktner e Trilles,
2004).
Nerocila orbignyi (Guérin-Méneville, 1832)
Espécie ectoparasita de peixes (Cavaleiro e Santos, 2009; Oktner e Trilles, 2004) registada em
Matosinhos (Cavaleiro e Santos, 2009).
30
Sub-Ordem Gnathiidea Hansen, 1916
Família Gnathiidae Harger, 1880
Bathygnathia bathybia (Beddard, 1886)
Espécie de águas profundas, 1638 metros (Schotte et al, 1995), descrita a partir de espécimes
recolhidos nos Açores (Beddard, 1886).
Gnathia dentata (Sars, 1872)
Espécie de águas pouco profundas (Schotte et al, 1995), registada em Sines (Carvalho et al,
2003).
Gnathia maxillaris (Montagu, 1804)
Espécie de águas pouco profundas (Schotte et al, 1995), registada ao longo da costa oeste de
Portugal (Pereira, 2004) e nos Açores (Barrois, 1888). Ectoparasitas de certas espécies de
peixes (Davies, 2007).
Gnathia vorax (Lucas, 1849)
Espécie registada em Sines (Carvalho et al, 2003), ectoparasitas de certas espécies de peixes
(González et al, 2004).
Paragnathia formica Hesse, 1864
Espécie de águas pouco profundas (Schotte et al, 1995), registada nos Açores (Borges et al,
2010), em Aveiro (Cunha et al, 1999) e nos estuários do Tejo (Salgado et al, 2004) e do
Mondego (Chainho et al 2006).
Sub-Ordem Limnoriidea
Família Limnoriidae White, 1850
Limnoria quadripunctata Holthius, 1949
Espécie registada no norte de Portugal (Borges et al., 2014; Nolting, 1995) em São Miguel nos
Açores (Borges e Costa, 2014) e no etuário do rio Tejo (Borges et al., 2010). Espécie
31
perfuradora de madeira presente entre os 0 e os 30 metros de profundidade (Schotte et al.,
1995).
Limnoria tripunctata Menzies, 1951
Espécie registada nos Açores em São Miguel (Borges e Costa, 2014) e na Terceira (Borges et al.,
2014), e no continente no Porto, Aveiro, Olhão (Borges et al.,2014) e no estuário do rio Tejo
(Borges et al., 2010) Espécie perfuradora de madeira presente entre os 0 e os 7 metros de
profundidade (Schotte et al., 1995).
Sub-Ordem Microcerberidea Lang, 1961
Família Microcerberidae Karaman, 1933
Coxicerberus remanei (Chappuis, Delamere-Deboutte-ville e Paulian 1956)
Espécie registada em Portugal (Galhano, 1970), sem referência a local de recolha.
Sub-Ordem Sphaeromatidea Wägele, 1989
Família Sphaeromatidae Latreille, 1825
Campecopea hirsuta (Montagu, 1804)
Espécie intertidal (Schotte et al, 1995) registada ao longo da costa oeste de Portugal (Pereira et
al, 2006; Carvalho et al, 2003; Saldanha, 2003).
Campecopea lusitanica (Nolting, Reboreda e Wägele, 1998)
Espécie registada ao longo da costa oeste Portuguesa (Pereira, 2004) e nos Açores (Borges et al,
2010).
Cymodoce pilosa Milne Edwards, 1840
Espécie registada em Setúbal (Nobre, 1938).
Cymodoce truncata Leach, 1814
Espécie registada em Aveiro (Cunha et al, 1999) e nos Açores (Borges et al, 2010).
32
Dynamene bidentata (Adams, 1800)
Espécie registada ao longo da costa oeste de Portugal (Pereira et al, 2006; Cunha et al, 1999;
Carvalho et al, 2003) ao longo da costa sul (Lima, 2007) e nos Açores (Borges et al, 2010).
Dynamene edwardsi (Lucas, 1849)
Espécie registada na costa sul de Portugal (Pereira et al, 2006).
Dynamene magnitorata Holdich, 1968
Espécie intertidal (Schotte et al, 1995) registada em toda a costa Portuguesa (Pereira et al,
2006) e nos Açores (Holdich, 1970).
Ischyromene lacazei Racovitza, 1908
Espécie registada na costa oeste de Portugal (Pereira et al, 2006).
Lekanesphaera bocqueti (Daguerre de Hureaux, Hoestlandt e Lejuez, 1960)
Espécie intertidal (Schotte et al, 1995) registada na costa sul de Portugal (Jacobs, 1987).
Lekanesphaera glabella Jacobs, 1987
Espécie intertidal (Schotte et al, 1995) descrita a partir de espécimes recolhidos na Madeira
(Jacobs, 1987).
Lekanesphaera hookeri (Leach, 1814)
Espécie intertidal (Schotte et al, 1995) registada em Aveiro (Cunha et al, 1999) e no estuário do
Mondego (Chainho et al, 2006)
Lekanesphaera levii (Argano e Ponticelli, 1981)
Espécie intertidal (Schotte et al, 1995) registada em Aveiro (Cunha et al, 1999), Faro (Jacobs,
1987), e na lagoa de Óbidos (Carvalho et al, 2011).
Lekanesphaera monodi (Arcangeli, 1934)
Registada no estuário do rio Tejo (Gaudêncio e Cabral, 2007) e nos Açores (Borges et al, 2010).
Espécie presente entre os 0 e os 20 metros de profundidade (Schotte et al, 1995).
33
Lekanesphaera rugicauda (Leach, 1814)
Espécie estuarina registada em Aveiro (Cunha et al, 1999) e nos Açores (Borges et al, 2010).
Lekanesphaera terceirae Jacobs, 1987
Espécie descrita a partir de espécimes recolhidos nos Açores (Jacobs, 1987).
Sphaeroma serratum (Fabricius, 1787)
Espécie intertidal (Schotte et al, 1995) registada nos estuários dos rios Douro (Mucha et al,
2003), e Cávado (Carvalho e Santos, 2013),em Aveiro (Cunha et al, 1999), São Julião (Pereira et
al, 2006) e nos Açores (Borges et al, 2010).
Sphaeroma venustissimum Monod, 1931
Espécie intertidal (Schotte et al, 1995) registada na costa sul de Portugal (Jacobs, 1987).
Sub-Ordem Oniscidea Latreille, 1803
Família Ligiidae Brandt, 1883
Ligia oceanica (Linnaeus, 1767)
Espécie registada nos Açores (Borges et al, 2010) e em Aveiro (Cunha et al, 1999).
Família Tylidae Milne Edwards, 1840
Tylos europaeus Arcangeli, 1938
Registada em Aveiro (Cunha et al, 1999) e no Rio Tejo (Calvário, 1984). Espécie semi-terrestre
presente em praias arenosas (Brown e Mclachlan, 1990).
Sub-Ordem Valvifera Sars, 1882
Família Arcturidae White, 1857
Astacilla bocagei Nobre, 1903
Espécie descrita a partir de espécimes recolhidos em Portugal (Nobre, 1903).
34
Astacilla cornuta (Koehler, 1911)
Espécie descrita a partir de espécimes recolhidos nos Açores (Koehler, 1911a).
Astacilla damnoniensis (Stebbing, 1874)
Espécie registada em Sines (Carvalho et al, 2003).
Astacilla longicornis (Sowerby, 1806)
Espécie registada nos Açores (Borges et al, 2010), presente em profundidades entre os 18 e os
752 metros (Schotte et al, 1995).
Família Chaetiliidae Dana, 1853
Saduriella losadai Holthuis, 1964
Espécie registada em Aveiro (Cunha et al, 1999), nos estuários do rio Minho (Sousa et al, 2008)
e Tejo (Gaudêncio e Cabral, 2007) e Mondego (Chainho et al. 2006). Presente entre os 1,5 e 3,5
metros de profundidade (Schotte et al, 1995).
Família Holognathidae Thomson, 1904
Cleantis prismatica (Risso, 1826)
Espécie registada ao longo da costa noroeste de Portugal (Pereira et al, 2006) e no estuário do
Rio Tejo (Gaudêncio e Cabral, 2007).
Família Idoteidae Samouelle, 1819
Idotea balthica (Pallas, 1772)
Espécie registada ao longo da costa noroeste Portuguesa (Pereira et al, 2006), e nos Açores
(Borges et al, 2010). Espécie de águas pouco profundas, 20 a 34 metros (Schotte et al, 1995),
geralmente associada a algas (Naylor, 1972).
Idotea chelipes (Pallas, 1766)
Espécie estuarina registada na Ria de Aveiro (Cunha et al, 1999) e no Rio Tejo (Salgado et al,
2004).
35
Idotea granulosa Rathke, 1843
Espécie intertidal (Schotte et al, 1995), registada ao longo da costa oeste de Portugal (Pereira,
2004) e nos Açores (Borges et al, 2010). Geralmente associada a algas (Naylor, 1972).
Idotea linearis (Linnaeus, 1766)
Espécie intertidal (Schotte et al, 1995) registada em Portugal (Nobre, 1938; Carvalho, 1944)
sem referência a local de recolha.
Idotea mettalica Bosc, 1802
Espécie intertidal (Schotte et al, 1995) registada em Aveiro (Cunha et al, 1999) e nos Açores
(Borges et al, 2010).
Idotea neglecta Sars, 1897
Espécie intertidal (Schotte et al, 1995) registada nos Açores (Borges et al, 2010).
Idotea pelagica Leach, 1815
Espécie intertidal (Schotte et al, 1995) registada ao longo da costa oeste Portuguesa (Pereira et
al, 2006; Carvalho et al, 2003).
Stenosoma acuminatum (Leach, 1814)
Espécie registada ao longo da costa noroeste de Portugal (Pereira et al, 2006; Xavier et al,
2012).
Stenosoma appendiculatum (Risso, 1826)
Espécie registada em Portugal (Nobre, 1938; Carvalho, 1944) sem referência a local de recolha.
Stenosoma bellonae Daguerre de Hureaux, 1968
Espécie intertidal (Schotte et al, 1995) registada em Sines (Carvalho et al, 2003).
Stenosoma capito (Rathke, 1837)
Espécie intertidal (Schotte et al, 1995) registada ao longo da costa sudoeste de Portugal (Pereira
et al, 2006) e na Ria Formosa (Xavier et al, 2012).
36
Stenosoma lancifer (Miers, 1881)
Espécie intertidal (Schotte et al, 1995) registada ao longo da costa oeste de Portugal (Pereira et
al, 2006; Carvalho et al, 2003).
Stenosoma nadejda Rezig, 1989
Espécie de águas pouco profundas (Schotte et al, 1995) registada em Sines (Xavier et al, 2012).
Stenosoma raquelae Hedo e Junoy, 1999
Espécie de águas pouco profundas (Schotte et al, 1995) registada no Algarve (Xavier et al,
2012).
Synischia hectica (Pallas, 1772)
Espécie registada em Portugal (Nobre, 1938) sem referência a local de recolha.
2.4 Discussão
Para a elaboração desta checklist foram compilados registos de 146 espécies
pertencentes a 36 famílias e 76 géneros (Tab. 1.1), incluindo espécies costeiras, estuarinas e de
mar profundo (Tab. 1.2). Entre estas denota-se uma maior falta de conhecimento para Isópodes
de mar profundo tendo uma maior incidência de classificações taxonómicas incertas e uma
grande fragmentação relativamente a dados sobre distribuição geográfica. Existe também uma
falta de conhecimento sobre Isópodes parasitas nomeadamente sobre a infraordem Epicaridea
sendo grande parte dos registos verificados em estudos de parasitologia em espécies de valor
comercial.
37
Tabela 1.1- Número de espécies de isópodes registadas em Portugal continental, Açores e Madeira divididas por
Sub Ordem.
Sub Ordem
Nº de espécies
Anthuridea
8
Asellota
Epicaridea
52
12
Flabellifera
Gnathidea
26
5
Limnoriidea
Microcerberidea
2
1
Oniscidea
Sphaeromatidea
Valvifera
2
17
21
Tabela 1.2- Número de espécies compiladas divididas por habitat de recolha
Habitat
Nº de espécies
Supralitoral
Estuarino
Intertidal
Sublitoral
1
6
30
13
Mar profundo
Parasitas
44
25
Regista-se também um elevado número de endemismos nos arquipélagos, com doze espécies
endémicas dos Açores e duas espécies endémicas da Madeira. Todos os valores de
profundidade foram registados entre os valores propostos em Schotte et al., (1995), contudo os
valores limite de profundidade para cada espécie poderão não ser os adequados para os
espécimes da costa Portuguesa, uma vez que esses dados foram compilados através de vários
registos em diferentes zonas de ocorrência numa escala mundial. Esta checklist vem acrescentar
às últimas checklists elaboradas para a Península Ibérica (Junoy e Castelló, 2003) e para a
Macaronésia (Castelló e Junoy, 2007), vinte e seis novos registos, sendo a maioria espécies
registadas em mar profundo com vinte e três espécies, dois novos registos de espécies parasitas
e um registo de uma espécie de águas pouco profundas.
38
Referências
Arcangeli, A. (1934) Duo specie ed un genere di Isopodi terrestri nuovi per la Libia. Bollettino
Musei di Zoologia e di Anatomia comparata R. Universita di Torino 44:213-220.
Argano, R., Ponticelli, A. (1981) Nomenclature e geonemia di Sphaeroma monodi Arcangeli,
1934, del Mediterraneo e del Mar Nero (Crustacea, Isopoda Flabellifera). Bolletino del
Museo Civico di Storia Naturale di Verona 1980: 227-234.
Barrois, T. (1888) Catalogue des Crustacés marins recueillis aux Açores, durant les mois d’Août
et Septembre 1887. Le Bigot Frères. Lille, Francia: 110 pp; lám. I-IV.
Baselga, A., Lobo, J.M., Hortal, J., Jiménez-Valverde, A., Gómez, J.F. (2010) Assessing alpha and
beta taxonomy in Eupelmid wasps: Determinants of the probability of describing good
species and synonyms. Journal of Zoological Systematics and Evolutionary Research 48:
40–49.
Beddard, F.E. (1885) Preliminary Notice of the Isopoda collected during the Voyage of H.M.S.
"Challenger". Part 2. Munnopsidae. Proceedings of the Zoological Society of London
1885: 916-925.
Beddard, F.E. (1886) Report on the Isopoda collected by H.M.S. Challenger during the years
1873-1876. Part 2. Report of the Voyage of H.M.S. Challenger 17: 1-178.
Boaventura, D., Moura, A., Francisco, L., Carvalho, S., Cúrdia, J., Pereira, P., Fonseca, L. C.,
Miguel, N.S., Monteiro, C.C. (2006). Macrobenthic colonisation of artificial reefs on the
southern coast of Portugal (Ancão Algarve). Hydrobiologia 555: 335–343.
Bonnier, J. (1896) Edriophthalmes in: Resultats scientifiques de la Campagne du "Caudan"
dans le Golfe de Gascogne, Fasc. III: Annelides, Poissons, Edriophthalmes, Diatomees,
Debris Vegetaux et Roches, Liste des especes recueillies. Annales de l'Universite de Lyon
26: 527-689.
Bonnier, J. (1900) Contribution à l’étude des Épicarides. Les Bopyridae. Travaux de l’Institut
Zoologique de Lille et du Laboratoire de Zoologie Maritime de Wimereux 8: 1-478.
Borges, L.M.S., Valente, A.A., Palma, P., Nunes, L. (2010) Changes in the wood boring
community in the Tagus Estuary: a case study. Marine Biodiversity Records 3: 1–7.
Borges, L.M.S., Costa, F.O. (2014) New records of marine wood borers (Bivalvia: Teredinidae
and Isopoda: Limnoriidae) from São Miguel, Azores, with a discussion of some aspects of
their biogeography. Açoreana 10: 109-116.
Borges, L.M.S., Merckelbach, L.M., Cragg, S.M. (2014) Biogeography of Wood-Boring
Crustaceans (Isopoda: Limnoriidae) Established in European Coastal Waters. Plos One 9:
e109593.
Borges, P.A.V., Costa, A., Cunha, R., Gabriel, R., Gonçalves, V., Martins, A.F., Melo, I., Parente,
M., Raposeiro, P., Rodrigues, P., Santos, R.S., Silva, L., Vieira, P. & Vieira, V. (Eds.)
39
(2010) A list of the terrestrial and marine biota from the Azores. Princípia, Oeiras, 432
pp.
Bosc, L.A.G. (1802) Histoire naturelle des Crustaces, contenant leur description et leurs moeurs.
2 volumes, Paris.
Bourdon, R. (1968) Les Bopyridae des mers Européennes. Mémoires du Muséum National
d’Histoire Naturelle de Paris. Nouvel Série (A) 50: 77-424.
Bourdon, R. (1979) Bopyridae de la campagne Biacores (Isopoda Epicaridea). Bulletin du
Museum National d'Histoire Naturelle, Paris (4) 1, Section A 2: 507-512.
Bourdon, R. (1981) Bopyriens noveaux pour la faune européene de l’Atlantique (Isopoda
Epicaridea). Bulletin du Museum National d´Histoire Natturelle Section A 2: 615-634.
Boyko, C.B., Williams, J.D. (2010) A new genus and species of primitive Bopyrid (Isopoda,
Bopyridae) parasitizing hermit crabs (Anomura) from deep waters in the eastern Atlantic
and Japan. Charles Fransen,Sammy de Grave,Peter Ng (Eds) Studies on Malacostraca:
Lipke Bijdeley Holthuis Memorial Volume Crustaceana Monographs 14:145-159.
Braga, J.M. (1942) Un Isopode nouveau du Portugal: Stenasellus Nobrei n. sp. Volume 132 de
Memórias e estudos do Museu Zoológico da Universidade de Coimbra: Museu Zoológico,
10pp.
Brian, A. (1951) Sur un épicaride parasite des crevettes (Nika edulis (Latr.)) des côtes du
Portugal. Arquivos do Museu Bocage 22:57-61.
Brown, A.C., Maclachlan, A. (1990) Ecology of sandy shores. Elsevier, Amsterdam
Bruce, N. L. (2004) Reassessment of the isopod crustacean Aega deshaysiana (Milne Edwards,
1840) (Cymothoida: Aegidae): a world-wide complex of 21 species. Zoological Journal of
the Linnean Society 142: 135-232.
Calvario, J. (1984) Étude préliminaire des peuplements benthiques intertidaux (substrats
muebles) de l’estuaire du Tage (Portugal) et sa cartographie. Arquivos do Museu Bocage
2:187-206.
Carvalho, A.N., Santos, P.T. (2013) Factors affecting the distribution of epibenthic biodiversity in
the Cávado estuary (NW Portugal). Journal of Integrated Coastal Zone Management 13:
101-111.
Carvalho, R. N. (1944) Catálogo da colecçao de Invertebrados de Portugal existentes no Museu
Zoológico da Universidade de Coimbra. Memórias e Estudos do Museu Zoológico da
Universidade de Coimbra 160:1-15.
Carvalho, S., Moura, A., Cúrdia, J., Fonseca, L.C., Santos M.N. (2013) How complementary are
epibenthic assemblages in artificial and nearby natural rocky reefs? Marine
Environmental Research 92:170-177.
Caspers, H. (1939) Zwei neue Epicariden-Arten aus der Nordsee (Pseudione borealis n. sp. und
Ps. tuberculata n. sp.). Zoologischer Anzeiger 125: 236-244.
40
Castelló J., Carballo J.L., (2001) Isopod fauna, excluding Epicaridea, from the Strait of Gibraltar
and nearby areas (Southern Iberian Peninsula). Scientia Marina 65: 221-241.
Castro, M.L., Viegas M.C. (1980-1981) Povoamentos intertidais do Estuario do Tejo. Estudo
preliminar da fácies de Mytilus galloprovincialis Lamarck, 1818. Boletim da Sociedade
Portuguesa de Ciéncias Naturais 20: 71-81.
Castro, M. L., Viegas, M.C. (1983) Estudo dos povoamentos de algas fotófilas da ilha de S.
Miguel (Açores). "Arquipélago, Série Ciências da Natureza" 4: 7-30.
Castro, M., Araújo, A., Monteiro, P. (2005) Fate of discards from deep water crustacean trawl
fishery off the south coast of Portugal. New Zealand Journal of Marine and Freshwater
Research 39: 437-446.
Cavaleiro, F.I., M. J. Santos, M.J. (2009) Seasonality of metazoan ectoparasites in marine
European flounder Platichthys flesus (Teleostei: Pleuronectidae). Parasitology 136: 855865.
Chainho, P., Costa, J.L., Chaves M.L., Lane, M.F., Dauer, D.M., Costa, M.J. (2006) Seasonal and
spatial patterns of distribution of subtidal benthic invertebrate communities in the
Mondego River, Portugal – a poikilohaline estuary. Hydrobiologia 555: 59–74.
Chappuis, P.A., Delamare-Deboutteville, C. (1952) Nouveaux isopodes (Crustacea) du sable des
plages du Roussillon. Comptes rendus hebdomadaires des seances de l'Academie des
Sciences 234: 2014-2016.
Chardy, P. (1974) Les Haploniscidae (Crustaces Isopodes Asellotes) de l'Atlantique. Description
de huit especes nouvelles. Bulletin du Museum National d'Histoire Naturelle, (Sér. 3)
243, Zool. 167, pp.
Chardy, P. (1975) Isopodes nouveaux des campagnes Biacores et Biogas IV en Atlantique Nord.
Bulletin du Museum National d'Histoire Naturelle, (Sér. 3) 303, Zool. 213, pp.
Chícharo, L., Chícharo, A., Gaspar, M., Alves, F., Regala, J. (2002). Ecological characterization of
dredged and non-dredged bivalve fishing areas off south Portugal. Journal of the Marine
Biological Association of the United Kingdom 82: 41-50.
Cornalia, E. Panceri, P. (1861) Osservazioni zoologische ed anatomische spora un nuovo genere
di isopodo sedentari (Gyge branchialis). Memorie della Reale Accademia di Scienze di
Torino 19: 85-118.
Cruz S., Marques J.C., Gamito S., Martins I. (2003). Autecology of the isopod, Cyathura carinata
(Krøyer, 1847) in the Ria Formosa (Algarve, Portugal). Crustaceana 76: 781-802.
Cunha, M. R., Sorbe, J.C.,Bernardes, C. (1997) On the structure of the neritic suprabenthic
communities from the Portuguese continental margin. Marine Ecology Progressive Series
157: 119-137.
Cunha, M. R., Sorbe, J.C., Moreira, M.H. (1999) Spatial and seasonal changes of brackish
peracaridan assemblages and their relation to some environmental variables in two tidal
41
channels of the Ria de Aveiro (NW Portugal). Marine Ecology Progressive Series 190: 6987.
Cunha M.R., Wilson G.D.F. (2003) Haplomunnidae (Crustacea: Isopoda) reviewed, with a
description of an intact specimen of Thylakogaster Wilson & Hessler, 1974. Zootaxa. 326
Cunha, M.R. and Wilson, G.D.F. (2006) The North Atlantic genus Heteromesus (Crustacea:
Isopoda: Asellota: Ischnomesidae) Zootaxa 1192: 1-76.
Cunha, M.R., Paterson, G.L.J., Amaro, T., Blackbird, S., deStiger, H.C., Ferreira, C., Glover, A.,
Hilário, A., Kiriakoulakis, K., Neal, L., Ravara, A., Rodrigues, C.F., Tiago, A., Billet, D.S.M.
(2011) Biodiversity of macrofaunal assemblages from three Portuguese submarine
canyons (NE Atlantic). Deep Sea Reasearch Pt II 58: 2433-2447.
Daguerre de Hureaux, N. (1968) Contribution a l'etude des isopodes marins du Maroc. 1.
Description sommaire d'un isopode nouveau des cotes atlantiques marocaines; Idotea
(Pentidotea) panousei (valvifere, Idoteidae). Bulletin de la Societe des Sciences Naturelles
et Physiques du Maroc 48: 77-85.
Davies, J.A. (2007) Further Studies on Haemogregarina bigemina Laveran & Mesnil, the Marine
Fish Blennius pholis L., and the Isopod Gnathia maxillaris Montagu. Journal of Eukaryotic
Microbiology 29: 576-583.
Davoult, D., Dewarumez, J.-M., Glaçon, R. (1993). Nouvelles signalisations d'espèces
macrobenthiques sur les côtes françaises de la Manche orientale et de la Mer du Nord:
4. Groupes divers [New macrobenthic species in the French part of the eastern Channel
and of the North Sea: 4. Miscellaneous groups]. Cahiers de Biologie Marine 34: 55-64
Dollfus, A. (1888) Sur quelques crustaces isopodes du littoral des Acores (Troisieme campagne
de l'Hirondelle). Bulletin de la Societe Zoologique de France 23: 1-5.
Elizalde M., Weber O., Pascual A., Sorbe J.C., Etcheber H. (1999) Benthic response
of Munnopsurus atlanticus (Crustacea Isopoda) to the carbon content of the near-bottom
sedimentary environment on the southern margin of the Cap-Ferret Canyon (Bay of
Biscay, northeastern Atlantic Ocean). Deep Sea Research Part II: Topical Studies in
Oceanography 46: 2331–2344.
Fabricius, J. C. (1787) Mantissa Insectorum, sistens eorum species nuper detectas; adjectis
characteribus genericus, differentiis specificis, emendationibus, observationibus
.Copenhagen.
Ferreira, M.C. (2009) Crustacean Abundance and Diversity in Portuguese Canyons. Tese
doutoral. Universidade de Aveiro.
Fraisse, P. (1878) Entoniscus cavolinii n. sp., nebst bemerkungen über die umwandlung und
systematik der bopyriden. Arbeiten aus dem Zoologisch-Zootomischen Institut in
Würzburg 4: 382-440, pls. 20-21.
Galhano, M. H. (1970) Contribuicao para o conhecimento da fauna intersticial em Portugal.
Publicacoes do Instituto de Zoologia "Dr. Augusto Nobre" 110: 9-206.
42
Gaudencio, M. J., Cabral, H. N. (2007). Trophic structure of macrobenthos in the Tagus estuary
and adjacente coastal shelf. Hydrobiologia 587: 241–251.
Giard, A., Bonnier, J. (1895). Contributions a l'étude des épicarides. XX. Sur les épicarides
parasites des arthrostracés et sur quelques copépodes symbiotes de ces épicarides.
Bulletin Scientifique de la France et de la Belgique 25: 417-493, pls. 5-13.
Giard, A., Bonnier, J. (1887) Contributions a l'etude des bopyriens. Travaux de l'Institut
Zoologique de Lille et du Laboratoire Marine de Wimereux 5: 1-272.
González, P.,Sánchez, M.I., Chirivella, J., Carbonell, E., Riera, F., Grau, A. (2004) A preliminary
study on gill metazoan parasites of Dentex dentex (Pisces: Sparidae) from the western
Mediterranean Sea (Balearic Islands). Journal of Applied Ichthyology 20:276-281.
Guérin-Méneville F.E. 1832. Crustaces. In Expedition scientifique de Moree (sous la direction de
M. Bory de Saint-Vincent).Volume 3.Paris.
Guerra-García J.M., Ros M., Sanchez J.A. (2009) Isopods, tanaids and cumaceans (Crustacea.
Peracarida) associated to the seaweed Stypocaulon scoparium in the Iberian Peninsula.
Zoologica Baetica 20: 35-48.
Hansen, H. J. (1890) Cirolanidae et familiae nonnullae propinquae Musei Hauniensis. Et Bidrag
til Kundskaben om nogle Familier af isopode Krebsdyr. Kongelige Danske
Videnskabernes Selskabs Skrifter, 6te Raekke, Naturvidenskabelig og mathematisk
Afdeling 3: 239-426.
Hansen, H. J. (1905) Revision of the European forms of the Cirolaninae, a subfamily of
Crustacea, Isopoda. Journal of the Linnean Society, Zoology 29: 337-373.
Hansen, H. J. (1916) Crustacea Malacostraca 3. Danish Ingolf Expedition 3: 1-262.
Hedo, G. and Junoy, J. (1999) A new species of Synisoma (Isopoda: Valvifera: Idoteidae) from
the Strait of Gibraltar and the Alboran Sea (Spain, western Mediterranean. Cahiers de
Biologie Marine 40: 87-92.
Hermida, M., Cruz, C., Saraiva, A. (2013) Ectoparasites of the blackspot seabream (Pagellus
bogaraveo) (Teleostei: Sparidae) from Portuguese waters of the north-east Atlantic.
Journal of the marine biological association of the United Kingdom. 93: 503-510.
Hesse, E. (1864) Memoire sur les Pranizes et les Ancees (texte complet). Memoires des Savants
Etrangers presentes a l'Academie des Sciences, Paris 18: 231-302.
Hessler, R. (1970) The Desmosomatidae (Isopoda, Asellota) of the Gay Head-Bermuda Transect.
Bulletin of the Scripps Institution of Oceanography 15: 1-185.
Holdich, D. M. (1968) A systematic revision of the genus Dynamene (Crustacea: Isopoda) with
descriptions of three new species. Pubblicazioni Stazione Zoologica di Napoli 36: 401426.
Holdich, D. M. (1970) The distribution and habitat preferences of the afro-european species of
Dynamene (Crustacea: Isopoda). Journal of Natural History (London) 4:419-438.
43
Holthuis, L. B. (1949) Zonophryxus dodecapus nov. spec., a remarkable species of the family
Dajidae (Crustacea Isopoda) from the Canary Islands. Koninklijke Nederlandsche
Akademie van Wetenschappen 52: 1-8.
Holthuis, L. B. (1964) Saduriella, a new genus of Isopoda Valvifera from northwestern Spain.
Zoologische Mededelingen 40: 29-35.
Hult, J. (1936) On some species and genera of Parasellidae. Arkiv for Zoologie 29A: 1-14.
Innal D., Kirkim F., Erk’akan F. (2007) The parasitic isopods, Anilocra frontalis and Anilocra
physodes (Crustacea; Isopoda) on some marine fish in Antalya Gulf, Turkey. Bulletin of
the European Association Fish Pathologists 27: 239-241.
Jacobs, B.J.M. (1987) A taxonomic revision of the European, Mediterranean and NW. African
species generally placed in Sphaeroma Bosc, 1802 (Isopoda: Flabellifera:
Sphaeromatidae). Zoologische Verhandelingen 238: 1-71.
Kensley, B. (1982) Deep-Water Atlantic Anthuridea (Crustacea: Isopoda). Smithsonian
Contributions to Zoology 346: 1-60.
Knight-Jones, E.W., Knight-Jones, P. (2002) Four new species of Eisothistos (Anthuridea:
Isopoda) fromtubes of Spirbidae (Serpuloidea: Polychaeta) Journal of Natural History 36:
1397-1419.
Koehler, R. (1885) Description d'un Isopode nouveau, le Joeropsis brevicornis. Annales des
Sciences Naturelles (Paris) Zoologie (6) 19: 1-7.
Koehler, R. (1911a) Arcturides nouveaux provenant des campagnes de la "Princess Alice", ou
appartenant au Musee oceanographique de Monaco. Bulletin Institut Oceanographique
(Monaco) 214: 65.
Koehler, R. (1911b) Isopodes nouveaux de la famille des Dajidés provenant des campagnes de la
“Princesse-Alice”. Bulletin de l’Institut Océanographique 196: 1-34.
Koelbel, K. (1879) Über einige neue Cymothoiden. Sitzungberichte der MathematischNautwissenschaftlichen Klasse der Kaiserlichen Akademie der Wissenschaften 78: 401416.
Kroyer, H. (1847) Karcinologiste Bidrag. Naturhistorisk Tidsskrift, Kjobenhavn 2: 366-346.
Kuris, A.M., Torchin, M.E., Lafferty, K.D., 2004. Parasites in the thoracic ganglion of
Pachygrapsus marmoratus (Brachyura: Grapsidae) from the coast of Portugal. Parasite
11: 425–427.
Latreille, P.A. (1802-1805). Histoire Naturelle, Générale et Particulière des Crustacés et des
Insectes : Ouvrage Faisant Suite aux Oeuvres de Leclerc de Buffon, et Partie du Cours
Complet d´Histoire Naturelle Rédigé par C.S. Sonnini. 14 vols. F. Dufart, Paris.
Leach, W.E. (1813) Crustaceology. In: Brewster, D. (Ed), The Edinburgh Encyclopædia: pp 383437.
44
Leach W.E. (1815b) A tabular view of the external characters of four classes of animals, wich
Linne arranged under Insecta; with the distribution of the genera composing three of
these classes into orders, etc. and descriptions of several new genera and species.
Transactions of the Linnean Society, London 11: 307-400.
Leach, W.E. (1818) Cymothoadees. In F. Cuvier, Editor, Dictionnaire des Sciences Naturelles,
12.Paris.
Lilljeborg, W. (1851) Norger Crustaceer. Ofversigt af Kongliga Vetenskapsakademiens
Forhandligar, Stockholm 8:19-25.
Lima F.P.S. (2007) Biogeography of Benthic Invertebrate Assemblages on the Portuguese Rocky
Coast: Relation with Climatic and Océanographie Patterns. Tese doutoral. Universidade
do Porto.
Lincoln, R. J. (1985) Deep-sea asellote isopods of the north-east Atlantic family Haploniscidae.
Journal of Natural History 19: 655-695.
Lincoln, R. J., Boxshall, G. A. (1983) Deep-sea asellote isopods of the north-east Atlantic; the
family Dendrotionidae and some new ectoparasitic copepods. Journal of the Linnean
Society of London, Zoology 79: 297-318.
Linnaeus, C. (1758). Systema Naturae per regna tria naturae, secundum classes, ordines,
genera, species, cum characteribus, differentiis, synonymis, locis. Editio decima,
reformata. Laurentius Salvius: Holmiae. ii, 824 pp.
Linnaeus, C. (1766). Systema naturae sive regna tria naturae, secundum classes, ordines,
genera, species, cum characteribus, differentiis, synonymis, locis. Laurentii Salvii,
Holmiae. 12th ed. v. 1 (pt 1): 1-532.
Linnaeus, C. (1767). Systema naturae sive regna tria naturae, secundum classes, ordines,
genera, species, cum characteribus, differentiis, synonymis, locis. Laurentii Salvii,
Holmiae. 12th ed. v. 1 (pt 2): 533-1327
Lucas, H. (1846) Crustaces. Exploration scientifique de l'Algerie pendant les annees 1840,
1842. Science physiques. Zoologie 1. Histoire Naturelle des Animaux articules pt. 1,
pages 1-88, pls. 1-8.
Lucas, H. (1849) Histoire naturelle des Animaux Articules. Exploration scientifique de l'Algerie
pendant les annees 1840, 1841, 1842. Sciences Physiques Zoologie 1: 1-403.
McLaughlin, P.A., Camp, D.K., Ange,l M.V., Bousfield, E.L., Brunel, P., Brusca, R.C., Cadien, D.
(2005). Common and Scientific Names of Aquatic Invertebrates from the United States
and Canada: Crustaceans. American Fisheries Society Special Publication 31. pp. 545.
Marques, V., Reis, C., Calvario, J., Marques, J.C., Melo, R., Santos, R. (1982) Contribuçao para o
estudo dos povoamentos bentónicos (substrato rochoso) da costa ocidental portuguesa.
Zona intertidal. Oecologia Aquatica 6: 119-145.
45
Marques, J.C., Martins, I., Teles-Ferreira C., Cruz S. (1994). Population Dynamics, Life History,
and Production of Cyathura carinata (Krøyer) (Isopoda: Anthuridae) in the Mondego
Estuary. Portugal Journal of Crustacean Biology 14:258-272.
Meinert, F. W. (1890) Crustacea Malacostraca af Kanonbaad. Videnskabelige Udbytte af
Kanonbaaden. Hauchs Togter 3: 147-230.
Menzies, R. J. (1962) The isopods of abyssal depths in the Atlantic Ocean. Vema Research
Series 1: 79-206.
Miers, E. J. (1881) Revision of the Idoteidae, a family of sessile-eyed Crustacea. Journal of the
Linnean Society of London 16: 1-88.
Milne Edwards, H., 1834-1840. Histoire naturelle des Crustacés, comprenant l’anatomie, la
physiologie et la classification de ces animaux: 1-468, 1-532, 1-638, 1-32, Plates 1-42.
Librairie encyclopédique de Roret, Paris.
Monod, T. (1931) Faune de l'appontement de l'administration a Port- Etienne (Afrique
Occidentale Francaise). Bulletin de la Societe Zoologique de France 55: 489-501.
Montagu G. (1804). Description of several marine animals found on the south coast of
Devonshire. Transactions of the Linnean Society, London, 7, pp. 61-85;pls. 6-7.
Montagu, G. (1808) Description of several marine animals found on the south coast of
Devonshire. Transactions of the Linnean Society of London 9: 81-114
Mucha, A.P., Vasconcelos, M.T., Bordalo, A.A., (2003). Macrobenthic community in the Douro
estuary: relations with trace metals and natural sediment characteristics. Environmental
Pollution 121:169-180.
Naylor, E., Slinn, D.J., Spooner, G.M. (1961). Observations on the British species of Jaera
(Isopoda: Asellota). Journal of the Marine Biological Association of the United Kingdom
41:817-28.
Naylor, E. (1972). British marine isopods: keys and notes for the identification of the species.
2nd ed. Synopses of the British fauna (new series), 3. Academic Press: London, UK.
ISBN 0-12-515150-0. 89 pp.
Negoescu, I., Wagele, J.W. (1984) - World list of Anthuridean Isopods (Crustacea, Isopoda,
Anthuridea). Trav. Mus. Hist. oat. "Grigore Antipa" 25: 99-145
Nierstrasz, H.F. (1918) Alte und neue Isopoden. Zoologische Medelingen 4: 103-142.
Nierstrasz, H.F. Brender a Brandis, G.A. (1931) Papers from Dr. Th. Mortensen's Pacific
Expedition 1914-16. 57. Epicaridea 2. Videnskabelige Meddelelser fra Dansk
Naturhistorisk Forening i Kjobenhavn 91: 147-225.
Nobre, A. (1903) Subsidios para o estudo da fauna marinha do norte de Portugal. Annaes de
Sciencias Naturaes, Porto 8: 37-94.
46
Nolting, C. (1995) Die litorales Isopodenfauna Nord-Portugals (Crustacea, Peracarida):
Untersuchung zur Zusammensetzung und Zoogeographie. Diplomarbeit. Fakultät für
Biologie. Universität Bielelfeld. 107 pp.
Nolting, C., Reboreda, P., Wägele, J.W. (1998) Systematic revision of the genus Anoplocopea
Racovitza, 1907 (Crustacea: Isopoda) with a description of a new species from the
Atlantic Coast of the Iberian Peninsula. Mitt.Mus. Naturk. Berl. Zool.Reihe 74:19-41.
Norman, A.M. (1868) On two isopods, belonging to the genera Cirolana and Anilocra, new to the
British Islands. Annals and Magazine of Natural History (4) 2: 421-422.
Norman, A.M. (1886) Museum Normanianum, or a catalogue of the Invertebrata of Europe, and
the Arctic and North Atlantic Oceans, which are contained in the collection of the Rev.
Canon A. M. Norman, M.A.D.C.L., F.L.S. III-Crustacea. Houghton-Le-Spring: Morton.
Norman, A. M. and Stebbing, T. R. R. (1886) Crustacea Isopoda of the 'Lightning', 'Porcupine',
and 'Valorous' Expeditions, Part 1. Transactions of the Zoological Society of London 12:
119- 133.
Öktener A., Trilles J.P. (2004) Report on the Cymothoids (Crustacea, Isopoda) collected from
marine fishes in Turkey. Acta Adriatica 45: 145-154.
Omer-Cooper, J. (1921) A new species of Isopod (Janiropsis parva) from Fanning Island, Pacific
Ocean. Proceedings of the Bournemouth Natural Science Society 12: 79-82.
Pallas P.S. (1766). Miscellanea zoologica. Quibus novae imprimis atque obscurae animalium
species describuntur et observationibus iconibusque illustrantur. Petrum van Cleef. Hagí
Comitum., xii + 224 pp.;14 pls
Pallas, P.S. (1772) Spicilegia Zoologica, quibus novae imprimus et obscurae animalium species
iconibus, descriptionibus atque commentariis illustrantur cura P.S. Pallas... 1767-1780
Berlin.
Pereira S.G. (2004) Diversidade e Biogeografia de Isópodes intertidais de Substrato Rochoso na
Costa Continental Portuguesa. Tese de mestrado. Universidade do Porto
Pereira S.G., Lima F.P., Queiroz N.C., Ribeiro P.A., Santos A.M. (2006) Biogeographic patterns of
intertidal macroinvertebrates and their associationwith macroalgae distribution along the
Portuguese coast. Hydrobiologia 555: 185-192.
Pierpoint, C. J. L. 1992. Some aspects of the ecology and taxonomy of the genus Eurydice
(Isopoda: Cirolanidae) from sand beaches on the Iberian Peninsula. Tese doutoral.
Universidade de Gales. Reino Unido.
Racovitza, E.G. (1908) Ischyromene Lacazei n. g., n. sp. Isopode mediterraneen de la famille des
Spheromides (Note preliminaire). Archives de Zoologie Experimentale et Generale (4),
Notes et Revue (3) 9: 60-64.
Rathke, H. (1837). Zur Fauna der Krym. Mémoires de l’Académie Impériale des Sciences de St.
Pétersbourg 3: 291-454, Plates 1-10.
47
Rathke H. (1843). Beiträge zur fauna Norwegens. Verhandlungen Kaiserlichen LeopoldinischCarolinischen Akademie Naturforscher, Breslau, 20, 1, pp. 1-264, 264b, 264c; 12 pls.
Reboreda P, and Urgorrin V. (1995) Nuevos datos sobre los isópodes (Crustacea; Peracarida) en
las costas del noroeste de la Península Ibérica. Graellsia 51: 129-141
Reis, C., Marques, V., Calvario, J., Marques, J.C., Melo, R., Santos, R. (1982) Contribuçao para o
estudo dos povoamentos bentónicos (substrato móvel) da costa occidental portuguesa.
Oecologia aquatica 6: 91-105.
Richardson, H. (1911) Les crustaces isopodes du Travailleur et du Talisman; formes nouvelles.
Bulletin du Museum National Histoire Naturelle 17: 518-534.
Risso, A. (1816) Histoire naturelle des crustacés des environs de Nice: 1-175, Plates 1-3.
Librairie GrecqueLatine-Allemande, Paris.
Risso, A. (1826). Histoire naturelle des principales productions de l'Europe Méridionale et
particulièrement de celles des environs de Nice et des Alpes Maritimes. Paris: F.G.
Levrault. Vol. 5: VIII, 1-403, 10 pls
Rocchini, D., Hortal, J., Lengyel, S., Lobo, J.M., Jimenez-Valverde, A., Ricotta, C.,Bacaro, G.,
Chiarucci, A. (2011) Accounting for uncertainty when mapping species distributions: the
need for maps of ignorance. Progress in Physical Geography 35:211 –226.
Saldanha L. (2003) Fauna Submarina Atlântica: Portugal continental, Açores e Madeira. EuropaAmérica (Ed.) pp.
Salgado, J.P., Cabral, H.N., Costa, M.J. (2004). Feeding ecology of the gobies Pomatoschistus
minutus (Pallas, 1770) and Pomatoschistus microps (Krøyer, 1838) in the upper Tagus
estuary, Portugal. Sciencia Marina 68: 425-434
Sars, M. (1858). Oversigt over de i den norsk-arctiske Region forekommende Krebsdyr.-Christiana Videnskabs-Selskabs Forhandlinger 1858: 122-163.
Sars, G.O. (1864). Om en anomal Gruppe af Isopoder. Forhandlinger i Videnskaps-selskabet i
Christiania 1863: 205-221.
Sars, G.O. (1866) (1868). II. Beretning om en i Sommeren 1865 foretagen zoologisk Reise ved
Kysterne af Christianias og Christiansands Stifter. Nyt Magazin for Naturvidenskaberne
15: 84-128.
Sars, G.O. (1870). Nye Dybvandscrustaceer fra Lofoten. Forhandlinger i Videnskaps-selskabet I
Christiania 1869: 205-221.
Sars, G.O. (1872). Undersøgelser over Hardangerfjordens fauna Forh. Videnskabsselsk. Kristiania
1871: 246-286
Sars, G.O. (1873). Bidrag til Kundskaben om Dyrelivet paa vore Havbanker Forh.
Videnskabsselsk. Kristiania 1872: 73-119
48
Sars, G.O. (1883). Oversigt af Norges Crustaccer med forelubige Bemaerkninger over nye eller
mindre
bekjandte
Arter.
I.
(Podophthalmata-Cumacea-Isopoda-Amphipoda).
Forhandlinger i Videnskaps-selskabet i Christiania 18: 1-124.
Sars, G.O. (1897). On some additional Crustacea from the Caspian Sea. Annales du Musée
Zoologique Academie Imperiale des Sciences, St. Petersburg 2: 273-305.
Schotte M., Kensley, B.F., Shilling, S. (1995). World list of marine, freshwater and terrestrial
crustacea isopoda. National Museum of Natural History Smithsonian Institution:
Washington D.C., USA. Http://www.nmnh.si.edu/iz/isopod/
Sheader, M. (1977) The breeding biology of Idotea pelagica (Isopoda: Valvifera) with notes on the
ocurrence and biology of its parasite Clypeoniscus hanseni (Isopoda: Epicaridea). Journal
of the Marine Biological Association of the United Kingdom 57: 659-674.
Shields, J.D., Gómez-Gutiérrez, J. (1996) Oculophryxus bicaulis, a new genus and species of
dajid isopod parasitic on the euphausiid Stylocheiron affine Hansen, International Journal
for Parasitology 26:261-268
Siebenaller, J., Hessler, R. (1981) The genera of the Nannoniscidae (Isopoda, Asellota).
Transactions of the San Diego Society of Natural History 19: 227-250.
Sousa, R., Dias, S., Antunes, C. (2006). Spatial subtidal macrobenthic distribution in relation to
abiotic conditions in the Lima estuary, NW of Portugal. Hydrobiologia 559:135-148.
Sousa, R., Dias, S., Freitas, V., Antunes, C. (2008). Subtidal macrozoobenthic assemblages
along the River Minho estuarine gradient (north-west Iberian Peninsula). Aquatic
Conservation - Marine and Freshwater Ecosystems 18: 1063-1077.
Sowerby, J. (1806) The British Miscellany: or coloured figures of new, rare, or little known animal
subjects; many not before ascertained to be inhabitants of the British Isles; and chiefly in
the possession of the author. London.
Stebbing, T. R. R. (1874) On a new species of Arcturus (A. danmoniensis). Annals and Magazine
of Natural History (4) 13: 291-292.
Svavarsson, J. (1984) Ischnomesidae (Isopoda: Asellota) from bathyal and abyssal depths in the
Norwegian and North Polar Seas. Sarsia 69: 25-36.
Tattersall W.M. (1909). Amphipoda and Isopoda, with descriptions of new species. Scientific and
biological researches in the North Atlantic conducted by the author on his yachts "The
Walwin" and "The Silver Belle" by R. Norris Wolfenden. Memoirs of the Challenger
Society 1:210-219
Torchin, M.E., Lafferty, K.D., Kuris, A.M. (2001) Release from parasites as natural enemies:
increased performance of a globally introduced marine crab. Biological Invasions 3:
333–345
Tucker, B.W. (1930) On the effects of an Epicaridan Parasite, Gyge branchialis, on Upogebia
littoralis. Quart. Journ. Micr. Sci 74, N. S., PI
49
van der Land, J. (2001) European register of marine species: a check-list of the marine species
in Europe and a bibliography of guides to their identification. Isopoda - excluding
Epicaridea, in: Costello, M.J. et al. (Ed.) Collection Patrimoines Naturels, 50: pp. 315321.
Vanhoeffen, E. (1914) Die Isopoden der Deutschen Suedpolar- Expedition 1901-1903. Deutsche
Südpolar-Expedition 1901-1903, 25. Zoologie 7: 447-598.
Wolff, T. (1962) The systematics and biology of bathyal and abyssal Isopoda Asellota. Galathea
Report 6: 1-320.
WoRMS Editorial Board (2014). World Register of Marine Species. Available from
http://www.marinespecies.org at VLIZ. Accessed 2014-06-10.
Xavier, R., Santos, A. M., Harris, D. J., Sezgin, M., Machado, M., Branco, M. (2012).
Phylogenetic analysis of the north-east Atlantic and Mediterranean species of the genus
Stenosoma (Isopoda, Valvifera, Idoteidae). Zoologica Scripta 41: 386-399.
50
Capítulo 3
Construção de uma biblioteca de
referência de DNA barcodes para
Isópodes marinhos (Crustacea: Isopoda)
de Portugal e da Macaronésia
51
Capítulo 3
Construção de uma biblioteca de referência de DNA barcodes para
isópodes marinhos (Crustacea: Isopoda) de Portugal e da
Macaronésia
3.1 Introdução
Com a proposta e implementação do uso de um fragmento da extremidade 5´ do gene
COI-5P, como DNA barcode, para a identificação de espécies animais (Hebert et al, 2003), surge
a possibilidade de rever e melhorar a fiabilidade dos catálogos e inventários de espécies,
nomeadamnete diminuindo a possibilidade de identificações incorretas através da comparação
direta entre sequências obtidas em diferentes estudos, aumentado a capacidade de deteção de
casos de sinonímia ou de ocorrência de espécies crípticas (Kekkonen e Hebert, 2014). A criação
de uma biblioteca de referência de DNA barcodes robusta pode auxiliar estudos de
monitorização ambiental, permitindo a agilização de processos laboriosos de triagem e
identificação com recurso a metodologias de meta-barcoding envolvendo sequenciação de
segunda geração (Costa e Antunes, 2012; Yu et al., 2012). O estado corrente das bibliotecas de
referência de DNA barcodes para invertebrados marinhos, em especial para a ordem Isopoda é
muito incipiente consistindo apenas num número comparativamente reduzido de sequências
obtidas no âmbito de estudos de grupos alargados de invertebrados marinhos (e.g. Costa et al.,
2007; Radulovici et al., 2009) ou derivadas de estudos populacionais focados num taxon de
Isopoda em particular (e.g. Markow e Pfeiler, 2010; Varela e Haye, 2012; Xavier et al., 2012). O
estado incipiente destas bibliotecas, combinado com incapacidade de verificação da fiabilidade
das identificações das sequências publicadas em bases de dados públicas (e.g. GenBank), exige
o uso de bases de dados dedicadas para a construção destas bibliotecas de referência,
nomeadamente a base “Barcode of Life Datasystems” (BOLD) (Ratnasingham e Hebert, 2007).
O uso da base de dados BOLD, que integra dados relativos à identificação dos espécimes,
coordenadas GPS, sequências de COI-5P e os respetivos cromatogramas, em conjunto com
métodos de classificação da fiabilidade das bibliotecas de referência (Costa et al., 2012) torna
52
possível um aumento da credibilidade das identificações taxonómicas. A tendência crescente de
acumulação de sequências de COI em bases de dados públicas (e.g. GenBank) evidenciou a
ocorrência de possíveis pseudogenes mitocondriais (NUMT´s) ou COI like sequences (Buhay,
2009) não existindo habitualmente a possibilidade de verificação da origem mitocondrial ou
nuclear das sequências obtidas. A possibilidade de depositar cromatogramas na base de dados
BOLD, permitindo a verificação da sua qualidade pode assim auxiliar na deteção de possíveis
pseudogenes, diminuindo os impactos nas análises de sequências. No âmbito deste trabalho
foram analisados espécimes da ordem Isopoda amostrados no Atlântico Nordeste e obtidos DNA
barcodes para 26 espécies presentes em Portugal e na Macaronésia, iniciando a construção de
uma biblioteca de referência de DNA barcodes, com vista à sua utilização em biomonitorização e
conservação de comunidades marinhas em Portugal,
3.2 Metodologia
3.2.1 Material de estudo
O material de estudo foi constituído por amostras de 250 espécimes de isópodes
pertencentes às famílias Anthuridae, Arcturidae, Cirolanidae, Idoteidae e Sphaeromatidae
provenientes dos projetos LusoMarBoL, BEstBarcode e DiverseShores. Os espécimes foram
recolhidos em vários pontos do Atlântico nordeste, maioritariamente ao longo da costa de
Portugal e da Macaronésia (Fig.1.1) e preservados em etanol (96%-99%).
Figura 1.1 Locais de amostragem dos espécimes de isópodes usados para a construção da biblioteca de
referência
53
3.2.2 Inventariação e processamento das amostras
Os espécimes amostrados foram identificados com recurso à literatura listada na Tabela
2.1, e catalogados na base de dados BOLD (Ratnasingham e Hebert, 2007) com informações
referentes à classificação taxonómica, imagens, dados de colheita, cromatogramas, sequências
de DNA e primers utilizados na amplificação e sequenciação. A identificação taxonomica de
todos os espécimes foi revista antes e após a obtenção das sequências de DNA. O uso de
nomenclatura aberta foi feito segundo as recomendações de Bengtson (1988).
Tabela 2.1- Literatura usada na identificação dos espécimes da ordem Isopoda analisados.
Grupo Taxonómico
Anthuridae
Cirolanidae
Janiridae
Sphaeromatidea
Valvifera
Manual usado para identificação
Naylor, 1972
Naylor, 1972
Naylor, 1972
Naylor, 1972; Hayward e Ryland, 1996; Nolting et al., 1998; Schuller e
Wagele, 2005; Jacobs, 1987; Bruce e Holdich, 2002
Naylor, 1972; Naylor 1955
3.2.3 Extração, amplificação e sequenciação de DNA
A extração de DNA foi realizada através do kit E.Z.N.A. (Omega Bio-tek), segundo o
protocolo sugerido pelo fabricante utilizando todo ou metade do espécime, dependendo do
tamanho, seguida de amplificação por PCR dos fragmentos COI-5P usando alternadamente 1
dos 3 conjuntos de primers LOBO F1/LOBO R1, LCO1490/HCO2198 e CrustDF1/CrustDR1
(Tab. 2.2 e 2.3) até à obtenção de amplificação com sucesso. As reações de PCR foram
realizadas num volume total de 25 µl contendo 2,5 µl de tampão (10x), 2,5 µl de cloreto de
magnésio (25 mM), 0,5 a 1 µl de dNTP´s (10 mM), 0,5 a 1,5 µl de cada primer forward e
reverse (10 mM), 0,2 de Taq (Thermo Scientific™), 4 a 12 µl de extrato de DNA, dependendo da
sua concentração e água ultrapura para perfazer o volume. O sucesso da amplificação foi
verificado por meio de electroforese a 90V em gel de agarose a 1%. Os produtos de PCR obtidos
foram purificados com adição de 0,5 µl de exonuclease (New England Biolabs) e 1 µl de
fosfatase alcalina (SAP, Promega), submetidos a temperaturas de 37°C por 15 minutos e 85°C
54
por 15 minutos, e sequenciados bidireccionalmente num fornecedor externo de serviços
(STABVida).
Tabela 2.2- Lista de primers utilizados para amplificação dos fragmentos de COI-5P e de 18s rRNA.
Primer
Sequência (5´- 3´)
Referência
CrustDF1 (Forward)
GGTCWACAAAYCATAAAGAYATTGG
Steinke (2007,
CrustDR1 (Reverse)
TAAACYTCAGGRTGACCRAARAAYCA
unpublished)
LCO1490 (Forward)
GGTCAACAAATCATAAAGATATTGG
Folmer et al, 2004
HCO2198 (Reverse)
TAAACTTCAGGGTGACCAAAAAATCA
LoboF1 (Forward)
KBTCHACAAAYCAYAARGAYATHGG
LoboR1 (Reverse)
TAAACYTCWGGRTGWCCRAARAAYCA
18sAi (Forward)
CCTGAGAAACGGCTACCACATC
18sBi (Reverse)
GAGTCTCGTTCGTTATCGGA
Lobo et al., 2013
Whiting et al., 2002
Tabela 2.3- Ciclos de temperatura utilizados nas reações de amplificação dos fragmentos de COI-5P e de 18s
rRNA, em função do primer utilizado.
Ciclo de PCR utilizado
Primer
1-Desnaturação a 94°C (60s)
CrustDF1/
2- (5 Ciclos)- Desnaturação a 94°C (30s), hibridização a 45°C (90s)
CrustDR1
e extensão a 72°C (60s)
E
3- (35 Ciclos) Desnaturação a 94°C (30s), hibridização a 51°C (90s)
HCO2198/
e extensão a 72°C (60s)
LCO1490
4-Extensão final a 72°C (5min.)
1-Desnaturação a 94°C (60s)
2- (5 Ciclos) Desnaturação a 94°C (45s), hibridização a 56°C (45s)
e extensão a 72°C (60s)
LoboF1/
3- (45 Ciclos) Desnaturação a 94°C (30s), hibridização a 54°C (90s)
LoboR1
e extensão a 72°C (60s)
4-Extensão final a 72°C (5min.)
1-Desnaturação a 94°C (180s)
2- (35 Ciclos) Desnaturação a 94°C (30s), hibridização a 45°C (90s)
18sAi/18sBi
e extensão a 72°C (60s)
4-Extensão final a 72°C (5min.)
55
3.2.4 Tratamento e análise de dados
Edição e alinhamento de sequências, e construção de árvores filogenéticas
Todas as sequências obtidas foram editadas com recurso ao software MEGA5 (Tamura
et al., 2011), consistindo na verificação dos cromatogramas, remoção de zonas ilegíveis e
primers correspondentes, e correção de bases ambíguas (N). As sequências editadas foram
alinhadas com recurso ao método Clustal W (Thompson et al., 1994) implementado no software
MEGA5, seguido de uma inspeção cuidadosa do alinhamento obtido para detetar a eventual
ocorrência de inserções e deleções, e após tradução foi verificada a presença de codões stop,
desvios na grelha de leitura ou padrões aminoacídicos anormais, seguindo as recomendações de
Song et al., (2008) para despistar de ocorrência de pseudogenes. O conjunto de resultados foi
submetido a uma busca de sequências homólogas na base de dados GenBank (Benson et al.,
2005), através da ferramenta BLAST (Altschul et al., 1990), e na base de dados BOLD
(Ratnasingham e Hebert, 2013). A escolha do melhor modelo de substituição para o conjunto de
dados foi efetuada através do software JModelTest (Darriba et al., 2012; Guindon e Gascuel,
2003) com um esquema de três substituições. A análise filogenética foi efetuada através dos
métodos Maximum Likelihood (ML) (Aldrich, 1997) e Inferência Bayesiana (IF) (Yang e Rannala,
1997) com o modelo de substituição General Time Reversible (GTR) +G+I (Tavaré, 1986),
sugerido na análise para escolha de modelos, e com o método Neighbour-Joining (NJ) (Saitou e
Nei, 1987), utilizando o modelo de substituição nucleotídica Kimura 2 parameter (K2P) (Kimura,
1980), como um dos métodos mais utilizados em estudos desta natureza. As análises ML e NJ
foram efetuadas através do software MEGA5 e a análise de inferência bayesiana efetuada com o
software MrBayes (Huelsenbeck e Ronquist, 2001). As árvores ML e NJ foram submetidas a 500
e 10000 bootstraps (Felsenstein, 1985), respetivamente, para determinar o grau de suporte dos
nós dos ramos. A construção de árvores por inferência bayesiana foi efetuada após análise de
720000 gerações, com uma frequência de amostragem de 500 gerações através de 4 cadeias
com uma temperatura de 0,1 e com um descarte de 25% da análise inicial. Todos os priors
foram mantidos em default. A construção da visualização da árvore foi efetuada com o software
FigTree. A construção das árvores filogenéticas foi ainda efetuado sem adição de outgroups
externos de modo a evitar fenómenos de long-branch attraction (Bergsten, 2005), resultados da
aproximação de ramos longos e distintos por artefactos metodológicos.
56
Delimitação de MOTUs
De modo a delinear espécies putativas, cada cluster monofilético com divergência
interna inferior a 3% foi designado uma unidade taxonómica molecular operacional (MOTU)
(Blaxter et al,, 2005), deste modo expondo possíveis espécies crípticas e diminuindo os impactos
de sinonímia (Kekkonen e Hebert, 2014). Este valor foi escolhido como aproximação aos limites
intraespecíficos com base em dados publicados para crustáceos (Costa et al., 2007; Lefébure et
al., 2006; Radulovici et al., 2009). O valor de 3% tem um carácter unicamente indicativo, não
devendo ser considerado como um limite taxativo na delimitação de espécies. O cálculo das
distâncias inter e intraespecíficas foram efetuadas com o software MEGA5, através do modelo de
substituição nucleotídica K2P.
Classificação dos DNA barcodes da biblioteca de referência
De modo a atribuir um grau de fiabilidade das identificações dos espécimes analisados
foi usado o sistema de classificação proposto em Costa et al., 2012 (Tab. 2.4), com o uso das
sequências compiladas em bases de dados públicas. Dada a impossibilidade de verificar as
identificações das sequências compiladas, MOTU´s que compreendam exclusivamente estas
sequências não foram incluídos nas análises de classificação bem como no cálculo de distâncias
intraspecíficas.
Tabela 2.4- Sistema de classificação dos DNA barcodes da biblioteca de referência baseado em Costa et al.,
(2012)
Grau de fiabilidade Descrição
taxonómica
Nível A
Nível B
Nível C
Nível D
Nível E
Concordância externa - as sequências formam um grupo monofilético com
divergência interna ≤ 3% em conjunto com sequências da mesma espécie
compiladas de bases de dados públicas
Concordância interna- as sequências formam um grupo monofilético com
divergência interna ≤ 3% em conjunto com as da mesma espécie da biblioteca
de referência
Concordância sub-óptima- as sequências formam um grupo monofilético
com divergência interna superior 3% em conjunto com sequências da mesma
espécie, quer sejam de bases de dados públicas quer da biblioteca de
referência
Dados insuficientes- número de espécimes analisados insuficiente (<3)
DNA barcodes discordantes- cluster formado por diferentes espécies
57
Teste de saturação de substituição nucleotídica e reconstrução de filogenias profundas
Para determinar a fiabilidade do sinal nucleotídico na reconstrução de filogenias
profundas, devido à grande variabilidade e redundância associadas à terceira posição de cada
codão, foram realizados testes de saturação de substituição nucleotídica (Xia e Lemey, 2009)
com o software DAMBE (Xia et al., 2000), através do teste Xia et al. (2003), para todas as
posições do codão e para a primeira e segunda posição em conjunto. Estes valores de saturação
são calculados através das frequências de nucleótidos em cada posição. De modo a ultrapassar
a limitação do software na análise de um máximo de 32 MOTU´s foram usados nos cálculos de
saturação 10000 subsets para maximizar o número de combinações. De modo a diluir o efeito
de zonas extremamente divergentes, o conjunto de dados foi submetido a uma redução do
alinhamento para apenas uma zona central do alinhamento relativamente conservada com 265
pares de bases com o sotware Gblocks (Castresana, 2000). Para a reconstrução de filogenias
profundas foram feitas as seguintes árvores: NJ apenas com a primeira e segunda posição do
codão com o modelo de substituição nucleotídico K2P e 10000 bootstraps; e NJ com o modelo
de substituição aminoacídica Jones Taylor Thornton (JTT) (Jones et al., 1992) e 1000 bootstraps
para todo o alinhamento e para o alinhamento conservado obtido por Gblocks; ML com a
primeira e segunda posição do codão com o modelo GTR+G+I e 500 bootstraps (Tab. 2.5). O
modelo de substituição aminoacídica JTT sendo o modelo mais actualizado entre os disponíveis
no programa MEGA5.0.
Tabela 2.5- Diferentes métodos e parâmetros utilizados para a análise de filogenias profundas, com base nas
sequências de COI-5P de 165 espécimes
Método de
reconstrução
NeighbourJoining
NeighbourJoining
NeighbourJoining
MaximumLikelihood
Tipo de
sequência
Amino-acídica
Modelo de
Nº de
substituição bootstraps
JTT
Posição do
codão utilizada
Outros
parâmetros
1000
Redução
GBlocks
Amino-acídica
JTT
1000
Nucleotídica
K2P
10000
1+2
Nucleotídica
GTR+G+I
500
1+2
com
58
3.3 Resultados
3.3.1 Construção e classificação da biblioteca de referência
Dos 250 espécimes analisados, foram obtidas 105 sequências de COI-5P, e usadas na
construção de cladogramas (Fig. 1.2; Fig 2.1, 2.2 e 2.3 em Anexo) conjuntamente com 60
sequências compiladas das bases de dados GenBank e BOLD, distribuindo-se por um total 30
espécies (Tab. 3.2 e 3.3 em Anexo). Nas sequências Idotea emarginata AF241933, Idotea
baltica AF241916 e AF241889, Idotea metallica AF241928 e Idotea granulosa AF241935
(Wares e Cunningham, 2001), recolhidas do GenBank detectou-se uma zona na extremidade 5’
(posição 34 a 44 do nosso alinhamento) contendo uma sequência amino-acídica (com cerca de
8-9 aminoácidos) anormalmente diferenciada das restantes, apesar de se encontrar numa zona
extremamente conservada, presente em todos os isópodes deste estudo. Por se tratar de um
conjunto de sequências de um mesmo estudo suspeita-se de alguma incorrecção comum, pelo
que se decidiu remover a zona inicial destas sequências. Após classificar as sequências obtidas
(Tab. 2.6) verifica-se uma falta de dados de COI-5P com uma grande incidência de espécies sem
DNA barcode de referência. Das 105 sequências obtidas para 26 espécies analisadas foram
encontrados 32 MOTU´s, apresentando uma divergência intraespecífica entre 0 e 2,8% e uma
divergência interespecífica média de 29% com um valor mínimo de 12% e com um valor máximo
de 59%. Os maiores valores de distâncias interespecíficas são obtidos em espécimes da família
Anthuridae, sendo o grupo mais divergente entre todos os espécimes analisados. Os valores de
distância congenéricos envolvendo sequências geradas e compiladas para 7 géneros
representados por 35 espécies, incluindo linhagens divergentes, variam entre os 5% e os 29%
(Tab. 2.7).
59
99
Idotea granulosa (Atlântico Norte)
MOTU 1 (25 espécimes)
99
Idotea pelagica (Atlântico Norte)
MOTU 2 (15 espécimes)
99
Stenosoma lancifer (Portugal Oeste)
MOTU 3 (4 espécimes)
99
99
Idotea resecata
Stenosoma raquelae JQ425510
99
Stenosoma capito
Stenosoma mediterraneum JQ425502
Stenosoma appendiculatum JQ425494
99
Stenosoma spinosum JQ425508
Stenosoma acuminatum FJ905099
Stenosoma nadejda JQ425506
Idotea emarginata AF241933
Idotea metallica AF241928
99
Idotea chelipes (Portugal Oeste + Mediterrânico)
99
98
99
MOTU 4 + 5 (5 espécimes)
Idotea neglecta (Açores)
MOTU 6 (6 espécimes)
Idotea balthica (Atlântico Norte)
MOTU 7 (8 espécimes)
Cilicaea sp. EF989646
99
Ischyromene lacazei (Portugal Oeste + Galiza)
MOTU 8 (8 espécimes)
Paridotea ungulata AF255783
Idotea linearis JQ425515
Astacilla danmonensis SFCM6-005
(Portugal Norte)
MOTU 9 (1 espécime)
Saduria entomon DQ889111
Synidotea sp. GQ302700
82
Cleantis prismatica (Portugal Norte + Galiza)
99
MOTU 10 + 11 (2 espécimes)
Cymodoce fuscina
(Portugal Oeste)
Cymodoce sp. BUA21-001
99
99
MOTU 13 (2 espécimes)
Cymodoce waegelei
98
99
Cymodoce tribulis
99
Campecopea lusitanica (Madeira)
MOTU 14 (2 espécimes)
99
Campecopea lusitanica (Portugal Oeste + Galiza)
MOTU 15 (4 espécimes)
99
Dynamene edwardsi (Madeira + La Palma)
93
99
97
MOTU 16 (10 espécimes)
Dynamene edwardsi (Gran Canária)
Dynamene edwardsi NGIM35-002
99
MOTU 17 (7 espécimes)
(Portugal Oeste)
Dynamene magnitorata (Portugal Oeste + Sul)
80
99
MOTU 12 (1 espécime)
Cymodoce sp. (Portugal Oeste)
MOTU 18 (1 espécime)
MOTU 19 (14 espécimes)
Dynamene bidentata (Portugal Oeste + Escócia)
MOTU 20 (20 espécimes)
99
MOTU 21 (5 espécimes)
Campecopea hirsuta (Portugal Sul + Galiza)
Exosphaeroma DQ889151
Sphaeroma quadridentatum AF255785
99
86
Sphaeroma serratum (Portugal Norte)
99
99
86
99
MOTU 22 + 23 (2 espécimes)
Sphaeromatidae sp. (Portugal Norte)
MOTU 24 (3 espécimes)
Lekanesphaera terceirae (Açores)
MOTU 25 (2 espécimes)
Lekanesphaera hookeri (Portugal Norte)
MOTU 26 (5 espécimes)
Cirolana cranchii LMBP4-002
97
Cymodoce emarginata SFP19-001
(Madeira)
MOTU 27 (1 espécime)
Eurydice pulchra GU130253
99
99
Eurydice spinigera (Portugal Norte)
99
MOTU 28 (2 espécimes)
Ianiropsis epilittoralis
Joeropsis dubia AF260837
Edotia triloba FJ581624
Eurydice sp. RBGC066-03
85
Cirolana rugicauda AF255788
99
99
Cirolana harfordi
Jaera albifrons (Portugal Norte + Canadá)
MOTU 29 (5 espécimes)
Janira maculosa GU130255
Cirolana rugicauda AF260840
99
97
87
Anthuridae sp. (Madeira + Canárias)
Anthura gracilis SFC3-001
MOTU 30 (2 espécimes)
(Portugal Norte) MOTU 31 (1 espécime)
Apanthura sp. AF255789
87
Haliophasma geminata CMBIA412-11
95
Cyathura sp AF520451
99
Cyathura carinata (Portugal Norte)
MOTU 32 (9 espécimes)
0.05
Figura 1.2- Árvore NJ compactada obtida pela análise de 165 sequências de COI-5P de isópodes
marinhos com recurso ao modelo K2P. Junto a cada nó é apresentado o repespectivo grau de suporte
obtido por análise bootstrap a partir de 10000 réplicas.
60
Tabela 2.6- Classificação dos MOTU´s obtidos baseada em Costa et al., 2012 e respetiva distância interna e
desvio padrão, calculados com o modelo K2P.
Espécie
Classificação
Divergência interna (K2P) ± d.p.
Anthuridae não identificado
D
0,006 ± 0,003
Anthura gracilis
Astacilla danmonensis
Campecopea hirsuta
Campecopea lusitanica
Cleantis prismatica
Cyathura carinata
Cymodoce emarginata
Cymodoce sp.
Cymodoce sp.
Dynamene bidentata
Dynamene magnitorata
Dynamene edwardsi
Eurydice spinigera
Idotea balthica
Idotea chelipes
Idotea granulosa
Idotea neglecta
Idotea pelagica
Ischyromene lacazei
Jaera albifrons
Lekanesphaera terceirae
Lekanesphaera hookeri
Sphaeroma serratum
Sphaeromatidae sp.
Stenosoma lancifer
D
D
Sequência única
Sequência única
B
C
0,0005 ± 0,0004
0,12 ± 0,01
D
B
0,13 ± 0,017
0,01 ± 0,003
D
D
D
B
B
C
D
A
C
A
B
A
Sequência única
Sequência única
0±0
0,002 ± 0,0007
0,01 ± 0,002
0,104 ± 0,008
0,003 ± 0,002
0,025 ± 0,004
0,068 ± 0,008
0,005 ± 0,001
0,009 ± 0,002
0,005 ± 0,001
B
A
D
A
D
B
A
0,009 ± 0,002
0,012 ± 0,003
0,024 ± 0,007
0,028 ± 0,005
0,058 ± 0,009
0,001 ± 0,001
0,002 ± 0,001
Tabela 2.7- Distâncias nucleotídicas congenéricas para 7 géneros de isópodes, determinadas a partir de
sequências de COI-5P e calculadas com o modelo de sustituição K2P
Género
Taxa
Distância congenérica mínima (K2P)
Distância congenérica máxima (K2P)
Campecopea
Cymodoce
Dynamene
Eurydice
Idotea
Lekanesphaera
Stenosoma
3
6
22%
12%
29%
26%
5
2
16%
12%
27%
12%
9
2
8
12%
18%
5%
27%
18%
20%
61
3.3.2 Linhagens divergentes de Dynamene edwardsi
Os espécimes identificados como Dynamene edwardsi, com identificação confirmada
pelo Doutor David Holdich, especialista taxonómico neste género, apresentam três linhagens
distintas: uma linhagem para o sul de Portugal, uma para Gran Canária e uma linhagem
partilhada para a Madeira e La Palma (Fig. 3), aqui considerada apenas uma MOTU pelo facto
de a distância entre espécimes dos dois locais não ultrapassar 3%. As linhagens de Portugal e o
grupo Madeira\La Palma distanciam-se em média 21%, as linhagens de Portugal e Gran Canária
22%, e entre Gran Canária e o grupo Madeira\La Palma distanciam-se 16%. A divergência entre
as duas grandes linhagens presentes nos arquipélagos é confirmada com o marcador molecular
18s rRNA (Fig.4), com 0,3% de divergência entre as linhagens de Gran Canária e de Madeira\La
Palma, e sem partilha de haplótipos entre grupos.
Figura 1.3- Árvore NJ obtida pela análise de sequências de COI-5P da espécie Dynamene edwardsi com
recurso ao modelo K2P. Junto a cada nó é apresentado o repespectivo grau de suporte obtido por
análise bootstrap a partir de 10000 réplicas.
62
Figura 1.4- Árvore NJ obtida pela análise de sequências de 18s rRNA da espécie Dynamene edwardsi, separando
a linhagem de Gran Canária (CAL7-001, TAL8-001)) do grupo Madeira\La Palma (restantes sequências de D.
edwardsi). A análise foi efetuada com recurso ao modelo K2P. Junto a cada nó é apresentado o respectivo grau de
suporte obtido por análise bootstrap a partir de 10000 réplicas.
3.3.3 Saturação de substituição nucleotídica
Quando testada a saturação para todas as posições do codão, a saturação obtida é
superior à saturação esperada para uma topologia assimétrica (Tab. 2.8). Quando a terceira
posição do codão é retirada para o cálculo da saturação verifica-se um aumento de posições
invariáveis bem como uma diminuição significativa da saturação obtida para topologias
assimétricas (Tab.2.8). Devido ao desconhecimento da verdadeira topologia de uma árvore
filogenética, é seguro assumir que o modelo mais adequado para reconstruir filogenias
profundas com sequências de COI-5P, deverá usar apenas a primeira e segunda posição do
codão, permitindo assim o uso de modelos de substituição nucleotídica para reconstrução
filogenética.
Tabela 2.8- Resultados do teste de saturação de substituição nucleotídica (Iss- Saturação esperada; IsscSaturação obtida para topologias simétricas- Sym e assimétricas- Asym; P- Valor de probabilidade)
Posições do
codão usadas
Iss
Iss.cSym
P
Iss.cAsym
P
1+2+3
1+2
0,323
0,13
0,682
0,7
0
0
0,355
0,395
0,4316
0
63
3.3.4 Reconstrução filogenética
Com o uso de vários métodos de reconstrução e modelos de substituição, o
agrupamento entre os vários organismos mantem-se semelhante (Fig. 1.5), embora certos
clusters variem a sua posição nas várias análises, nomeadamente as espécies Idotea chelipes,
Ischyromene lacazei, Campecopea lusitanica, Campecopea hirsuta, Eurydice spinigera e o
espécime Saduria entomon DQ889111 (Costa et al., 2007), compilado da base de dados
GenBank. De entre todas as sub-ordens analisadas, apenas espécimes pertencentes à subordem Anthuridea apresentam uma relação monofilética.
Figura 1.5- Árvores radiadas contendo as sub-ordens Sphaeromatidea (verde), Valvifera (vermelho), Asellota
(amarelo), Anthuridea (azul) e Flabillifera (roxo). A- NJ com modelo JTT; B- NJ após redução com Gblocks e com
modelo JTT; C- NJ com 1ª e 2ª posição do codão e modelo K2P; D- ML com a 1ª e 2ª posição do codâo e com o
modelo GTR+G+I
64
3.4 Discussão
3.4.1 Construção da biblioteca de referência
Em todas os tipos de árvores analisadas é formado um igual número de MOTU´s, 32
para 26 espécies, sem ocorrência de polifilias, embora existam casos formação clades
separados para a mesma espécie como nos casos de Dynamene edwardsi e Campecopea
lusitanica. A distância interespecífica mínima de 12% é bastante superior à distância
intraespecífica máxima de 2,8% denotando-se a existência de um barcoding gap para a maioria
das espécies identificadas. As maiores distâncias interespecíficas são apresentadas por
espécimes pertencentes à família Anthuridae, sendo um grupo extremamente divergente em
termos nucleotídicos e morfológicos em relação às restantes famílias da sub-ordem Isopoda. É
de notar o estado incipiente das bases de dados de sequências de COI para espécimes da
ordem Isopoda no Atlântico Nordeste, tendo sido obtidas pela primeira vez 15 sequências de
espécies relativamente comuns em vários pontos das costas Europeias. Dos 250 espécimes
analisados foram obtidas 105 sequências para 26 espécies, tendo falhado a amplificação de 1
espécime de Stenosoma acuminatum e vários espécimes de Lekanesphaera e Cymodoce
apenas identificados até ao género. Relativamente as sequências compiladas no GenBank
também é possível verificar a capacidade de discriminação para a maioria das espécies de
isópodes compiladas, contudo o número de sequências únicas é bastante elevado
3.4.2 Classificação da biblioteca de referência
Na construção da biblioteca de referência notou-se uma maior incidência de espécimes
classificados com o nível B, não havendo sequências publicadas para a maioria das espécies
analisadas, sendo as únicas identificações taxonómicas classificadas com o nível A, pertencentes
às espécies Stenosoma lancifer, Jaera albifrons e Idotea balthica Como característico dos
peracarídeos, os isópodes carecem de fase larvar e, em consequência apresentam populações
potencialmente mais isoladas e com menor fluxo genético entre si. No entanto, existem casos
como a espécie Idotea balthica com espécimes amostrados nos lados Europeu e Norteamericano do Atlântico que apresentam divergências dentro dos limites habituais. Embora a
espécie Idotea balthica seja uma espécie capaz de apresentar comportamentos migratórios de
grandes distâncias por rafting, o mesmo não acontece com a espécie Jaera albifrons que
65
também apresenta uma divergência dentro dos limites para espécimes de Portugal e do Canadá.
O espécime marcado na árvore como Cyathura sp. AF520440 (Haye et al., 2004) foi
considerado como um possível erro na submissão da sequência ao GenBank ou um erro de
identificação, uma vez que esta sequência não agrupou com a família Anthuridae que forma um
grupo monofilético extremamente divergente, tendo sido usado nos cálculos de divergência
interna para o MOTU de Jaera albifrons. Os espécimes identificados como Idotea chelipes,
classificados com o nível C, apresentam uma distância interna de 7%, existindo a possibilidade
de os dados recolhidos para esta espécie poderem incluir as três sub-espécies descritas, Idotea
chelipes chelipes para águas Atlânticas, Idotea chelipes mediterranea e Idotea chelipes bocqueti
para águas Mediterrânicas, que segundo Charfi-Cheikhrouha et al. (1998) apresentam um
padrão de divergência semelhante na análise de aloenzimas. No entanto foi confirmado nesse
mesmo estudo que estes espécimes de diferentes sub-espécies apresentam descendências
viáveis após realização de cruzamentos. Os espécimes Cymodoce PEN5-002, PEN19-001 e
BUA21-1 não foram identificados até à espécie, uma vez que ainda se apresentavam num
estado juvenil.
3.4.3 Possíveis complexos de linhagens crípticas
Quanto aos espécimes identificados como Cleantis prismática, embora estes
apresentem uma divergência interna de 13% podendo indicar a presença de duas linhagens
distintas, o baixo número de amostras não permite realizar inferências mais conclusivas, sendo
uma das sequências obtida no GenBank e recolhida na Corunha (Xavier et al, 2012) e outra
amostrada em Viana do Castelo. O mesmo acontece com o espécime identificado como
Sphaeroma serratum apresentando uma divergência interna de 6% entre um espécime
amostrado em Viana do Castelo e uma sequência compilada no GenBank sem referência a local
de recolha. Nos casos dos espécimes identificados como Campecopea lusitanica observou-se
uma divergência de 22% entre espécimes recolhidos em águas continentais (Portugal e Galiza) e
espécimes recolhidos em Porto Santo (Madeira), indicando a existência possível de duas
linhagens distintas. Morfologicamente estes espécimes parecem coincidir com os morfotipos A e
B descritos em Bruce e Holdich (2002), com o morfotipo A aproximando-se dos espécimes
recolhidos no continente e o morfotipo B dos espécimes de Porto Santo. Os valores de
divergência encontrados para as três linhagens de Dynamene edwardsi são semelhantes a
66
valores de outras linhagens crípticas encontrados nas espécies Ligia occidentalis com uma gama
de divergência entre as 15 linhagens encontradas de 13,2% a 26,7% (Markow e Pfeiler, 2010) e
Excirolana brasiliensis com 3 linhagens de divergência entre os 14% e 19% (Varela e Haye,
2012). Com a análise das sequências de 18s rRNA existem apenas 3 nucleótidos de diferença
entre as linhagens de Gran Canária e do grupo Madeira/ La Palma, não havendo contudo
qualquer distinção entre sequências de espécimes de La Palma e Madeira, neste último caso em
contraste com se observou com COI-5P, apesar de a distância não ser pronunciada (<3%).
3.4.4 Reconstrução filogenética
Com o uso do marcador genético COI-5P desenhado especificamente para diferenciação
entre espécies, a falta de resolução para filogenias profundas torna-se evidente na visualização
das árvores construídas. Contudo com o uso de diferentes métodos na reconstrução é possível
obter um sinal filogenético fiável (Fig. 1.5). É de notar que embora em nenhuma das análises as
sub-ordens analisadas apresentem monofilia, à exceção da sub-ordem Anthuridea (Fig. 1.5), a
grande maioria dos espécimes agrupam na respetiva sub-ordem. Existem também ramos
problemáticos que variam a sua posição dependendo do tipo de análise utilizada,
nomeadamente as espécies Idotea chelipes, Ischyromene lacazei, Campecopea lusitanica,
Campecopea hirsuta e Eurydice spinigera, podendo agrupar em certos modelos na respetiva
sub-ordem. Embora o conjunto de dados não seja suficientemente representativo para uma
análise robusta é evidente uma possível relação entre as sub-ordens Valvifera e Sphaeromatidea
(Fig. 4) indo ao encontro com outros dados publicados em filogenia de isópodes (Brandt e Poore,
2003) incluindo dados com o marcador molecular 18s rRNA (Wetzer et al, 2013). Com o
aumento do número de sequências de COI-5P disponíveis e com um uso direcionado de
diferentes ferramentas, modelos, e métodos de construção de árvores filogenéticas, a
quantidade e qualidade de informação que é possível obter pode aumentar consideravelmente.
Referências
Aldrich, J. (1997) R. A. Fisher and the making of maximum likelihood 1912-1922. Statistical
Science 12: 162–176.
Almada, F., Almada, V.C., Guillemaud, T., Wirtz, P. (2005) Phylogenetic relationships of the
north-eastern Atlantic and Mediterranean blenniids. Biological Journal of the Linnean
Society 86: 283-295.
67
Altschul, S.F., Gish, W., Miller, W., Meyers, E.W., Lipman, D.J. (1990). Basic local alignment
search tool. Journal of Molecular Biology 215: 403-410.
Bengtson, P. (1988). Open nomenclature. Palaeontology 31: 223–227.
Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L. (2005). Genbank.
Nucleic Acids Research 33: 34-38.
Bergston, J. (2005) A review of long-branch attraction. Cladistics 21: 163-193.
Best, R.J., Stachowicz, J.J. (2013) Phylogeny as a proxy for ecology in seagrass amphipods:
which traits are most conserved? Plos One 8: e57550.
Blanc, P.L. (2002). The opening of the Plio-Quaternary Gibraltar Strait: assessing the size of a
cataclysm. Geodinamica Acta 15: 303–317.
Blaxter, M., Mann, J., Chapman, T., Thomas, F., Whitton, C., Floyd, R., Abebe, E. (2005).
Defining operational taxonomic units using DNA barcode data. Philosophical Transactions
of the Royal Society London B Biological Sciences 1462:1935-1943.
Brandt, A., Poore, G.C.B. (2003) Higher classification of the flabelliferan and related Isopoda
based on a reappraisal of relationships. Invertebrate Systematics 17: 893–923.
Browne, W.E., Haddock, S.H.D., Martindale, M.Q. (2007). Phylogenetic analysis of lineage
relationships among hyperiid amphipods as revealed by examination of the mitochondrial
gene, cytochrome oxidase I (COI). Integrative and Comparative Biology 47: 815-830.
Bruce, N.L., Holdich, D.M. (2002) Revision of the isopod crustacean genus Campecopea
Flabellifera: Sphaeromatidae) with discussion of the phylogenetic significance of dorsal
processes. Journal of the Marine Biological Association of the UK 82:51-68.
Buhay, J.E. (2009) ‘‘COI-like’’ sequences are becoming problematic in molecular systematic and
DNA barcoding studies. Journal of Crustacean Biology 29: 96-110
Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in
phylogenetic analysis.Molecular Biology and Evolution 17: 540-552.
Charfi-Cheikhrouha, F., Laulier, M., Hamelin, E., Mocquard, J.P. (1998) Genetic differentiation
and evolutionary process of speciation in the Idotea chelipes complex (Crustacea,
Isopoda). Genetics Selection Evolution 30: 289-303.
Costa, F.O., Antunes, P.M. (2012) The contribution of the Barcode of Life initiative to the
discovery and monitoring of Biodiversity. In: Natural Resources, Sustainability and
Humanity - A Comprehensive View. Mendonca A, Cunha A, Chakrabarti R (eds) Springer
Science+Business Media, Dordrecht, pp 37-68.
Costa, F. O., deWaard, J. R., Boutillier, J., Ratnasingham, S., Dooh, R. T., Hajibabaei, M.,
Hebert, P. D. N. (2007) Biological identifications through DNA barcodes: the case of
Crustacea. Canadian Journal of Fisheries and Aquatic Sciences 64: 272-295.
68
Costa, F.O., Landi, M., Martins, R., Costa, M.H., Costa, M.E., Carneiro, M., Alves, M.J., Steinke,
D., Carvalho, G.R. (2012) A Ranking System for Reference Libraries of DNA Barcodes:
Application to Marine Fish Species from Portugal. PLoS ONE 7: e35858.
Darriba, D., Taboada, G.L., Doallo, R., Posada, D. (2012) jModelTest 2: more models, new
heuristics and parallel computing. Nature Methods 9: 772.
Domingues, V.S., Bucciarelli, G., Almada, V.C., Bernardi, G. (2005) Historical colonization and
demography of the Mediterranean damselfish, Chromis chromis. Molecular Ecology 14:
4051-4063.
Dreyer, H., Waegele, J.W. (2002) The Scutocoxifera tax. nov. and the information content of
nuclear ssu rRNA sequences for reconstruction of isopod phylogeny (Peracarida:
Isopoda). Journal of Crustacean Biology 22: 217-234.
Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap.
Evolution 39:783-791.
Fernández-Palacios, J.M, Nascimento, L., Otto, R., Delgado, J.D., Garcia-del-Rey, E., Arévalo, J.R.,
Whittaker, R.J. (2011) A reconstruction of Palaeo-Macaronesia, with particular reference
to the long-term biogeography of the Atlantic island laurel forests. Journal of
Biogeography 38: 226-246.
Folmer. O., Black. M., Hoeh. W., Lutz. R., Vrijenhoek. R. (1994) DNA primers for amplification of
mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates.
Molecular Marine Biology and Biotechnology 3:294-299.
Gautier, F., Clauzon, G., Suc, J.P., Cravatte, J., Violanti, D. (1994) Age and duration of the
Messinian salinity crisis. Comptes Rendus de l´Academie des Sciences, Paris 318:
1103–1109.
Guindon, S., Gascuel, O. (2003). A simple, fast and accurate method to estimate large
phylogenies by maximum-likelihood". Systematic Biology 52: 696-704.
Haye, P.A., Kornfield, I., Watling, L. (2004) Molecular insights into Cumacean family relationships
(Crustacea, Cumacea). Molecular Phylogenetics and Evolution 30: 798-809.
Hayward, P.J., Ryland, J.S. (1996) Handbook of the Marine Fauna of North-West Europe. Oxford
University Press: Oxford U.K.
Hebert, P.D.N., Cywinska, A., Ball, S.L., deWaard, J.R. (2003) Biological identifications through
DNA barcodes. Proceedings of the Royal Society of London Series B-Biological Sciences
270:313–321.
Hewitt, G.M. (1996) Some genetic consequences of ice ages, and their role in divergence and
speciation. Biological Journal of the Linnean Society 58: 247-276.
Huelsenbeck, J.P., Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogeny.
Bioinformatics 17:754-755.
69
Hurt, C., Haddock, S.H., Browne, W.E. (2013) Molecular phylogenetic evidence for the
reorganization of the Hyperiid amphipods, a diverse group of pelagic crustaceans.
Molecular Phylogenetics and Evolution 67: 28-37.
Jacobs, B.J.M. (1987) A taxonomic revision of the European, Mediterranean and NW. African
species
generally
placed
in
Sphaeroma
Bosc,
1802
(Isopoda:Flabellifera:Sphaeromatidae). Zoologische Verhandelingen 238: 1-71.
Jones, D.T., Taylor, W.R., Thornton, J.M. (1992). The rapid generation of mutation data matrices
from protein sequences. Computer Applications in Biosciences 8: 275–282.
Khalaji-Pirbalouty, V., Raupach, M.J. (2014) A new species of Cymodoce Leach, 1814
(Crustacea: Isopoda: Sphaeromatidae) based on morphological and molecular data, with
a key to the Northern Indian Ocean species. Zootaxa 3826: 230-254
Kekkonen, M., Hebert, P.D.N. (2014) DNA barcode based delineation of putative species:
efficient start for taxonomic workflows. Molecular Ecology Resources 14:706-715.
Kilpert, F., Held, C., Podsiadlowski, L. (2012) Multiple rearrangements in mitochondrial genomes
of Isopoda and phylogenetic implications. Molecular Phylogenetics and Evolution 64:
106-117.
Kimura, M. (1980). A simple method of estimating evolutionary rate of base sustitutions through
comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111120.
Lefebure, T., Douady, C. J., Gouy, M., Gibiert, J. (2006). Relationship between morphological
taxonomy and molecular divergence within Crustacea: Proposal of a molecular threshold
to help species delimitation. Molecular Phylogenetics and Evolution 40: 435–447.
Lobo, J., Costa, P.M., Teixeira, M.A.L., Ferreira, M.S.G., Costa, M.H., Costa, F.O.C. (2013)
Enhanced primers for amplification of DNA barcodes from a broad range of marine
metazoans. BMC Ecology 13: 34.
Maggs, C.A., Castilho, R., Foltz, D., Henzler, C., Jolly, M.T., Kelly, J., Olsen, J., Perez, K.E., Stam,
W., Väinölä, R., Viard, F., Wares, J. (2008) Evaluating signatures of glacial refugia for
North Atlantic benthic marine taxa. Ecology 89 11: 108 - 122.
Naylor, E. (1955) The comparative external morphology and revised taxonomy of the British
species of Idotea. Journal of the Marine Bioogical Association of the U.K. 34:467-93.
Naylor, E. (1972). British marine isopods. In: Synopses of the British Fauna, nº. 3. Academic
Press: London.
Nolting, C., Reboreda, P., Wägele, J.W. (1998) Systematic revision of the genus Anoplocopea
Racovitza, 1907 (Crustacea: Isopoda) with a description of a new species from the
Atlantic Coast of the Iberian Peninsula. Mitt.Mus. Naturk. Berl. Zool.Reihe 74:19-41.
70
Podsiadlowski, L., Bartolomaeus, T. (2006) Major rearrangements characterize the mitochondrial
genome of the isopod Idotea baltica (Crustacea: Peracarida). Molecular Phylogenetics
and Evolution 40: 893-909.
Radulovici, A.E., Sainte-Marie, B. Dufresne, F. (2009). DNA barcoding of marine crustaceans
from the Estuary and Gulf of St. Lawrence: a regional-scale approach. Molecular Ecology
Resources 9:181-187
Ratnasingham, S., Hebert, P.D.N. (2007) BOLD: the barcode of life data system
(www.barcodinglife.org). Molecular Ecology Notes 7: 355–364.
Ratnasingham, S., Hebert, P.D.N. (2013) A DNA-Based Registry for All Animal Species: The
Barcode Index Number (BIN) System. PLoS ONE 8: e66213.
Rogl, F. (1999) Mediterranean and Paratethys facts and hypotheses of na Oligocene to Miocene
paleogeography. Geologica Carpathica 50: 339-349.
Schuller, M., Wagele, J.W. (2005) Redescription of Ischyromene lacazei Racovitza, 1908
(Isopoda: Sphaeromatidae) from the Mediterranean Coast of southern France.
Organisms, Diversity and Evolution 5: 165-166.
Song. H., Buhay. J.E., Whiting. M.F., Crandall. K.A. (2008) Many species in one: DNA barcoding
overestimates the number of species when nuclear mitochondrial pseudogenes are co
amplified. Procedings of the National Academy of Sciences USA 105:13486-13491.
Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S. (2011). MEGA5:
Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary
Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution (In Press).
Tavaré, S. (1986) Some Probabilistic and Statistical Problems in the Analysis of DNA Sequences.
Lectures on Mathematics in the Life Sciences (American Mathematical Society) 17: 57–
86.
Thompson J., Higgins D., and Gibson T. (1994) CLUSTAL W: improving the sensitivity of
progressive multiple sequence alignement through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673-4680.
Wares, J.P., Cunningham, C.W. (2001). Phylogeography and historical ecology of the North
Atlantic intertidal. Evolution 55 12:2455-2469
Wetzer, R. (2001). Hierarchical analysis of mtDNA variation and the use of mtDNA for isopod
systematics (Crustacea: Isopoda). Contributions to Zoology 70:23-39.
Wetzer, R., Pérez-Losada, M., Bruce, N.L. (2013) Phylogenetic relationships of the family
Sphaeromatidae Latreille, 1825 (Crustacea: Peracarida: Isopoda) within Sphaeromatidea
based on 18S-rDNA molecular data. Zootaxa 3599: 161-177.
Whiting, M.F. (2002) Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and
Siphonaptera. Zoologica Scripta 31:93–104.
71
Xavier, R., Santos, A. M., Lima, F. P., Branco, M. (2009) Invasion or invisibility: using genetic and
distributional data to investigate the alien or indigenous status of the Atlantic populations
of the peracarid isopod, Stenosoma nadejda (Rezig 1989) Molecular Ecology 18: 32833290
Xavier, R., Zenboudji, S., Lima F. P., Harris, D. J., Santos, A. M., Branco, M. (2011).
Phylogeography of the marine isopod Stenosoma nadejda (Rezig, 1989) in North African
Atlantic and western Mediterranean coasts reveals complex differentiation patterns and a
new species. Biological Journal of the Linnean Society. 104: 419-431.
Xavier, R., Santos, A. M., Harris, D. J., Sezgin, M., Machado, M., Branco, M. (2012).
Phylogenetic analysis of the north-east Atlantic and Mediterranean species of the
genus Stenosoma (Isopoda, Valvifera, Idoteidae). Zoologica Scripta. 41: 386-399.
Xia, X. (2000) Data Analysis in Molecular Biology and Evolution. Kluwer Academic Publishers.
Xia, X., Xie, Z., Salemi, M., Chen, L., Wang, Y. (2003) An index of substitution saturation and its
application. Molecular Phylogenetics and Evolution 26:1-7.
Xia, X., Lemey, P. (2009) Assessing substitution saturation with DAMBE. in Philippe Lemey,
Marco Salemi and Anne-Mieke Vandamme, eds. The Phylogenetic Handbook: A Practical
Approach to DNA and Protein Phylogeny. 2nd edition Cambridge University Press Pp.
615-630.
Yang, Z., Rannala, B. (1997) Bayesian phylogenetic inference using DNA sequences: a Markov
chain Monte carlo method. Molecular Biology and Evolution 14:717-724.
Yu, D.W., Ji, Y., Emerson, B.C., Wang, X., Ye, C., Yang, C., Ding, Z. (2012). Biodiversity soup:
metabarcoding of arthropods for rapid biodiversity assessment and biomonitoring.
Methods in Ecology and Evolution. 3: 613- 623.
72
Capítulo 4
Considerações finais
73
Capítulo 4
Considerações finais
A proteção da fauna marinha Ibérica é essencial sendo a biodiversidade em espécies de
Isópodes uma das maiores e uma parte importante das comunidades de invertebrados
bentónicos marinhos, com elevados graus de endemismo para as zonas dos Açores e Madeira. A
elaboração da biblioteca de referência contribuiu para a obtenção de DNA barcodes para 26
espécies, das 146 espécies compiladas na checklist, com a possível adição de um novo registo
para a espécie Cymodoce emarginata cuja identificação requer confirmação. Foi confirmada
também a capacidade de discriminação de espécies da ordem Isopoda a partir de sequências de
COI-5P, observando-se o agrupamento das espécies em clados monofiléticos para a maioria dos
espécimes analisados A deteção de 3 linhagens com elevada divergência e geograficamente
delimitadas do morfotípo Dynamene edwardsi na Macaronésia e na costa sul de Portugal sugere
a existência de um complexo de espécies crípticas, evidenciadas por sequências de genes
mitoncondriais e nucleares. A clarificação deste complexo requer o alargamento de amostragem
de modo a incluir espécimes de outras ilhas dos arquipélagos da Madeira e Canárias, bem como
espécimes de populações Mediterrânicas. A divergência entre linhagens continentais e linhagens
presentes nos arquipélagos é também evidenciada pela divergência encontrada entre duas
linhagens de Campecopea lusitanica podendo indicar isolamento por distância entre as ilhas e o
continente. De modo a completar a biblioteca de referência de DNA barcodes para a ordem
Isopoda será necessário um alargamento das redes de amostragem, de modo a obter espécimes
de várias gamas de profundidade bem como aumentar os tipos de habitat amostrados. Para
além da grande biodiversidade de Isópodes presente na costa Portuguesa foi verificada a
importância da conservação deste grupo devido ao grande pool de biodiversidade genética
presente em espécimes Ibéricos, sendo este pool de importância vital para a sobrevivência e
manutenção a longo prazo para estas espécies com baixa capacidade de dispersão. A crescente
construção de bibliotecas de referência de sequências de COI-5P e uso de diferentes
metodologias de análise de sequências e construção de árvores filogenéticas, com possibilidade
de utilização de dados de sequências públicas, permite analisar a diversidade genética e história
evolutiva de populações em grande escala.
74
Anexos
Tabela 3.1- Lista de sinónimos para as espécies de isópodes compiladas na checklist, segundo a base de dados
WORMS.
Taxa Aceite
Taxa Sínonimo
Aega webbii (Guérin-Méneville, 1836)
Aegapheles deshaysiana (Milne Edwards, 1840)
Campecopea hirsuta (Montagu, 1804)
Campecopea lusitanica (Nolting, Reboreda e
Pterelas webbi (Guerin-Meneville, 1836 )
Aega schioedteana (Bovallius, 1885)
Rocinela deshaysiana (Milne Edwards, 1840)
Aega loveni (Bovallius, 1886)
Aega nordenskjoldii (Bovallius, 1885)
Aega ventrosa (Sars, 1859)
Ilyarachna abyssorum (Richardson, 1911)
Colombia physodes (Linnaeus, 1758)
Oniscus physodes (Linnaeus, 1758)
Oniscus gracilis (Montagu, 1808)
Arcturella cornuta (Koehler, 1911)
Arcturella damnoniensis (Stebbing, 1874)
Arcturus damnoniensis (Stebbing, 1874)
Arcturus deshayesii (Lucas, 1849)
Arcturus linearis (Stebbing, 1878)
Leachia gracilis (Goodsir, 1841)
Oniscus longicornis (Sowerby, 1806)
Eurycope abyssicola (Beddard, 1885)
Bopyrus fougerouxi (Giard e Bonnier, 1890)
Bopyrus helleri (Giard e Bonnier, 1890)
Bopyrus rathkei (Giard e Bonnier, 1890)
Bopyrus rathkei (Bonnier, 1900)
Bopyrus rathkei (Stebbing, 1893)
Bopyrus treillianus (Giard e Bonnier, 1890)
Bopyrus treillianus (Bonnier, 1900)
Bopyrus xiphias (Giard e Bonnier, 1890)
Monoculus crangorum (Fabricius, 1798)
Oniscus hirsutus (Montagu, 1804)
Anoplocopea lusitanica (Nolting, Reboreda e
Wägele, 1998)
Wägele, 1998)
Carpias parvus (Omer-Cooper, 1921)
Ceratothoa oestroides (Risso, 1816)
Ceratothoa parallela (Otto, 1828)
Janiropsis parvus (Omer-Cooper, 1921)
Canolira oestroides (Risso, 1816)
Ceratothoa deplanata (Bovallius, 1885)
Cymothoa parallela (Otto, 1828)
Desmosoma insignis (Hansen, 1916)
Zenobia prismatica (Risso, 1826)
Anthura carinata (Krøyer, 1847)
Eurycope furcatus (Sars, 1870)
Aegiochus ventrosa (Sars, 1859)
Amuletta abyssorum (Richardson, 1911)
Anilocra physodes (Linnaeus, 1758)
Anthura gracilis (Montagu, 1808)
Astacilla cornuta (Koehler, 1911)
Astacilla damnoniensis (Stebbing, 1874)
Astacilla longicornis (Sowerby, 1806)
Bathyopsurus abyssicolus (Beddard, 1885)
Bopyrus squillarum (Latreille, 1802)
Chelator insignis (Hansen, 1916)
Cleantis prismatica (Risso, 1826)
Cyathura carinata (Krøyer, 1847)
Disconectes furcatus (Sars, 1870)
75
Disconectes phalangium (Sars, 1864)
Dynamene bidentata (Adams, 1800)
Dynamene edwardsi (Lucas, 1849)
Eugerda filipes (Hult, 1936)
Eurydice truncata (Norman, 1868)
Gnathia dentata (Sars G.O., 1872)
Gnathia maxillaris (Montagu, 1804)
Grapsion cavolinii (Fraisse, 1878)
Gyge branchialis (Cornalia e Panceri, 1861)
Idotea balthica (Pallas, 1772)
Idotea chelipes (Pallas, 1766)
Idotea granulosa (Rathke, 1843)
Idotea linearis (Linnaeus, 1766)
Idotea metallica (Bosc, 1802)
Ilyarachna longicornis (Sars, 1864)
Lekanesphaera hookeri (Leach, 1814)
Lekanesphaera levii (Argano e Ponticelli, 1981)
Lekanesphaera rugicauda (Leach, 1814)
Leptanthura tenuis (Sars, 1873)
Ligia oceanica (Linnaeus, 1767)
Eurycope phalangium (Sars, 1864)
Dynamene bidentatus (Adams, 1800)
Oniscus bidentata (Adams, 1800)
Naesea edwardsi (Lucas, 1849)
Desmosoma filipes (Hult, 1936)
Pseudogerda filipes (Hult, 1936)
Cirolana truncata (Norman, 1868)
Anceus dentata (Sars, 1872)
Cancer maxillaris (Montagu, 1804)
Entoniscus cavolinii (Fraisse, 1878)
Gyge galatheae (Bate e Westwood, 1868)
Idotea (Stenosoma) pusilla (Eichwald, 1842)
Idotea baltica (Pallas, 1772)
Idotea basteri (Audouin, 1826 )
Idotea sarsi (Collinge, 1917)
Idotea tricuspidata (Desmarest, 1825)
Idotea tridentata (Latreille, 1806)
Idotea variegata (Roux, 1830)
Oniscus balthica (Pallas, 1772)
Oniscus tridens (Scopoli, 1763)
Stenosoma irrorata (Say, 1818)
Idotea angusta (Sars, 1897)
Idotea salinarium (Dollfus, 1895)
Oniscus chelipes (Pallas, 1766)
Idotea cretaria (Dahl, 1916)
Idotea diodon (Latreille, 1817)
Idotea sexlineata (Krøyer, 1846)
Oniscus linearis (Linnaeus, 1766)
Idotea algirica (Lucas, 1849)
Idotea annulata (Dana, 1849)
Idotea argentea (Dana, 1849)
Idotea atrata (Costa, 1838)
Idotea brevicornis (Rathke, 1843)
Idotea margaritacea (Dana, 1853)
Idotea peloponesiaca (Roux, 1830)
Idotea robusta (Krøyer, 1846)
Idotea rugosa (Milne Edwards, 1840)
Mesostenus longicornis (Sars, 1864)
Exosphaeroma pulchellum (Colosi, 1921)
Sphaeroma hookeri (Leach, 1814)
Sphaeroma levii (Argano e Ponticelli, 1981)
Sphaeroma rugicauda (Leach, 1814)
Paranthura tenuis (Sars, 1873)
Oniscus oceanica (Linnaeus, 1767)
76
Macrostylis longiremis (Meinert, 1890)
Mirabilicoxa gracilipes (Hansen, 1916)
Mirabilicoxa similis (Hansen, 1916)
Munnopsurus atlanticus (Bonnier, 1896)
Natatolana borealis (Lilljeborg, 1851)
Nerocila bivittata (Risso, 1816)
Nerocila orbignyi (Guérin-Méneville, 1832)
Vana longiremis (Meinert, 1890)
Desmosoma gracilipes (Hansen, 1916)
Desmosoma similis (Hansen, 1916)
Eurycope atlanticus (Bonnier, 1896)
Cirolana borealis (Lilljeborg, 1851)
Cymothoa bivittata (Risso, 1816)
Ichthyophilus orbignyi (Guerin-Meneville, 1832)
Nerocila maculata (Milne Edwards, 1840)
Nerocila neapolitana (Schiodte e Meinert, 1879)
Pagurocryptella paguri (Bourdon, 1979)
Pleurocryptella paguri (Bourdon, 1979)
Paragnathia formica (Hesse, 1864)
Anceus formica (Hesse, 1864)
Paranthura nigropunctata (Lucas, 1846)
Anthura nigropunctata (Lucas, 1849)
Pleurogonium rubicundum (Sars, 1864)
Pleuracantha rubicundum (Sars, 1864)
Portunion maenadis (Giard, 1886)
Entoniscus maenadis (Giard, 1886)
Pseudione borealis (Caspers, 1939)
Pseudione caspersi (Gruner, 1966)
Pseudione tuberculata (Caspers, 1939)
Pseudione confusa (Norman, 1886)
Gyge confusa (Norman, 1886)
Pseudarachna hirsuta (Sars, 1864)
Ilyarachna hirsuta (Sars, 1894)
Rocinela dumerilii (Lucas, 1849)
Acherusia dumerilii (Lucas, 1849)
Sphaeroma serratum (Fabricius, 1787)
Oniscus serratum (Fabricius, 1787)
Stenosoma acuminatum (Leach, 1814)
Synisoma acuminatum auctorum
Stenosoma appendiculatum (Risso, 1826)
Leptosoma appendiculata (Risso, 1826)
Leptosoma lanceolata (Risso, 1826)
Synisoma appendiculatum (Risso, 1816)
Stenosoma bellonae (Daguerre de Hureaux, 1968) Synisoma bellonae (Daguerre de Hureaux, 1968)
Stenosoma capito (Rathke, 1837)
Synisoma capito auctorum
Stenosoma lancifer (Miers, 1881)
Synisoma lancifer auctorum
Stenosoma nadejda (Rezig, 1989)
Synisoma nadejda (Rezig, 1989)
Stenosoma raquelae (Hedo e Junoy, 1999)
Synisoma raquelae (Hedo e Junoy, 1999)
Sursumura atlantica (Beddard, 1885)
Storthyngura atlantica (Beddard, 1885)
Synischia hectica (Pallas, 1772)
Idotea hectica (Pallas, 1772)
Idotea viridissima (Risso, 1816)
Stenosoma eruginosa (Costa, 1838)
Uromunna petiti (Amar, 1948)
Munna minuta (Hansen, 1916)
Munna petiti (Amar, 1948)
77
Tabela 3.2- Lista de sequências de COI-5P e 18s compiladas em bases de dados públicas
Família
Anthuridae
Chaetiliidae
Cirolanidae
Espécie
Nº de
acesso
GenBank
Apanthura sp.
AF255789
402
Wetzer, 2001
Cyathura sp.
AF520451
668
Haye et al, 2004
Cyathura sp.
Haliophasma
geminata
AF520440
676
Saduria entomon
DQ889111
657
Costa et al,
2007
Cirolana harfordi
AF255787
561
Wetzer, 2001
Cirolana harfordi
Cirolana
rugicauda
Cirolana
rugicauda
AF260838
578
Wetzer, 2001
AF255788
583
Wetzer, 2001
604
Wetzer, 2001
CMBIA41211
AF260840
RBGC06603
Eurydice sp.
Holognathidae
Idoteidae
BOLD ID
Tamanho
(bp)
658
Local de recolha
Referência
Haye et al, 2004
Califórnia, Estados
Unidos da América
655
Kilpert et al,
2012
Eurydice pulchra
GU130253
658
Cleantis
prismatica
JQ425511
441
Espasante, Espanha
Xavier et al,
2012
Edotia triloba
FJ581624
657
Golfo de St. Lawrence,
Canadá
Radulovici et al,
2009
Idotea sp.
KC428828
658
Idotea balthica
AF241889
417
Atlântico Norte
Idotea balthica
AF241916
417
Idotea balthica
FJ581714
658
Atlântico Norte
Golfo de St. Lawrence,
Canadá
Idotea balthica
DQ442915
658
Idotea balthica
JQ425513
441
Djerba, Tunísia
Idotea chelipes
JQ425516
441
Djerba, Tunísia
Idotea chelipes
GQ302695
480
Hurt et al, 2013
Wares e
Cunningham,
2001
Wares e
Cunningham,
2001
Radulovici et al,
2009
Podsiadlowski e
Bartolomaeus,
2006
Xavier et al,
2012
Xavier et al,
2012
Koutmos et al
(dados não
publicados)
78
Idoteidae
Janiridae
Joeropsidae
Idotea emarginata AF241933
417
Atlântico Norte
Idotea granulosa
JQ425514
441
Toriñan, Espanha
Idotea granulosa
AF241935
417
Atlântico Norte
Idotea granulosa
FMIB004-12
522
Rauma, Finlândia
Idotea granulosa
FMIB005-12
523
Rauma, Finlândia
Idotea granulosa
FMIB006-12
525
Rauma, Finlândia
Wares e
Cunningham,
2001
Xavier et al,
2012
Wares e
Cunningham,
2001
Xavier et al,
2012
Wares e
Cunningham,
2001
Xavier et al,
2012
Wares e
Cunningham,
2001
Best e
Stachowicz,
2013
Idotea linearis
JQ425515
441
Cap Bon, Tunísia
Idotea metallica
AF241928
417
Idotea pelagica
JQ425512
441
Atlântico Norte
Vila Praia de Âncora,
Portugal
Idotea resecata
AF255782
582
Atlântico Norte
Idotea resecata
Paridotea
ungulata
Stenosoma
acuminatum
Stenosoma
appendiculatum
JX545469
658
Bodega Bay, Estados
Unidos da América
AF255783
565
FJ905099
627
Mindelo, Portugal
JQ425494
441
Djerba, Tunísia
Stenosoma capito FJ905097
627
Skala Kallonis, Grécia
Stenosoma capito
Stenosoma
lancifer
Stenosoma
mediterraneum
Stenosoma
nadejda
Stenosoma
raquelae
Stenosoma
spinosum
JQ425509
441
Skala Kallonis, Grécia
FJ905098
627
JQ425502
441
Nabeul, Tunísia
JQ425506
441
Molivos, Grécia
JQ425510
441
Algarve, Portugal
JQ425508
441
Cap Bon, Tunísia
Synidotea sp.
GQ302700
480
Wetzer, 2001
Xavier et al,
2009
Xavier et al,
2012
Xavier et al,
2009
Xavier et al,
2012
Xavier et al,
2009
Xavier et al,
2012
Xavier et al,
2012
Xavier et al,
2012
Xavier et al,
2012
Koutmos et al
(dados não
publicados)
AF260835
596
Wetzer, 2001
AF260836
617
Ianiropsis
epilittoralis
Ianiropsis
epilittoralis
Jaera albifrons
FJ581736
658
Janira maculosa
GU130255
658
Wetzer, 2001
Radulovici et al,
2009
Kilpert et al,
2012
Joeropsis dubia
AF260837
512
Wetzer, 2001
Golfo de St. Lawrence,
Canadá
79
Sphaeromatidae
Sphaeromatidae
Campecopea
hirsuta
AF279601
950
Cilicaea sp.
EF989646
658
Cymodoce
fuscina
KJ410467
658
Golfo Pérsico, Arábia
Saudita
Cymodoce
fuscina
KJ410468
658
Golfo Pérsico, Arábia
Saudita
Cymodoce tribulis KJ410458
658
Nelly Bay, Austrália
Cymodoce tribulis KJ410459
658
Nelly Bay, Austrália
Cymodoce
wagelei
KJ410471
658
Golfo Pérsico, Irão
KJ410472
658
Golfo Pérsico, Irão
DQ889151
654
GQ302697
480
GU130256
658
Dreyer e
Waegele, 2002
Browne et al,
2007
KhalajiPirbalouty e
Raupach, 2014
KhalajiPirbalouty e
Raupach, 2014
KhalajiPirbalouty e
Raupach, 2014
KhalajiPirbalouty e
Raupach, 2014
KhalajiPirbalouty e
Raupach, 2014
KhalajiPirbalouty e
Raupach, 2014
Costa et al,
2007
Koutmos et al
(dados não
publicados)
Kilpert et al,
2012
AF255785
544
Wetzer, 2001
Cymodoce
wagelei
Exosphaeroma
sp.
Lekanesphaera
hookeri
Sphaeroma
serratum
Sphaeroma
quadridentatum
Tabela 3.3- Lista de espécimes com DNA barcodes com respetivo local de recolha e primer usado na amplificação
Espécie
Astacilla damnoniensis
Anthura gracilis
Anthura sp.
Anthura sp.
Campecopea hirsuta
Campecopea hirsuta
Campecopea hirsuta
Campecopea hirsuta
Campecopea hirsuta
Campecopea lusitanica
Campecopea lusitanica
Campecopea lusitanica
Campecopea lusitanica
Campecopea lusitanica
Código
Local de recolha
Primer usado na
amplificação
SFCM6-005
Viana do Castelo
LCO1490/HCO2198
SFC3-001
CAL7-001
Viana do Castelo
Gran Canária
LCO1490/HCO2198
LCO1490/HCO2198
SFP18-001
ARR5-001
Madeira
Algarve
LCO1490/HCO2198
LCO1490/HCO2198
ARR5-002
ARR6-001
ING15-001
BAR34
PED1-001
PED13
PED24
PEN7-002
SFP4-001
Algarve
Algarve
Algarve
Galiza
Galiza
Galiza
Galiza
Peniche
Madeira
LCO1490/HCO2198
LCO1490/HCO2198
LCO1490/HCO2198
Lobo F1/Lobo R1
Lobo F1/Lobo R1
Lobo F1/Lobo R1
Lobo F1/Lobo R1
Lobo F1/Lobo R1
LCO1490/HCO2198
80
Campecopea lusitanica
Cyathura carinata
Cyathura carinata
Cyathura carinata
Cyathura carinata
Cyathura carinata
Cyathura carinata
Cyathura carinata
Cymodoce emarginata
Cymodoce sp.
Cymodoce sp.
Cymodoce sp.
Dynamene bidentata
Dynamene bidentata
Dynamene bidentata
Dynamene bidentata
Dynamene bidentata
Dynamene bidentata
Dynamene bidentata
Dynamene bidentata
Dynamene bidentata
Dynamene edwardsi
Dynamene edwardsi
Dynamene edwardsi
Dynamene edwardsi
Dynamene edwardsi
Dynamene edwardsi
Dynamene edwardsi
Dynamene edwardsi
Dynamene edwardsi
Dynamene edwardsi
Dynamene edwardsi
Dynamene magnitorata
Dynamene magnitorata
Dynamene magnitorata
Dynamene magnitorata
Dynamene magnitorata
Dynamene magnitorata
Dynamene magnitorata
Dynamene magnitorata
Eurydice spinigera
Eurydice spinigera
SFP6
NGIM8-002
NGIM9-001
NGIM10-001
NGIM10-002
NGIM27-001
NGIM27-002
NGIM27-003
SFP19-001
PEN5-002
PEN19-001
BUA21-001
Madeira
Rio Minho
Rio Minho
Rio Lima
Rio Lima
Rio Lima
Rio Lima
Rio Lima
Madeira
Peniche
Peniche
Figueira da Foz
LCO1490/HCO2198
LCO1490/HCO2198
LCO1490/HCO2198
LCO1490/HCO2198
LCO1490/HCO2198
LCO1490/HCO2198
LCO1490/HCO2198
LCO1490/HCO2198
LCO1490/HCO2198
LCO1490/HCO2198
LCO1490/HCO2198
Lobo F1/Lobo R1
BUA16-003
LMBV32-007
NGIM15-001
NGIM15-002
NGIM16-002
NGIM16-003
NGIM32-001
NGIM32-003
PED18-001
BAN6-001
Figueira da Foz
Vila do Conde
Rio Lima
Rio Lima
Viana do Castelo
Viana do Castelo
Sines
Sines
Galiza
Gran Canária
Lobo F1/Lobo R1
Lobo F1/Lobo R1
Lobo F1/Lobo R1
Lobo F1/Lobo R1
Lobo F1/Lobo R1
Lobo F1/Lobo R1
Lobo F1/Lobo R1
Lobo F1/Lobo R1
LCO1490/HCO2198
Lobo F1/Lobo R1
BAN20-001
CAL7-001
ELF20
FA13
NGIM35-002
PC17-002
Gran Canária
Gran Canária
La Palma
La Palma
Sines
Madeira
Lobo F1/Lobo R1
Lobo F1/Lobo R1
LCO1490/HCO2198
LCO1490/HCO2198
LCO1490/HCO2198
LCO1490/HCO2198
PC20-001
RM4-001
Madeira
Madeira
CrustdF1/CrustdR1
LCO1490/HCO2198
RM16-002
TAL8-001
Madeira
Gran Canária
LCO1490/HCO2198
Lobo F1/Lobo R1
ARR8-1
ARR8-002
ARR13
ARR13-001
LAG10-002
LAG10-003
PEN4-002
PEN4-004
NGIM12-003
NGIM20-001
Algarve
Algarve
Algarve
Algarve
Algarve
Algarve
Peniche
Peniche
Rio Lima
Rio Lima
Lobo F1/Lobo R1
Lobo F1/Lobo R1
Lobo F1/Lobo R1
Lobo F1/Lobo R1
LCO1490/HCO2198
LCO1490/HCO2198
Lobo F1/Lobo R1
Lobo F1/Lobo R1
LCO1490/HCO2198
LCO1490/HCO2198
81
Idotea balthica
Idotea balthica
Idotea chelipes
Idotea granulosa
Idotea granulosa
Idotea granulosa
Idotea granulosa
Idotea granulosa
Idotea granulosa
Idotea granulosa
Idotea granulosa
Idotea granulosa
Idotea granulosa
Idotea granulosa
Idotea granulosa
Idotea granulosa
Idotea granulosa
Idotea granulosa
Idotea granulosa
Idotea granulosa
Idotea granulosa
Idotea granulosa
Idotea neglecta
Idotea neglecta
Idotea neglecta
Idotea neglecta
Idotea neglecta
Idotea neglecta
Idotea pelagica
Idotea pelagica
Idotea pelagica
Idotea pelagica
Idotea pelagica
Idotea pelagica
Ischyromene lacazei
Ischyromene lacazei
Ischyromene lacazei
Ischyromene lacazei
Jaera albifrons
Jaera albifrons
Jaera albifrons
Lekanesphaera terceirae
ICE1-001
ICE1-003
SFC25-006
BAL1-001
BAL13-001
BAR9-001
BAR23-001
BEL38-001
BUA19-001
CAR54-001
EAS33-001
HEL6-001
Islândia
Islândia
Aveiro
Noruega
Noruega
Galiza
Galiza
Escócia
Figueira da Foz
Escócia
Escócia
Noruega
LCO1490/HCO2198
Lobo F1/Lobo R1
LCO1490/HCO2198
LCO1490/HCO2198
Lobo F1/Lobo R1
Lobo F1/Lobo R1
LCO1490/HCO2198
LCO1490/HCO2198
Lobo F1/Lobo R1
Lobo F1/Lobo R1
LCO1490/HCO2198
LCO1490/HCO2198
HEL13-001
ICE1-009
ICE2-029
MUX1-001
MUX13-001
MUX22-001
NGIM5-001
PED2-001
PED8
PED18-001
Noruega
Islândia
Islândia
Galiza
Galiza
Galiza
Rio Lima
Galiza
Galiza
Galiza
Lobo F1/Lobo R1
LCO1490/HCO2198
LCO1490/HCO2198
Lobo F1/Lobo R1
Lobo F1/Lobo R1
LCO1490/HCO2198
Lobo F1/Lobo R1
LCO1490/HCO2198
LCO1490/HCO2198
LCO1490/HCO2198
LBAZ28
LBAZ29
LBAZ30
LBAZ31
LBAZ34
LBAZ35
Açores
Açores
Açores
Açores
Açores
Açores
Lobo F1/Lobo R1
Lobo F1/Lobo R1
Lobo F1/Lobo R1
Lobo F1/Lobo R1
Lobo F1/Lobo R1
Lobo F1/Lobo R1
BEL39-001
EAS34-001
Escócia
Escócia
LCO1490/HCO2198
Lobo F1/Lobo R1
HEL18-001
ICE2-015
Noruega
Islândia
LCO1490/HCO2198
LCO1490/HCO2198
NGIM19-001
PED5
MUX24-001
MUX24-002
MUX27-001
LMBV32-017
NGIM6-002
NGIM18-001
NGIM21-001
NGIM24-002
Rio Lima
Galiza
Galiza
Galiza
Galiza
Vila do Conde
Rio Lima
Rio Lima
Rio Lima
Açores
Lobo F1/Lobo R1
LCO1490/HCO2198
Lobo F1/Lobo R1
Lobo F1/Lobo R1
Lobo F1/Lobo R1
Lobo F1/Lobo R1
Lobo F1/Lobo R1
CrustdF1/CrustdR1
Lobo F1/Lobo R1
Lobo F1/Lobo R1
82
Lekanesphaera terceirae
Lekanesphaera hookeri
Lekanesphaera hookeri
Lekanesphaera hookeri
Lekanesphaera hookeri
Stenosoma lancifer
Stenosoma lancifer
NGIM24-003
NGIM13-001
NGIM13-004
NGIM13-005
NGIM13-006
BUA7-001
BUA7-003
Açores
Rio Minho
Rio Minho
Rio Minho
Rio Minho
Figueira da Foz
Figueira da Foz
LCO1490/HCO2198
Lobo F1/Lobo R1
LCO1490/HCO2198
Lobo F1/Lobo R1
LCO1490/HCO2198
LCO1490/HCO2198
LCO1490/HCO2198
83
Figura 2.1- Árvore NJ obtida pela análise de 165 sequências de COI-5P de isópodes com recurso ao
modelo K2P. Junto a cada nó é apresentado o repespectivo grau de suporte obtido por análise bootstrap
a partir de 10000 réplicas.
84
85
86
87
Figura 2.2- Árvore ML obtida pela análise de 165 sequências de COI-5P de isópodes com recurso ao
modelo GTR+G+I. Junto a cada nó é apresentado o repespectivo grau de suporte obtido por análise
bootstrap a partir de 500 réplicas.
88
89
90
91
92
Figura 2.3- Árvore IF obtida pela análise de 165 sequências de COI-5P de isópodes com recurso ao
modelo GTR+G+I.
93
94
95

Documentos relacionados