Universidade de Brasília

Transcrição

Universidade de Brasília
Adaptive & Array Signal Processing
AASP
Prof. Dr.-Ing. João Paulo C. Lustosa da Costa
University of Brasília (UnB)
Department of Electrical Engineering (ENE)
Laboratory of Array Signal Processing
PO Box 4386
Zip Code 70.919-970, Brasília - DF
de Brasília
Homepage:Universidade
http://www.pgea.unb.br/~lasp
Laboratório de Processamento de Sinais em Arranjos
1
Mathematical Background: Stationary Processes (1)
Stochastic (or random) process
Evolution of a statistical phenomenon according to probabilistic laws
Before starting the process, it is not possible to define the exactly way
it evolves.
Infinite number of realizations of the process
Strictly stationary
Statistical properties are invariant to the time shift
If the Probability Density Function (PDF) f(x) is known
All the moments can be computed. In practice, the PDF is not known.
Therefore, in most cases, only the first and the second moments can
be estimated with samples.
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
2
Mathematical Background: Stationary Processes (2)
Statistical functions
The first moment also known as mean-value function
E{ } stands for the expected-value operator (or statistical value
operator) and u(n) is the sample at the n-th instant.
The autocorrelation function
The autocovariance function
Note that all the three functions are assumed constant with time.
Therefore, they do not depend on n.
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
3
Mathematical Background: Stationary Processes (3)
Relation between the statistical functions
The relation between mean-value, autocorrelation and autocovariance
functions is given by
Proof of the relation:
If mean is zero the autocovariance and the correlation functions are
equal.
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
4
Mathematical Background: Stationary Processes (4)
Wide-sense Stationary and mean estimate
Note that if
If these equations are satisfied, then the process is wide-sense
stationary or stationary to the second-order.
second-order
In practice, only a limited number of samples are available. Therefore,
the mean, the autocovariance and the autocorrelation are estimated.
Estimate of the mean
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
5
Mathematical Background: Stationary Processes (5)
Mean estimate
Applying the expected-value operator:
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
6
Mathematical Background: Stationary Processes (6)
Mean ergodicity
A process is mean ergodic in the mean square-sense error sense if
Another way to represent
The order doesn’t matter
due to the modulus.
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
7
Mathematical Background: Stationary Processes (7)
Mean ergodicity
Replacing l = n – k, and after some algebra:
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
8
Mathematical Background: Stationary Processes (8)
Mean ergodicity
If the process is asymptotically
uncorrelated, i.e. c(l) → 0
when l increases, then the
process is mean ergodic.
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
9
Mathematical Background: Stationary Processes (9)
Correlation ergodicity
Similarly a process can also be correlation ergodic
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
10
Mathematical Background: Stationary Processes (10)
Correlation matrix
L by 1 observation vector
Correlation matrix
The main diagonal contains always real-valued elements.
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
11
Mathematical Background: Stationary Processes (11)
Correlation matrix
The correlation matrix is Hermitian, i.e.
Proof:
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
12
Mathematical Background: Stationary Processes (12)
Correlation matrix
The correlation matrix is Hermitian, i.e.
As a consequence of the Hermitian property
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
13
Mathematical Background: Stationary Processes (13)
Correlation matrix
The correlation matrix is Hermitian, i.e.
The correlation matrix is Toeplitz, i.e. the elements of the main
diagonal are equal as well as the elements of each diagonal
parallel to the main diagonal.
Important:
• Wide sense stationary
R is Toeplitz
• R is Toeplitz
Wide sense stationary
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
14
Mathematical Background: Stationary Processes (14)
Correlation matrix
The correlation matrix is always nonnegative definite and almost
always positive definite.
We define the scalar
, where x is constant, then
We know that
Nonnegative definite or
positive semidefinite
Also if
If
positive definite
Also if
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
15
Mathematical Background: Stationary Processes (15)
Example of correlation matrix
We consider the following data model
where u(n) is the received signal,
is the signal of interest and
v(n) is the zero mean i.i.d. noise component with variance .
Note: independent and identically distributed (i.i.d.)
Computing the autocorrelation function
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
16
Mathematical Background: Stationary Processes (16)
Example of correlation matrix
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
17
Mathematical Background: Stationary Processes (17)
Example of correlation matrix
Parameter estimation:
Given the noise variance and computing r(0), estimate |α|2.
Given the estimate of |α|2 and computing r(l), estimate ω.
Assuming the case where
- All lines and all columns are
linearly dependent.
- R is rank 1.
- Only one eigenvalue is not zero.
- The model order is one.
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
18
Mathematical Background: Stochastic Models (1)
Model: Hypothesis to explain or to describe the hidden laws that governs
or constraints the generation of some physical data.
We consider three models
Autoregressive (AR): no past values of the input model;
Moving average (MA): no past values of the output model;
Mixed autoregressive-moving average (ARMA): include both cases.
Data model
If the data is completely random, then no prediction is possible.
However, if there is some dependence of the previous data (AR
or MA), then the prediction becomes possible.
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
19
Mathematical Background: Stochastic Models (2)
Autoregressive model
Applying the z transform
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
20
Mathematical Background: Stochastic Models (3)
Autoregressive model
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
21
Mathematical Background: Stochastic Models (4)
Autoregressive model
Multiplying by
and applying
In the matrix representation (called Yule-Walker equation)
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
22
Mathematical Background: Stochastic Models (5)
Moving average
⇒ Moving average of M input samples
⇒ Pure FIR (Finite Response Filter) – All zero
ARMA is a mix of a FIR and IIR generator
Systematics
Analyser
Generator
white
colored
white
colored
Processo AR
IIR (all pole)
FIR (all zero)
Processo MA
FIR (all zero)
IIR (all pole)
Processo
ARMA
Mix
Mix
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
Mathematical Background: Stochastic Models (6)
Example
Power Spectral Density
10
3
Φ XX(f)
Φ YY(f)
Φ (f)
Φ ZZ(f)
10
10
2
1
0
0.2
0.4
0.6
0.8
1
f/f p
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
24
Mathematical Background: Stochastic Models (7)
Example
Pole zero diagram
0.8
0.6
0.4
Imag
0.2
0
-0.2
-0.4
-0.6
-0.8
-1
-0.5
0
Real
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
0.5
1
25
Mathematical Background: Stochastic Models (8)
Example
Frequency response
10
|G(f)|
10
0.2
0.1
10
10
10
H(f)
A(f)
H(f)*A(f)
0
-0.1
-0.2
0
0.1
0.2
0.3
0.4
0.5
f/f p
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
26
Mathematical Background: Stochastic Models (9)
Example
Impulse response
1
gh(τ)
ga(τ)
gh,a(τ
g(τ)
0.5
0
-0.5
0
2
4
6
8
10
τ
Universidade de Brasília
Laboratório de Processamento de Sinais em Arranjos
27