Marcelo S. de Castro

Transcrição

Marcelo S. de Castro
Engineering School of São Carlos – EESC - USP
PROSPECTIVE STUDY OF A DOUBLE-SENSOR
CAPACITIVE PROBE FOR THE MEASUREMENT OF
IN-SITU VOLUMETRIC FRACTION IN OIL, WATER
AND AIR FLOWS
Marcelo Souza de Castro
Israel F dos Santos Almeida
Prof Dr.
Prof.
Dr Oscar M
M. H
H. Rodriguez
Rodriguez.
O tli
Outline
„
„
„
Introduction;
Setup;
Results;
Static calibration;
… Dynamic measurements;
… Dynamic measurements of volumetric fraction in slug flow;
…
„
„
„
Three-phase conditions;
Conclusion.
R f
References
2
Introduction
„
Measurement of in-situ volumetric fraction with:
… Low
operational cost;
… Reliable response.
„
„
„
„
Non-intrusive techniques;
Capacitive
p
sensors;;
Gas-liquid, liquid-liquid flows;
Gas liquid liquid flow
Gas-liquid-liquid
flow.
3
Setup
„
T
Test
line
li ffor d
dynamic
i tests.
Schematic view of the setup
4
Setup
„
Capacitive sensors.
Configurations of the sensors: parallel plates, rings and helix.
5
Setup
„
Transducer Circuit.
Transducer circuit with bridge of capacitors and sources of tension designed and
assembled at NETeF.
6
Results
„
S i calibration.
Static
lib i
… Setup
p
#1
7
R
Results
lt
Static calibration
calibration.
Helix sensor
nº 2n 2
Sensor
de Hélices
0
100
2
αω =2,577+0,282 C-0,003 C +1,828E-5 C
90
3
80
Fração F
de Água (%)
d
Water
Fraction
(%
%)
„
70
60
50
40
30
20
10
0
0
2
4
6
8
10
12
14
16
18
20
-12
12
Capacitância (F x 10 )
Capacitance
Water fraction as a function of capacitive reading
8
Results
„
Dynamic measurement
… Setup
#2
9
Results
Dynamic measurement
Static X Dynam ic data (H2)
S tatic calibration curve
S tratified Flow
A nnular Flow
B ubbles Flow
1.0
0 8
0.8
Water frac
ction (%)
„
R egretion curve
Regression
curve
of static points
of static points
0.6
0.4
0.2
0.0
0
1
2
3
4
5
Tension (volts)
Comparative graph with diverse air-water flow patterns: helix sensor nº2.
10
Results
Dynamic
y
measurements of volumetric fraction in slug
g flow.
Slug Pistonado
Flow Signal
Sinal
Capacitâ
ância (F)
(F)
Capacita
ance
„
3,0x10
-11
2,5x10
-11
2,0x10
-11
1,5x10
-11
1,0x10
-11
5,0x10
0 10
-12
0,0
0
1600
3200
4800
6400
8000
9600
11200
12800
14400
16000
A
Acquisition
i de
iti Aquisição
Ti i i (ms)
(ã (ms)
Tempo
T
d
A Time
() )
Extracted signal of slug flow with rings sensor nº2.
11
Results
Dynamic
y
measurements of volumetric fraction in slug
g
flow.
Rings Sensor (A2)
100
Quick-Closing-Valves Technique
Proble
90
80
Water frac
W
ction (%)
„
70
60
50
40
30
20
10
0
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
Tension (Volts)
Comparative graph for slug flow pattern using rings sensor nº2.
12
Results
„
Static measurement in three-phase
condition.
 A B C   aw   Van 
 D E F  . a  =  V 

  o   he 
 1 1 1   aa   1 
System of equations.
equations
13
Results
„
Static measurement in three-phase condition.
Water Fraction (%) Air Fraction (%)
Oil Fraction (%)
Rings sensor
capacitance
(pF)
Helix sensor
capacitance
(pF)
20
60
20
7,07998
9,02017
30
50
20
7,35967
9,16232
30
40
30
7,45001
9,26998
30
30
40
7,55078
9,38412
40
20
40
7,82519
9,52667
Fluid fractions in the static three-phase tests.
14
Results
„
Static measurement in three-phase condition.
 9,08943 7,30088 6,34533   aw   Can 
9,93837 9,62187 8,51287  . a  =  C 

  o   he 
 1
1
1   aa   1 
Final model
model.
15
Conclusion
Usage of double-helix and rings sensors
geometries;
„ Flow pattern dependent method;
„ Model for volumetric fraction measurement
i th
in
three-phase
h
flflow.
„
16
References
„
„
„
„
„
„
„
„
„
Almeida, I. F. S. ; Castro, M. S. ; Rrodriguez, O. M. H. . Non-intrusive Capacitive Probe For
Measurement of In-situ Volumetric Fraction in Water-oil and Water-air Flows. In: 18th International
Congress of Mechanical Engineering - COBEM-2005, 2005, Ouro Preto. Proceedings of the COBEM
2005, 2005.
Al id I.
Almeida,
I F.S.
F S (2006),
(2006) P
Prospective
ti St
Study
d off a N
Non-intrusive
i t i D
Double-sensor
bl
C
Capacitive
iti P
Probe
b ffor InI
situ Volumetric Fraction Measurements in Oil-water-air Flows, 2006, 162 p. Dissertation Master’s
Degree, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Paulo, 2006.
Baxter, L.K. (1997), “Capacitive sensors: design and applications”. New York: IEEE.
Chun, M.H. and Sung, C.K. (1986). Parametric effects on the void measurement by capacitance
transducer. International Journal of Multiphase Flow, Oxford, v.12, n.4, p.627-640, July/Aug.
Hammer, E.A.; Tollefsen, J. and Olsvik, K. (1989). Capacitance transducers for non-intrusive
measurement of water in crude oil. Flow Measurement and Instrumentation, New York, v.1, n.1,
p.51-58, Oct.
H
Huang,
S
S.M.
M ett al.
l (1988)
(1988). El
Electronic
t i ttransducer
d
ffor iindustrial
d t i l measurementt off llow value
l
capacitances. Journal of Physics E - scientific instruments, Bristol, v.21, n.3, p.242-250, Mar.
Reis, E. (2003), “Study of pressure drop and phases distribution of the horizontal air–water slug flow
in pipelines with “T” branch arms”. Ph.D.Thesis – University of Campinas, Campinas, 2003.
Reis, E. and Goldstein, L. (2005), “A
A procedure for correcting for the effect of fluid flow temperature
variation on the response of capacitive void fraction meters”. Flow Measurement and
Instrumentation, New York, v.16, n.4, p.267-274, Aug.
Tollefsen, J. and Hammer, E.A. (1998), “Capacitance sensor design for reducing errors in phase
concentration measurements”. Flow Measurement and Instrumentation, New York, v.9, n.1, p.25-32,
Mar
Mar.
17
Acknowledgement
FAPESP
CNPq
Contact!
[email protected]
oscarmhr@sc usp br
[email protected]
Thanks for the
attention!
Questions?

Documentos relacionados

1Q15 Earnings Release Conference Call

1Q15 Earnings Release Conference Call Engineering Transportation  p and Logistics

Leia mais