Finding the Boundary between Eurosiberian and - e-Geo

Transcrição

Finding the Boundary between Eurosiberian and - e-Geo
Journal of Coastal Research
SI 56
1340 - 1344
ICS2009 (Proceedings)
Portugal
ISSN 0749-0258
Finding the Boundary between Eurosiberian and Mediterranean Salt
Marshes
J.C. Costa†, P. Arsénio†, T. Monteiro-Henriques†, C. Neto‡, E. Pereira‡, T. Almeida† and J. Izco∞
† Instituto Superior de Agronomia
Technical University of Lisbon (TULisbon)
Tapada da Ajuda 1300-049 Lisboa, Portugal
jccosta @isa.utl.pt; [email protected];
[email protected]
‡ Department of Geography
University of Lisbon
Alameda da Universidade 1600-214 Lisboa,
Portugal
[email protected]; [email protected]
∞ Departamento de Botánica
University of Santiago de Compostela
Campus de Santiago 15704 Santiago de
Compostela, España
[email protected]
ABSTRACT
COSTA, J.C., ARSÉNIO, P., MONTEIRO-HENRIQUES, T., NETO, C., PEREIRA, E., ALMEIDA T. and IZCO, J., 2009.
Finding the Boundary between Eurosiberian and Mediterranean Salt Marshes. Journal of Coastal Research, SI 56
(Proceedings of the 10th International Coastal Symposium), 1340 – 1344. Lisbon, Portugal, ISSN 0749-0258.
In continental Portugal it is generally recognized that the Ria de Aveiro is the coastal limit between
Mediterranean and Eurosiberian regions. Considering salt marshes flora and vegetation communities, the Tagus
River estuary seems typically Mediterranean, while the Ria de Aveiro lagoon seems typically Eurosiberian,
therefore the boundary between the two regions might be found among the smaller salty areas existing between
the two referred wetlands (namely the Óbidos Lagoon, the Tornada and Mondego rivers). Although tide height is
a sound explanation for the floristic differences between Eurosiberian and Mediterranean saltmarshes, the fact is
that the southwest Portuguese Atlantic salt marshes present Mediterranean climate and flora, despite its greater
tide heights if compared to the Mediterranean Basin. Conversely, Mediterranean climate by its own is not
enough to explain those florisitc differences, as it exits north of Aveiro. We introduced the importance of seasurface temperature in order to detail the boundary between the two regions. Despite climate and hydrologic
regime being Mediterranean between the Tagus and the Ria de Aveiro, the cold Atlantic waters seem to
influence the flora and the vegetation of the present salt marshes. It is proposed to classify as Eurosiberian all salt
marshes north of the Tagus Basin.
ADDITIONAL INDEX WORDS: Biogeography, Flora, Plant communities, Sea-surface Temperature
INTRODUCTION
The frontier between the Mediterranean and the Eurosiberian
regions converge to the Portuguese northwest coastline, where
Eurosiberian and Mediterranean coastal species come across and
migrate between the two regions (IZCO, 1989, 1992). Regarding
salt marshes particularly, it is difficult to establish this limit
sharply, since an evident physical barrier is lacking. Anyway, the
biogeographical coastal terrestrial borderline was established on
the Ria de Aveiro by COSTA et al. (1999). Several taxa contributed
for that separation, as, for instance, Elytrigia juncea subsp. juncea,
Armeria welwitschii, Lotus creticus, Juniperus turbinata,
Stauracanthus genistoides, Daucus halophilus, Limonium
virgatum, L. multiflorum, L. plurisquamatum, which are typical
Mediterranean species that do not appear north of the Ria, or
Honkenya peploidis, Jasione lusitanica, Coincya johnstonii,
Armeria pubigera, Festuca rubra subsp. pruinosa and Romulea
clusiana, which instead are absent below that limit (COSTA, 2001).
A number of syntaxa also helped to locate this frontier, among
which Juniperion turbinatae, Osyrio quadripartitae-Juniperetum
turbinatae, Elytrigietum junceo-boreoatlanticae, Armerio
welwitschii-Crucianelletum
maritimae,
Corynephorion
canescentis, Herniario maritimae-Corynephoretum maritime,
Herniario robustae-Corynepheretum maritimi, Rubio longifoliaeCorematetum albi, Stauracantho genistoidis-Halimietalia
commutati and Stauracantho-Corematetum. These syntaxa are
only encountered south of the Ria, while Euphorbio paraliaeElytrigietum boreoatlanticae, Iberidetum procumbentis, Koelerion
arenariae, Jasiono sabulariae-Corynephoretum maritimi, Cisto
salviifolii-Ulicetum humilis are typical Cantabrian-Atlantic
communities (COSTA et al., 1999; COSTA et al., 2000; NETO et al.,
2008; LOMBA et al., 2008).
Salt marsh physiognomy differs among tropical, mediterranean
and temperate climates. In the tropics, arboreal vegetation
(Raunkiaer phanerophytes) is dominant leading to communities
known as mangroves; in Mediterranean and desert tropical
territories shrubs dominate (vegetation types are essentially
nanophanerophytes, microphanerophytes, accompanied by
chamaephytes and hemicryptophytes); in temperate climates
vegetation is generally short, such as rushlands or halophytic
grasslands (hemicryptophytes dominate, along with a few
chamaephytes) (COSTA, 2001). Halophytic communities only
establish themselves where the coast is protected from the direct
action of waves and maritime currents and if fresh water
influence, sediments deposition and gentle slopes exist, thus
occurring merely in estuaries and quiet bays (CHAPMAN 1960,
RANWELL, 1972). Vegetation plays a fundamental role in the
sedimentation process, on one hand providing vegetal debris,
which is transported by tide flows, on the other hand, holding the
same debris and consequently creating a dense felt which slows
down water and retains suspended sediments (TEIXEIRA and
ALVIM, 1978).
Journal of Coastal Research, Special Issue 56, 2009
1340
Finding the Boundary between Eurosiberian and Mediterranean Salt Marshes
«anova.cca()» were used respectively for Jaccard distance
calculation, constrained correspondence analysis (CCA) and
permutation test; all from «vegan» package (OKSANEN et al.,
2008).
RESULTS AND DISCUSSION
© EuroGeographics for the administrative boundaries
Figure 1. Locations of analyzed salt marshes
We aim to establish the coastal frontier between the
Eurosiberian and the Mediterranean regions, considering the
distribution of salt marshes species and communities.
METHODS
To understand species and syntaxa distribution we mainly used
bibliographic records: the Asón Estuary (HERRERA, 1995), the
Asturian estuaries (BUENO, 1997), the Ria Ortigueira (IZCO and
SÁNCHEZ, 1996), the Minho Estuary (ALVES 2004, HONRADO et
al., 2004), the Ria de Aveiro (PINTO DA SILVA and TELES, 1972;
ALVES, 2004), the Tagus Estuary (COSTA, 1999), the Sado Estuary
(COSTA, 1999), the Ria de Alvor (Costa and Lousã, 1992), the Ria
Formosa (Costa et al., 1996), the Guadiana Estuary (LOUSÃ,
1986), the Guadalquivir Estuary (RIVAS-MARTÍNEZ et al., 1980),
Punta del Sabinar (ALCARAZ et al., 1989), the Mar Menor (IZCO et
al., 1984; RIVAS-MARTÍNEZ et al., 1984; ALCARAZ et al., 1991)
and Santa Pola (IZCO et al., 1984; RIVAS-MARTÍNEZ et al., 1984;
ALCARAZ et al., 1989). For the Lima, Cávado, Mondego, Tornada
and Mira estuaries, as well as the Ria de Aveiro and the Óbidos
Lagoon we used original data. In the halophytic areas of the
Óbidos Lagoon and the Tornada and Mondego estuaries, although
the rivers have a mediterranean regime with summer droughts, its
flora and vegetation seems more similar to the Eurosiberian
regions. In order to explain this difference sea-surface temperature
data was collected. A central coordinate (latitude/longitude) was
found for each salt marsh location (see figure 1). Monthly mean
sea-surface temperatures (1981-1990) were obtained from
SCHWEITZER (1993) for the closest coordinate available. Monthly
minimum sea-surface temperatures (MMT) and the annual mean
sea-surface temperatures (AMT) were calculated, for each
location, based on the sea-surface data.
The biogeographic typology of COSTA et al. (1999) and RIVASMARTÍNEZ (2007) was adopted in this work. For the botanical
nomenclature CASTROVIEJO et al. (1986-2006), FRANCO (1971,
1984), FRANCO and ROCHA AFONSO (1994, 1998, 2003), RIVASMARTÍNEZ et al. (2002) were followed and for phytosociological
data GÉHU and RIVAS-MARTÍNEZ (1981); RIVAS-MARTÍNEZ et al.
(2001, 2002); RIVAS-MARTÍNEZ (2005).
For the statistical analysis R software was used (R
DEVELOPMENT CORE TEAM, 2008). Hierarchical clusters were
obtained using «agnes()» function from «cluster» package
(MAECHLER et al., 2005). On both presented dendrograms,
UPGMA was used as cluster strategy and Jaccard distance as
dissimilarity measure. Functions «vegdist()», «cca()» and
The dendrograms displayed in figures 2 and 3 show the
existence of two strongly segregated groups: the first group is
from the north of the Tagus River and clearly corresponds to the
Eurosiberian Region salt marshes; the second, corresponds to salt
marshes from the Mediterranean Region (including the Tagus
River estuary). Moreover, within the Mediterranean branch two
quite distinct subgroups, whose boundary is thought to be located
next to the Straits of Gibraltar, can be observed. This separation
may be related to the fact that salinization processes in the
Mediterranean Sea are greatly influenced by the saline solution
movements and by the presence of a saline phreatic sheet during
summer time (CORRE, 1978), since tides are practically
insignificant. On the Atlantic coast the main reason for the
existence of halophytic areas is, on the contrary, soil submersion
by seawater due to tides (SÁNCHEZ et al., 1998). Regarding the
southwestern Iberian Peninsula, plant communities’ distribution
has been influenced by both the depth and salt content of the
phreatic sheet and the seawater submersion period (COSTA et al.,
1996), which may explain the original combination of some
Atlantic and Mediterranean plants and communities present on
this area. Also within the Cantabrian-Atlantic Region branch two
slightly different subgroups exist, although not consistently in the
two dendrograms.
The two referred main groups contain several exclusive species,
in fact, Salicornia obscura, Armeria pubigera subsp. depilata, A.
maritima, Baccharis halimifolia, Limonium humile, Puccinellia
fasciculata, Salicornia dolichostachya, Suaeda maritima,
Limonium binervosum, Matricaria maritima, Zostera marina,
Plantago maritima, Festuca rubra subsp. pruinosa, Glaux
maritima, Paspalum vaginatum, Puccinellia maritima, Elymus
pycnanthus, Triglochin maritima, among others, only appear north
of the Tagus River, while Arthrocnemum macrostachyum,
Artemisia gallica, Cistanche phelypaea, Juncus subulatus,
Puccinellia iberica, P. festuciformis, Triglochin bulbosa subsp.
barrelieri, Cymodocea nodosa, Elytrigia elongata, Limoniastrum
monopetalum, Salsola vermiculata, S. soda Beta macrocarpa,
Frankenia boissieri, Limonium diffusum, Cressa cretica,
Frankenia pulverulenta occur only southward. The halophytic
areas between the Ria de Aveiro and the Tagus River host several
Figure 2. Cluster analysis using species data.
Journal of Coastal Research, Special Issue 56, 2009
1341
Costa et al.
Figure 3. Cluster analysis using sintaxa data.
transitional elements: typical Mediterranean elements occur, e.g.
Tamarix africana, Sarcocornia perennis subsp. alpini, Limonium
ferulaceum, Polygonum equisetiforme, Suaeda splendens, while
Eurosiberian species disappear, e.g. Puccinellia maritima, Glaux
maritima, Festuca rubra subsp. pruinosa. However, the
occurrence of Triglochin maritima, Elymus pycnanthus compels
us to include them in the Cantabrian-Atlantic Region, as revealed
by the cluster analyses. Salicornia ramosissima, S. patula,
Sarcocornia perennis, Spartina maritima, Limonium vulgare,
Frankenia laevis are Atlantic species that appear below the Tagus
River but do not occur in the Mediterranean Sea. On the contrary,
Suaeda vera is a Mediterranean element very rare in Eurosiberian
territories. Frankenia corymbosa, Halocnemum strobilaceum,
Limonium eugeniae, L. angustebracteatum, L. insigne, L.
delicatulum, L. caesium, L. cossonianum, L. furfuraceum, L.
santapolense, Puccinellia caespitosa, Suaeda spicata, Tamarix
boveana, T. canariensis, Posidonia oceanica and Lygeum spartum
only occur in the Mediterranean Basin. Aeluropus littoralis and
Ruppia cirrhosa also appear in that area, although they can occur
beyond the Straits of Gibraltar. Aster tripolium, Atriplex prostrata,
Bolboschoenus maritimus var. maritimus, Bolboschoenus
maritimus var. compactus, Carex extensa, Juncus acutus, J.
maritimus, Halimione portulacoides, Sarcocornia fruticosa, Inula
crithmoides, Ruppia maritima and Phragmites australis are
instead examples of salt marsh ubiquitous species.
The analyses of communities distribution coincides with that of
the species distribution: Spergulario-Paspalenion vaginati,
Glauco-Puccinellietalia, Elytrigietalia repentis, only appear north
of the Tagus River, while Arthrocnemion macrostachyi,
Salicornion patulae, Limonietalia, Juncetalia maritimi, Halodulo
wrightii-Thalassietea testudinum, Frankenion pulverulentae,
Pegano-Salsoletea, Stellarietea mediae show up southward. As
for the Atlantic Zosteretea marinae communities, Zosteretum
marinae occur only north of the Ria de Aveiro, whereas
Zosteretum noltii has been encountered as far as Gibraltar.
Differences can also be found in the Phragmitetea class:
Scirpetum compacti, Scirpo compacti-Phragmitetum australis,
Scirpetum compacti-tabernaemontani, Scirpetum pungentis are
observed north of the Tagus River, though Scirpetum compactolittoralis occur south of this river. The two Spartinetea maritimae
communities that occur in the Iberian Peninsula show a slightly
different distribution: Spartinetum maritimae does not reach
Gibraltar and Spartinetum densiflorae can only be found east of
Algarve. The Cantabrian-Atlantic alliance Limonio ovalifolii-
Frankenion laevis has been found south of Galicia for the first
time, with the association Puccinellio tenuifoliae-Limonietum
daveaui, described below in appendix. Sarcocornietea fruticosae
communities dominate from the Tagus River southward, although
Sarcocornienion perennis associations are more frequent in the
Atlantic coast (Puccinellio maritimae-Arthrocnemetum perennis,
Obionetum portulacoidis), with just one community occurring
between the Tagus Estuary and Gibraltar (Puccinellio ibericaeSarcocornietum perennis) and none in the Mediterranean Basin.
Within Sarcocornienion fruticosae, Puccinellio maritimaeSarcocornietum fruticosae only appears in the coast north of the
Mondego River, whereas Cistancho phelypaeae-Sarcocornietum
fruticosae from the Tagus River southward. In this paper is
presented the first Arthrocnemion macrostachyi, Sarcocornienion
alpini association occurring north of Tagus Estuary, Triglochino
maritimae-Sarcocornietum alpini, which is described in the
appendix. The other association of this sub-alliance, Halimiono
portulacoidis-Sarcocornietum alpini has only been observed
southward. As previously referred, Arthrocnemion macrostachyi
communities are typically Mediterranean and distinct associations
exist in the southwestern Peninsula (Inulo crithmoidisArthrocnemetum macrostachyi, Limonio vulgare-Juncetum
subulati) and in the Mediterranean Basin (Frankenio corymbosaeArthrocnemetum
macrostachyi,
Frankenio
corymbosaeHalocnemetum fruticosi). Limonio vulgare-Juncetum subulati is
an original association and is described in the appendix. Cistancho
phelypaeae-Suaedetum verae has only been observed south of the
Tagus River, while Agropyro pycnanthi-Suaedetum verae only in
the Asturian estuaries. Limonietalia communities tend to appear
mainly from Gibraltar eastward, anyway Polygono equisetiformisLimoniastretum monopetali, Limonietum ferulacei occur in the
southeast of the Iberian Peninsula.
The associations belonging to the halophytic alliance Carthamo
arborescentis-Salsolion oppositifoliae of the Pegano-Salsoletea
class are observed exclusively south of the Tagus River, often
appearing east of Gibraltar. The same happens with the microforests of Nerio-Tamaricetea although Polygono equisetiformisTamaricetum africanae also occurs in two halophytic areas north
of that river (Óbidos and Tornada) and extends to the
Mediterranean Sea, while Inulo crithmoidis-Tamaricetum
boveanae is merely observed in this basin, as well as
Posidonietum oceanicae.
For CCA, AMT and MMT were used as constraining variables,
as expected to have direct physiologic influence on species and
because they resulted significant (p<0.001) in permutation test.
The presented plot uses site scores (see figure 4). A gap becomes
evident between the two main groups formed by cluster analysis,
which relates to AMT and MMT higher values in the
Mediterranean sites, strengthening the two groups. CCA plot also
confirms both the originality of Portuguese southwestern marshes
(higher MMT) and the similarity between Portuguese northwest
and Eurosiberian ones, showing that sea-surface temperature is
noteworthy to understand the distribution of salt marshes flora.
CONCLUSION
The halophytic territories of the Ria de Aveiro, the Mondego
and Tornada rivers and the Óbidos Lagoon, though belonging to
the Cantabrian-Atlantic Region, have a few Mediterranean species
performing as a transition area between the two biogeographical
regions. Our results confirm GÉHU and RIVAS-MARTÍNEZ (1983)
suggestion: the authors proposed the Tagus River salt marsh as the
boundary between the Eurosiberian and the Mediterranean
regions, as far as the salt marshes communities are concerned. As
for the Iberian Peninsula, they considered the sub-zone
Journal of Coastal Research, Special Issue 56, 2009
1342
Finding the Boundary between Eurosiberian and Mediterranean Salt Marshes
Figure 4. CCA for species data, AMT and MMT. Total inertia
1.5363; Constrained inertia 0.7110 and proportion 0.4628;
Unconstrained inertia 0.8254 and proportion 0.5372; Eigenvalues
CCA1 0.4338 CCA2 0.2772; Contribution to the mean squared
contingency coefficient CCA1 0.2824 CCA2 0.4628; Accumulated
constrained eigenvalues CCA1 0.6102 CCA2 1.0000.
Cantabrian-Atlantic belonging to the Eurosiberian territory, and
two other sub-zones (Mediterranean-Atlantic and Mediterranean)
separated by the Straits of Gibraltar, although using only
community data, confirming that salt marshes eastward and
westward are distinct.
It is proposed to classify all salt marshes north of Tagus Basin
as Eurosiberian and those southward (including the Tagus ones) as
Mediterranean.
APPENDIX
Triglochino maritimae-Sarcocornietum alpini J.C. Costa, Neto,
Izco ass. nova hoc loco (Sarcocornietea fruticosae,
Sarcocornietalia fruticosae, Arthrocnemion macrostachyi,
Sarcocornienion alpini)
Halophytic community dominated by Sarcocornia perennis
subsp. alpini, Triglochin maritima and Halimione portulacoides
occurring in salt marshes in areas north of the Tagus River, in
sandy-silty zones, occasionally flooded by brackish water, in
mesomediterranean bioclimate and is a geovicariant of Halimiono
portulacoidis-Sarcocornietum alpini, which belongs to the
southeast of the Iberian Peninsula, south of the Tagus Estuary, in
thermomediterranean territories. Differential species are
Triglochin maritima, Puccinellia maritima and Plantago
maritima.
Typus: Barrosa/Lagoa de Óbidos (Caldas da Rainha), 2 m2:
3Sarcocornia perennis subsp. alpini, 2Triglochin maritima,
4Halimione portulacoides.
Puccinellio tenuifoliae-Limonietum daveaui J.C. Costa, Neto &
Portela-Pereira ass. nova hoc loco (Juncetea maritimi, GlaucoPuccinellietalia, Limonio ovalifolii-Frankenio laevis)
Chamaephytic community in sandy-brackish soils, only
occasionally touched by brackish water during equinoctial tides,
although can be flooded by fresh water during winter or
springtime. Limonium daveaui, Limonium ferulaceum, Puccinellia
tenuifolia, Halimione portulacoides, Frankenia laevis are the
most reliable species. It occurs between the Óbidos Lagoon and S.
Martinho do Porto (north of the Tagus River), in
thermomediterranean subhumid bioclimate.
Typus: Rio Tornada (Salir do Porto), 2 m2: 4Limonium daveaui,
3Puccinellia tenuifolia, 2Limonium ferulaceum, 1Frankenia
laevis, 1Halimione portulacoides.
Limonio vulgare-Juncetum subulati J.C. Costa, Neto, T.
Almeida & Lousã ass. nova hoc loco (Sarcocornietea fruticosae,
Sarcocornietalia fruticosae, Arthrocnemion macrostachyi,
Arthrocnemenion macrostachyi)
[Arthrocnemo glauci-Juncetum subulati sensu RIVAS-MARTÍNEZ
et al. (1980, 1990), COSTA et al. (1997) non Arthrocnemo glauciJuncetum subulati Brulo & Funari 1976]
Phytocoenoses dominated by Juncus subulatus, in depression
or abandoned saltpans, flooded for a more or less long period by
brackish water derived from autumn and winter rainfall,
completely dried out during summer. It is found in saline-clayey
soils, with a high sandy fraction, being the Iberian Arthrocnemion
macrostachyi community that bear the longest period of flood. In
its floristic characteristic composition are included: Juncus
subulatus, Halimione portulacoides, Sarcocornia fruticosa,
Limonium vulgare, Juncus maritimus, Aster tripolium,
Arthrocnemum macrostachyum, Sarcocornia alpini, Polygonum
equisetiforme, Limonium ferulaceum, Inula crithmoides, Elytrigia
elongata, Triglochin barrelieri. Limonium vulgare, Limonium
ferulaceum, Frankenia laevis, which are differential species of
this new community distinguishing it from Arthrocnemo glauciJuncetum subulati and Elymo elongati-Juncetum subulati. It
occurs in thermomediterranean dry bioclimate, within the Tagus
and the Guadalquivir.
Typus: Hortas, Rio Tejo (Alcochete), 4 m2: 4Juncus subulatus,
2Halimione portulacoides, 2Limonium ferulaceum, 1Limonium
vulgare, 1Sarcocornia fruticosa, 1Polygonum equisetiforme,
+Juncus maritimus, +Inula crithmoides.
LITERATURE CITED
ALCARAZ, F., DÍAZ, T.E., RIVAS-MARTÍNEZ, S. and SÁNCHEZGÓMEZ, P., 1989. Datos sobre la vegetación del sureste de
España: Provincia biogeografica Murciano-Almeriense. Itinera
Geobotanica 2, 5-133.
ALCARAZ, F., SÁNCHEZ-GÓMEZ, P., DE LA TORRE, A., RÍOS, S. and
ROGEL, J.A., 1991. Datos Sobre la vegetación de Murcia
(España). Barcelona: DM-PPU, 162p.
ALVES, P., 2004. Sobre as comunidades de Cotula coronopifolia L.
do litoral português. Quercetea 4, 151-153.
BUENO, A., 1997. Flora y vegetación de los estuarios Asturianos.
Cuadernos de Medio Ambiente Naturaleza 3. Oviedo: Servicio
Central de Publicaciones del Principado de Asturias, 352p.
CASTROVIEJO, S., LAÍNZ, M., LÓPEZ GONZÁLEZ, G., MONSERRAT,
P., MUÑOZ GARMENDIA, F., PAIVA, J. and VILLAR, L., (ed.).
1986-2007. Flora Iberica. Volumes I-VIII, X, XIV, XV, XVIII,
XXI. Madrid: Real Jardín Botánico de Madrid, CSIC.
CHAPMAN, V.J., 1960. Salt marshes and salt deserts of the world.
London: Leonald Hill Books Lda., 392p.
CORRE, J., 1978. Étude phyto-ecologique des milieux littoraux
salés en Languedoc et Camargue. IV Dinamique de la
vegetation conclusion générales. Vie Milieu 28/29(2c), 291-314.
COSTA, J.C., 1999. Guia das excursões científicas: Estuários do
Tejo e Sado. Livro de resumos e guias de excursões das V
Jornadas de Taxonomia (Lisboa), pp. 87-101.
COSTA, J.C., 2001. Tipos de vegetação e adaptações das plantas do
litoral de Portugal continental. In: MOREIRA, M.E, MOURA, A.,
GRANJA, H. and NORONHA, F. (eds.), Homenagem (in
Journal of Coastal Research, Special Issue 56, 2009
1343
Costa et al.
honorium) Professor Doutor Gaspar Soares de Carvalho.
Braga: Universidade do Minho, pp. 283-299.
COSTA, J.C. and LOUSÃ, M., 1992. Communautés
psammophyliques et halophyliques de “Ria de Alvor".
Colloques Phytosociologiques 17, 119-135.
COSTA; J.C., LOUSÃ, M. and ESPÍRITO SANTO, M.D., 1996.
Vegetação do Parque Natural da Ria Formosa. Studia Botanica
15, 69-157.
COSTA, J.C., AGUIAR, C., CAPELO, J., LOUSÃ, M. and NETO, C.,
1999. Biogeografia de Portugal Continental. Quercetea 0, 5-56
COSTA, J.C., LOUSÃ, M., CAPELO, J, ESPÍRITO SANTO, M.D., IZCO,
J. and ARSÉNIO, P., 2000. The coastal vegetation of the
Portuguese Divisory Sector: dunes, cliffs and low-scrub
communities. Finisterra 69, 69-93.
FRANCO, J.A., 1971. Nova Flora de Portugal (Continente e
Açores). Volume I, Lycopodeaceae-Umbelliferae. Lisboa,
Portugal: Author’s edition, 648p.
FRANCO, J.A., 1984. Nova Flora de Portugal (Continente e
Açores). Volume II., Clethraceae-Compositae. Lisboa, Portugal:
Author’s edition, 660p.
FRANCO, J.A. and ROCHA AFONSO, M.L., 1994. Nova Flora de
Portugal (Continente e Açores). Volume. III (Fasc. 1), Lisboa,
Portugal: Escolar Editora, 181p.
FRANCO, J.A. and ROCHA AFONSO, M.L., 1998. Nova Flora de
Portugal (Continente e Açores). Volume. III (Fasc. 2), Lisboa,
Portugal: Escolar Editora, 283p.
FRANCO, J.A. and ROCHA AFONSO, M.L., 2003. Nova Flora de
Portugal (Continente e Açores). Volume. III (Fasc. 3), Lisboa,
Portugal: Escolar Editora, 198p.
GÉHU, J.-M. and RIVAS-MARTÍNEZ, S., 1981. Notions
fondamentales de phytosociologie. In: DIERSCHKE H. (ed.).
Syntaxonomie. Vaduz: J. Cramer, pp. 5-33.
GEHU, J.-M. and RIVAS-MARTINEZ, S., 1983. Classification of
European salt plant communities. In: DIJKEMA et al. (eds).
Study of European salts marshes and steppes. Conseil de
l´Europe, SN-VS 83(4), 32-40.
HONRADO, J., ALVES, P., NEPOMUCENO, H. and BARRETO CALDAS,
F., 2004. A vegetação do Alto Minho. Quercetea 5, 3-102.
HERRERA, M., 1995. Estudio de la y vegetación y flora vascular de
la cuenca del rio Asón (Cantabria). Guineana 1, 9-435.
IZCO, J., 1989. El rio Miño y camino en la migración de las
plantas. In: El Rio Miño. Ourense; Caixa Ourense, pp. 87-97.
IZCO, J., 1992. Diversidad y originalidad ecológica y florística del
litoral cantabro-atlântico español. Anales Real Academia
Farmacia 58, 483-508.
IZCO, J., FERNÁNDEZ GONZÁLEZ, F. and MOLINA, A. (1984) – El
orden Tamaricetalia Br.-Bl. and O. Bolòs 1957 y su ampliación
con los tarayales hiperhalófilos. Documents Phytosociques 8,
377-392.
IZCO, J. and SÁNCHEZ, J.M., 1996. Los medios halófilos de la Ria
de Ortigueira (A Coruña, España). Vegetación de Dunas y
marismas. Thalassa 12, 63-100.
LOMBA, A., ALVES, P. and HONRADO, J., 2008. Endemic sand-dune
vegetation from Northwest Iberian Peninsula: diversity,
dynamics and significance for bioindication and monitoring of
coastal landscapes. Journal of Coastal Research 24(2B), 113121.
LOUSÃ, M., 1986. Comunidades halofílicas da Reserva de Castro
Marim. Portugal: Universidade Técnica de Lisboa, Ph.D. thesis,
172p.
MAECHLER, M., ROUSSEEUW, P., STRUYF, A. and HUBERT, M.,
2005. Cluster Analysis Basics and Extensions. http://cran.rproject.org/web/packages/cluster/cluster.pdf
(accessed:
November 15, 2008).
NETO, C., COSTA, J.C., HONRADO, J. and CAPELO, J., 2008.
Phytosociological associations and Natura 2000 habitats of
Portuguese coastal sand dunes. Fitosociologia 44(2) Supp.1,
29-35.
OKSANEN, J., KINDT, R., LEGENDRE, P., O'HARA, B., SIMPSON, G.L.,
SOLYMOS, P., STEVENS, M.H.H. and WAGNER, H., 2008. vegan:
Community Ecology Package. R package version 1.15-0.
http://vegan.r-forge.r-project.org/. (accessed: November 15,
2008)
PINTO DA SILVA, A.R. and TELES, A., 1972. Description sommaire
des aires visités. Excursion au Portugal. 29 Mai-7 Juin. Oeiras:
Estação Agronómica Nacional, 65p.
R DEVELOPMENT CORE TEAM, 2008. R: A Language and
Environment for Statistical Computing. R Foundation for
Statistical Computing. Vienna, Austria. ISBN 3-900051-07-0.
http://www.R-project.org (accessed: November 15, 2008)
RANWELL, D.S., 1972. Ecology of salt marshes and dunes.
London: Chapman and Hill, 258p.
RIVAS-MARTÍNEZ, S., 2005. Notions on dynamic-catenal
phytosociology as a basis of landscape science. Plant
Biosystems 139(2), 135-144.
RIVAS-MARTÍNEZ, S., 2007. Mapa de series, geoseries y
geopermaseries de vegetación de España. Parte I. Itinera
Geobotanica 17, 5-436.
RIVAS-MARTÍNEZ, S., ALCARAZ, F., BELMONTE, D., CANTÓ P. and
SÁNCHEZ-MATA, D, 1984. Contribuición al conocimento de la
vegetación de los saladares del sureste de la Peninsula Iberica.
Documents Phytosociologiques 8, 335-342.
RIVAS-MARTÍNEZ, S., COSTA, M. CASTROVIEJO, S. and VALDÉS, E.,
1980. Vegetación de Donaña (Huelva, España). Lazaroa 2, 5190.
RIVAS-MARTÍNEZ, S., DÍAZ. T.E, FERNANDEZ-GONZÁLEZ, F., IZCO,
J., LOIDI, J., LOUSÃ, M. and PENAS, A., 2002. Vascular plant
communities of Spain and Portugal. Addenda to the
Syntaxonomical checklist of 2001. Itinera Geobotanica 15(1,
2), 5-922.
RIVAS-MARTÍNEZ, S., FERNANDEZ-GONZÁLEZ, F., LOIDI, J., LOUSÃ,
M. and PENAS, A., 2001. Syntaxonomical checklist of vascular
plant communities of Spain and Portugal to association level.
Itinera Geobotanica 14(1), 5-341.
SÁNCHEZ, J.M., OTERO, X.L. and IZCO, J., 1998. Relationships
between vegetation and environmental caractheristics in a saltmarsh system on the coast of Northwest Spain. Plant Ecology
136, 1-8.
SCHWEITZER, P.N., 1993. Modern Average Global Sea-Surface
Temperature. U.S. Geological Survey Digital Data Series DDS10. Reston, Virginia: U.S. Geological Survey. http://geonsdi.er.usgs.gov/metadata/digital-data/10/sst.exe,
(accessed:
December 21, 2008)
TEIXEIRA, A. and ALVIM, 1978. Reconhecimento dos sapais da Ria
de Faro. Pedologia 13(1), 69-109.
ACKNOWLEDGEMENTS
We thank Sílvia Benedita Ribeiro, for fruitful hints on statistical
analyses.
Journal of Coastal Research, Special Issue 56, 2009
1344