power system

Transcrição

power system
POWER SYSTEM
Experiencia en el Proyecto Rio Madeira (Brasil),
HVDC ± 600 kV
Felipe Nobre, 14/Oct/2015
© ABB Group
October 19, 2015 | Slide 1
ABB en Brasil y en el mundo
© ABB Group
October 19, 2015 | Slide 2
Líder global em tecnologias de potência e automação
Inovação nos mercados de energia e industria
~150.000
Bi
Faturamento
(2013)
funcionários
1988
Presente
em
+100
U$ 42
países
fusão: Suíça (BBC 1891)
com a Sueca (ASEA 1883)
Como estamos organizados
5 Divisões Globais
ABB no Brasil
Iniciamos no Brasil em 1912, fornecendo os equipamentos
elétricos para o bondinho do Pão de Açúcar
Colaboradores
Volume (Mi USD)
2014
3500
>1000
PS
700
>350
Oficina central en City America São Paulo
Sorocaba
© ABB Group
October 19, 2015 | Slide 5
Guarulhos
ABB no Brasil
Cumbica
Blumenau
Betim
Santos
Rio de Janeiro
Manaus
© ABB Group
October 19, 2015 | Slide 6
ABB y la inovacion
© ABB Group
October 19, 2015 | Slide 7
Moldando o mundo hoje por meio da inovação
Pioneira em tecnologia desde 1883
Os fundadores
Turbina
a gás
1900
1920
Painéis isolados
a gás
Robôs industriais
Sistema de
acionamento
elétrico para
locomotivas
Turbochargers
Turbina a vapor
1930
1940
HVDC
Motor sem redutor
1950
1960
1970
1980
Acionamentos e
inversores de frequência
1990
© ABB
ABBGroup
Group
©
October
19, 2015
| Slide
8
19
de outubro
de 2015
| Slide
8
Sistemas de
controle distribuído
Sistemas de
propulsão elétrica
2000
Ultra-alta tensão
Projetos inovadores e de infraestrutura
Ampliando as fronteiras da tecnologia
Elevador de
mina para a
maior mina de
potássio
Primeira usina
comercial de
energia de ondas
Maior conexão
elétrica
subaquática
Primeira plataforma
conectada à rede
elétrica em terra firme
Mais remota estação
eólica em alto mar ligada
à rede elétrica
Maior usina de
energia solar térmica
da Europa
Maior bateria
Conexão elétrica mais
longa e de maior
capacidade
Maior instalação
de SVC
Maior correia
transportadora
Automação da maior
usina de alumina
O maior moinho com
acionamento sem
redutor (para quebra
de minério)
Maior usina de
dessalinização por
Energia e automação
osmose reversa
Primeira
da maior planta
da água do mar
conexão elétrica
química de celulose
de 600 kV
© ABB
ABBGroup
Group
©
October
19, 2015
| Slide
9
19
de outubro
de 2015
| Slide
9
Maior rede SCADA
Maior conexão elétrica
subterrânea
Subestação no prédio
mais alto do mundo
© ABB Group
19 de outubro de 2015 | Slide 10
HVDC history
History and Introduction
Slide 11 (22)
First commercial HVDC
transmission in 1954
(100 kV, 20 MW)
Cable length: 100 km
Gotland – Swedish mainland
© ABB Group
19 de outubro de 2015 | Slide 12
© ABB Group
19 de outubro de 2015 | Slide 13
© ABB Group
19 de outubro de 2015 | Slide 14
Porque HVDC
© ABB Group
October 19, 2015 | Slide 15
HVDC characteristics
Generator
HVDC transmission system
Load
Slide 16 (22)
Why use HVDC instead of AC?
DC Decreases total cost for long distance power
transmission with overhead lines and/or cables.
DC enables connection between asynchronous AC networks.
Gives fast and accurate control of the power flow.
Total cost DC vs. AC
AC
DC
Investment Costs
Total AC cost
Total DC Cost
Variables
Cost of Land
Cost of Materials
Cost of Labour
Time to Market
Permits
…etc.
DC terminal
Costs
AC Terminal costs
Distance
Critical Distance
Lower losses
Slide 18 (22)
HVDC 2x500 kV
© ABB Group
19 de outubro de 2015 | Slide 19
© ABB Group
19 de outubro de 2015 | Slide 20
© ABB Group
19 de outubro de 2015 | Slide 21
© ABB Group
19 de outubro de 2015 | Slide 22
© ABB Group
19 de outubro de 2015 | Slide 23
© ABB Group
19 de outubro de 2015 | Slide 24
Interconnection of power systems
Slide 25 (22)
Conventional HVAC
Why use HVDC for interconnections?
Exact power flow control
Efficient use of generating capacity
Stability control
No increase of short circuit currents
Less environmental impact
Low losses for long distance
transmissions
Lower investment
HVAC with FACTS
HVDC
DC
Thyristor Function
+ Vthyr -
Current direction
Block high voltage in both directions
Conduct current in forward direction
Turn on when given firing pulse and positive voltage
Turn off when the thyristor current crosses zero
Introdução: tipos básicos de Conversor
HVDC e HVDC Light
© ABB Group
October 19, 2015 | Slide 27
HVDC Control
Line-commutated converters
Power direction:
Power reversal:
1
1
+100 V
~
Rectifier
+100 V
Slide 28 (22)
100 W
0V
+99 V
1A
-99 V
~ ~
Inverter
Inverter
-100 V
1A
~
Rectifier
+99 V
99 W
0V
100 W
99 W
-99 V
-100 V
HVDC Transmission Configurations
Monopole, ground return
12-pulse groups
Monopole, metallic return
12-pulse groups
Bipole
12-pulse groups
12-pulse groups
Capacity up to appr. 3000 MW
Back – to -Back
Monopole, midpoint grounded
Slide 29 (22)
6-pulse groups
6-pulse groups
Capacity up to appr. 1500 MW
Capacity up to appr. 1000 MW
Connection between Converter Stations
can be Overhead Lines or Cables
Single-line diagram for a typical converter station
AC yard
11th
harmonic
filter
Converter
DC yard
Valve hall
Pole line
13th
harmonic
filter
DC filter
Highpass
filter
Slide 30 (22)
Monopolar Converter Station
To ground electrode
or metallic return
Single-line diagram for a typical converter station
AC yard
11th
harmonic
filter
Converter
DC yard
Valve hall
Pole line
13th
harmonic
filter
DC filter
Highpass
filter
Electrode
To electrode
lines lines
Highpass
filter
13th
harmonic
filter
Slide 31 (22)
Pole 1
DC
Filter
Pole 2
Pole line
11th
harmonic
filter
AC bus
Bipolar Converter Station
Experiencia en el Proyecto Rio Madeira,
HVDC ± 600 kV
© ABB Group
October 19, 2015 | Slide 32
Desafios da Transmissão Rio Madeira
Distancia
Potencia
Duas usinas
Geradores
2350 km
6450 MW
88 geradores
72 e 75 MW
Desafios:
•Distancia muito grande.
•Múltiplas geradores de pequena porte.
•Interligação com sistema de 230 kV fraca.
Soluções:
•Eficiência com uso de HVDC em ± 600 kV.
•Uso de “controlabilidade” de HVDC
•Flexibilidade usando de Back-to-Back com CCC
Experiência:
•25 anos de HVDC em ± 600 kV, Furnas/Itaipu
•Garabi 2200 MW Back-to-Back com CCC
© ABB Group
March 2009
Sistema de Transmissão do Rio Madeira
CPV station
BtB 2x400 MW
Lot A
Bipole 1
± 600 kV line
Lot D
Bipole 2
± 600 kV line
Lot G
Bipole 2
3150 MW
Lot F
© ABB Group
March 2009
Bipole 1
3150 MW
Lot C
Razões de uso de HVDC no Brasil.
Porque transmissão de energia elétrica em HVDC?
• Mais eficiente.
• Mais robusto.
• Menos impacto ambiental.
Menor faixa de servidão
2 condutores vs 3
e
Menos linhas
Experiência:
25 anos de HVDC em ± 600 kV, Furnas/Itaipu
Garabi 2200 MW Back-to-Back com CCC
© ABB Group
March 2009
Sistema da transmissão Itaipu (Furnas)
Duas sistemas de 6300 MW
3 EHVAC Lines
765 kVac
About 70% Guyed Vee
Average weight 8500 kg
16 m Phase spacing
Conductor 4xBluejay 564 mm²
35 Insulators
2 HVDC Lines
± 600 kVdc
About 80% Guyed Mast
Average weight 5000 kg
Conductor 4xBittern 644 mm²
32 Insulators 510 mm creep
16 m pole spacing
Operação Comercial em 1984 Ainda hoje a tensão mais alta em HVDC
© ABB Group
March 2009
Sistema da transmissão Itaipu (Furnas)
Foz do Iguaçu Converter Station
© ABB Group
March 2009
Rio Madeira HVDC - Legal set-up
Ministry of Mining & Energy (MME) / ANEEL
30 years BOT agreement
Lot A: Porto Velho Transmissora de Energia S.A.
Lot C: Estação Transmissora de Energia S.A.
Consórcio Integração Norte Brasil Abengoa-Eletronorte-Eletrosul
Customer – Instalaciones Inabensa S.A.
Spain & Abengoa Construção Brasil Ltda.
Two separate EPC contracts Converter Lot A and Lot C
EPC Consortium – Converter Station
SEABB Lead
© ABB Group
Slide 38
PowDoc id
BRABB/PSG
SEABB/PSG
Local Proj. Manag.
Local engineering
Local manuf. Equip.
Local transport
System Design
Imported equipment
Supervision&
commission
Sistema de Transmissão do Rio Madeira
The two Back-to-back blocks are each rated 400 MW, although maximum power
transmission into the 230kV is limited to 600 MW due to the weakness of the system.
In the system studied by EPE and defined as the “Basic Configuration” in the
documents issued by ANEEL for the transmission concession auction [2], the 230 kV
side is strengthened by three 100 Mvar synchronous compensators. ABB offered a
solution using CCC converters for the Back-to-back, the only major deviation from the
suggested Basic Configuration.
© ABB Group
March 2009
Sistema de Conexão Acre – Rondônia :
Back-to-Back com CCC
The two back-to-back blocks are each rated 400 MW, although maximum power transmission
into the 230kV is limited to 600 MW, at least until 2017. To overcome the problems of feeding
into such a weak system, the back-to-back uses Capacitor Commutated Converters (CCC),
improving not only performance related to commutation failures, but also reducing the need
for shunt reactive compensation. Although not strictly necessary from a performance point of
view the 500 kV side of the back-to-back also uses CCC technology. This permits use of
harmonic filters with a relatively low Mvar rating on both sides of these converters.
Sistema de Conexão Acre - Rondônia
Operating modes
The back-to-back has to operate in various
considerably different configurations of the
network:
1.
2.
3.
4.
5.
© ABB Group
March 2009
Feeding weak 230 kV network
synchronous with the Brazilian
network.
As normal operation, but with a
large gas fired thermal unit in
operation locally in Porto Velho.
As normal operation initially, but
separating from the Brazilian
System (Isolated operation).
Start-up in isolated operation (Black
start).
Feeding 500 kV converter bus from
230 kV (Reverse power direction).
Bipolo 1, 3150 MW Rio Madeira Transmissão, Lote C
Porto Velho
Araraquara
Y
Y
Notes:
Includes metallic return, paralleling of bipoles and of lines
Lot C includes Master Control of Back-to-Back and Bipole 2
© ABB Group
March 2009
Sistema de Transmissão do Rio Madeira
LINE 1
BIPOLE 1
POLE 1
POLE 1
MRTB
El Line
NBS
El Line
NBS
NBS
NBS
GRTS
TO POLE 3
POLE 2
POLE 2
NBGS
TO POLE 3
NBGS
LINE 2
LINE 3
TO POLE 4
TO POLE 4
POLE 3
POLE 3
BIPOLE 2
El Line
El Line
POLE 4
POLE 4
LINE 4
PORTO VELHO COLLECTOR
CONVERTER STATION
ARARAQUARA 2
CONVERTER STATION
Conversoras da Transmissão em HVDC
CPV Bipole 1 Valve Hall
Quadrivalvulas
Trafos de três enrolamentos
© ABB Group
March 2009
Bipolo 1, 3150 MW Rio Madeira Transmissão, Lote C
Salas de valvulas:
Two winding trafo
Height: 18 m
Width: 53 m
Depth: 25 m
Three winding trafo
Height: 23 m
Width: 27 m
Depth: 25 m
© ABB Group
March 2009
Bi-valves em Araraquara
Quadri-valves em Porto Velho
Bipolo 1, 3150 MW Rio Madeira Transmissão, Lote C
Estação Araraquara – Rio Madeira ± 600 kV
Junho 2012
© ABB Group
March 2009
HVDC transformers
Largest HVDC transformer
Single phase 3 winding
Power: 621/310,5/310,5 MVA
Connection: Yn/Y/D
Rio Madeira Transmission
Transporte transformadores para Porto Velho, via Manaus
© ABB Group
March 2009
Aneel 007/08 Base
Coletora Porto Velho
Future
Lot LA-CC
Lot LF-CC
© ABB Group
March 2009
Lot LC-CC
Aneel 007/08 ABB BR solution
AC Filters
Lot LF
Coletora Porto Velho
AC Filters
Lot LC
BtB Filters
Future
Lot LA-CC
Lot LF-CC
Lot LC-CC
BtB Filters
No Syn Cons
Rio Madeira HVDC Project
Pictures from Site
Porto Velho Back to Back station
© ABB Group
October 19, 2015 | Slide 51
Rio Madeira HVDC Project
Pictures from Site
ABB Araraquara Converter station (right) and
Two transformers moved into position
© ABB Group
October 19, 2015 | Slide 52
Alstom station in the middle
Rio Madeira Transmissão, Coletora Porto Velho
© ABB Group
March 2009
BtB 1, 400 MW Rio Madeira Transmissão, Lote A
Teste de tipo, Octo-Valvula
CCC, Transformador de três fases, Octo-valvulas ± 50 kV
© ABB Group
March 2009
Rio Madeira HVDC Project
Pictures from Porto Velho Site
Line Fault test
© ABB Group
October 19, 2015 | Slide 55
Razões de aumentar o uso de HVDC no Brasil
Porque usar Elos de Corrente Continua?
1. Menos custo de investimento
2. Distancias longas
3. Perdas menores
4. Interligações assíncronos
5. Flexibilidade pelo controle
6. Limitação de correntes de curto
7. Meio-ambiente
Summario
Mais eficiente
Mais robusto
Menos impacto ambiental
© ABB Group
October 19, 2015 | Slide 56
BRPSGS
Future HVDC Projects – EPE Studies
Belo Monte
N/SE
N/SE and NE/SE Transmission Expansion
Transmission Line:
2,100 km N/SE
1,500 km NE/SE
HPP Tapajós Transmission System
Voltage:
Transmission Line:
Power:
7,500 MW for 2
bipoles
Expected Auction/Award:
2016/2017
Voltage:
1,500 km BP1
2,500 km BP2
± 800 kV DC
Power:
8,000 MW for 2
bipoles
Expected Auction/Award: 2017/2018 BP1
2019/2020 BP2
± 800 kV DC
Felipe Nobre
HVDC Systems and Services, Consulting and PS Services
Email: [email protected]
© ABB Group
October 19, 2015 | Slide 58