Spin-offs da Spin-offs da Física de Partículas - Indico

Transcrição

Spin-offs da Spin-offs da Física de Partículas - Indico
Spin-offs da
SpinFísica de Partículas
Luis Peralta
LIP/FCUL
Ciência fundamental
Contribuições de apresentações de
Adérito Chaves
Gonçalo Borges
João Varela
Mário David
Patrick Sousa
Sónia Rodrigues
etc….
Aplicações práticas
Simulando situações com aplicação clínica
Braquiterapia Mamária
Radiocirurgia ao cérebro
Câmara Gama
Electrónica e
processamento
Display
PMTs
Cristal Cintilador
Colimador
Descrição da Câmara Gama
¾
Siemens E.Cam Dual Head [2]
¾ 2 cabeças de detecção (colimador, Cristal cintilador, Guia de luz, Matriz de PMTs)
¾ Angulação variável (180º, 90º e 70º)
¾ Tipos de aquisição: imagem estática, imagem dinâmica, imagem Tomográfica (SPECT)
[[2] http:
http://www.
//www.medical
medical..siemens
siemens..com
Fantôma
¾
¾
¾
¾
¾
¾
¾
Fantôma da Tiróide:
Fantôma Real
¾
Fantôma Simulado
Acrílico
Nódulos quentes e frios
Distância fonte–
fonte–colimador: 5 cm
Centrado no FOV
Simulação
¾
Medição Experimental
Intensidades
¾Elipsóide#1
38.6
38 6 %
¾Elipsóide#2
54.0 %
¾Nódulo quente#2
7.4%
Principio Físico do PET
positrão +electrão → 2 fotões
β+
Emissão do positrão
Aniquilação
Projecto ClearPEM
Projecto desenvolvido no quadro da colaboração
C
Crystal
t l Cl
Clear C
Collaboration
ll b
ti
@ CERN
Y-axis
(cm
m)
Sensitivity@350 keV (%)
4 cm
off-axis
3 cm
off-axis
2 cm
off-axis
1 cm
off-axis
ff
i
central
slice
X-axis
(cm)
ƒ Consortium PET-Mammography, Portugal
TAGUSPARK – Parque de Ciência e Tecnologia
LIP - Laboratório de Instrumentação e Partículas
Hospital Garcia Orta - Serviço Medicina Nuclear
IBEB - Instituto Biofisica e Engenharia Biomédica
IBILI - Instituto Biomédico de Investigação da Luz e Imagem
INESC - Instituto de Engenharia de Sistemas e Computadores
INEGI - Instituto de Engenharia Mecânica e Gestão Industrial
ƒ CERN,
CERN Geneva
ƒ VUB, Brussels
ClearPEM Sistema de imagem
Exames de mama e axila
‰ Exames de mama com paciente na posição
decubito
‰ Pratos do detector rodam em torno da mama
‰ Pratos
P t podem
d
ser rodados
d d para exame da
d axila
il
PEM Detector Plates
PEM Robotic Device
ClearPEM Detector
ClearPEM Detector:
ƒ Two detection plates
ƒ 192 crystal
y
matrices ((8x4 crystals
y
each))
ƒ Front-back APD readout for DoI measurement
Plate surface 14x16 cm2
ƒ 6300 LYSO:Ce crystals
ƒ Avalanche photodiodes
ƒ Low noise electronics
Optical simulation
ClearPEM detector model
Detector Modules
LYSO:Ce Crystals
2 x 2 x 20 mm3
LYSO/BaSO4 Matrix
Simulação completa do sistema
ƒ Simulações Monte Carlo com
GEANT4.
ƒ Fantoma NCAT.
ƒ “Uptake” standard de uma
injecção de 370 MBq.
ƒ Concentração de 2.1 kBq/cc
nos tecidos moles.
ƒ Geometria detalhada do
detector.
ƒ Inclui simulação do trigger e
sistema de aquisição de dados.
ClearPEM Simulation Framework
Imagens Reconstruidas da lesão
Actividade do fundo : actividade da lesão
Actividade do fundo : actividade da lesão
1:10
1:5
1:13
1:4
1:10
1:5
1:4
10 mm Ø lesion
7 mm Ø lesion
1:13
Actividade do fundo : actividade da lesão
1:10
1:5
1:4
1:13
1:10
1:5
1:4
5 mm Ø lesion
mm Ø lesionn
3m
1:13
Actividade do fundo : actividade da lesão
Boa visibilidade
Fraca visibilidade
Não visivel
(5 min aquisição total)
Data Acquisition Requirements
Coincidence digital trigger:
ƒ Digital algorithms (time and energy)
ƒ Time resolution ~ 1 ns
ƒ Good
G
efficiency
ff
for
f multi-hit (Compton)
(C
) events
Fast Data Acquisition:
ƒ Data acquisition system able to cope with a single photon
background rate of the order of 10 MHz
ƒ The data acquisition efficiency larger than 90%.
ƒ Pipeline structures for minimum dead time
Arquitectura do sistema de electrónica
On-Detector
Frontend Boards
Ampli
AnalogMux
192:2
ADC
100 MHz
10 bit
Off-Detector
DAE crate
600 MHz
Serializer
Digital trigger
Data reduction
Data readout
PC
Service Boards
Frontend Boards
ƒ Amplifier/ Multiplexer ASIC:
ƒ Sampling ADC (100 MHz)
ƒ Links LVDS
Service Boards
ƒ APD Bias Voltage regulation
ƒ T, P monitoring
ƒ Power distribution
Data Acquisition Electronics
ƒ Crate 6U
ƒ 4 DAQ boards
ƒ 1 Trigger/DCC board
ƒ FPGAs 4 M gates
Frontend ASIC
Frontend ASIC Specifications:
Technology AMS 0.35 μm CMOS
Input:
192 channels
N i
Noise:
ENC ~ 1000 ePower per chip :
<2
mW/channel
Clock frequency :
100 MHz
Shaping:
Peaking time
40 ns
Analog memories:
10 samples
Output multiplexing:
2 highest
channels ASIC V1 Layout
ASIC V1:
memory
ƒ sampled-data memory,
multiplexers, control logic
OK
ƒ input amplifier with unstable
bias levels
Layout of Test ASIC V2
16000 μm
8 channels
h
l + switches
it h + control
t l logic
l i + self-test
lf t t
multiplexers + buffers
Area – 9.44 mm2
4
channels
Control
Logic
5900 μm
4 channels
Integração da Electrónica de Frontend
Compact system inside the PEM Detector Head:
ASIC
ASIC
OA
OA
OA
OA
OA
ADC
ADC
AD
OA
FEServ HV
OA
LVDS
OA
LVDS
FE Serv LV
ADC
ASIC
FE Serv LV
Detector
Supermodule
ASIC
Frontend
Board
FEServ HV
DAQ CONN
ADC
C
6000 APD channels
400 HV lines
160 high speed (600 MHz) output lines
High frequency clock (100 MHz)
DAQ CONN
ƒ
ƒ
ƒ
ƒ
Data Acquisition System
DAQ module:
- pipeline data storage
- hit energy and time
calculation
Trigger module:
- performs
f
coincidence
i id
ttrigger
i
- random triggers
- singles trigger
Filter Module:
- rejects out-of-time data
j
high
g multiplicity
p y events
- rejects
DCC module:
- collects relevant data
- data transfer to PC
Trigger and Data Acquisition Boards
DAQ Board
B d
Processing
Control
Deserializers
DAQ Board tested successfully
TRG/DCC Board is under test
Control
TRG/DCC Board
Processing
PCI Interface
Detector Heads
Detector heads
Patch Panel
Water distribution
block
Collision
C
lli i d
detection
t ti
switches
Adapter for
source mounting
Cable
carrier
Electromechanical
safety
f t switch
it h
Robot
Robot
Protótipo na fase de montagem
Robot
O PEM na imprensa: Correio da Manhã
O PEM na imprensa: Expresso
O PEM na televisão
O Detector ISPA
Background motivation
ISPA group att CERN
(Imaging Silicon Pixel Array)
High-energy semiconductor
particle tracking detectors
Low spatial resolution
((typically
yp
y 3 to 8 mm))
Technology transfer
Planar Imaging
SPECT
PET
Compact, handheld and high resolution
gamma camera system
Anger gamma camera
Low-energy
imaging applications
Nuclear Medicine
Operation principle
Photocathode
Silicon pixel detector
Collimator
El t t ti shield
Electrostatic
hi ld
-20 kV
0V
Electrostatic tube
C t l scintillator
Crystal
i till t
Not to Scale
Operation principle
-20 kV
0V
Not to Scale
Operation principle
-20 kV
0V
Operation principle
Analog information
Valid 2D hit maps
0V
Digital information
Operation principle
Analog information
8 mm x 6.4 mm
0V
Digital information
3 holes of 1 mm
separated by 2 mm
Technical implementations and results
ISPA-tube COLLIMATOR
Type
Parallel-hole (rippled foils)
Material Tungsten W
Area
9 mm x 10 mm
Length 26 mm
Septa
0.06 mm
Equivalent hole diameter 0.6
0 6 mm
GEANT 3 simulations (122 keV point source @ 1 cm)
Collimator length [cm]
Sensitivity
[normalized for 1 cm]
FWHM
[mm]
Energy Resolution [%]
1.0
1
1.050 ± 0.026
16.5 ± 1.4
2.0
0.16
0.676 ± 0.040
16.5 ± 3.4
2.6
0.10
0.585 ± 0.047
16.5 ± 4.4
5.0
0.09
0.495 ± 0.063
16.6 ± 7.1
ISPA-tube COLLIMATOR
Results
Good collimator for high resolution applications where the low sensitivity can be
compensated by increasing the acquisition time or the radioisotope activity concentration
Technical implementations and results
ISPA-tube CRYSTAL SCINTILLATOR
Material
YAP:Ce (Yttrium-Aluminiun Perovskite doped with Cerium)
Size
31 mm diameter
Thickness 2 mm
Light yield 10 ph/keV
Decay time 27 ns
Wavelength of maximum emission 370 nm
Ab
Absorption
i efficiency
ffi i
89% @ 60 kkeV
V
Al 95% reflectivity
Final evaluation
60 keV point source
S t A (without
Setup
( ith t collimator)
lli t )
S t B (with
Setup
( ith collimator)
lli t )
Final evaluation
6.4
4 mm
Images of a 60 keV γ-source through a 2-holes (0.35 mm ∅) lead collimator
8 mm
8 mm
Setup A (without collimator)
Setup B (with collimator)
Results
The intrinsic resolution of the ISPA-tube
ISPA tube has been estimated to be ~0.2
~0 2 mm
The extrinsic (with the tungsten collimator) has been estimated to be ~0.7 mm
The energy resolution of the ISPA-tube has been estimated to be 23% FWHM at 60keV
Final evaluation
SPECT camera
140 keV point source
ISPA-tube
122 keV point source
Final evaluation
After a normalization of both test condition setups
(time-activity concentration and energy sensitivity)
SPECT camera
14000 counts
FWHM ~4.3
4 3 mm
ISPA-tube
ISPA
tube
5 minutes
equivalent
i l t
2800 counts
FWHM ~0.6
0 6 mm
The timing RPC detector techonology
-HV
Particle
E
Resistive
material,
glass
Main features
• Timing resolution ~ 50 ps σ.
• Efficiency 75% for a 300 μm gap
• No energy resolution.
• Possibility to measure the position.
Sensitive
Area
Conductive
material,
Aluminum
MIPS
Gas
gap
Precise
gas gap
with few
100 μm
Th converter-plate
The
t
l t
principle
Use the electrode plates as a γ converter, taking
advantage of the natural layered construction of the
RPCs.
Stacked
RPC
RPCs
e+
e
-
..........
e
e
-
-
e-
Time resolution for 511 keV photons:
(our routine lab
lab-test
test tool)
90 ps σ for 1 photon
300 ps FWHM for the photon pair
Very small gas gap
to minimize
intrinsic internal error
A previous work on PET with gaseous detectors
(21 lead plates + 20 MWPCs = 7% efficiency)
“The
The Rutherford Appleton Laboratory´s
Laboratory s Mark I Multiwire
Proportional Counter Positron Camera”
J.E. Bateman et al. NIM 225 (1984) 209-231
[Blanco 2002
2]
The basic idea for RPC-based TOF-PET
Comparison with the standard PET technology
Disadvantages
Certainly a much smaller efficiency: 20 to 50% as compared to 70 to 80%.
No energy resolution,
resolution but there is an equivalent energy sensitivity
sensitivity... more later.
later
Possible specialized
PET applications
Advantages
Ad
antages
Increasing system sensitivity
Inexpensive ⇒ large areas possible ⇒ large solid angle coverage
Excelent timing ⇒ TOF-PET possible+optimum randoms rejection
Increasing position accuracy
Gaseous detectors routinely deliver 0.1 mm resolution
Full 3D localization possible ⇒ no gross parallax error
The very
y small gap
g p minimizes intrinsic errors
Whole-body
Human PET
1 mm
Simulation:
Other
0.51mm FWHM
Compatible with the magnetic field ⇒ PET
PET-MRI
MRI possible
Small
Animal
PET
Small animal PET - a first prototype
Aimed at verifying the concept and
show the viability of a
sub-millimetric
b illi t i spatial
ti l resolution.
l ti
Charge-sensitive
g
electronics allowingg
interstrip position interpolation
32
strips
.......
16 stacked RPCs
C
Depth of
interaction
Z
X
Transaxial
2D measurement of the photon
interaction point
16
plates
.......
System
y
Standard PET
Whole-body FOV PET
2m
15 cm
Made with crystal “blocks” 5x5 cm
SIEMENS
Comercial value=1.5M€
Extremely expensive if based on crystals
⇒ RPC-PET
[D
D.B.Croseetto 2000 IEEE NS
SS]
Full-body human PET

Documentos relacionados

Soviet Poster Art Pet Bandana – Art Dog Bandana – Poster Pet Scarf

Soviet Poster Art Pet Bandana – Art Dog Bandana – Poster Pet Scarf https://wishcapital.shop/soviet-poster-art-pet-bandana-art-dog-bandana-poster-pet-scarf/ Do you want your pet to be the coolest one on your block? Let them rock in Art Pet Bandana! When you are dressing for a party or picnic, let your dog have the same vibes in fabulous clothes. Whether you are going to attend a party or just casually taking a stroll around the neighborhood, your pet will surely make every person stop for a minute and appreciate them. Soviet Poster Art Pet Bandana

Leia mais