Modelling the Formation of Planets

Transcrição

Modelling the Formation of Planets
Modelling the Formation of Planets
Wilhelm Kley
Institut für Astronomie & Astrophysik
Abtlg. Computational Physics
20. Mai, 2010
W. Kley
Planet Formation
Organisation
• Context
- Solar and extrasolar Planets
- Planet Formation
• Accretion Disks
• Planet-Disk Modelling
- Numerics
- Results
• Summary/Outlook
(A. Crida)
W. Kley
Stuttgart: 20. Mai, 2010
1
Solar System
The Planets
Sun
Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus
Neptun
(Pluto)
W. Kley
Stuttgart: 20. Mai, 2010
2
Solar System
Summary
8 Planets: Mercury to Neptune
3 Dwarf Planets: Ceres, Pluto, Eris, Makemake, Haumea
Minor bodies: TNO, asteroids, comets
Tiny bodies: meteorites, dust
•
•
•
•
•
•
•
coplanar, circular, uniform orbits
prograde rotation (with exceptions)
99% of mass in Sun
99% of angular momentum in planets
Age: about 4.5 billion years
Solid and gaseous planets
Titius-Bode rule
W. Kley
Stuttgart: 20. Mai, 2010
3
Exoplanets
Main Characteristics
Planets orbiting other solar-like stars
• Total detected: ≈ 450 (May 2010)
(by RV method, Transits,
direct imaging, microlensing)
• Transiting Planets: ≈ 80
• Systems with 2 or more planets: ≈ 40
• Planetary Systems in Binaries: 50
• Planetary Systems in
Mean Motion Resonance: 8
• Fraction of stars with planets: ≈ 15%
List: http://exoplanet.eu/
W. Kley
Stuttgart: 20. Mai, 2010
Source:
http://www.oklo.org/
(by Greg Laughlin)
4
Exoplanets
First Object: 51 Peg
K = 55 m/s
P = 4.23 days
e = 0.00
M = 0.45 MJup/ sin i
(Mayor & Queloz, 1995)
Kepler III: Amplitude (K), Period (P ) and Stellar mass (M∗)
⇒ planet mass (Mp) & distance (a)
Sinusoidal radial velocity curve ⇒ circular orbit
W. Kley
Stuttgart: 20. Mai, 2010
5
Exoplanets
Direct Imaging (Nov. 2008)
17. brighest star, 25 Light yrs, Age: 200 Mio. yrs, Debris disk
W. Kley
Stuttgart: 20. Mai, 2010
6
Exoplanets
Direct Imaging II
Star:
Fomalhaut: (Mag: 1.16)
2.59MSun
Planet:
Distance 115 AU
Orbit 900 Yrs
Mp ≈ 3MJup
at inner edge of
Debris Ring
W. Kley
Stuttgart: 20. Mai, 2010
7
Exoplanets
Mass vs Distance
Sonnensystem
Hot Jupiters
at small distances
M sin i [MJup]
10
MEarth =
aM ercury
(Data: exoplanet.eu)
1
.1
W. Kley
1
MJup
300
= 0.4AU
.1
1
Abstand [AE]
Stuttgart: 20. Mai, 2010
10
8
Exoplanets
.8
Eccentricity Distribution
Sonnensystem
Extrasolar
OGLE
Exzentrizität
.6
Large eccentricity spread
- similar to binary stars
.4
Gravitational scattering
(Data: exoplanet.eu)
.2
0
W. Kley
.1
1
Abstand (AE)
Stuttgart: 20. Mai, 2010
10
9
Planet Formation
Grand Picture
Planets form in protoplanetary disks ≡ Accretion Disks
W. Kley
Stuttgart: 20. Mai, 2010
10
Accretion disk
Overview
Circumstellar disk around young stars
(angular momentum conservation)
Matter spirals inwards & angular momentum outwards
Require: Turbulent Transport
Interaction with magnetic field of star
Stellar activity → ionisation of disk ?
W. Kley
Stuttgart: 20. Mai, 2010
11
Accretion disk
Magnetized Disks
For a Keplerian Disk:
ΩK (r) =
GM
r3
1/2
Stability Criterion for Purely Hydrodynamic Disks (Rayleigh)
dL
> 0,
dr
(LK = ΩK r2 ∝ r1/2)
−→ stable
Stability Criterion for magnetized Disks (Chrandrasekhar, et al.)
dΩ
> 0,
dr
(ΩK ∝ r−3/2)
−→ unstable
Magneto-Rotational-Instability - MRI
(Balbus & Hawley, 1993)
W. Kley
Stuttgart: 20. Mai, 2010
12
Accretion disk
MRI-Principle
Lower Orbit:
Larger Ω, smaller L
Spring: Transferral of
Angular Momentum
from lower to higher orbit
=⇒ Instability
Study the MRI in accretion disks numerically (saturation)
Calculate transport coefficients for angular momentum
W. Kley
Stuttgart: 20. Mai, 2010
13
Accretion disk
∂%
+ ∇ · (%v)
∂t
∂(%v)
+ ∇ · (%vv)
∂t
∂e
+ ∇ · (ev)
∂t
∂B
− ∇ × (v × B)
∂t
∇·B
Equation of state
Ideal RMHD-Equations
= 0
= −∇p − ρ∇Ψ
= −p∇ · v
1
+ (∇ × B) × B
4π
+(Q : ∇)v
+∇ · Q
−∇ · F
= 0
= 0
p = (γ − 1)e
Ideal Hydrodynamics & Viscosity (Q) ⇒ Viscous Disks
Magnetic Terms (B)
⇒ Magnetic disks
radiative Diffusion (F)
W. Kley
Stuttgart: 20. Mai, 2010
14
Accretion disk
The local Shearing Box
Effect of Keplerian shear flow
Numerical implementation
Small section of accretion disk in equatorial plane (scale free)
Easy: Periodic boundaries in y ≡ ϕ and z
Tricky: shearperiodic in x ≡ r (conservation properties)
W. Kley
Stuttgart: 20. Mai, 2010
15
Accretion disk
No vertical stratification
Shearing box with dimension: x = 1.0 x y = 4.0 x z = 1.0
Numerical resolution 64x128x64
~
No vertical gravity, vertical B-field,
plasma-β=400 (Pgas/Pmag )
Animation of magnetic field: y −z slice, covers 16 Orbital periods
Initial random perturbation of velocity and temperature
(M. Flaig)
W. Kley
Stuttgart: 20. Mai, 2010
16
Accretion disk
vertically stratified disks
3D Magneto-hydrodynamical Turbulence with Radiation Transport
in Accretion disks, stratified Local Shearing Box, Movie: 6 Orbits
Finite Volume Methode (Grid-Resolution 64×128×512)
Resources on hpc-bw (BW-GRID):
* 128 Cores
* 5 MB Memory per Core
* 100 GB Storage sapce
* 125.000 CPU hours
* Runtime: 40 days
(M. Flaig)
W. Kley
Stuttgart: 20. Mai, 2010
17
Turbulent state
Accretion disk
Here non-zero vertical magnetic field, Bz
Magnetic field strength
(Emag /p0 vs. Time)
α = hTT + TM i/p0
TR = ρδvr δvφ
TM = −δBr δBφ
W. Kley
Angular momentum transport
(α vs. Time)
(∝ Trφ efficiency of angular momentum transport)
(Reynolds Stress)
(Magnetic Stress)
Stuttgart: 20. Mai, 2010
18
Planet Formation
Two main scenarios
Gravitational-Instability (top-down)
Sequential Accretion (bottom-up)
(L. Mayer)
(NASA, U2)
Density-Fluctuations grow
Fast Formation (103 years)
Require: Fast Cooling
large disk mass
From small to large particles
Slow Formation (106 Years)
Need: High Sticking probability
(small timescales, distant planets)
W. Kley
(Comets, asteroids, solid planets,
cores of planets)
Stuttgart: 20. Mai, 2010
19
Planet Formation
I. Gravitational-Instability
Consider local density perturbation in disk
Analytical
Numerical
Stability-Criterion (Toomre)
Evolution of an isothermal Disk
• Finite-Difference Hydrodynamics
• Viscous Disk
csκ0
>1
Q≡
πGΣ0
with
cs = sound velocity
κ0 = Epicyclic-Frequency (ΩK )
Σ0 = surface density
• Pressure & Rotation stabilize
• Density destabilizes
(Tobias Müller)
Disk heats up upon compression, need fast cooling
Require: coolingtime ≈ period
Only in large distances from star
W. Kley
⇒
fast formation
(for ca. 30-50 AU, no cores)
Stuttgart: 20. Mai, 2010
20
Particle dynamics in disk
Planet Formation
( Jürgen Blum (Braunschweig))
Particles have relative velocity with respect to the gas ⇒ Forces
Problem I: Fast radial drift towards star (for 1m Size: 1 AU / 100 Years)
Problem II: Destructive Collisions
W. Kley
Stuttgart: 20. Mai, 2010
21
Planet Formation
Planetesimals I
Growth of planetesimals by collisions/accretion
SPH (Smoothed-Particle-Hydrodynamics)
Here: elastic-plastic strength model, formation and evolution of cracks
2 Basalt Spheres: ρ = 3g/cm3, R1=9m, R2=7.5m, Vrel=25m/s
∆ t = 30ms, tmax = 4.5 sec
(Christoph Schäfer, PHD-Thesis, Univ. of Tübingen 2005)
W. Kley
Stuttgart: 20. Mai, 2010
22
Planet Formation
Planetesimals II
Solution: study porous particles
Particle method Smoothed Particle Hydrodynamics (250,000 Particles)
Calibration with real experiments (TU Braunschweig)
Fragmentation (Test-Case)
Vrel = 10m/s
(R. Geretshauser)
Vrel = 1m/s
Computer time on hpc-bw: 1-3 days on 24-32 cores (240k-480k Particles)
=⇒ DFG-Forschergruppe: The Formation of Planets (2007-2012)
W. Kley
Stuttgart: 20. Mai, 2010
23
Migration
Planet Formation
Evolution of planet in Disk
(here viscous disk
parametrization by α )
Require:
Torques
(disk pulls on planet)
=⇒ Migration
=⇒ motion in disk
Accretion
(planet attracts material)
=⇒ Mass growth rate
On the right:
Saturn mass planet in disk
- Spiral arms
- Gap formation
(A. Crida)
W. Kley
Stuttgart: 20. Mai, 2010
24
Modelling
A test project
Actors
Star (1 M), Disk (0.01 M), Planet (Mp = MJup)
Disk: Hydrodynamical Evolution
20
- In potential of Star & Planet
- 2D (r, ϕ or x − y)
- rmin = 2.08, rmax = 10.4 AU
- locally isothermal: T ∝ r−1
- const. viscosity: ν = const.
Planet: At 5.2 AU
- here on fixed orbit
- point mass (smoothed potential)
Compare 17 Codes in
De Val-Borro & 22 Co-authors, MN
(2006)
(Grid-Sample: 128x128)
10
0
-10
-20
-20
-10
0
10
20
EU comparison project: http://www.astro.su.se/groups/planets/comparison/
W. Kley
Stuttgart: 20. Mai, 2010
25
Modelling
Equations-2D: Conservative
Mass Conservation
∂Σ
+ ∇ · (Σu) = 0
∂t
u = (ur , uϕ) = (v, rω)
Radial Momentum
∂p
∂Φ
∂(Σv)
2
+ ∇ · (Σvu) = Σ r(ω + Ω) −
−Σ
+ fr
∂t
∂r
∂r
Angular Momentum
∂Φ
∂[Σr2(ω + Ω)]
∂p
2
+ ∇ · [Σr (ω + Ω)u] = −
−Σ
+ fϕ
∂t
∂ϕ
∂ϕ
Energy
H/r = const. =⇒ T ∝ 1/r
W. Kley
Stuttgart: 20. Mai, 2010
p = Σ T /µ
26
Modelling
Typical Result
Viscous disk: Mp = 1 MJup, ap = 5.2 AU (WK, 2002)
W. Kley
Stuttgart: 20. Mai, 2010
27
Modelling
EU comparison: Results
Types: solid - Upwind, HighOrder, short-dashed - Riemann,
long-dashed SPH;
(Cyl. vs. Cartesian)
W. Kley
Stuttgart: 20. Mai, 2010
28
Modelling
Coriolis Terms I
Angular Momentum Equation
Conserved (as before)
∂[Σr2(ω + Ω)]
+ ∇ · [Σr2(ω + Ω)u] =
∂t
∂p
∂Φ
−
−Σ
+ fϕ
∂ϕ
∂ϕ
Not-Conserved (Explicit)
∂[Σr2ω]
+ ∇ · [Σr2ωu] = −2 Σ vΩ r
∂t
∂p
∂Φ
−
−Σ
+ fϕ
∂ϕ
∂ϕ
W. Kley
Stuttgart: 20. Mai, 2010
29
Modelling
Coriolis Terms II
Conservative
Non-Conservative
Conservative results: identical to inertial frame
=⇒ If rotating frame: Use conservative formulation
W. Kley
Stuttgart: 20. Mai, 2010
30
Modelling
FARGO - Basics
A fast eulerian transport algorithm for differentially rotating disks
(Masset, Astronomy & Astrophysics 2000) Code-page: http://fargo.in2p3.fr/
The problem:
- Cylindrical coord. system
- explicit code
→ Courant condition:
∆ϕ
∆t <
ω
with ω ∝ r−3/2 → ∆t ∝ r3/2
The solution:
Calculate average velocity ω̄i
of ring i, and perform Shift with
ni = Nint(ω̄i∆t/∆ϕ)
Transport on with remaining velocity
=⇒ much larger ∆t
Take care: no ring separation
W. Kley
Stuttgart: 20. Mai, 2010
31
Modelling
FARGO - Results
Azimuthally averaged surface density
1.4
Fargo vs. Standard
inertial vs. rotating
1.2
Jupiter mass planet
after 25 Orbits
Used Timesteps
– 51000
– 39000
– 5800
– 5800
Σ
1
t=25 orbits
r−phi (128x384)
inertial, std.
rotating, std.
inertial, Fargo
rotating, Fargo
.8
.6
.5
W. Kley
1
1.5
r
2
Stuttgart: 20. Mai, 2010
=⇒ Identical results !
=⇒ Huge Savings !
larger savings for
log-grid
2.5
http://fargo.in2p3.fr/
32
Modelling
The Grid
Azimuthally averaged surface density
1.4
Cartesian vs. Cylindrical
(inertial frame)
Jupiter mass planet
after 25 Orbits
1.2
Models
– Cyl.: 128×384
– Cart.: 320×320
– Cart.: 640×640
Σ
1
.8
t=25 orbits
q01, cyl, std
q04, cart, 320
q05, cart, double
.6
.5
W. Kley
1
1.5
r
2
Stuttgart: 20. Mai, 2010
=⇒ Cartesian problematic !
– no operator-splitting
– 2nd order RK-integrator
[only PENCIL code reasonable
(HiOrder)]
2.5
33
Modelling
Nested Grid I
Nested-Grid System: Centered on Planet - corotating frame
(D’Angelo et al. 2002/03)
l=1
l=3
W. Kley
l=2
Stuttgart: 20. Mai, 2010
34
Modelling
Nested Grid II 1 MJ
(here 2D, ϕ − r plots)
(D’Angelo et al., 2002, PhD Thesis Tübingen, 2004)
W. Kley
Stuttgart: 20. Mai, 2010
35
Torque calculation
Modelling
Sum over all grid-cells,
P
Tz =
cells (xp Fy
Which parts belong to planet ?
− ypFx)
Migration of Saturn mass planet
Mp = 3.10-4M* ; Nr = 460 ; Ns = 1572
SEMI - MAJOR - AXIS
1
Use Truncation Radius
Rtrunc ≈ 0.5 − 1.0 Rroche
Smooth tapering-function fb
fb(s)
1
b=0.2
0.5
b=0.4
b=0.6
0.95
0.9
0.85
Method :
(A)
(B) b = 1.
(B) b = 0.9
(B) b = 0.8
(B) b = 0.7
(B) b = 0.6
(B) b = 0.5
(B) b = 0.4
(B) b = 0.3
(B) b=0. <=> none
0.8
300
b=0.8
b = 1.
305
310
315
TIME [orbit]
320
325
(A. Crida)
0
0
W. Kley
0.2
0.4
0.6
0.8
s / rHill
1
1.2
1.4
– (A) fully self-gravitating
=⇒ need b ≈ 0.5 − 0.6
Stuttgart: 20. Mai, 2010
36
Disk physics
Planet Formation
∂Σcv T
+ ∇ · (Σcv T u) = −p∇ · u +D − Q −2H∇ · F~
∂t
4
Adiabatic: Pressure Work, Viscous heating (D), radiative cooling (Q) (∝ Tef
f)
radiative Diffusion: in disk plane (realistic opacities)
4e-05
local cool/heat
Specific Torque [(a2 Ω2)Jup]
3e-05
2e-05
fully radiative
Mp = 20Mearth
(Kley&Crida ’08)
1e-05
0
adiabatic
-1e-05
Disk Physics determines
Direction of motion
-2e-05
isothermal
-3e-05
-4e-05
0
100
200
300
Time [Orbits]
W. Kley
Stuttgart: 20. Mai, 2010
37
Planet Formation
Migration (Type I)
Isothermal and radiative Models: Migration inward or outward possible
Vary Mp
(Kley&Crida ’08)
W. Kley
Stuttgart: 20. Mai, 2010
38
Planet Formation
Summary/Outlook
New properties of extrasolar Planets
• High Masses
• Large eccentricities
• Close distances
Planet-disk simulations
• Coord. System
• Angular momentum conservation
• FARGO-Accelaration
• Grid-Refinement
• Thermodynamics
Accurate accretion & migration history of planets requires
• Full 3D simulations
• High resolution (locally)
• Radiation transport
• Self-Gravity
• Magnetic Fields
W. Kley
Stuttgart: 20. Mai, 2010
39
Planet Formation
The End
Thank you for your attention !
(A. Crida)
W. Kley
Stuttgart: 20. Mai, 2010
40

Documentos relacionados