GiESCO 2013 - Archivo Digital UPM

Transcrição

GiESCO 2013 - Archivo Digital UPM
APOIOS E PATROCÍNIOS / PATRONAGE AND SPONSORSHIP / PATRONAGES, SUPPORTS ET SPONSORS
SAPEC AGRO PORTUGAL | CARMO | BAYER CROPSCIENCE | SIPCAM PORTUGAL
CIÊNCIA E TÉCNICA VITIVINÍCOLA
Journal of Viticulture and Enology
(Revista Semestral / Six monthly review)
Director: EIRAS DIAS (J.E.)
Comissão de Redacção/Journal Staff: SILVESTRE (J.), Coordenador; CANAS (S.)
Conselho de Leitura / Editorial Review Board
Amâncio (S.), Instituto Superior de Agronomia, Lisboa (Portugal)
Baleiras-Couto (M. M.), Estação Vitivinícola Nacional, Dois Portos (Portugal)
Barre (P.), Institut des Produits de la Vigne, Montpellier (France)
Barreira (M. A.),Instituto Superior de Agronomia, Lisboa (Portugal)
Barroso (J. M.),Universidade de Évora, Évora (Portugal)
Bayonove (C.), Institut des Produits de la Vigne, Montpellier (France)
Belchior (A. P.), Estação Vitivinícola Nacional, Dois Portos (Portugal)
Bertrand (A.), Faculté d'Oenologie, Bordeaux (France)
Brillouet (J. M.), Institut des Produits de la Vigne, Montpellier (France)
Brun (S.), Université de Montpellier (France) Bruno de Sousa (R.),
Instituto Superior de Agronomia, Lisboa (Portugal) Caldeira (I. J.),
Estação Vitivinícola Nacional, Dois Portos (Portugal) Caló (A.), Istituto
Sperimentale per la Viticoltura, Conegliano (Italia)
Cameira-dos-Santos (P.J.), Estação Vitivinícola Nacional, Dois Portos (Portugal)
Canas (S.), Estação Vitivinícola Nacional, Dois Portos (Portugal) Cantagrel (R.),
B. N. I. C., Cognac (France)
Carbonneau (A.), E. N. S. A. M., Montpellier (France)
Carneiro (L. C.), Estação Vitivinícola Nacional, Dois Portos (Portugal)
Casal (M.), Departamento de Biologia/UM, Braga (Portugal)
Castino (M.), Istituto Sperimentale per l'Enologia, Asti (Italia) Castro
(R.), Instituto Superior de Agronomia, Lisboa (Portugal) Catarino (S.),
Estação Vitivinícola Nacional, Dois Portos (Porugal) Clímaco (M. C.),
Estação Vitivinícola Nacional, Dois Portos (Portugal) Clímaco (P.),
Estação Vitivinícola Nacional, Dois Portos (Portugal) Chatonnet (P.),
Laboratoire EXCELL, Merignac (France) Cotea (V.), Centrul de
Cerceturi pentru Oenologie, Iasi (Roumanie) Cunha (J. M.), Estação
Vitivinícola Nacional, Dois Portos (Portugal)
Curvelo-Garcia (A. S.), Estação Vitivinícola Nacional, Dois Portos (Portugal)
Duarte (F. L.), Estação Vitivinícola Nacional, Dois Portos (Portugal) Duarte
(M. F. R.), Instituto Superior de Agronomia, Lisboa (Portugal)
Eiras-Dias (J. E.), Estação Vitivinícola Nacional, Dois Portos (Portugal) Faia
(A. M.), Universidade de Trás-os-Montes e Alto Douro, Vila Real (Portugal)
Ferreira (M. A.), Universidade do Porto (Portugal)
Fevereiro (M. P. S.), Instituto de Tecnologia Química e Biológica/UNL, Oeiras (Portugal)
Flanzy (C.), Institut des Produits de la Vigne, Montpellier (France) Freitas (V. A. P.),
Faculdade de Ciências/UP, Porto (Portugal) Garcia de Lujans (A.), Est. Exp.
Rancho de la Merced, Jerez de la Frontera (España) Hogg (T.), ESB, Universidade
Católica Portuguesa, Porto (Portugal) Kovac (V.), Faculté de Technologie, Novi Sad
(Serbie)
Laureano (O.), Instituto Superior de Agronomia, Lisboa (Portugal)
Lee (T. H.), E. & J. Gallo Winery, Modesto (USA)
Lima (J. C.), Universidade do Porto (Portugal)
Lima (M. B.), Estação Agronómica Nacional, Oeiras (Portugal)
Loureiro (V.), Instituto Superior de Agronomia, Lisboa (Portugal)
Lopes (C. M. A.), Instituto Superior de Agronomia/UTL, Lisboa (Portugal)
Magalhães (N.), Universidade de Trás-os-Montes e Alto Douro, Vila Real (Portugal)
Martins (A.), Instituto Superior de Agronomia, Lisboa (Portugal)
Moutounet (M.), Institut des Produits de la Vigne, Montpellier (France)
Puech (J. L.), Institut des Produits de la Vigne, Montpellier (France)
Ricardo-da-Silva (J.), Instituto Superior de Agronomia, Lisboa (Portugal)
Rohlf (F. J.), State University of New York at Stony Brook (USA)
Rolo (J. A. C.), Instituto Nacional de Investigação Agrária, Lisboa (Portugal)
San Romão (M. V.), Estação Vitivinícola Nacional, Dois Portos (Portugal)
Santos-Buelga (C.), Faculdad de Farmacia/Universidade de Salamanca, Salamanca (Espanha)
Sequeira (O.), Estação Agronómica Nacional, Oeiras (Portugal)
Silvestre (J. M.), Estação Vitivinícola Nacional, Dois Portos (Portugal)
Spranger (M. I.), Estação Vitivinícola Nacional, Dois Portos (Portugal)
Sun (B. S.), Estação Vitivinícola Nacional, Dois Portos (Portugal)
Snakkers (G.), Bureau National Interprofessionnel du Cognac, Station Viticole (França)
Vilas Boas (L.), Instituto Superior Técnico, Lisboa (Portugal)
Wittkowski (R.), BGVV, Berlin (Germany)
Zanol (G.), Estação Vitivinícola Nacional, Dois Portos (Portugal)
18th International Symposium
of the
Group of International Experts of
vitivinicultural Systems for CoOperation
(GiESCO 2013)
Porto, Portugal
7th – 11th July 2013
PROCEEDINGS / COMPTES RENDUS
TOME II
Ciência e Técnica Vitivinícola - ISSN 0254-0223
Modifications in the layout of papers received from Authors have been made to fit the
publication format of Ciência e Técnica Vitivinícola.
All texts have been reviewed and corrected by the Editorial Review Board, members of the
Scientific Committee of GiESCO 2013 and Editors.
We apologize for errors that could have arisen during the editing process despite our careful
vigilance.
GiESCO 2013 Scientific Committee:
Rogério de CASTRO
Isabel ANDRADE
Borbala BALO
Mota BARROSO
Vasco BOATTO
Alain CARBONNEAU
Giovanni CARGNELLO
Pedro CLÍMACO
Peter CLINGELEFFER
Eduardo EIRAS-DIAS
Rosario DI LORENZO
Nick DOKOOZLIAN
Milka FERRER
Kobus HUNTER
Cesare INTRIERI
Gregory JONES
Markus KELLER
Stefanos KOUNDOURAS
Carlos LOPES
Nuno MAGALHÃES
Fernando MARTINEZ de TODA
António MEXIA
Teresa MOTA
Montserrat NADAL
Vittorino NOVELLO
Hernan OJEDA
Laura de PALMA
Jocelyne PÉRARD
Giuliano PEREIRA
Đordano PERŠURIĆ
Enrico PETERLUNGER
Eugenio POMARICI
Jorge PRIETO
Stefano PONI
Filippo PSCZOLKOWSKI
Jorge QUEIROZ
Andrew REYNOLDS
Jorge RICARDO-DA-SILVA
Jean-Philippe ROBY
Raúl RODRIGUES
Hans SCHULTZ
José SILVESTRE
Vicente SOTES
Bruno TISSEYRE
Jorge TONIETTO
Laurent TORREGROSA
Kees VAN LEEUWEN
Jesus YUSTE
Vivian ZUFFEREY
GiESCO 2013 Organizing Committee:
President:
Jorge QUEIROZ
Members:
Teresa MOTA
Barros CARDOSO
Pedro CLÍMACO
Amândio CRUZ
Ana FARIA
Raúl JORGE
Raúl RODRIGUES
GiESCO BOARD:
President:
Alain CARBONNEAU
Vice Presidents:
Giovanni CARGNELLO
Hans SCHULTZ
Hernan OJEDA
Scientific Secretariat
Anabela CARNEIRO
Rua Campo Alegre 687
4169 - 007 Porto - Portugal
E-mail: [email protected]
Secretariat
Skyros-Congressos
Av. Antunes Guimarães, 554 | 4100-074 - Porto
Phone. +351 226 165 450 | Fax. +351 226 189
539
E-mail: [email protected]
II
PREFÁCIO
18º Simpósio Internacional GiESCO 2013, Porto, Portugal
PORTUGAL – Diversidade, Património, Inovação
O 18º Simpósio Internacional GiESCO 2013 (Grupo internacional de Especialistas em Sistemas
vitivinícolas para a CoOperação) decorre entre 7 e 11 de Julho, na Faculdade de Ciências da
Universidade do Porto – Portugal, sob o Alto Patrocínio de Sua Excelência O Presidente da
República. A este evento associam-se o OIV (Organização Internacional da Vinha e do Vinho),
a Reitoria da Universidade do Porto, o Instituto Superior de Agronomia – Universidade Técnica
de Lisboa, o Instituto Nacional de Investigação Agrária e Veterinária, I.P., a Fundação para a
Ciência e Tecnologia, o Instituto da Vinha e do Vinho, I.P., a Comissão de Viticultura da
Região dos Vinhos Verdes, o Instituto dos Vinhos do Douro e do Porto, I.P., a Casa do Douro, a
ViniPortugal e a “Chaire UNESCO Culture et Traditions du Vin”.
A grande adesão da comunidade científica traduz-se na apresentação de mais de 220 trabalhos
científicos (comunicações orais e posters), de cerca de 250 investigadores e cientistas,
provenientes de 23 países. Ao longo de quatro dias e nove sessões, serão abordados os temas:
Metodologia e ecofisiologia; Relações hídricas; Viticultura de Montanha e de Regiões quentes;
Meio Ambiente: clima e solo, Gestão da vinha, rendimento, qualidade; Sistemas de condução;
Novos conceitos e Tecnologias avançadas em Viticultura; Viticultura Geral; Gestão do
Território. Viticultura Sustentável; Academia da Vinha e do Vinho.
Este encontro será também uma boa ocasião para que os congressistas se possam inteirar dos
mais recentes avanços tecnológicos da vitivinicultura portuguesa e da sua diversidade, através
de visitas técnicas à REGIÃO DOS VINHOS VERDES e ao ALTO DOURO VINHATEIRO,
classificado como Património da Humanidade pela UNESCO em 2001.
Nesta edição do Simpósio, pretende-se ainda homenagear o Prof. Rogério de Castro pelo seu
contributo para a docência, a Viticultura e a sua colaboração com o GiESCO, e por esse motivo
o seu dia será aberto à comunidade científica e técnica.
Aproveitando para desejar as boas vindas a todos os participantes, agradecemos a todos as
pessoas envolvidas na organização deste evento, especialmente à Doutora Teresa Mota, à Engª
Anabela Carneiro, à Engª. Susete Melo e Eng.º António Fonseca, aos membros da Comissão de
Organização, do Comité Científico pela revisão dos artigos, assim como a todas as instituições e
empresas que de uma ou outra forma apoiaram a organização deste simpósio.
Por último agradeço à minha família pelo apoio de sempre.
Jorge B. Lacerda de Queiroz
Presidente da Comissão de Organização
Faculdade de Ciências da Universidade do Porto
Título: 18th International Symposium GiESCO – Proceedings.
Editores: Jorge QUEIROZ, Anabela CARNEIRO
Publicação: Ciência e Técnica Vitivinícola - ISSN 0254-0223
Citação: Ciência e Técnica Vitivinícola – Volume 28, Proceedings 18th International Symposium
GiESCO, Porto, 7-11 July 2013, (pg)-(pg)
III
FOREWORD
18th International Symposium GiESCO 2013, Porto, Portugal
PORTUGAL – Diversity, Heritage, Innovation
The 18th International Symposium GiESCO 2013 (Group of International Experts of
vitivinicultural Systems for CoOperation) takes place from 7th to 11th July, at the Faculty of
Sciences of University of Porto - Portugal, under the High Patronage of His Excellency The
President of the Republic of Portugal. In this has the patronage of the OIV (International
Organisation of Vine and Wine), the Dean of the University of Porto, the Institute of Agronomy
- Technical University of Lisbon, the National Institute of Agricultural Research and Veterinary
IP, the Foundation for Science and Technology, the Institute of Vine and Wine, IP, the
Viticulture Commission of the Vinhos Verde Region, the Institute of Douro wines and Port, IP,
the ViniPortugal, the “Casa do Douro” and the "Chaire UNESCO Culture et Traditions du Vin".
The great adherence of the scientific community to GiESCO 2013 is reflected in the more than
220 scientific papers (oral and posters) submitted by about 250 researchers and scientists from
23 countries. Over four days and nine sessions will be presented papers subjected to:
Methodology and ecophysiology, Water relations; Mountain and hot Regions Viticulture;
Environment: climate and soil; Vineyard management, yield, quality; Training systems; New
concepts and Advanced Technologies in Viticulture; Viticulture General; Territory
Management. Sustainable Viticulture; Vine and Wine Academy.
This meeting will also be an opportunity for the participants could to contact with the latest
technological advancements of Portuguese vitivinicultural industry and its diversity, through
technical visits to the VINHOS VERDE REGION and ALTO DOURO WINE REGION,
classified as World Heritage by UNESCO in 2001.
This Symposium is intended to honour Prof. Rogério de Castro for his contribution to teaching,
Viticulture and their collaboration with GiESCO, and that way this day will be open to all the
scientific and technical community.
Taking the opportunity to wish a warm welcome to all participants, we thank everybody
involved in organizing this event, especially to Dra. Teresa Mota, Engª. Anabela Carneiro, à
Engª. Susete Melo and Eng.º António Fonseca, to the members of the Organizing Committee,
the Scientific Committee for reviewing the articles, as well as all institutions and companies in
one way or another supported the organization of this symposium.
Finally I would like to thank my family for their support.
Jorge B. Lacerda de Queiroz
President of the Organization Committee
Faculdade de Ciências da Universidade do Porto
Title: 18th International Symposium GiESCO – Proceedings.
Editores: Jorge QUEIROZ, Anabela CARNEIRO
Publisher: Ciência e Técnica Vitivinícola - ISSN 0254-0223
Citation: Ciência e Técnica Vitivinícola – Volume 28, Proceedings 18th International Symposium
GiESCO, Porto, 7-11 July 2013, (pg)-(pg)
IV
PREFACE
18èmes Journées Internationales GiESCO 2013, Porto, Portugal
PORTUGAL - Diversité, Patrimoine, Innovation
Le 18ème Symposium International GiESCO 2013 (Groupe international d’Experts en Systèmes
vitivinicoles pour la CoOpération) s'étend entre 7 et 11 Juillet, à la Faculté des Sciences de
l'Université de Porto - Portugal, sous le Haut Patronage de Son Excellence Monsieur le
Président de la République Portugaise. A ce événement sont associés l'OIV (Organisation
Internationale de la Vigne et du Vin), le Rector de l'Université de Porto, l'Institut d'Agronomie Université Technique de Lisbonne, l'Institut National de la Recherche Agronomique et
Vétérinaire IP, la Fondation pour Science et Technologie, l'Institut de la Vigne et du Vin, IP, la
Commission de la Viticulture de la Région des Vinhos Verdes, l'Institut des Vins du Douro et de
Porto, IP, le ViniPortugal, la « Casa do Douro » et la "Chaire UNESCO Culture et Traditions du
Vin".
Le grand succès auprès de la communauté scientifique se traduit par la présentation de plus de
220 articles scientifiques (orales et posters) d’environ 250 chercheurs et scientistes de 23 pays.
Pendant quatre jours et neuf séances, seront abordés les sujets: Méthodologie et écophysiologie,
Relations Hydriques; Viticulture de montagne et des régions chaudes; Environnement: climat et
sol ; Système de culture, Rendement, Qualité ; Systèmes de Conduite; Nouveaux concepts et
Technologies avancées en Viticulture, Viticulture Générale; Gestion des territoires. Viticulture
durable; Académie de la Vigne et du Vin.
Cette réunion sera également l'occasion pour que les participants puissent connaitre les
dernières avancées technologiques de l'industrie de la vigne et du vin Portugais et sa diversité, à
travers des visites techniques dans la REGION DES VINHOS VERDES et la région de le
HAUT DOURO VITICOLE, classé Patrimoine Mondial par l'UNESCO en 2001.
Dans ce colloque on désire aussi honorer le Prof. Rogério de Castro pour sa contribution à
l'enseignement, de la Viticulture et de leur collaboration avec GiESCO, raison pour laquelle ce
jour et ouvert à la communauté scientifique et technique.
Saisissant l'occasion pour souhaiter la bienvenue à tous les participants, nous remercions à
toutes les personnes impliquées dans l'organisation de cet événement, en particulier à Dra.
Teresa Mota, Engª. Anabela Carneiro, à Engª. Susete Melo et Eng.º António Fonseca, les
membres du Comité Organisateur et du Comité Scientifique par la révision des articles, ainsi
que toutes les institutions et les entreprise que, d'une manière ou d'une autre, ont contribué à
l'organisation de ce colloque.
Finalement, je remercie ma famille pour leur soutien.
Jorge B. Lacerda de Queiroz
Presidente da Comissão de Organização
Faculdade de Ciências da Universidade do Porto
Titre: 18th International Symposium GiESCO – Proceedings.
Editeurs: Jorge QUEIROZ, Anabela CARNEIRO
Publication: Ciência e Técnica Vitivinícola - ISSN 0254-0223
Citation: Ciência e Técnica Vitivinícola – Volume 28, Proceedings 18th International Symposium
GiESCO, Porto, 7-11 July 2013, (pg)-(pg)
V
Impressão realizada com o apoio da Fundação Ciência e Tecnologia
Impression held with the support of the Fundação Ciência e Tecnologia
Impression organisé avec le soutien de la Fundação Ciência e Tecnologia
VI
IMPORTANCE OF CANOPY POROSITY INTO VINEYARD AND THE
RELATIONSHIP WITH THE GRAPE MATURITY. DIGITAL ESTIMATION
METHOD
IMPORTANCE DE LA POROSITE DE LE COUVERT VEGETAL DANS LE VIGNOBLE ET LA
RELATION AVEC LA MATURITE DU RAISIN. METHODE D'ESTIMATION
Mario de la Fuente1*, Rubén Linares, Pilar Baeza and José Ramón Lissarrague
1
Departamento de Producción Vegetal: Fitotecnia. Escuela Técnica Superior de Ingenieros Agrónomos. Universidad Politécnica de Madrid.
C/ Senda del Rey s/n, 28040, Madrid, Spain.
*Corresponding author: de la Fuente, M. phone: +34 915491137, Fax: +34 915491137, Email: [email protected]
SUMMARY
In warm and dry climates, the use of porous systems should be required in order to allow a better leaf distribution inside the plant, causing
more space in the clusters area and enhancing determined physiological processes so in the leaf (photosynthesis, ventilation, transpiration) as
in berry (growth and maturation). Plant geometry indexes, yield and must composition have been studied in three different systems: sprawl
with 12 shoots/m (S1); sprawl system with 18 shoots/m (S2) and vertical positioned system or VSP with 12 shoots/m (VSP1). Total leaf area
increases as the crop load does, whoever surface area depends on to two factors: crop load and the training system (VSP vs. sprawl), which
can provide differences in leaf exposure efficiencies. The main objective of this study was to validate digital photography measurements
used to compare porosity differences among treatments and, as they affect plant microclimate and, therefore, yield and berry quality. Also,
all previous studied indexes (LAI, SA, SFEr) tended to overestimate the relationship between exposed leaf surface and porosity of each
treatment, but the use of digital method proved to be an effective tool in order to assess canopy porosity. Results showed that not positioned
and free systems (sprawl) scored between 25-50% more porosity in the clusters area than the fixed vertical system (VSP), which resulted in a
better plant microclimate for test conditions, mainly by improving the exposure of internal clusters and internal canopy ventilation. On the
other hand, higher crop load treatment (S2) showed a real increase in yield (16%) without any relevant change into must composition, even
improving total anthocyanin content into berry during ripening.
RÉSUMÉ
Dans les climats chauds et secs, l'utilisation de systèmes poreuses devrait être nécessaire afin de permettre une meilleure distribution de la
feuille à l'intérieur de la vigne, causant plus d'espace dans la zone des grappes et l'amélioration des processus physiologiques déterminés ainsi
dans la feuille (photosynthèse, ventilation, transpiration) comme en raisin (croissance et maturation). Index de la géométrie des plantes,
rendement et doit la composition ont été étudiés dans les trois systèmes différents : système non positionnée avec 12 pampre (S1) ; système
non positionnée avec 18 pampre (S2) et le système de positionnement vertical ou VSP avec 12 pampre (VSP1). La surface foliaire totale
augmente avec la charge, la surface foliarire qui repose sur deux facteurs : charge et système de formation (VSP contre système non
positionnée), qui peut fournir des différences dans la feuille d'efficacités de l'exposition. L'objectif principal de cette étude était de valider les
mesures de photographie numérique utilisés pour comparer les différences de porosité entre les traitements et, car ils modifient le
microclimat des plantes et, par conséquent, rendement et qualité des baies. Aussi, tous les index étudiés précédentes (LAI, SA, SFEr) avaient
tendance à surestimer la relation entre la surface foliaire exposée et la porosité de chaque traitement, mais l'utilisation de la méthode
numérique s'est avérée pour être un outil efficace pour évaluer la porosité de la couvert végétal. Les résultats ont montré que les systèmes
non positionnés et libres (système non positionnée) a marqué entre 25-50 porosité plus dans le domaine des grappes que le système vertical
fixe (VSP), qui a donné lieu à un microclimat de meilleur plante pour les conditions de l'essai, principalement par l'amélioration de
l'exposition des grappes internes et ventilation interne canopée. En revanche, plus charge de traitement (S2) ont montré qu'une réelle
augmentation du rendement (16%) sans changement pertinent dans doit composition des moûts, même teneur en anthocyanes total
amélioration en berry au cours du maturite.
Key Words: sprawl, training system, porosity, canopy, grape composition.
Mots –Clés: système non positionnée, systèmes de conduit, couvert végétal, porosité, composition des raisins
.
633
INTRODUCTION
The plant geometry and training system should be
joined with a proper sunlight and temperature
microclimate in the clusters area and, also in the
rest of the plant (Spayd, et al. 2002). In warm and
dry climates is required the use of porous systems
that allow a better leaf distribution inside the plant,
cause more space in the clusters area and enhance
several physiological processes so in the leaf
(photosynthesis, aeration, transpiration) as in berry
(growth and maturation). Several authors have
showed the relevance of 3D spatial measures to
describe the architecture of leaf plant (Schultz
1995; Mabrouk, et al. 1997; Gladstone and
Dokoozlian, 2003), for adequate canopy
management and also, can estimate degree shading
in clusters area (key factor in the berry ripening
development). Digital image analysis are common
used in vineyards to estimate crop coefficients or
radiative balance models (Pieri, 2010). Porosity
canopy measurement provides information on leaf
surface distribution along the shoot and its spatial
situation into plant air system or canopy volume
(Gladstone and Dokoozlian, 2003).
MATERIAL AND METHODS
This field experiment was conduced over two
consecutive seasons (2006 and 2007) into an
experimental trial in Toledo (Spain), under a fine
clay-sandy soil (Palexeralf, Soil Survey Staff, 2003)
with a 50 cm depth clay superficial horizon (5055% of clay). The weather conditions were
Mediterranean semiarid (Papadakis, 1966). The
cultivar was Syrah grafted on 110R and spaced 1.2
m inside the NO-SW orientated rows and 2.7 m
between rows. Irrigation system drippers (3·l h-1)
were spaced 1.2 m along the planting line and the
amount applied was equal for all treatments.
Climatic conditions of 2006 and 2007 were
significantly different being the 2006 a campaign
extremely warm while 2007 did not. Differences
can be observed mainly in growing degree day
accumulated (2000 vs. 2525 GDD), rainfall (168 vs.
246 mm) and in evapotranspiration reference
(1211.1 vs. 1064.6 mm; Eto) index too. Trial was
designed with three treatments placed into four
blocks at random and each experimental plot
consists of 20 control plants separated by rows and
vines edge. Three treatments studied, in order to
assess the impact of training system and crop load,
were: i) VSP1, Espaldera or vertical positioned
system (VSP) with 12 shoots/m crop load, ii) S1,
Sprawl with 12 shoots/m crop load and iii) S2,
Sprawl with 18 shoots/m crop load. (50% crop load
more than VSP1 and S1).Vines were spur pruned
and trained to a bilateral cordon at a height of 1.40
m to the floor. The sprawl system had a single
couple vegetation wires from 0.4 m to the basal
wire and they opened 0.6 m between wires. VSP
system had a couple wires from 0.3 m to the basal
wire and a higher wire at 1.5 m to basal wire.
At harvest, the value of incident photosynthetic
active radiation (PAR) inside the canopy is usually
low (about 10% of total ambient radiation). The
degree of canopy density changes that percentage
and there is a positive correlation among PAR, leaf
area and density into clusters area (Dokoozlian and
Kliewer, 1995). Sunlight, air ventilation within
canopy, temperature cluster and microclime is
affected by exposure and radiation percentage
received during growth and maturation period. If
the lighting inside clusters area decreases during
berry state development, berries will produce less
solutes accumulation and also, polyphenols and
anthocyanins too (Dokoozlian and Kliewer, 1995).
On the other hand, too much cluster lighting can
cause excessive higher temperatures into cluster
areas and produce degradation for these compounds
(Spayd, et al. 2002).
The measures of the total leaf area index (LAI; m2
leaf·area m-2 soil) were taken in accordance with a
modification of the method described by
Carbonneau (1976) according to Sánchez de Miguel
et al., (2010). Five shoots were measured in two
vines by treatment and block. Surface area (SA; m2
external foliar·m-2 surface soil) was calculated
based on inner geometric parameters of each
system. Five measures were taken at two different
heights, in two vines by treatment and block. In
VSP treatment, the area was likened to a
parallelepiped and measures were taken from
vegetation lateral wall (total vegetation height,
basal vegetation zone and fruiting zone) and the
width of vegetation row. For both sprawl system
treatments were calculated by estimated perimeter
with flexible tape and vectorial graphic design
program (Cad 2008®) to calculate the circular
section of plant wall along the row.
Likewise, there are many factors which having
important effects into plant microclimate and are
related with training system, so that is the reason
for comparing different training systems in this
study. Sprawl is a porous training system with
alternating spur-pruned uniform distribution along
horizontal cordon that caused spacing clusters zone.
VSP on the other hand, is a vertical, rigid
positioning system that shoots and leaf area caused
a linear clusters zone, usually closely spaced.
Results show porosity differences among three
treatments and will be compared and related with
other typical canopies measures, such as leaf area
index (L.A.I.), surface area (S.A.) or point quadrat
method which are more complicated to take than a
picture.
On the other hand, surface exposed real (SFEr) was
calculated such as Carbonneau (1995) described as
634
result of multiply radiation intercepted percentage
by vegetation cover and total leaf area developed
(LAI) by the plant. It took data from radiation
throughout ripening in different day hours (8, 12
and 16 s.t.) for this variable calculated.
related to the level of crop load left in the plant, and
did not cause any increase in secondary leaf area
between low load treatments (VSP1 and S1)
compared to the higher load treatment (S2). Surface
area exposed (Table 1) at maturity showed that
sprawl treatments obtained higher values than VSP
(10-30% compares to S treatments in 2006 and
2007 respectively in 2007) when the crop load
effect made them open up the top vegetation centre.
Spatial aerial parts distribution of the plant were
measured by Point Quadrat (PQ) method described
by Smart (1985) in the same vines that previous
vegetation measures did. Real porosity percentages
were calculated through processing tool
photography program (Adobe Photoshop CS3 ®).
Photographs were taken by night and with the only
flash lighting from the digital camera (to well
discriminate gaps from leaves). Pictures from
vegetal wall were taken between two consecutive
vines for each block (the same vines used for the
geometric measures) and with a distance same as
the width of between plant lines (2.7 m).
However, the best indicator of the relationship
between vegetation amount and surface porosity
into the canopy is the ratio called surface real
exposed (SFEr; Carbonneau, 1995). Results
measured at 8, 12 and 16 s.t. reflect (Table 1) a
greater exposure (during all day) of treatment S2 in
relation to the other treatments, reaching much
higher values compared to VSP (increase between
36.4% and 68.4%, P<0.001). S1 obtained
intermediate values, so that it was clear, a combined
effect between crop load and training system
caused an increase of canopy plant volume,
decreasing crowed vegetation cover and increasing
leaf exposure (14-29%) of open systems versus
rigid vertical positioning system. The division of
the canopy in more vegetation planes can increase
yield and crop quality (Bordelon et al. 2008), and
also, the quality of wines.
A reproductive yield study was done during harvest
(30/08/2006 and 05/09/2007) in ten previously
selected plants for each treatment and block.
Cluster number, average cluster weight, average
berry weight, berry number per cluster and yield
(kg m-1) were calculated individually for each
harvested plant. A digital field scale was used for
experimental data measures. Also, at harvest a 100berry sample per single plot was collected to follow
100-berries weight (g), SST (ºBrix), pH and phenol
maturity according to Glories (2001) method, so
final values corresponded to harvest date of each
year.
These differences are very interesting in warm
climates, where one of the main goals is not cause
leaf and clusters overexposure in order to prevent
premature senescence and berry overripening
process respectively (de la Fuente, 2009).
Increasing load and with a not positioned free
exposure, the plant shows a higher overhead
opening and exposed a higher number of leaves to
solar radiation but during less time, because flow
radiation unit per leaf is smaller, so senescence
process is not caused easily. Also, total leaf area is
more efficient because is working with a larger
number of inner leaves than rigid vertical systems,
where the number of leaves layers is usually minor,
increasing the leaf exposure to solar radiation, but
lowering the undesirable effect of premature
senescence in basal leaves due to excessive heat.
RESULTS AND DISCUSSION
Canopy measures
In both years (Table I), total leaf area of greater
crop load treatment (S2) was higher than the other
two treatments with lesser load (VSP1 and S1)
between 27-33% over all vegetative cycle, as was
likely, emphasizing differences before stopping
vegetative prior to ripening. There were not
significant differences between treatments in
relation to growth of secondary shoots. These
Table I - Vegetative development (LAI, m2·m-2), surface area (SA, m2·m-2) and surface real exposed (SFEr) for three treatmets at harvest.
Développement végétatif (LAI, m2·m-2), surface habitable (SA, m2·m-2) et real surface exposée (SFEr) pour trois treatmets à la récolte.
LAI
Treatment
SA
2006
2007
SFEr
2006
2007
1.32
1.06b
1.33
Main Lateral
Main
Lateral
VSP1
1.16b
0.63
1.28b
S1
1.34b
0.68
1.40b
2006
2007
8 s.t.
12 s.t.
16 s.t.
8 s.t.
12 s.t.
16 s.t.
1.11b
0.47c
0.31c
0.41b
1.08b
1.03b
1.38
1.15b
1.26ab
0.83b
0.56b
1.12b
1.01b
0.74b
1.59
S2
2.00a
0.73
2.12a
1.24
1.50ª
1.31ª
1.15ª
0.98ª
1.23ª
1.78a
1.62a
1.65
EEM1 (n=8)
0.16
0.104
0.076
0.075
0.06
0.07
0.08
0.08
0.08
0.08
0.08
0.08
S ig2
*
ns
***
ns
**
*
***
***
***
***
***
ns
differences show that total leaf area is directly
Porosity
635
Aerial parts plant positional study by PQ showed
lower vegetation density (Table II) in S treatments,
with around 2 and 3 extra-layers more than VSP1.
Several authors (Gladstone and Dokoozlian, 2003;
Kliewer et al., 2000 and Vanden Heuvel et al.,
2004) obtained values of the leaf layer number in
previous trials and considered at appropriate values
of LLN in cluster area between 1.5 to 2 for trellis
and 3-4 for other open systems with high density.
Data from trial treatments are within the optimal
definition intervals (2-4 LLN) for each training
systems calculated by previous researchers.
The results of porosity by digital photography
analysis (Table II) show how VSP treatment
obtained lower values of porosity along all the
vegetation cover. In the first 40 cm (clusters zone),
S1 presented higher porosity thanVSP (48 and 19%
for 2006 and 2007 respectively) with the same crop
load. Also, load increase does not affect to system
porosity, because S2 shows higher values in this
area during 2006 (+38.6%, P<0.001) or similar (in
2007) compared to VSP1 treatment. But, that is a
key question: Is there a reliable and fast method to
calculate the porosity of a system? However, today
it is still difficult to obtain an estimated method to
calculate the real porosity value of a training
system. The PQ method defines the number of
Likewise, while there were a higher number of
clusters in S treatments comparing with VSP
system (differences among 1.0-1.7 and 0.8-1.6 in
Table II - Point Quadrat and digital porosity estimation method for three treatmets during maturation period.
Point Quadrat et méthode d'estimation de porosité numérique pour trois treatmets au cours de la période de maturation.
Treatment
VSP1
S1
S2
EEM1 (n=8)
S ig
2
PQ 2006
PQ 2006
% Porosity
Cluster Zone
Vegetation Zone
Cluster Zone
Vegetation Zone
2006
2007
Gap Internal
Internal
Gap Internal
Internal
Leaf
Leaf
0-40 40-70 70-100 0-40 40-70 70-100
fraction Clusters Lateral Leaves
fraction Clusters Lateral Leaves
layers
layers
cm.
cm.
cm.
cm.
cm.
cm.
(%)
(%)
(%)
(%)
(%)
(%)
b
b
2,20
15,00
77,90
2,20
7,50
2,7
26,4
65,6b
3,5b
44,5b
7,57b 20,17b 62,00b 5,67b 7,00b 23,75b
2,60
10,00
82,40
58,3ª
2,40
7,50
5,8ª
66,1ª 14,63ª 26,25ª 85,00a 7,00a 14,83ª 66,87ª
5,0a
81,0a
2,50
20,00
82,10
5,9ª
2,60
5,00
87,3ª
68,1ª 12,33a 16,20b 64,64b 4,87b 17,00a 78,25ª
60,0a
6,5a
0,23
4,5
0,5
0,41
2,01
0,22
1,8
0,56
0,31
1,53
0,88
1,15
6,73
0,17
1,81
6,3
ns
ns
ns
***
***
ns
ns
**
**
**
***
**
*
**
*
**
2006 and 2007 respectively, P<0.05), there were a
higher percentage of clusters not subjected to direct
radiation (24.9-19.0% more for S2 and S1 in 2007,
P<0.01). Several autors obtained differences in
porosity values between 30-10% compairing
divided and not divided training systems (Kliewer
et al., 2000; Gladstone and Dokoozlian, 2003;
Bordelon et al., 2008).
layers of leaves and the percentage of non-contacts
(gaps) so directs porosity measurements, and like
other often used parameters (LAI and SA), are
indirect methods (less precise) and, moreover,
certain measures may be overestimated and some
system discontinuities are not consider.
Therefore, porosity variations are priority to assess
Table III - Yield partitioning and must composition in 2006 and 2007 growing seasons for three treatments at harvest.
Composantes du rendement et moût en 2006 et 2007 pour les trois traitements à la récolte.
Yield partitioning 2006
Treatment
…
1
Nº
Clusters·m
-1
Yield (Kg·m-2)
Yield partitioning 2007
Cluster 100 Berries
Nº
Nº
-2
average
average
-1
-1 Yield (Kg·m )
weight (g) weight (g) berries·cluster Clusters·m
Cluster
average
weight (g)
100 Berries
Nº
average
-1
weight (g) berries·cluster
VSP1
S1
S2
24.68 b
23.82 b
36.20 a
1.73 b
1.71 b
2.05 a
190.42 a
195.10 a
153.24 b
111.34 a
104.57 b
101.05 c
171.19 a
187.34 a
152.06 b
20.96 b
21.04 b
30.66 a
1.61 b
1.61 b
1.93 a
204.36 a
206.55 a
169.32 b
150.54 b
160.09 a
158.7 a
135.63 a
128.29 a
106.92 b
EEM1 (n=40)
0.604
0.041
6.09
0.081
1.02
0.46
0.10
7.71
1.39
5.05
S ig2
**
**
**
**
**
***
***
**
***
***
Treatment
ºBrix
VSP1
S1
S2
EEM1 (n=8)
25.1
25.9
25.8
0.76
S ig2
ns
Must Composition 2006
Antocian
Total Antocian
extractables
pH
IPT
content (mg·L-1)
(mg·L-1)
3.5
46.7
794.33
1470.35 b
3.5
54.7
936.95
1804.34 a
3.5
52.7
983.94
1903.30 a
0.02
2.54
76.94
81.28
ns
ns
ns
*
ºBrix
pH
25.2
25.4
24.7
0.27
3.06 b
3.13 a
3.20 a
0.02
ns
**
Must Composition 2007
Antocian
Total Antocian
extractables
IPT
content (mg·L-1)
(mg·L-1)
45.8
931.0
1172.5
51.8
976.5
1228.5
47.7
861.0
1197.88
4.1
102.7
57.1
ns
ns
ns
EEM: standard average error for n= 40 and 8 samples per yield and must composition respectively.
2
Sig: significant differences; ns, *, ** and *** means to there is no significant differences, P<0,05, P<0,01 and P<0,001 respectively. The
values with the same letter are equal (T. Duncan). P-values were determined by analysis of variance.
636
a correct leaf area distribution in the plant. Results
of digital photography shown that open systems get
better porosity into cluster area between 25 and
50%.that improves the exposure of inner clusters
and would enhance thermal effects such as
lowering internal temperature due to increase
ventilation into the canopy. Also, in training
systems studies is not only important how many
leaves layers have the canopy, but also the total
volume occupied by them. With the PQ method is
possible to estimate correctly the LLN, but not the
percentage of gaps into the canopy, so this method
should be only applied to compare values of
porosity with the same training system, while the
use of digital photography allow to study different
training systems or vine areas or volumes and really
estimate the canopy porosity inside the plant.
training system, prevent the degradation of
anthocyanins at the end of ripening. The effect of
the load is less important than using open training
systems, which increase phenolic and anthocyanic
berry content modifying light and thermal
microclimate through spatial distribution of
vegetation and shading effects in the plant.
CONCLUSIONS
Double effect due to not positioned open system
(sprawl) and crop load increment gave to the plant a
higher leaf exposure and a lower vegetation density,
which in hot or arid climates means a great
microclimate of plant improvement. Digital
photography is a simple, fast and effective tool to
evaluate possible differences refers to porosity and
leaf area exposure between training systems. It
appears that porosity increase in sprawl treatments
between 25-50% in cluster area compares to VSP
and caused a better plant microclimate.
Yield components, berry sampling and juice
analysis
During 2006 and 2007 reflected a main crop load
effect was showed (Table III), where higher load
treatment (S2) had an increment of 16% in yield
than the others treatments. On the other hand, S2
showed an average bunch weight lower (from 17.0
to 22.5%) and reduced the number of berries (from
12 to 21%) per cluster, but it was equilibrated by a
higher cluster number per vine (from 32 to 35%)
and during 2007 with the same average berry
weight (only in 2006 was lower, between 4.4 to
9.2%), caused by a higher crop load. Therefore,
with an increment of load will get berry size
decrease but berries number increase, which has
direct effect in total yield and as same time, an
increase in skin/flesh ratio during harvest.
Finally, free and non-positioned systems can help to
improve plant microclimate, influence positively on
anthocyanic berry composition but do not change
must composition and then allowing a yield
increase if there is enough water availability in
plant-soil system.
ACKNOWLEDGEMENTS
The authors gratefully acknowledge the effort of
Osborne Distribuidora S.A. company for technical
and financial support for the implementation of this
project (MEC, IDI: P030260221). Also, D. Juan
Dominguez Torre (REDISEÑA S.L.) for their
invaluable and uninterested support by assistance in
digital image analysis.
Leaves and cluster microclimate are the key factor
(Vanden Heuvel et al. 2004) for determinating the
acidity contents, pH and K must and last, wine
composition. Differences obtained during 2007 for
acidity and pH values are not quantitatively
significant (8-7%) and are probably due to a greater
exposure to radiation clusters, which increases final
pH (Bergqvist et al. 2001 and Spayd et al. 2002).
Data from total and extractable anthocyanin (Table
III) content reflect that there is an effect of
increasing shading clusters area in the final berry
synthesis of anthocyanins, which is very useful in
winemaking process (Haselgrove et al. 2000). It
should also be remembered that cv. Syrah is very
sensitive to changes in thermal effects during total
anthocyanins synthesis (Spayd et al. 2002). This
effect causes differences in berry anthocyanins
content, which are heavier in extremely hot
conditions (2007), getting around 20% in open and
not positioned free systems.
REFERENCES
Bergqvist J., Dokoozlian N., Ebusida N. 2001. Sunlight exposure
temperature effects on berry growth and compositon of
Cabernet-Sauvignon and Grenache in the Central San Joaquin
Valley of California. Am.J.Enol. Vitic. 52(1).
Bordelon B. P., Skinkis P. A., Howard P.H. 2008. Impact of
training system on vine perfomance and fruit composition of
Traminette. Am. J. enol. vitic 59(1), 39-46.
Carbonneau A. 1995. La surface foliare exposée potentielle. Le
progrès agricole et viticole 112(9), 204-212.
de la Fuente M. 2009. Caracterización geométrica, ecofisiológica
y evaluación agronómica de sistemas continuos de vegetación
libre (SPRAWL) vs. espaldera para atenuar la sobreexposición
de hojas de racimos en cv. syrah (Vitis vinifera L.) en viñedos de
zonas cálidas. 301 p. Tesis doctoral. E.T.S.I.A. Producción
Vegetal: Fitotecnia. Madrid. Universidad Politécnica de Madrid.
Finally, crop load does not change must
composition seriously, but it increase total plant
yield (Junquera et al., 2009) becouse gives more
clusters but less exposed to sunlight and with the
Dokoozlian N., Kliewer W. M. 1995. The light environment
within grapevine canopies. Am.J.Enol. Vitic. 46(2), 209-226.
Gladstone E. A., Dokoozlian N. 2003. Influence of leaf area
density and trellis/training system on the light microclimate
within grapevine canopies. Vitis 42(3), 123-131.
637
Glories Y. 2001. Caracterisation du potentiel phènolique :
adaptation de la vinification. Le Progrès Agricole et Viticole.
118 (15 -16) : 347 – 350.
Pieri P. 2010. Modelling radiative balance in a row-crop canopy:
Cross-row distribution of net radiation at the soil surface and
energy available to clusters in a vineyard. Ecological Modelling,
221, 802–811.
Haselgrove L., Bottinf D., Heeswijck R., Rod P.B., Dry P., Ford
C., Illand P.G. 2000. Canopy microclimate and berry
composition: the effect of bunch exposure on the phenolic
composition od Vitis vinifera L. cv Shiraz grape berries. Aus. J.
Grape and Wine Research 6: 141-149.
Sánchez de Miguel P., Junquera P., de la Fuente M., Jiménez L.,
Linares R., Baeza P., Lissarrague J.R. 2011. Estimation of
vineyard leaf area by linear regression. Spanish Journal of
Agricultural Research 9(1): 202 - 212
Kliewer W. M., Wolpert J. A., Benz M. 2000. Trellis and vine
spacing effects on growth, canopy microclimate, yield and fruit
composition of Cabernet-Sauvignon. V International symposium
on grapevine physiology, Jerusalem - Israel, ISHS.21-31.
Schultz H. R. 1995. Grape canopy structure, light microclimate
and photosynthesis I. A two dimensional model of the spatial
distribution of surface area densities and leaf ages in two canopy
systems. Vitis 34(4), 211-215.
Junquera, P., Jiménez L., Sánchez de Miguel P., Lissarrague J.R.
2009. Effect of shoot number on vine balance and berry
composition of Tempranillo grapevines. 16th International
GiESCO Symposium, 2009. University of California, Davis
(CA, USA). 419-424.
Smart, R. E. 1985. Principles of grapevine canopy microclimate
manipulation with implications for yield and quality. A review.
Am.J.Enol. Vitic. 36(3), 230-239.
Spayd S., Tarara J., Mee D.L., Fergurson J.C. 2002. Separation
of sunlight and temperature effects on the composition of Vitis
vinifera cv. Merlot berries. American Journal of Enology and
Viticulture 53(3), 171-182.
Mabrouk H., Sinoquet H., Carbonneau A. 1997. Canopy
structure and radiation regime in grapevine II: Modelling
radiation interception and distribution inside the canopy. Vitis
36(3), 125-132.
Vanden Heuvel J. E., Proctor J. T. A., Sullivan J.A., Fisher K.H.
2004. Influence of training/trellising system and rootstock
selection on productivity and fruit composition of Chardonnay
and Cabernet franc grapevines in Ontario, Canada. Am. J. Enol.
Vitic 55(3): 253-264.
638

Documentos relacionados