Volume 84 · May 2008 International Journal for - ALU

Transcrição

Volume 84 · May 2008 International Journal for - ALU
Special 2008
The international aluminium extrusion industry
Pandolfo Alluminio –
A textbook extrusion
plant
High-tech ‘butterflies’
from Italy
Steinert: Separationsspezialist in der
Rohstoffwirtschaft
Hydro
Giesel Verlag GmbH · Postfach 120158 · D-30907 Isernhagen · www.alu-web.de – PVST H 13410 – Dt. Post AG – Entgelt bezahlt
OFFICIAL MEDIA PARTNER
Volume 84 · May 2008
International Journal for Industry, Research and Application
5
Detail of plant.
HDC Casting of oval billets.
Automatic infeed into
continuous homogenizer.
Profile Scrap
Remelt Plant
HDC Casting of round billets.
Leading technology in the aluminum casthouse.
There are many benefits in one-stop shopping –
even for industrial goods. Reliable, co-operative
planning, specifications, which meet exactly your
demands and individual service packages to operate
on first-class level throughout the whole lifetime of
the plant – this can be realized by one of the most
experienced suppliers: Hertwich Engineering.
Major benefits
Hertwich Engineering is dedicated to leading technology in the aluminum casthouse. We add value
by designing integrated turnkey solutions. From
melting and remelting to testing and packing. The
results are convincing: highest quality of products
at lowest cost-of-ownership. This has been proven
by numerous plants all over the world.
Profile Scrap Remelt Plant
Capacity 2,000 to 20,000 tons/year
Most efficient installation for recycling of
inhouse and purchased scrap
One single fully automated process, starting
with charging of scrap and finishing with
homogenized billets, ready for extruding
One to two operators only per shift
Special design for remelting painted scrap
available
Optionally equipped with vertical DC caster
More than 20 plants installed
MEETING your EXPECTATIONS
HERTWICH ENGINEERING GMBH
Weinbergerstrasse 6
5280 Braunau, Austria
Phone: +43 (0) 7722 806-0
Fax:
+43 (0) 7722 806-122
E-mail: [email protected]
Internet: www.hertwich.com
EDITORIAL
Volker Karow
Chefredakteur
Editor in Chief
Die europäischen
Strangpresser
– zwischen Erfolg
und permanenter
Herausforderung
European extruders
– between success
and a permanent
challenge
ALUMINIUM · 5/2008
Der europäische Strangpressmarkt
hat sich in den vergangenen Jahren
ausgesprochen positiv entwickelt. In
Deutschland ist die Produktion von
Press- und Ziehfabrikaten seit 2003
um mehr als ein Drittel gewachsen;
auch das Marktvolumen legt kontinuierlich zu. Das Erfolgsrezept der hervorragenden Marktstellung deutscher
Strangpresswerke sind die Rationalisierungsinvestitionen der Vergangenheit, die die Produktivität der Betriebe
drastisch gesteigert haben. Die Automatisierung der Produktionsprozesse
spielt in diesem Zusammenhang eine
wichtige Rolle: Sie ist inzwischen weit
vorangeschritten, wenngleich sicher
weitere Potenziale gehoben werden
können – sowohl hinsichtlich der
Maschinen- und Anlagensteuerung
als auch mit Blick auf eine flexible
Automatisierung des Materialflusses
von der Presse bis hin zum Versand.
Der Erfolg der deutschen Strangpresswerke ist auch den heimischen
Maschinenbauern zu verdanken, die
mit ihren innovativen Anlagenentwicklungen manchen Wettbewerbsnachteil eines Hochlohnlandes kompensieren helfen. Doch zeigt sich,
dass der Wettbewerbsdruck steigt und
Europa auch in diesem Marktsegment
zu einem einheitlichen Binnenmarkt
zusammenwächst, der keine Landesgrenzen mehr kennt. Mit GiA tritt
erstmals ein spanischer Strangpressausrüster mit einer Referenzanlage
erfolgreich auf dem deutschen Markt
auf. Eine Schwalbe macht bekanntlich noch keinen Sommer, aber ein
„Frühlingsbote“ ist sie allemal!
Außereuropäisch hat sich mittlerweile nicht nur in Asien, sondern auch
in der Golfregion eine leistungsfähige
Strangpressindustrie etabliert, die von
einem Bauboom getragen ist, der sich
nicht nur in spektakulären Prestigebauten zeigt. Die Strangpressen im
Mittleren Osten stammen vor allem
von europäischen Maschinen- und
Anlagenbauern und sind in der Lage,
auch technisch anspruchsvolle Profile
herzustellen, wie sie im modernen Automobil- und Maschinenbau verlangt
werden. Hier wachsen den europäischen Strangpressfirmen langfristig
Wettbewerber heran, die nur durch
innovationsgetriebene Investitionen
in Schach gehalten werden können.
In recent years the European extrusion market has undergone exceptionally positive development. In
Germany, since 2003 the production
of extruded and drawn fabricates has
grown by more than a third, and the
market volume is also increasing all
the time. The recipe for the outstanding market position of extrusion plants
in Germany has been rationalisation
investments carried out in the recent
past, which have drastically improved
the productivity of extrusion operations. In this connection the automation of production processes plays
an important part: in the meantime
this has made great advances, even
though there is certainly potential for
more, both in relation to the control
of plant and machines and with a view
to the flexible automation of material
flow, all the way from the press to
dispatch.
Thanks are also due to Germany’s
mechanical engineers for the success
of extrusion plants in the country.
Their innovative equipment developments help to compensate many
competition disadvantages of a country where labour costs are high. Yet,
it is clear that competition pressure is
increasing and in this market segment
too Europe is coalescing into a uniform
internal market which is no longer divided by national boundaries. GiA is
the first Spanish extrusion equipment
supplier that has successfully established a foothold in the German market with a reference plant. True, one
swallow does not make a summer, but
it is still a harbinger of spring!
Meanwhile, outside Europe efficient extrusion industries have been
established not only in Asia but also
in the Gulf region, where they are
supported by a building boom manifested not just by spectacular prestige
structures. The extrusion presses in
the Middle East come mainly from
European plant and machinery constructors and are well able to produce
even technically high-grade sections
of the type required for modern automotive and mechanical engineering.
In the long term this creates more
competition for European extrusion
companies, which can only be kept
in check by innovation-driven investments.
3
I N H A LT
EDITORIAL
Die europäischen Strangpresser – zwischen Erfolg und
permanenter Herausforderung ............................................... 3
A KT U E L L E S
Personen, Unternehmen, Märkte ............................................ 6
WIRTSCHAFT
18
Englischsprachige Artikel: s. nebenstehendes Verzeichnis
Aluminiumpreise .............................................................. 10
Produktionsdaten der deutschen Aluminiumindustrie .................. 12
Deutsche Stahl- und Metallverarbeitung in Europa führend ........... 14
Werkzeugmaschinenbau weiterhin auf Wachstumskurs ................ 14
S P E C I A L 2 0 0 8 : D I E I N T E R N AT I O N A L E
ALUMINIUM-STRANGPRESSINDUSTRIE
Englischsprachige Artikel: s. nebenstehendes Verzeichnis
Die Strangpresskonjunktur in Europa lebt von Innovationen .......... 26
GiA – Endlich eine Referenzanlage in Deutschland ..................... 32
3
Pandolfo Alluminio – Ein Presswerk wie aus dem Lehrbuch .......... 34
Die Strangpresskapazitäten in der Golfregion expandieren stark ..... 40
Weitere Strangpresslinie von SMS Meer für Presswerk
in Saudi-Arabien .............................................................. 42
Hightech-„Schmetterlinge“ aus Italien ..................................... 46
M A R KT U N D T E CH N I K
Steinert Elektromagnetbau – Separationsspezialist in
der Rohstoffwirtschaft ....................................................... 60
I N T E R N AT I O N A L E B R A N C H E N N E W S ................... 66
40
RESEARCH
Englischsprachige Artikel: s. nebenstehendes Verzeichnis
V E R A N S TA LT U N G E N
Englischsprachige Artikel: s. nebenstehendes Verzeichnis
Termine, Fortbildung ......................................................... 87
D O K U M E N TAT I O N
Neue Bücher ................................................................... 89
Patente ......................................................................... 90
46
Literaturservice ................................................................ 92
Impressum .................................................................... 113
Vorschau....................................................................... 114
Der ALUMINIUM-Branchentreff des
Giesel Verlags: www.alu-web.de
4
B E Z U G S Q U E L L E N V E R Z E I C H N I S . . . . . . . . . . . . . . . . . . . . . . . . . 96
ALUMINIUM · 5/2008
CONTENTS
EDITORIAL
European extruders – between success and a permanent challenge .. 3
NEWS IN BRIEF
People, companies, markets . . . . . . . . . . . . . . . . . . . ............................... 7
ECONOMICS
Alcoa’s move suggests possible play for Alcan asset ...................
Rio’s US$20bn aluminium price boost . . . . . . . . .............................
Brazilian aluminium market with new consumption record in 2007 ..
Aluminium processing equipment and technologies in China .........
Turkish aluminium producers are investing . . .............................
16
16
17
18
24
60
S P E C I A L 2 0 0 8 : T H E I N T E R N AT I O N A L
ALUMINIUM EXTRUSION INDUSTRY
European extrusion business innovation-driven .........................
Hydro advances extrusion position in Spain . .............................
GiA – At last a reference plant in Germany . .............................
Pandolfo Alluminio – A textbook extrusion plant ......................
Extrusion capacities in the Gulf region expanding rapidly .............
Another SMS extrusion line for an extrusion plant in Saudi Arabia ..
High-tech ‘butterflies’ from Italy . . . . . . . . . . . . . . .............................
Trends and perspectives in the automation of aluminium extruders ..
Trends and perspectives of the aluminium extrusion industry in India
26
30
32
34
40
42
46
50
56
M A R K E TS A N D T E CH N O LO GY
Steinert Elektromagnetbau – Separation specialist in the
raw materials economy . . . . . . . . . . . . . . . . . . . . . . . . . ............................. 60
C O M PA N Y N E W S W O R L D W I D E
Aluminium smelting industry . . . . . . . . . . . . . . . . . . .............................
Bauxite and alumina activities . . . . . . . . . . . . . . . . . .............................
Recycling and secondary smelting . . . . . . . . . . . . .............................
On the move. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .............................
Aluminium semis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .............................
Suppliers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .............................
66
69
71
71
72
73
RESEARCH
Metal science view on aluminium alloys extrudability .................. 74
UC Rusal – Technology and innovative research project ............... 79
Functional development of the tooling for providing expansion
of the indirect extrusion usability . . . . . . . . . . . . . ............................. 80
EVENTS
ALUMINIUM China – Countdown has started ........................... 86
ET ‘08 . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................. 87
Dates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................. 87
D O C U M E N TAT I O N
New books . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................. 89
Literature service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................. 92
Imprint . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................ 113
Preview . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ............................ 114
This issue contains
an enclosure from
Euroforum
Deutschland GmbH
to which we draw
your kind attention.
Inserenten
dieser Ausgabe
List of advertisers
Astech Angewandte Sensortechnik GmbH
Böhler Edelstahl GmbH & Co. KG, Österreich
Coiltec Maschinenvertriebs GmbH
Drache Umwelttechnik GmbH
Fata Hunter, Italien
Haarmann Holding GmbH
Hengen Ingenieurbüro GbR
Herrmann + Hieber GmbH
Hertwich Engineering GmbH, Österreich
I.A.S. GmbH + Co. KG
Inotherm Industrieofen- und
Wärmetechnik GmbH
Kasto Maschinenbau GmbH & Co. KG
Oilgear Towler GmbH
OMAV Spa, Italien
Pulsar Welding Ltd, Israel
Reed Exhibitions China Head Office
Reisch Maschinenbau, Österreich
Seco/Warwick S.A., Polen
S+C Märker GmbH
SMS Meer GmbH
Steinhoff GmbH & Cie OHG
Trevisan Cometal Spa, Italien
9
55
15
41
37
25
53
15
2
19
39
65
17
31
23
27
49
21
49
116
29
11
S O U R C E O F S U P P LY L I S T I N G . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
ALUMINIUM · 5/2008
5
AKTUELLES
Aluminium-Aerosoldosenkonjunktur in Bestform
Auch außerhalb des Schlüsselmarktes
Kosmetik werden ideenreiche Innovationen präsentiert. So wurde für
die Marke Odol eine Spraydose für
Zahnpasta entwickelt. Reiner Stickstoff presst auf Druck das feine Gel
aus dem Behälter. Ein Aluminiumbeutel in der Dose sorgt dafür, dass
Füllgut und Treibmittel voneinander
Euro Fine Foods
Im vergangenen Jahr ist der weltweite
Absatz von Aluminium-Aerosoldosen
ungebremst auf ein neues Rekordvolumen von rund 5,3 Mrd. Einheiten
gewachsen. Dies entspricht einem
Wachstum gegenüber dem Vorjahr
um kräftige elf Prozent. Der Anteil von
Aluminiumdosen an der weltweiten
Aerosoldosenproduktion (12,7 Mrd.
Einheiten) liegt bei 41 Prozent. Bis auf
Asien konnten die Ablieferungen in
alle Kontinenten gesteigert werden.
Erneut war der Kosmetikmarkt
die treibende Kraft der Expansion. 80
Prozent der Verkäufe gehen in dieses
Marktsegment. Die übrigen 20 Prozent der Ablieferungen entfielen auf
Haushalts- und chemisch-technische
Produkte (7%), Pharmazeutika (5%),
Lebensmittel (3%) und sonstige Produkte (5%).
Die Hauptabsatzmärkte in der
Kosmetik waren 2007 Deodorants
mit einem Anteil von 45 Prozent an
den gesamten Ablieferungen. Die
lebhafte Nachfrage der kosmetischen
Industrie war vor allem getrieben
von einem sich verstärkenden Trend
zu geformten Dosen, die für mehr
Ergonomie und einen unverwechselbaren Auftritt der Marke am Point
of Sale sorgen. Hier können der gut
verformbare Werkstoff Aluminium
und das flexible Fertigungsverfahren
des Fließpressens ihre Vorteile voll
ausspielen.
getrennt bleiben. Die Paste kommt vor
dem Austritt aus der Dose nicht mit
Außenluft in Berührung und bleibt
somit keimfrei. Auch Speiseöl kommt
seit neuestem aus der AluminiumAerosoldose. Hier hat die Firma Euro
Fine Foods mit ihrer leichten, schlank
geformten „Less Cal Easy Action Cook-
ing“ Spraydose eine Symbiose aus
Verpackung und kalorienreduziertem
Produkt kreierte.
Solide Auftragseingänge im ersten
Quartal 2008 verheißen ein weiteres
erfolgreiches Jahr für die Branche. In
Europa und Südamerika hält das gesunde Wachstum an und sorgt für sehr
gut ausgelastete Kapazitäten der Hersteller. In Osteuropa, insbesondere in
Russland, wo die Reallöhne auf breiter Front steigen, gibt es gute Chancen
für Premiumprodukte im Bereich der
Fast Moving Consumer Goods. Aluminium-Aerosoldosen, die vor allem
das Premium-Segment ansprechen,
werden von diesen Entwicklungen
profitieren. Auch in Asien, wo der
Gebrauch von Deo-Aerosoldosen
längst nicht so weit verbreitet ist wie
in Teilen Südamerikas oder in Europa, werden von Markenherstellern
große Marketinganstrengungen unternommen, um dieses Produkt bei
asiatischen Verbrauchern salonfähig
zu machen. Hier schlummert ein enormes Wachstumspotenzial, das die
Branche in Zukunft heben will.
Belastend wirken die hohen Aluminium- und Energiepreise. Zusammen mit den immer kürzeren Produktlebenszyklen und der gestiegenen Fertigungskomplexität durch aufwändige
Formgebungen und Drucktechniken
entsteht einen Margendruck, den die
Branche zu kompensieren hat.
Reed Exhibitions erweitert Messe-Reihe
ALUMINIUM Dubai 2009
Nach China, Indien und Brasilien
geht die ALUMINIUM-Messereihe
von Reed Exhibitions ab 2009 auch
in Dubai mit einer eigenen Veranstaltung an den Start. Aufbauend auf der
bisher größten Branchenmesse des
Mittleren Ostens, Alumex, will sich
die ALUMINIUM Dubai mit einem
verbesserten Konzept auf die dynamischen Perspektiven der Aluminiumindustrie in dieser Region ausrichten, indem sie die globalen Zulieferer
von Produkten und Technologien mit
6
internationalen Käufern und regionalen Investoren zusammenbringt.
Die Ausstellungsfläche der ALUMINIUM Dubai soll deutlich vergrößert,
die Internationalität ausgebaut und
das Erscheinungsbild aufgewertet
werden. Die Alumex fand zuletzt mit
rund 100 Ausstellern auf einer Fläche
von über 3.000 qm statt.
Vergleichbar zur ALUMINIUM
in Essen soll die Messe in Dubai die
gesamte Wertschöpfungskette der
Branche abbilden. Sie erweitert das
globale Programm der ALUMINIUM
um einen weiteren wichtigen Wirtschaftsstandort: Im Golf werden derzeit große Aluminiumhütten gebaut;
auch Dubai ist ein aufstrebender
Markt für die Herstellung und Verarbeitung von Aluminium. Der derzeitige Weltmarktanteil der Aluminiumproduktion in den Golfstaaten beträgt
vier Prozent und soll bis 2010 auf
zehn Prozent ansteigen. Die Messe
findet vom 29. bis 31. März 2009 im
Dubai World Trade Center statt.
ALUMINIUM · 5/2008
NEWS IN BRIEF
Record production levels in the European tube industry
of tubes supplied to the dental care
and pharmaceutical industries is 22%
and 20% respectively. The remaining
etma
In 2007, the manufacturers of flexible
aluminium, plastic and laminate tubes
broke through the 10 billion barrier
of tubes produced for the first time.
With a total of 10.1 billion tubes, the
industry recorded growth of approx.
2%. The volume of the total European
market is estimated to be roughly 13
billion units.
With a 42% share of total production, aluminium tubes retain their
leading position, followed by plastic
tubes with 30% and laminate tubes
with 28%.
The markets for cosmetic, pharmaceutical and dental care products remain the most important market areas
for tubes. These three key markets account for 86% of total production, with
the cosmetics market – with a share
of around 43% – representing by far
the strongest market area. The share
15% are used for food, household and
chemical/technical products.
In 2007, the tube industry once
again benefited from the vigorous
demand from the cosmetics industry, which is increasingly focusing on
tubes for the packaging of products.
“There is a trend towards high-quality finishing, which can be seen in sophisticated closure caps, embossing,
special shapes and the combination
of different printing processes”, says
Gregor Spengler, Secretary General
of etma (European tube manufacturers association).
The European tube industry is expecting market growth to continue in
2008. Production capacities continue
to be well or even very well utilised,
with the result that delivery times for
individual tube diameters and specifications may be as long as 12 weeks.
Hydro
Hydro to invest in recycling at Alunorf
Aerial view of Alunorf
Hydro will invest 14.3 million euros
in a new aluminium recycling furnace
in Germany, with an output capacity
of 50,000 tonnes per year. The twinchamber furnace will be part of a new
recycling centre at Alunorf, a joint
venture between Hydro and Novelis
in Neuss.
Alunorf has applied to local authorities for permission to build and
ALUMINIUM · 5/2008
operate the new facility alongside the
existing complex for aluminium rolling and remelting, the world’s largest
of its kind. Upon approval, construction can start this summer, with the
first metal expected to be produced in
2010. Hydro plans to feed the centre
with a mix of used product returns
and process scrap from customers
and its own fabrication facilities.
“Due to its various application benefits, the demand for aluminium is
continuously growing. Today, most
aluminium fabricated in Europe is already recycled metal. By adding further capacities, we open up for ever
new life-cycles”, said Oliver Bell, head
of Hydro’s Rolled Products sector.
In 2007, Hydro inaugurated a
recycling furnace at its primary aluminium plant in Neuss, located next
to Alunorf. In addition, a similar
furnace is under construction at the
rolled products plant in Hamburg.
“The new recycling centre at Alunorf
will strengthen the viability of this
plant with its more than 2,100 jobs
and further improve the leading performance of our aluminium cluster
with the primary plant in Neuss and
our rolled products plant in Grevenbroich”, added Bell.
The complete concept envisages a
capacity of about 150,000 tonnes per
year. The total investment by the joint
venture partners would be about 36
million euros and the project would
utilize world-class environmental
technology.
7
AKTUELLES
Umstrukturierung und Zuwachs bei Honsel
Seit dem Sommer 2007 wurde
eine gesellschaftsrechtliche Umstrukturierung der deutschen
Honsel-Gruppe durchgeführt und
zum 1. April 2008 abgeschlossen.
Mit dem Abschluss dieser Umstrukturierung führt die Honsel
AG als Obergesellschaft unmittelbar die deutschen Profitcenter und
hält gleichzeitig die Beteiligungen
an den ausländischen Tochtergesellschaften. Diese Aufgaben nahm
bisher die Honsel GmbH & Co. KG
wahr, die mit Ablauf des 31. März
2008 erloschen ist.
Der Weg zur Honsel AG wurde in folgenden Schritten herbeigeführt: Zum
September 2007 wurde die zuvor
beschlossene formwechselnde Umwandlung der Honsel Holdings Germany GmbH in die Honsel AG wirksam, die zu diesem Zeitpunkt eine
reine Holdingfunktion ausübte. Mit
Wirkung vom 5. Februar 2008 wurde
die Honsel Management GmbH auf
die Honsel AG verschmolzen. Ebenfalls mit Wirkung vom 5. Februar
2008 wurde die Honsel Leichtmetall
GmbH & Co. KG auf die Honsel AG
verschmolzen. Per 1. April 2008 erfolgte dann die „Anwachsung“ der
Honsel GmbH & Co. KG auf die Honsel AG und damit der letzte Schritt der
Umstrukturierung. Mit diesem Schritt
Die neue Struktur der Honsel-Gruppe
erlosch die Honsel GmbH & Co. KG
und die Honsel AG trat als Gesamtrechtsnachfolgerin in die Rechte und
Pflichten der Gesellschaft ein.
Der Grund für die beschriebenen
Umstrukturierungsschritte liegt im
Wesentlichen in einem einheitlichen
und transparenten Marktauftritt begründet. Honsel tritt nunmehr in
Deutschland, und als Konzern auch
weltweit, als Honsel AG auf. Die
Tochtergesellschaften im Ausland
bleiben dabei unter ihren bisherigen
Firmierungen ebenso bestehen wie
die deutschen Profitcenter.
Tafime-Gruppe erworben
Um seinen Kunden die geforderte
Unterstützung im Umfeld von deren
Fertigungsstätten anbieten zu können, hat Honsel sich verstärkt. Seit
Dezember 2007 gehört die TafimeGruppe mit Produktionsstandorten
in Spanien und Mexiko zum Konzern.
Tafime ist ein Aluminium-Druckguss-Unternehmen mit AutomotiveKunden in Europa, Nordamerika und
Asien. In geringerem Umfang werden
Produkte im Kunststoffspritzguss für
die Telekommunikationsindustrie gefertigt.
Auch in Osteuropa wird Honsel
künftig vertreten sein. In Rumänien
arbeitet ein Team des Unternehmens
mit Hochdruck am Aufbau eines Kokillenguss-Werkes „auf der grünen
Wiese“.
Ein außerordentliches Jahr für Constantia Packaging
Die österreichische Constantia Packaging wächst in neue Dimensionen.
Das betrifft sowohl die strategische
Entwicklung des Konzerns als auch
das Zahlenwerk, in dem sich der positive Geschäftsverlauf 2007 widerspiegelt. Hauptgrund dafür war die Erhöhung des bereits 2004 erworbenen
25%-Anteils an der Austria Metall AG
(Amag) auf insgesamt 73,45 Prozent.
„Mit dieser größten Einzeltransaktion in der Geschichte der Constantia Packaging AG sicherten wir uns
nicht nur einen wichtigen Vormateriallieferanten für das flexible Verpackungsgeschäft, sondern diversifizierten uns erstmals über den reinen
8
Verpackungsbereich hinaus“, erklärt
Vorstandssprecher Hanno Bästlein.
Der Umsatz der Gruppe stieg
2007 um 48 Prozent auf 1,57 Mrd.
Euro, das operative Ebitda kletterte
auf 253,7 Mio. Euro (+ 81%), das Konzernergebnis (ohne Anteil Minderheitsgesellschafter) verdoppelte sich
auf 105,1 Mio. Euro. Die ausgezeichneten Ergebnisse sind nicht nur auf
die Neuerwerbungen zurückzuführen. Auch die bereits bestehenden
Konzerntöchter trugen zum besten
Ergebnis der Gruppe bei.
Das ab dem 4. Quartal 2007 voll in
den Konzernabschluss konsolidierte
Aluminiumsegment erwirtschaftete
13,4 Prozent, die Bereiche Wellpappe
und Flexible Verpackung 20,9 bzw.
65,7 Prozent des Konzernumsatzes.
Bei ganzjähriger Konsolidierung läge
der Aluminiumanteil bei rund 42 Prozent (Wellpappe 14%, Flexible Verpackung 44%) am Gesamtumsatz.
Das laufende Jahr steht im Zeichen
der Konsolidierung und Integration
der Neuerwerbungen, außerdem soll
die Präsenz auf den Emerging Markets
Zentral- und Osteuropa, Mittel- und
Südamerika sowie Asien ausgebaut
werden. Des Weiteren sind die Schaffung eines netzartigen Produktionsstättenverbundes und umfangreiche
Investitionen in die Werke geplant.
ALUMINIUM · 5/2008
Rio Tinto Alcan recently announced it
had begun to develop the next generation of its AP Technology series. This
new technology, called AP-Xe, will be
developed in phases, including a potentially workable ‘drained cathode’
that, taken together with other portfolio technologies under development,
could result in a lowering of unit energy consumption by up to 20%. This
technology is designed to be retrofitted to previous AP series cells. While
the maximum energy consumption
savings are expected from greenfield
applications, significant savings could
also be achieved in retrofitted cells.
Drained cathode cells are already
under test on an industrial scale and
the immediate next phase will be the
progressive start-up of a 10-cell AP30
test section at Rio Tinto Alcan‘s site in
St-Jean-de-Maurienne, France. If successful, an industrial scale-up of this
aluminium technology could begin
within five years.
“While we continue to develop and
improve our highly successful AP30
aluminium technology platform and
move forward with the recently an-
nounced pilot for AP50 in Quebec,
Canada, we are devoting a large portion of our R&D to the development of
future generations of our AP Technology”, said Jacynthe Côté, President of
Primary Metal at Rio Tinto Alcan.
With approx. 7,500 AP Technology
cells in operation around the world
today, representing some 6m tonnes
of installed capacity, AP Technology
is a global leader. Facilities reaching
close to a million more tonnes are
under construction with, in addition,
several million tonnes in various stages of evaluation, either internal to Rio
Tinto Alcan or with potential partners
or licences.
“In a world increasingly concerned
with climate change and the environmental impact of industrial growth,
this new technology promises a potential breakthrough. The development of a greener, more energy efficient production process, combined
with aluminium’s well-established
attributes such as light weight and
recyclability, makes for a winning
combination”, stated Côté.
Non Contact Measurement with Light
Rio Tinto Alcan developing new
generation of its AP smelting technology
Velocity + Length
NEWS IN BRIEF
Vimetco and InterAgro establish joint venture
Vimetco N.V. and InterAgro SA have
announced the incorporation of a
joint venture to support the construction of a power plant in Romania. The
new company, to be called TM Power
SA, will focus on implementing a coalfired power plant with a capacity of
1,000 MW near Turnu Magurele. The
industrial site, operated before the
implementation of the
project by a subsidiary
of InterAgro, is ideally located along the
Danube river, 90 km
southeast of Slatina.
Vimetco’s local operations, Alro SA, and
InterAgro SA are both
major power consumers in Romania. Alro’s
constant energy consumption
amounts Alro casthouse
ALUMINIUM · 5/2008
to approx. 450 MW electricity. The
project will start this year, and the first
power will be available by the end of
2012. Vimetco NV and InterAgro SA
will each have a 50 percent ownership
stake in TM Power SA.
Commenting on the agreement,
Christian Wuest, CEO of Vimetco,
said: “The joint venture marks Vimetco’s first strategic
partnership to enter
the Romanian energy
market. TM Power
SA shows our commitment in pursuing
the vertical integration strategy and thus
securing
electricity supplies for Alro’s
aluminium smelter in
Slatina.”
%!" ' #
)*
$( & '
photo: Vimetco
9
WIRTSCHAFT
10
ALUMINIUM · 5/2008
WIRTSCHAFT
Produktionsdaten der deutschen Aluminiumindustrie
Primäraluminium
Sekundäraluminium
Walzprodukte > 0,2 mm
Press- & Ziehprodukte**
Produktion
(in 1.000 t)
+/in % *
Produktion
(in 1.000 t)
+/in % *
Produktion
(in 1.000 t)
+/in % *
Produktion
(in 1.000 t)
+/in % *
Feb
37,1
-4,1
71,1
9,2
154,7
-2,5
49,9
8,3
Mrz
41,5
-3,8
75,2
-4,7
177,1
-0,6
54,7
5,3
Apr
41,8
-1,4
67,0
7,1
158,1
6,0
47,3
10,5
Mai
46,4
7,0
71,4
5,0
166,5
-2,5
50,8
2,2
Jun
46,5
7,8
73,6
12,0
164,8
0,7
51,7
8,1
Jul
48,7
8,1
72,5
13,2
167,1
1,5
53,3
9,8
Aug
49,0
8,5
63,5
6,7
164,6
-1,1
51,5
7,2
Sep
47,0
9,8
69,7
4,1
156,7
-2,3
50,2
-1,8
Okt
50,2
13,8
74,1
14,1
170,7
0,4
55,4
6,0
Nov
49,7
18,5
73,0
0,0
155,8
-4,9
53,7
3,1
Dez
52,2
21,9
53,9
-12,4
119,1
-4,1
30,9
-10,6
Jan 08
52,8
28,9
61,7
-12,7
154,3
4,4
51,4
0,6
Feb
49,4
33,0
#nv
#nv
159,2
2,9
53,1
6,4
* gegenüber dem Vorjahresmonat, ** Stangen, Profile, Rohre; Mitteilung des Gesamtverbandes der Aluminiumindustrie (GDA), Düsseldorf
Primäraluminium
Walzprodukte > 0,2 mm
12
Sekundäraluminium
Press- und Ziehprodukte
ALUMINIUM · 5/2008
Die offiziellen Messezeitungen zur
ALUMINIUM 2008 Essen –
jetzt in Deutsch und Englisch:
OFFICIAL MEDIA PARTNER
Aluminium Praxis und
APT Aluminium News
Giesel Verl
ag Gmb
H • Post
fach 12
01 58 •
30907 Iser
--,.
#23-3-63,
-23-3-
-23-3
3,-$30
+,)8,-
-23-3-
3
,25-3-
#23-3-6
-,.+
#23-3-63,OFFICIAL MEDIA
PARTNER
&/5
5
556421,0*6
-&/(25** -.1&+241*:6;*&4
)*0&1).1
7-)
2 )3- 32
2
2-32
4)
5,
5 +-3--2-4-
3 )3
)
,
Entgelt
34- 3 +2-
bezahlt
3)3-,
4&/
-)232
-)23 -)
-2 -5+))+
547
3
-2
4-3-
-.1&'*(20*5
37
37 23)3
.
.1,
-)
)
21,2
9
6-.*4
9*&/
-63
-6 35 7-)2 )
4'7./).1,
-64;
)*0&1)+2
34-7
34- 323+ -7-)23
=*647+884
*/3
33-4
2/3/92
+-2
0&6*4.&/59.//'7-14('1'19
32-4-
*6&/5
3-72
3- , -3)
-2: 2),
)425'3=
-.1&5'&5*0
+2
&;56421,
,-
, 3 3-
'0+7
23-,
1)56
3/922
-),2
)*0&
192/
5 )2
(&)*
')
'
64'*7
)
3+;'984/3
+24&6/*&56&)*
0&1
-23-
32
/3:+78/-'8+
)+
4 3 &%
024*6-*-&.4
.5/11/843
"3
"3,
&/(2
6+*72+18+6
.=*6454;+
&% .),
&1) 2+
51'38/3#
.
5&.)
-,+
)
,
19645+'3
.
,+32
4697847+1
)3- )
,
'387
-
-.7 2- 5)23-5 22
22
)
'192/3/9251
)2-
- )3-
)2
.--
2-.
3 (
)
6/)/8=
) )2 0
5
3 +
.23)0-
)7
/-.+6+1+)8
*&234&)
-223-- 32
7
.
*-.
.3 .!
.23
*7
.)+
3
/3+7+4&*/5
*
3
+ 2 ,4-2
+
)4787,46.
27-)
)
, )-
4&G4%&2
34&2
52 3-
)+2
-
33
-3)2
(
)8)3
32)
OFFICI
-&%*
+
,23
AL
A MEDIA
-
%*&/4%*
67
67
)3!
))
)
,
72+18+
PARTN
32
&14*,) (-*$)%"95
ER
-, 2)-2+2-,
)33-
)2 -,
3 3 23)*8* )4
*&234&)4
534&24&
'%
&*/
G45/%3
$+
07&*4&2
/
*%
/
"(''
&2#00.
nhagen
• Deutsch
e Post AG
• PVST H
41947 •
.
.
+,'
&
Wichtige Information für alle Aussteller der ALUMINIUM 2008.
Erstmalig erscheinen zum weltweiten Branchen-Highlight
ALUMINIUM 2008 in Essen zwei offizielle Messezeitungen –
in Deutsch und Englisch.
Was genau ist geplant?
,+(
#*2(4':2 &/%&0-"2."2,4
%*&
*/%5342*& -5.*/*5. 5/%%"3
#&*4&/%&
6&2"2
5'42"(3 "/%7&2,(54&
$)"/$&/
F&2,340
&2-&*$
''%*
9")-2&*$) &/4"-3"3*3 )4&
':2
"33"%&/ &/7&/%5/(&/B
,0/3425,
-&*$)4&5
/%)"-4# 4*0/&/
%&2':2%
"2&4</
*&&'&3
0-"2.0
4*(5
%5-&/(" /(60/
"/-"(&/
0%&2"./9&"$)
.&/4&%
*&%&2& &--&/&-&
602(&3&4
947&2%& #<5%&):--&
&*/*(&
/3*/%/
&*31*&-&
52
#
&,)+
%*
0-"2"/-"(
&/)"#&/
%&/-&494
3*$)*/
&/")2&/
.&)295
*..&2
,-"2&/"
*/ %&2 12*6"
602*4
/5/( &/47 4&/ /&2(*&(& &/
7*/
34&*(&/% *$,&-4 &9*&-4&
&/&2(*&
5/%
%"95 3*$
,034&/)"
)&2 /*$)
4 5/&2)&#-#&/
#&*(&42"(
'*
&/&#&/
!&
*$)
-&/ /43
%&22"4*0
!
$)&*
%%!
12&*37&24& %5/( ':2 3"5# /"
6"4& "5
"" %
&2&
&
%&2 F5/ /&2(*& 31*&-4
-"/% (&7*3)"-4& */ &5
%%&
"5$)
43$)
3$) /"$)
(%
/%*6*%5
*)2&/ 420 //&/ .*44-&27& "5'*-*9*5
3*$)4
(%'
#"2&2
"-*4<45/
.#"3*3*/
%
!
%95
&/4*&24&2
"5$) *. . "53 %&2 0//*-&
1"//5/(
&-&,42*3$)&
%
2$)*4&,4 ,5/'4302*
.
5.7"/
0-"23834
$)& 420 &2 .&)2 (&7& &
52&*/&D
30-$)&
&/4312*$)
&.&
0--&
/52 9&)/ %&-/ */&
2#-*
4
%&2 &34 3&49&/!&*$)
3*$) %"3 ."/#*&4&2 ."$
0%5-'-<
%&/ -&494 "33 0-"23420
&/*/
.
$)& ,"// . (20=&
)&/
&/")2&/
"-45/
/&2
(*&1
(
F0)/
0//&
30//*(&/
9&*4(&.<
(&3".47
#*3 "5'& */
5/%
95/549& 04&/9*"- %&2
0..&24 "/ &*/&.
*243$)"'4*$)4 /52 &3$)<'43(&# =&2
/&/ 3*$)
"95 #&%*
*-07"44
*$) #&%* */&
4"(/"4*0
0-"23420 "( &47" &*/
%*& 549
/
/(4&
&
:#&2 <5%&
)04060
")2 3*/%
.-*&'&2/
"/ &-*& *. ")2 12*
-4"*,/- &2 .0%&2/&2
34&4*(
#4)&*4 (&70
20
"(&/ %*&
/&/-*$)4
7"3 7*&% %"3 25/% -*&(4"/3
//&/
,F)
0/
)"4
&*/&
.*44&-3
&25.
25
E*
)
+
.*4$
)7&2
15/,4
0-"24&$)
/*,
!")-2&*$
.*4$
)&
)7&2
15/,4
"5'%&2 //06"4*0/&/
0-"24&$)
/*,
!")-2&*$
-5.*/*5
)&
.*/%5342*&
"5'%&2 //06"4*0/&/
7<$)34 &*$)4 -5.*/*5
.*/%5342*&
7<$)34&*$)4 C0#"12&
33
*&=6&2'
")2&/
C0#
"12&33
25$,(5
33B*.5
*&=6&2'
-"4*0/
31"24!&
")2&/
*45/%0
25
34&/ 0242<4
33B*.5
31"2$,(5
-"4*0/
4!&
25$,(5
*45/%0
33834&
34&/ 0242<4
.&
25$,(5
33834&
.&
,
% & !#
(!
Aluminium Praxis, seit vielen Jahren offizieller Medienpartner und bereits seit 2006 offizielle Messezeitung, wird zur
kommenden ALUMINIUM 2008 in Essen, wie gewohnt, eine deutschsprachige Messezeitungg zusammen mit
ebenfalls eine
herausgeben. Aufgrund des großen Zuspruchs werden wir diesmal zusammen mit
englischsprachige Messezeitung für unsere internationalen Besucher herausgeben – APT Aluminium News.
Und so profitieren Sie als Aussteller:
• Auflage 20.000 Exemplare / anstelle von 8.000 Exemplaren
• Versand an Besucher 2006 und Aussteller 2008 im Vorfeld
• Verteilung in teilnehmenden Hotels
• Verteilung durch Hostessen im Eingang und auf der Messe
• Auslage am Fachpressestand
• Serviceinfos
• Wichtige Infos der Veranstalter
Wir haben Interesse an Ihren Messezeitungen. Bitte nehmen Sie
Kontakt mit uns auf. Vielen Dank!
Firma
Name, Vorname
Straße
Da Ihre Zielgruppe auf der ALUMINIUM 2008 zu einer Zeit an
einem Ort ist, tendiert der Streuverlust Ihrer Werbung in unserer
Messezeitung gegen null!
Sie sehen, wir erhöhen den Service und behalten den
Preis: Es gelten natürlich die normalen Anzeigenpreise Ihrer
Fachzeitschriften (vgl. Mediadaten 2008).
Haben Sie Fragen zu unserem Service oder möchten ein
konkretes Angebot?
Postleitzahl, Ort
Telefon
Fax
E-Mail
Bemerkungen
Bitte einfach das Formular ausfüllen. Gern geben wir Ihnen
auch telefonisch Auskunft unter:
+49-511 7304-142, Stefan Schwichtenberg
Ihr ALUMINIUM 2008 Messezeitungs-Team
Giesel Verlag GmbH
Postfach 120158
D-30907 Isernhagen
Tel. +49 511 7304-142
Fax +49 511 7304-157
[email protected]
www.giesel.de
WIRTSCHAFT
Deutsche Stahl- und Metallverarbeitung in Europa führend
Die deutsche Stahl- und Metallverarbeitung nimmt eine führende
Position in Europa ein. Mit gut 22
Prozent stellen die heimischen
Produzenten den größten Anteil
am europäischen Gesamtumsatz, gefolgt von Italien mit rund
20 Prozent. Mit 120 Mrd. Euro
Umsatz erzielten die deutschen
Unternehmen der Stahl- und Metallverarbeitung einen weiteren
Rekordwert.
Die dynamische Entwicklung ist dabei
sowohl auf das überdurchschnittliche
Wachstum automobilnaher Bereiche
als auch auf den Ausbau der Exporte
zurückzuführen. So zentrale Aussagen eines Branchenberichtes der IKB
Deutsche Industriebank.
Dabei zeigt sich einmal mehr die
Bedeutung des Euroraums für die
deutsche Exportwirtschaft. Wenngleich die USA, China und Russland
wichtige Handelspartner außerhalb
Europas sind, gehen über 50 Prozent
der deutschen Exporte in die EU-15
und rund 70 Prozent in die EU-25.
Der Branchenreport beleuchtet vor
allem die Verarbeitung von Stahl und
NE-Metallen zu Draht und Rohren,
das sind Segmente, in denen Stahl
und Kupfer eine dominierende Rolle
spielen. Mit Blick auf das Leichtmetall Aluminium sind die Aussagen
zur Werkstoffsubstitution interessant.
Demnach wird sich die Konkurrenz
metallischer und nichtmetallischer
Quelle: IKB-Auswertung von Jahresabschlüssen mittelständischer Unternehmen
Werkstoffe untereinander wie auch
die Konkurrenz der entsprechenden
Verarbeitungsverfahren wie Gießen
oder Umformen weiter fortsetzen. Neben der notwendigen Gewichtsreduzierung von Fahrzeugen rücken dabei
Aspekte wie Preisentwicklung, Nachhaltigkeit und Recyclingmöglichkeiten
stärker in den Vordergrund.
Im Fahrzeugbau werden Eisen und
Stahl, auf die etwa 70 Prozent des
Fahrzeuggewichts entfallen, zwar die
dominierenden Werkstoffe bleiben,
aber insgesamt etwas an Bedeutung
verlieren. Allerdings sollten vor allem
höher- und hochfeste Stahlsorten, die
eine Verringerung der Blechdicke bei
gleichen mechanischen Eigenschaften
ermöglichen, stärker expandieren.
Aluminium als zurzeit zweitwichtigster metallischer Werkstoff im
Fahrzeugbau wird der Studie zufolge
ebenfalls an Bedeutung gewinnen.
Vor allem die Entwicklung von Legierungen zum Beispiel mit hoher Festigkeit und Temperaturbeständigkeit
für Dieselmotoren, Anwendungen im
Karosseriebau oder im Antriebsstrang
könnte weitere Marktanteilsgewinne
mit sich bringen. Langfristig sei die
Verwendung von Verbundwerkstoffen aus konventionellen Werkstoffen
(Aluminium, Stahl, Magnesium, Titan,
Polymere, Keramiken) denkbar. Kohlefaserverbundwerkstoffe (CFK), die
immer häufiger im Flugzeugbau eingesetzt werden, dürften auch im Fahrzeugbau Anwendung finden.
N
Werkzeugmaschinenbau weiterhin auf Wachstumskurs
In einem weiteren Branchenreport
über den deutschen Werkzeugmaschinenbau prognostiziert die IKB
Deutsche Industriebank für das
Jahr 2008 ein Wachstum von zehn
Prozent. Damit kann die Branche
ihr dynamisches Produktionswachstum der letzten Jahre fortsetzen; an den 16 prozentigen Zuwachs von 2007 reicht sie jedoch
nicht heran. Ab 2009 erwartet die
IKB einen Übergang in den normalen längerfristigen Branchenzyklus, wobei temporär auch ein
14
spürbarer Nachfragerückgang
möglich sei.
Die spanenden und abtragenden
Maschinen
(Bearbeitungszentren,
Fräsen, Dreh-, Schleif-, Verzahn- und
Erodiermaschinen) stellen zusammen mit den Lasern 70 Prozent des
Branchenumsatzes von 2007. Pressen,
Stanzen, Schmieden sowie Biege- und
Drahtbearbeitungsmaschinen machen
die restlichen 30 Prozent des Produktionsvolumens aus. Der Branchenumsatz betrug 2007 9,4 Mrd. Euro.
Die Betrachtung einzelner Absatzmärkte zeigt sich, dass China nunmehr im vierten Jahr hintereinander
die meisten Werkzeugmaschinen aus
Deutschland importiert; wesentlicher
Abnehmer ist die dortige Automobilindustrie. Dagegen gingen die amerikanischen Importe aus Deutschland
im letzten Jahr nochmals erheblich
zurück, nicht zuletzt aufgrund des
schwachen Dollars.
Es sind vor allem die Technologieführerschaft der deutschen Hersteller von Werkzeugmaschinen und die
ALUMINIUM · 5/2008
ALUMINIUM · 5/2008
! " !!!"##
"
hohe Produktivität ihrer Produkte, die
die hervorragende Positionierung der
Branche auf dem Weltmarkt begründet. Die deutschen Branchenhersteller haben mit über 500 zum größten
Teil exportstarken mittelständischen
Unternehmen und rund 65.000 Mitarbeitern einen Anteil an der Weltproduktion von Werkzeugmaschinen, der
bei circa 17 Prozent liegt. Sie befinden
sich damit vor China an zweiter Stelle
hinter dem Spitzenreiter Japan.
Asien ist inzwischen zum größten Markt für Werkzeugmaschinen
aufgestiegen und gewinnt damit als
Produktionsstandort zunehmend an
Bedeutung. Während die chinesische
Fertigung vorwiegend noch im unteren Technologiesegment angesiedelt ist, setzt Japan auf kontinuierliche
Technologieoffensiven – ähnlich der
Strategie der deutschen Hersteller.
Taiwan und Südkorea optimieren
ihre Produktion von Standardmaschinen und bewegen sich in Richtung
des oberen Technologiesegments. Die
erhöht den Druck auf die deutschen
Hersteller erheblich.
Die Branchenhersteller
aus
den USA haben
dagegen am wenigsten vom aktuellen Nachfrageboom profitieren können. Bis
auf einige Hersteller von HighEnd-Lösungen
leidet das amerikanische Angebot an Werkzeugmaschinen
noch immer an
den Folgen der
wenig
erfolgreichen
Standardmaschinenstrategie der vergangenen Jahre.
Eine hohe Nachfrage nach deutschen Werkzeugmaschinen kommt
aus Mittel- und Osteuropa. In Ländern wie Russland oder Tschechien
haben sich solide Maschinenbaumärkte entwickelt, viele europäische
Unternehmen haben ihre Produktion
in Länder wie Rumänien verlagert.
Für den gesamten deutschen Maschinenbauexport nach Russland rechnet
man bis 2015 mit einem jährlichen
Wachstum von 12 Prozent.
Für 2009 erwartet die IKB eine Abwärtsbewegung bei der Weltproduktion der Branche. Diese Einschätzung
stützt sich darauf, dass die Branche,
typischerweise phasenverschoben
um ein Jahr, dem Trend des allgemeinen Maschinenbaus folgt, für
den sich bei den Auftragseingängen
aktuell eine leichte Abschwächung
abzeichnet. Für die deutsche Werkzeugmaschinenindustrie wird 2009
ein temporärer Rückgang der Nachfrage erwartet, der als Übergang in
den normalen langfristigen Zyklus
der Branche gesehen wird.
N
WIRTSCHAFT
ECONOMICS
Alcoa‘s move suggests possible play for Alcan assets
Six months after it was spurned
at the altar, American aluminium
giant Alcoa Inc. has once again
crossed paths with Alcan, possibly
to take another run at the assets of
its long-time rival.
The world’s third-largest aluminium company is helping Aluminum
Corp. of China (Chinalco) to become
the largest shareholder of Rio Tinto,
Alcan’s new owner, after spending
US$14.06bn to buy 12% of the British-based Rio Tinto Plc. As a result,
Alcoa-Chinalco also own 9% of the
Australian-traded company Rio Tinto
Ltd. Alcoa loaned the Chinese firm
US$1.2bn, which is eventually convertible into equity of Shining Prospect Pte, a Singapore company set up
specially to invest in Rio Tinto. Alcoa
and Chinalco insisted their move was
purely an investment and they had no
„current“ plans to bid for the world’s
largest mining company. The involvement of the American and Chinese
aluminium companies may compli-
cate or threaten BHP Billiton’s efforts
to purchase Rio Tinto. BHP raised its
offer after its first bid expired on Feb.
6 but may yet walk away. Alcoa and
Chinalco reserved the right to sell out
if another party entered a firm bid. An
ultimate change in owner would likely
have little or no impact on Alcan’s Canadian assets. Any owner of Alcan’s
Canadian assets will have to honour
agreements made to the Quebec and
federal governments.
Alcoa’s small stake in the purchase
suggests it’s not the leading force in
this strategic alliance. One of the ways
targets buy back large blocks of its
stock is to trade them for assets. Consequently, Rio Tinto may seek to repurchase Chinalco’s stake using cash
and some of its aluminium assets. Severe anti-trust issues would be raised
if Alcoa merged with Alcan and Rio
Tinto’s Comalco aluminium assets.
With few options to purchase a smaller
aluminium player, Alcoa may simply
be partnering with a larger company
that it has worked with before to help
consolidate the ever changing mining
and metals industry. In September
2007, Alcoa sold for US$2bn its stake
in Chinalco’s Chalco unit, for which it
had paid US$200,000 during Chalco’s
2001 initial public offering. Having
Alcoa on its side may also make the
Chinese ownership stake more palatable to western countries than if Chinalco had gone it alone.
There has been widespread speculation that China was looking for a
way to block the merger of BHP and
Rio Tinto, which it feared would allow
the behemoth to control prices of key
commodities by restricting supply.
Alcoa declined to refer specifically to
Alcan, saying the aluminium division
headquartered in Montreal is now
part of Rio Tinto. Last November, Rio
Tinto completed its US$38.1bn takeover of Alcan after Alcoa withdrew its
US$28bn offer for its Canadian rival.
The value of Alcan may be lower now
because of the impact of a surging Canadian dollar and lower aluminium
prices.
R. P. Pawlek
Rio’s US$20bn aluminium price boost
Anglo-Australian mining group
Rio Tinto is expected to raise
the stakes in its takeover battle
with mining giant BHP Billiton by
telling shareholders that its aluminium business is worth up to
US$20bn more than current estimates. Each 10 cent increase could
boost Rio’s earnings by about
US$500m.
vulnerable to a US down-turn, and
maintaining that Rio overpaid when
it bought Alcan for US$44bn. The
mooted BHP-Rio tie-up is the largest
of a series of mega mergers that could
transform the international mining
scene over the next 12 months.
When added to greater synergies from
the Alcan acquisition and forecasts for
higher global demand fuelled by China’s construction boom, the value of
the business could rise by US$20bn,
bullish analysts believe. A successful
reassessment of the aluminium business would follow a pattern Rio established when it revalued its iron-ore
division.
BHP has tried to attack Rio’s prospects on aluminium by saying its
exposure to North America made it
Rio is still considering the sale of
its aluminium packaging division to
ward off the takeover approach from
BHP. Rio which acquired the packaging division as part of its Alcan takeover has appointed investment bank
Morgan Stanley & Co to find a buyer
for the business and could decide to
break it up to make it easier for private
equity players to launch bids – not
least against the background of the
US financial crisis. Rio identified the
packaging division, which accounts
16
for 18% of Alcan’s group profits, as
one of US$15bn worth of businesses
that could be divested in a bid to win
shareholder support for its growth
strategy and defend itself from BHP
Billiton’s advances.
BHP underwriting US$55bn loan
Rio mulling again sale
of Alcan packaging assets
Meanwhile, BHP Billiton is talking to
sub-underwriting banks on a record
US$55bn loan to back its hostile bid
for rival Rio. BHP has mandated lead
arrangers Barclays, BNP Paribas,
Citigroup, Goldman Sachs, HSBC,
Santander and UBS who have approached around ten relationship
banks to sub-underwrite the loan.
Sub-underwriting banks are being
asked to commit US$2.5bn each, with
a view to holding around US$1.75bn
after wider syndication.
The large commitments are offset
by pricing of 50-60 basis points on
ALUMINIUM · 5/2008
ECONOMICS
the loan – double the 22.5 to 32.5 bps
paid by target Rio Tinto on the recent
US$40bn loan that backed its acquisition of Canadian rival Alcan.
Some US$40bn of BHP Billiton’s
record US$55bn loan will refinance
Rio Tinto’s loan and the remainder
will be new money to part finance a
US$30bn share buyback
Sizeable US$2.5bn commitments
could be difficult for banks facing
capital constraints due to the credit
crunch and increased funding costs,
and may also bump up against smaller
banks‘ legal lending limits of 10% of
their capital base.
Banks will, however, be keen to
lend to the world’s third-largest company in an environment of soaring
commodity prices, and the loan will
not be drawn until late 2008 or beyond
when the acquisition is complete.
The lending decision may also be
eased by favourable capital treatment
under the new Basel II accord. BHP
Billiton is targeting a high single-A
rating after the acquisition, which will
require banks to allocate less capital
against the loan. Around 30% of the
loan has a one-year maturity. The remainder carries three and five-year
tenors.
R. P. Pawlek
Brazilian aluminium market with new consumption record
The Brazilian Aluminum Association
(ABAL) has published the 2007 figures of the Brazilian aluminium market including a forecast of domestic
consumption for 2008.
The domestic consumption of
processed aluminium products in
2007 has shown growth for the
fourth consecutive year and closed at
918,900 tonnes, that is an increase of
9.7% compared to 2006. Sectors most
contributing to this growth were sheet
and foil, extrusion and castings. The
wire and cable sector was the only one
to present a decline in consumption,
due to postponement of investments
of the electrical industry in transmission lines and in the ‘Lighting for All’
programme. For 2008, ABAL expects a
new record, with domestic consumption of processed aluminium products
surpassing the landmark of one mil-
lion tonnes. If the
Products
2006
2007
2008*
+/- 07/06
forecast comes
310.7
361.6
405.7
16.4%
true, consump- Sheets & plates
283.3
331.6
372.0
17%
tion will reach Pure rolling
more than 1m Artifacts rolling
21.5
23.6
26.6
9.8%
tonnes (+11.9%).
Impacted product rolling
5.9
6.4
7.1
8.5%
As
ABAL’s
Foils
72.3
77.8
87.1
7.6%
President, Luis
Extrusion
136.8
155.0
170.0
13.3%
Carlos Loureiro
86.8
74.7
95.6
-13.9%
Filho, says, do- Wire/cables
157.6
167.7
177.4
6.4%
mestic consump- Castings
tion of alumin- Powder
24.4
29.5
34.7
20.9%
ium
products Destructive
36.9
40.3
44.8
9.2%
follows the curOthers
12.1
12.3
12.6
1.7%
rent economic
Total
873.6
918.9
1,027.90
9.7%
development
in the country, Domestic consumption of processed aluminium products in 1,000 t *forecast
which is one of
continuous GDP growth. Metal’s use
dustry were US$4.8 billion (+10.5%).
has grown at an average rate of 8.4%
In volume, exports of aluminium and
in the last five years. In 2007 export
its products amounted to 1,066,500
sales of the Brazilian aluminium intonnes (-0.4%) in 2007.
N
053,(%(,.5(345$5,10(036&-42(,&+(3!(05,.%.:&-(
5(6(360*(0 &+$.54&+390-( $5(0(3)$4460*
10',5,1010,513,0*!,46$.,4,(360*"$3560*
04(31/2(5(08
5($/%(395,(*(30(
7,(,(+3(0.$*(
$0',(0)13'(360*(0
'(3#6-60)5$02$44(0
,.*($317.(3/%/155+(.)$55(34+(,/
(.
7771,.*($3'((/$,.,0)11,.*($3'(
ALUMINIUM · 5/2008
17
ECONOMICS
Aluminium processing
equipment and technologies in China
Shi Lili, Beijing
Aluminium processing equipment
made in China has the advantages
of both low cost and good performance, and therefore significantly reduces project investment
expense. It caters for the needs
of Chinese domestic aluminium
enterprises and is gradually being
accepted by international markets. China’s technologies, design
and manufacturing of aluminium
processing equipment have progressed from auxiliary parts to
main bodies, from single items of
equipment to the whole production line, from copying of foreign
counterparts to self innovation. Yet
despite this encouraging progress,
China still has a long way to go
in terms of high-grade aluminium
products, especially for the aviation and automobile industries.
processed products, China shifted its
role from an importer into an exporter
in 2005 and its net exports of aluminium products climbed by 73% to over
900 kt in 2007 compared with the year
before. Without the abolition of export
rebates in the second half of 2007,
China’s net exports could still easily
have exceed 1,000 kt last year. This
trend is expected to continue in the
years to follow, with growing capacities and investments in this industry.
In fact, China buys in large volumes
of aluminium plates and strips each
year but exports other aluminium
products to other countries. With the
increasing, newly built capacities for
aluminium plates and strips, China is
expected to change into a net exporter
of both in 2008.
Despite its position as a net exporter of aluminium products, China still
depends heavily on imports for high-
added-value materials each year, such
as beverage can stock, pre-sensitized
plate (or PS plate), aluminium plates
for the aviation and automobile industries, construction plates and strips,
etc. So the upgrading of equipment
and technologies for such products
will create business opportunities for
Chinese domestic companies and foreign companies as well.
Brief history
The start-up of Northeast Light Alloy (the original 101 Plant) in 1956
marked the beginning of China’s aluminium processing industry. All the
equipment and technologies were
introduced from the former Soviet
Union, including eight hydro-presses,
one hot-rolling mill and two cold-rolling mills. Machines of international
advanced level at that time were also
China’s aluminium processing industry has made great advances in recent
years. Its total production exceeded
that of the US in 2006 and totalled
nearly 1,000 kt in 2007. This strong
surge of aluminium products last year
was mainly driven by bearish domestic demand and rising exports.
Status quo
Yet China still has a long way to go to
be strong and competitive in this field.
Aluminium plates, strips and foils account for around 60% of the total
consumption of aluminium products
in developed countries, while in China the percentage is still only around
25%.
China’s capacity for aluminium
products jumped to 10,756 kt in 2006
and gained the top position in the
world. Despite government macropolicies to bring rising capacities
under control and to consolidate the
whole industry, it is still difficult to
damp down the passion for more investment in 2008.
As for China’s trading of aluminium
18
Diagrams and photos: China Nonferrous Metals Fabrication Association
ALUMINIUM · 5/2008
ECONOMICS
mainly borrowed from Japan, Germany and the UK.
More private aluminium enterprises have become engaged in aluminium processing since the 1980s, to
meet the growing demand for aluminium profiles used in civil construction.
Most of the extrusion presses were introduced from Japan and Italy. Extrusion presses made in China and Taiwan gained more recognition due to
their lower cost. With the gradual upgrade of rolling and casting machines
made in China, domestic equipment
has become more widely accepted.
However, high-grade equipment for
cold rolling and aluminium foil rolling still had to be imported during
this period. The rule of survival of the
fittest applies in this industry, and
enterprises that took on fierce market
competition have prospered providing that they operate with advanced
technologies and produce high-quality products.
China’s aluminium processing,
driven by strong demand from international and domestic markets, has
entered a stage of rocketing development since 2001 and has maintained
good momentum since then with the
support of more advanced equipment
and technical renovation. China, a
net importer of aluminium products,
also made the historical shift into a
net exporter since 2005 when its total
production reached 8,790 kt and surpassed that of America. The aluminium processing industry as a whole
was elevated and became a hot spot
for much investment. A batch of ambitious, large-scale and technically ad-
1+4 continuous hot rolling line of Southwest Aluminium of Chalco
vanced projects designed to generate
high added value were put into production. Machines with a high technological content, such as for continuous
hot-rolling, continuous cold-rolling
and high-speed aluminium foil rolling,
were more widely adopted. Outdated
equipment such as small rolling mills
and double-h rolling mills still exist,
but are being eliminated step by step.
Present situation
China’s aluminium processing equipment has undergone major improvements in the past several years and
has basically approached international levels and standards. Advanced
equipment and technologies were introduced from developed countries
…wenn es um
Induktions-Anlagen
geht!
INDUKTIONSANLAGEN
❙ Induktions-Erwärmungsanlagen
❙ Induktions-Tiegelöfen
❙ Induktions-Rinnenöfen zum Schmelzen,
Warmhalten und Vergießen
❙ Niederdruck-Gießanlagen
❙ Schmiede-Erwärmungsanlagen
ALUMINIUM · 5/2008
and then got adapted and renovated
to suit the actual needs of China.
First, as regards rolling mills, there
are three 1+4 continuous hot-rolling
production lines, namely
• a 2000 mm 1+4 line belonging to
Henan Mingtai Aluminium,
• a 2000 mm 1+4 line at Southwest
Aluminium of Chalco and
• a 2350 mm 1+4 line at Shandong
Nanshan Aluminium.
Another three continuous hot-rolling
production lines are at present under
construction, namely
• a 2350 mm 1+3 line at Qinghai
Piang’an Aluminium,
• a 2350 mm 1+5 line at Asian
Aluminium Group and
• a 1+3 line at Bohai Aluminium of
Alcoa.
©
INDUKTIONS-ANLAGEN+SERVICE GMBH & Co. KG
Am großen Teich 16+27
D-58640 Iserlohn (Sümmern)
Telefon: +49 2371 4346-0
Fax:
+49 2371 4346-43
E-Mail:
[email protected]
[email protected]
Internet: www.ias-gmbh.de
19
ECONOMICS
extrusion presses of less than 10 MN.
They are also in need of advanced surface treatment equipment and necessary testing measures. These outdated
production lines will gradually be
eliminated from the market by fierce
market competition.
New technologies
Strip casters at the Guizhou branch of Chalco
All this equipment was imported from
other countries by these companies
except for Henan Mingtai Aluminium. China has thirteen single-stand
double-coiler hot-rolling mills, eleven
single-stand single-coiler hot-rolling
mills, and nine production lines with
4-high hot-rolling and 300 doublehigh casting and rolling machines.
Southwest Aluminium of Chalco is
setting up advanced continuous coldroll lines with 185 cold-rolling mills,
out of which 36 were introduced from
developed countries while the others
were domestically made in China.
There are over thirty ultra-wide aluminium rolling machines of 2000 mm
in China, those imported accounting
for over 90% of the total.
Secondly in terms of extrusion
presses, there are now 18 machines
of over 50 MN capacity in China. Between 2001 and 2005 alone, 14 large
extrusion presses were newly added
(including the 80 MN extrusion press
renovated by Southwest Aluminium
of Chalco). In addition to these machines of large tonnage, China is also
equipped with double action indirect
extrusion presses of 45 MN and 55
MN, which are qualitatively up to the
highest international level.
Thirdly, China has more than 600
production lines for the surface treatment of aluminium products in over
300 colours. The surface treatment
of ultra-long aluminium products by
Guangdong Fenglu Aluminium Company in 2005 brought China in line
with its international counterparts
20
and greatly enhanced its competitiveness in this field. The fluoro-carbon
powder spraying process developed
in recent years is superior in terms of
environmental protection, safety and
low costs compared with traditional
technology.
Despite the growing competitiveness of China’s strong aluminium
products, market conditions are quite
severe for medium and small enterprises with outdated equipment, incomplete product ranges and scales,
and finished products of indifferent
quality. By the end of 2006, there
were 150 aluminium plants in China
with double-high plate hot-rolling
machines of 350 kt capacity, 300
double-high cold-rolling machines of
500 kt capacity and 280 double-high
aluminium foil rolling machines of 20
kt capacity. There are also numerous
small aluminium plants in China with
First of all, melting and casting technologies that save energy, reduce
consumption and give improved environmental protection have been promoted for environmental and cost reasons. Regenerative melting furnaces,
permanent magnetic stirrers, outside
furnace refining systems, magnetic
casting and rolling, ultrasonic casting, short and graphite crystallization
casting, alloy refining, purification of
elements, etc. have been applied by
many enterprises and are giving good
results. For example, Southeast Light
Alloy has produced round, hard-alloy
casting ingots of 1230 mm diameter,
3400 mm length and 10 tonnes weight.
The Guizhou Branch of Chalco also
uses mature melt-purification technologies and has succeeded in casting round, large-diameter ingots of
7005 wrought aluminium alloy with
high added value. These are very large
hard-alloy ingots that conform with
international standards and could be
used for aviation, transport, railway
and other applications.
Secondly, advanced extrusion
technologies are widely applied such
as temperature gradient heating, rapid
cooling of heated billets, heating and
cutting of long casting bars, extrusion
Strip casters at the Guizhou branch of Chalco
ALUMINIUM · 5/2008
ECONOMICS
and pressing with fixed cushions, spread extrusion die, multi-port extrusion of complex profiles,
reverse extrusion, isothermal extrusion at constant speed, semi-solid extrusion, on-line quenching, etc. Large products by Southwest Aluminium
of Chalco, Jilin Maidasi and Shandong Conglin
Group are used in ultra-high speed railways.
Many enterprises are now actively investing in
large extrusion machines. There are already nine
production lines for large extrusions in China,
such as those of the Nanshan Group, Liaoning
Zhongwang, Jianqiao Aluminium, Fenglu Aluminium, etc. With all these major players China
is on course to become the largest user of actively
producing aluminium extrusion presses, whose
total capacity will far exceed the total world demand for such products.
Thirdly, China has made clear progress in continuous hot-rolling. At the end of 2007 there were
three continuous hot-rolling lines in China. The
first is the 2000 mm 1+4 production line of Henan
Mingtai Aluminium that came into operation in
January 2003 and constituted the first line with
independent intellectual property rights. Its original designed production capacity was 200 kt, but
in 2007 its actual production reached 250 kt. The
second is the 2000 mm 1+4 line of Southwest Aluminium of Chalco. It was formally commissioned
in June 2005 and is the first totally imported advanced continuous hot-rolling production line. Its
actual production in 2007 amounted to 230 kt, or
60% of its capacity. The third is the 2400 mm 1+4
line of Shandong Nanshan Aluminium. This is the
continuous hot-rolling line with the largest width,
highest speed, largest rolling weight, greatest rolling capacity and by far the largest production capacity. The whole line is now operating well and
meeting the planned targets. China’s technologies
for the continuous hot-rolling of various alloys to
produce plates and strip will also be improved
to become internationally competitive. For example, acceptance of Chinese aviation aluminium
products by Boeing and Airbus, and can stock
materials by the North American markets, would
set the seal of approval for China’s aluminium
processing equipment and technologies.
Fourthly, driven by the strong focus on continuous hot-rolling, continuous cold-rolling is also on
the upswing. Based on common world practice,
cold-rolling capacity is often designed to be 75%
of hot-rolling capacity. 150 kt/a production of a
certain product is the lowest standard for a coldrolling production line and comprehensive coldrolling plate and strip capacity is ideally higher
than 250 kt/a. China had two major projects for
cold-rolling production lines in 2007. One is the
1732 mm continuous rolling line by Asian Aluminium Group in Zhaoqing Aluminium City. This
was renovated after the Trentwood Rolling ©
ALUMINIUM · 5/2008
ECONOMICS
Plant of American Caesar Aluminium
suspended operations and the German
company SMS completely redesigned
the plant in accordance with modern
standards. Its installation has already
started and production is planned to
begin in 2008. This is the first continuous cold-rolling line for aluminium
strip in China and its capacity for soft
alloy strip could reach 300 kt/a. The
other project is a continuous coldrolling line by Southwest Aluminium
of Chalco. This project was again designed and constructed by SMS and
is about to produce a large 800 MN
die forging machines for force structure components made of light alloys,
and this project, based in the Xi’an
Aviation Group, formally started in
January.
Finally, having regard to the rising price of copper, the substitution
of copper with aluminium products
has made new breakthroughs. Many
copper plants have made continual
efforts to find solutions that offset
the higher cost of copper by promoting the use of new products such as
Continuous cold-rolling line
is a brand-new CVC6plus cold rolling
line. The project began on April 2006,
is expected to be completed in 2008,
and will begin production in 2009.
Fifthly, China’s aluminium forging
technology has been greatly upgraded and is developing towards largerscale and more precise production.
Technologies such as precision dieforging, multi-direction die-forging
and isothermal die-forging have been
largely improved. Northeast Light
Alloy and Southwest Aluminium of
Chalco have succeeded in creating the
largest aluminium alloy forging ring
of 5 m. The forging ring by Northeast
Aluminium Alloy is 5150 mm in diameter, 340 mm in length and 100 mm
in width. Large amounts of high-grade
forgings are used in major industries,
for example in aircraft, medium- and
long-range strategic missiles, atomic
energy reactors, nuclear submarines
and shipboard artillery. Especially
in order to become involved in the
manufacture of large aircraft, China
22
copper-clad aluminium wire, aluminium-clad copper pipe and pure
aluminium enameled wire. Jiangsu
Xingrong Company developed copper-aluminium compound pipes for
air-conditioning evaporators and
condensers that combine the advantages of copper’s strong heat absorbing power and the superior heat dispelling power of aluminium. The airconditioning efficiency was raised by
over 5%. The copper consumption is
only 12% of pure copper pipes and
production costs are down by over
100 yuan. Galanz Electronic Wire Co.,
Ltd also developed enameled round
aluminium wire with over 800 tonnes
of monthly production for domestic
needs and foreign exports.
Adjustment of
macro-policies brings both
challenges and opportunities
In order to rectify the industrial structure and promote healthy develop-
ment of the aluminium processing
industry, the Chinese government has
enacted some policies since 2007 to
raise the threshold for industrial entrance, facilitate the targets of energy
saving and environmental protection,
and restrain blind investment.
• ‘Guidelines for Major High-tech
Industries of Priority Development
(2007)’ was published on 23 January 2007 by four ministries in China,
namely the National Development
& Reform Commission (NDRC), the
Ministry of Science & Technology
(MOST), the Ministry of Commerce
(MOC), and the State Intellectual
Property Office (SIPO). It stipulated
that the following aluminium products are advocated and enjoy favourable policies: aluminium high-performance alloys and their composite
materials, aluminium alloy plates of
large section, aluminium wire, plates,
strips, thin plates, castings and forgings, shaping and colouring technologies, anti-corrosion and relevant
equipment.
• On 2 April 2007, the NDRC published an ‘Urgent Notice as to the Further Promotion of Industrial Structure
Adjustment and the Restraining of
Investment in Aluminium Smelting’.
This notice is intended to accelerate the elimination of outdated technologies and equipment, reinforce
environmental protection and raise
the threshold for industrial entrance.
Based on it, casting and forging technologies and equipment for highgrade aluminium plate, strip, foil and
high-speed thin strip are to be developed; high-added-value aluminium
products for rail transport are to be
encouraged and their proportion increased; new aluminium processing
technologies characterized by high efficiency, low energy consumption and
satisfactory environmental protection
are to be encouraged.
• According to a ‘Notice of Lower
Export Tax Rebates for Certain Commodities’ published on 21 May 2007,
export tax rebates for aluminium bar,
strip and profile are being abolished
from their level of 11%; export tax rebates for aluminium wire and aluminium alloy are being lowered from the
original 8% to 0%. This notice could
encourage the export of, and invest-
ALUMINIUM · 5/2008
ment in high-value-added products and reduce reliance
on natural resources and environmental pollution. The
cancellation and lowering of export tax rebates for aluminium products has no doubt posed great challenges
to aluminium enterprises. Yet this policy contributes to
the reduction of energy consumption, increase of profits and the adjustment of industrial structure towards
downstream products.
• ‘Conditions for Aluminium Industrial Entrance’ on
29 October 2007 pointed out that newly built aluminium processing projects must focus on aluminium plate,
strip, foil or extruded pipes for industrial use, and comprehensive production capacities should reach over 100
kt/a. Production capacities for various aluminium products should amount to the following: 50 kt/a of plate and
strip, 30 kt/a of foil and 50 kt/a of extrusions.
This series of policies will no doubt promote the
adjustment and consolidation of China’s aluminium
processing industry in terms of technology, equipment
and management, and lead it into a path of healthy development.
Industrialized
Magnetic
Pulse Welding
and Forming
Future trends
The future of China’s aluminium processing industry
will focus on the consolidation of industrial resources,
the rapid increase of precision aluminium plate and strip
production, the development of energy-saving products
and the gradual elimination of outdated technologies
and equipment. As for the future growth of equipment
for the aluminium industry, the expected trend is as
follows.
First of all, aluminium processing equipment will put
more emphasis on shortening working procedures, realizing continuous and automated production, increasing
working efficiency and reducing the emission of toxic
gas and slags.
Secondly, although China’s aluminium processing
equipment has almost reached international standards,
it is still in need of automated, close-loop control techniques and equipment. Efficient and reliable control
systems are quite crucial for securing reliable product
quality and boosting the rate of finished production.
Thirdly, the present undue reliance on imported
technologies and equipment for aluminium processing
must not continue. China will introduce and digest foreign advanced equipment while at the same time paying attention to the exploration of new, self-patented
equipment. Moreover, exports of aluminium processing equipment bearing the label ‘Made in China’ are
increasing continually, especially to southeast regions.
Author
Shi Lili works as a freelance journalist for foreign media and is
a consultant for foreign companies interested in Beijing, P.R. of
China. Amongst others, she has two years of working experience in the Foreign Affairs Department of China Nonferrous
Metals Industry Association (CNIA).
ALUMINIUM · 5/2008
Spaces are limited. Early registration is highly recommended.
ECONOMICS
Rapid export growth, dynamic domestic demand
The aluminium sector in Turkey
is still growing. The driving force
for this is rapid expansion of production by important customer
branches such as the automobile
industry. Producers have to cope
with a shortage of raw materials in their country and with the
high cost of energy and qualified
personnel. However, thanks to
modernization and extension of
their plants, they remain competitive and have been able in recent
years to maintain two-digit export
growth rates. These are the summary conclusions of a branch
report by the German Federal
Agency for External Economies.
The annual market volume for aluminium products in Turkey is estimated by the President of the Association of the Turkish Aluminium Industry (Türkiye Alüminyum Sanayicileri
Dergeni, Talsad), Ali Kibar, at around
3 billion US-dollars. According to information from him, per-capita consumption of aluminium increased
from 3.8 kg in 2000 up to 6.5 kg in
2007. The corresponding average
value among the OECD States is 33 kg,
so there is still considerable potential
for growth. The Association is striving
to achieve annual production growth
of 10 to 15 percent.
In 2007 the over 1,500 companies
in Turkey’s aluminium sector produced a total of some 750,000 tonnes.
Provisional data show that of that total,
37 percent were accounted for by extruded products, 33 percent by rolled
products, 24 percent by castings and 5
percent by aluminium electricity conductors. Over the next few years the
branch wants to exceed the milliontonne annual output threshold.
The aluminium branch is benefiting form the successful development
of the automotive economy, the manufacture of household appliances,
electrical maintenance activities, and
from the packaging industry in Turkey. More than half of the goods made
from aluminium on the Bosporus are
exported.
24
Assan
Turkish aluminium producers are investing
Aerial view of Assan Alüminyum Dilovasi plant
larging their production capacities
Only a small proportion of the raw
and investing in the modernization
aluminium processed comes from
of their plants. In 2007 Assan Alüminsmelting in Turkey itself. Since the
yum, with an annual production of
capacity of the single aluminium
137,000 tonnes the largest producer
smelter, Eti Alüminyum in Seydisehir
in the country, increased the output
(in the Province of Konya) is limited to
of its two plants by 14 percent com60,000 tonnes, about 90 percent of the
pared with the previous year. During
raw aluminium used has to be import2008 five new casting lines will come
ed. Imports of primary and secondinto operation at the Dilovasi location,
ary aluminium in 2007 amounted to
which will boost capacity by 60,000
570,000 tonnes, with a further 22,000
to 70,000 tonnes. Assan’s cold-rolling
tonnes of aluminium scrap. In Turkey
lines and foil rolling mills will underabout 70,000 tonnes of secondary alugo extensive technical renovations by
minium are produced from old matethe middle of 2009.
rial, but the collection and recovery
Cuhadaroglu Holding too is investof the latter are still not sufficiently
ing in the modernization of the prowell organized.
duction processes and the provision
A major problem for companies in
of services by its aluminium branch in
energy-intensive branches is the high
2008. In 2007 the company achieved
cost of energy. Owing to a lack of
production growth of 15 percent.
expansion, the country’s production
The firm’s core programme includes
capacities have not been able to keep
untreated and anodised aluminium
step with the consumption increases of the past several
Aluminium exports from Turkey
years. Turkey also depends to a large extent
2004 2005 2006 2007
on oil and gas imports.
218
277
325
381
Quantity (1,000 t)
Talsad President Kibar
Value (million US$) 685 898 1,283 1,673
hopes that the situation
Source: Istanbul Mineral and Metals Exporters‘ Association
will be relieved by the
construction of three
sections, mainly used for façades and
planned nuclear power stations, and
indoor claddings. With an extension
when further hydroelectric plants beof its plant, capacity is to be increased
gin operating.
by 60 percent, and the research and
Despite the difficult raw material
development sector is to be enlarged
cost situation many Turkish producas well. From about 30 to 35 percent,
ers of aluminium products are en-
ALUMINIUM · 5/2008
ECONOMICS
PROFHAL entwickelt, fertigt
und veredelt hochwertige
Aluminium-Profil-SystemKomponenten für
unterschiedlichste
Anwendungsgebiete.
INDIVIDUELLE LÖSUNGEN
AUS ALUMINIUM
ALUMINIUM · 5/2008
sections per year. Since
these facilities were
used to the extent of
more than 90 percent
in 2007, the company
is to begin operating a
further extrusion press
and will produce, as a
new product, plates of
composite materials in
12 colours. From April
2008 it will be possible to produce 85,000
square metres of these
per month.
KRK Alüminyum in
photo: Novelis PAE
Konya has prepared an
investment plan which will be implemented by 2013. By the end of 2009
an anodising plant with a monthly
capacity of 600 tonnes will be built.
In 2011 the company will begin operating two new extrusion presses
with extrusion pressures of 680 and
100 tonnes, and a further press will
be added a year later.
N
www.haarmann-gruppe.de
Cuhadaroglu wants to
boost the proportion of
exports in its aluminium sales to 50 percent
by 2010.
The company Cansan Alüminyum too,
located in Hasanaga
(Bursa), produces aluminium sections which
are marketed after
anodising in various
colours. The capacity
of the plant amounts
to 12,000 tonnes per
year. Around 35 per- In operation at Assan: Novelis Jumbo 3CM continuous casters
cent of its production
to be able to produce semis for further
is sent to EU countries by the comprocessing in its own plant.
pany, which belongs to the Yesilova
Saray Döküm is following the reGroup. In June 2008 a new producverse path. The manufacturer of prestion plant for anodised aluminium
sure diecasting moulds, with five excladdings will begin operating at the
truders, two anodising plants and two
same location. For 2009 Cansan also
lines for electrostatic powder coating,
plans to invest 7 million US-dollars
already has a capacity for the producfor the construction of a foundry in
tion of 22,000 tonnes of aluminium
order to extend its product range and
PROFHAL ALUMINIUM PROFIL
BEARBEITUNG GMBH
Ein Unternehmen der
HAARMANN-GRUPPE
Dettenheimer Straße 30
91781 Weißenburg
Tel. 0 91 41/8 55 65-0
www.profhal.de
25
Hydro
ALUMINIUM-STRANGPRESSINDUSTRIE
Hydro Aluminium Nenzing, Österreich
Hydro Aluminium Nenzing, Austria
Die Strangpresskonjunktur
in Europa lebt von Innovationen
Die europäische Strangpressindustrie ist eine überwiegend
mittelständisch strukturierte Branche. In technologischer Hinsicht
darf sie, auch im Weltmaßstab, die
Spitzenposition beanspruchen. Die
Profilproduktion steigt seit Jahren
kontinuierlich an. Wie wird sich
diese Entwicklung fortsetzen, und
wie bereiten sich die europäischen
Produzenten darauf vor?
Gemessen an der Investitionstätigkeit der Unternehmen blickt die
europäische
Strangpressbranche
derzeit voller Zuversicht in die Zukunft. Neue Pressenlinien wurden
geplant und teilweise auch bereits in
Betrieb genommen. Die Kapazitätszuwächse, die durch Modernisierungsmaßnahmen in den Werken erreicht
worden sind, lassen auf eine weitere
Steigerung des zukünftigen Produktionsvolumens schließen.
Solch demonstrativ zur Schau gestellte Zuversicht wirft Fragen auf.
Unter anderem die, ob die zusätzlich
geschaffenen Kapazitäten bei einem
– sicher nicht ganz unerwarteten
26
European extrusion business
innovation-driven
The European extrusion industry
comprises mainly medium-sized
companies. From a technological
point of view it can claim to be the
world leader. The production of
profiles has been continually on
the increase for years. How will
this development continue and
what steps are European producers taking to deal with it?
stalled capacity will not pose problems
for this branch of industry if there is
a – certainly not completely unexpected – downturn in the economy
as a whole in the next few years. Discussions with representatives of the
industry provide interesting pointers
to the reasons for the present development and to the industry’s expectations for the future.
Judging by their investment activities,
companies involved in the European
extrusion industry are currently full
of confidence about the future. New
extrusion lines are planned, some of
which are already operational. The
growth in capacity resulting from
modernization measures in the plants
points to further growth in production
volume in the future.
Such a blatantly clear demonstration of confidence raises questions:
such as whether the additionally in-
Looking back: above-average
growth rates for extrusions
There has actually been markedly
positive development of the European extrusion market in recent years.
In western Europe the production in
2006 (more recent production figures
are not available) was 6.7% up on
the previous year at a total of 2.84m
tonnes. Orders received in 2007 were
2.1% higher than in 2006. The EAA’s
so-called ‘reliability indicator’, an ar-
ALUMINIUM · 5/2008
S
AML- S T R A N G P R E S S IANLDUUMSITNRI IUEM
A LPU E
M ICN II U
tificial figure based on the expectations of the industry and the building
industry, leaves us to expect that the
good economic situation in the extrusion business will continue.
In Germany, the largest producer
of extrusions, the picture is somewhat
clearer. Production (of profiles and
tubes) has increased continuously
since 2003:
2003
418,500 tonnes
2004
476,800 tonnes
2005
486,800 tonnes
2006
536,100 tonnes
2007
564,400 tonnes
This means an increase of well over a
third in the five-year period from 2003
onwards. Even in 2007 there was an
increase in production of 5.3%.
This growth in production is being sustained primarily by growth in
demand by the domestic market. The
German market for extrusions was
543,000 t in both 2002 and 2003. In
2006 this had grown to more than
710,000 t, a record level. For ©
EXTRUSION INDUSTRY
– Rückgang der gesamtwirtschaftlichen Dynamik in den kommenden
Jahren der Branche zu schaffen machen könnten. Gespräche mit Repräsentanten der Branche geben interessante Hinweise auf die Hintergründe
der gegenwärtigen Entwicklung und
auf die Erwartungen an die Zukunft.
Im Rückblick:
Überdurchschnittliche Steigerungsraten bei Pressprodukten
In der Tat hat sich der europäische
Strangpressmarkt in den vergangenen
Jahren ausgesprochen positiv entwickelt. In Westeuropa wies die Produktion im Jahre 2006 (neuere Produktionszahlen liegen noch nicht vor)
gegenüber dem Vorjahr ein Plus von
6,7 Prozent auf insgesamt 2,84 Mio.
Tonnen auf. Die Auftragseingänge
lagen 2007 um 2,1 Prozent über denen des Jahres 2006. Der sogenannte
„Zuversichtsindikator“ der EAA, ein
künstlich gebildeter Wert aus den
Erwartungen der Industrie und der
Bauwirtschaft, lässt erwarten, dass
die gute Strangpresskonjunktur anhalten wird.
In Deutschland, dem größten Produzenten von Strangpresserzeugnissen, ist das Bild etwas klarer. Hier ist
die Produktion (Profile und Rohre)
seit dem Jahre 2003 stetig angestiegen:
2003
418.500 Tonnen
2004
476.800 Tonnen
2005
486.800 Tonnen
2006
536.100 Tonnen
2007
564.400 Tonnen
In dem Fünf-Jahres-Zeitraum seit
2003 bedeutet dies einen Anstieg um
gut ein Drittel. Im vergangenen Jahr
legte die Produktion immerhin noch
um 5,3 Prozent zu.
Getragen wird dieser Produktionszuwachs vor allem durch die gestiegene Nachfrage auf dem inländischen
Markt. Das deutsche Marktvolumen
für Strangpressprodukte hatte in den
Jahren 2002 und 2003 noch je- ©
China Import and Export Fair
Pazhou Complex, Guangzhou
May 28-30, 2008
Tel: +86 10 8518 9070 ext. 142
Fax: +86 10 8518 9060
Email: [email protected]
Co-Organised by:
Reed Exhibitions Deutschland GmbH
Supported by:
Co-Organised by:
China Non-ferrous Metals Industry Association
Beijing Antaike Information Development Co., Ltd.
ALUMINIUM CHINA takes the
Aluminium world to ‘the World’s Factory’ in 2008
In May 2008, ALUMINIUM CHINA will bring the international and local
application professionals, aluminium producers and traders to theĎworld's
factoryďand the aluminium processing capital of China, Guangdong. This
annual event, alternately held between Shanghai and Guangzhou, effectively
covers the Yangtze River and Pearl River delta region, the two most important
regions and economic centers in China.
ALUMINIUM Event Series
With each stride we create markets and generate opportunities, and in 2008,
the year in which the world comes to China for the 29th Summer Olympic
Games, the aluminium world will gather for a wealth of unexplored business
opportunities in May.
23-25 September 2008
28-30 May 2008
February 2010
ALUMINIUM
· 5/2008
27
Expo ALUMINIUM
Brazil, Fall 2009
29-31 March 2009
ALUMINIUM · 5/2008
27
ALUMINIUM-STRANGPRESSINDUSTRIE
weils 543.000 Tonnen betragen. Im
Jahre 2006 war es auf mehr als 710.000
Tonnen gewachsen – ein Rekordwert.
Für 2007 gehen die bisherigen Schätzungen von 713.000 Tonnen aus.
Danach könnte, so die vorliegenden
Prognosen, die Entwicklung stagnieren und 2009 könnte das Volumen um
etwa vier Prozent auf voraussichtlich
685.000 Tonnen zurückgehen. Der
deutsche Profilmarkt bewegt sich
mithin auf hohem Niveau.
Die Wettbewerbssituation:
Rationalisierung nach
wie vor unverzichtbar
Herrmann + Hieber
Die Zeit, als Presswerke ihren Markt
im Umkreis von bis zu 200 Kilometer definierten, gehört der Vergangenheit an. Mitteleuropäische
Presswerke liefern heute über Entfernungen von 1.000 Kilometer und
darüber. Das bedeutet, dass sich der
einzelne Produzent einer Vielzahl
von Wettbewerbern gegenübersieht.
Dazu gehören auch süd- und osteuropäische Profilhersteller, die nach wie
vor mit geringeren Personalkosten
kalkulieren können. Am deutschen
Markt konkurrieren heute etwa 250
Strangpressen um Kunden. Die wichtigsten Marktteilnehmer sind neben
der schwedischen Sapa (Marktanteil
19%) und der norwegischen Hydro
(13%), die kanadische Alcan (6%) und
die amerikanische Aleris (3%). Daneben produzieren – mit wachsendem
Erfolg – vor allem die unabhängigen,
mittelständischen Strangpressunternehmen. In Deutschland selbst pro-
duzieren derzeit 84 Strangpressen.
Um sich in diesem Wettbewerb behaupten zu können, greifen die mitteleuropäischen Werke auf Maßnahmen
zurück, die sich bereits zu Beginn der
neunziger Jahre bewährt hatten: Rationalisierung, Automatisierung, Innovationen. Bislang konnte in einem
modernen Presswerk die Profilproduktion vom Stangenlager bis hin zur
Säge und zum Stapler von einer Person bedient werden. Dahinter stand
eine beispiellose technische Entwicklung; ältere Presswerker werden sich
noch an einen Betrieb erinnern, bei
dem eine Presse von bis zu acht Bedienungskräften gefahren wurde.
Zukünftig wird man diesen Zustand
nicht mehr als modern bezeichnen
können. Derzeit rüsten zunehmend
mehr Presswerke auch die nachgelagerten Arbeitsgänge (Wärmebehandeln, Lagern, Oberflächenbehandeln,
Verpacken), die bisher mit Flurförderfahrzeugen und entsprechendem
personellen Aufwand abgewickelt
wurden, auf den vollautomatischen
Betrieb um.
Hinzu kommen weitere Verbesserungen an anderen Stellen des Presswerkes: Auf der Werkzeugseite haben
moderne Methoden der Auslegung,
leistungsstarke Bearbeitungsmaschinen, verbesserte Werkzeugstähle und
moderne Werkzeugvorwärmanlagen
zu kürzeren Lieferzeiten, längeren
Standzeiten und höherer Profilqualität geführt. Die Arbeitsgänge vor
der Presse werden ständig weiterentwickelt: Stichworte sind hier die
Verschnittminimierung, Sägeanlagen
Automatische Profilstapeleinrichtungen in einem modernen Presswerk
Automated profile stackers in a modern extrusion plant
28
2007 the estimates so far put the figure
at 713,000 t. According to the available forecasts, growth could stagnate
after that and in 2009 there could be a
fall in volume of some four per cent to
an estimated 685,000 t. The German
market for profiles is thus fluctuating
at a high level.
The competitive situation: rationalization still absolutely essential
The days when extrusion plants defined their markets as the area lying
within a radius of up to 200 kilometres
are a thing of the past. Today, extrusion plants in central Europe make
shipments over distances of 1,000
km or more. This means that the individual producer is confronted by a
large number of competitors. These
also include profile manufacturers in
southern and eastern Europe who are
still able to take advantage of lower
labour costs. Today there are some
250 extrusion presses competing for
business in the German market. The
most important market players are
Sweden’s Sapa (market share 19%),
Norway’s Hydro (13%), Canada’s Alcan (6%) and America’s Aleris (3%).
In addition to these multinationals,
production is being carried out by independent, predominantly mediumsized, extrusion companies – with increasing success. There are currently
84 plants producing extrusions in
Germany itself.
In order to survive in this competitive environment the central European plants are resorting to measures
that proved successful at the beginning of the nineties: rationalization,
automation and innovation. For some
years now in a modern extrusion
plant, a single operator has handled
the profile production from the bar
storage system to the saw and stacker.
Achieving this required unparalleled
technical development; older press
operators will still remember an extrusion plant in which up to 8 operating personnel were needed to run
the press.
In future the one-man operation
described above will no longer be
modern. Increasingly more extrusion
plants are currently converting their
downstream operations (heat treat-
ALUMINIUM · 5/2008
S
AML- S T R A N G P R E S S IANLDUUMSITNRI IUEM
A LPU E
M ICN II U
ment, storage, surface treatment and
packaging) – operations which have
hitherto been carried out using materials handling equipment and all the
personnel required to operate it – to
fully automated operation.
Added to this there are further improvements in other parts of the extrusion plant: on the tooling side, modern
design methods, powerful machining
centres, improved tool steels and
modern tool preheating units have led
to shorter delivery times, longer service lives and better profile quality. The
operations upstream of the press are
continually being further developed:
keywords here are minimizing cutting losses, saws with narrower kerfs
and optimal (often combined) heating.
Today, the short-stroke front-loading
extrusion press with its shorter cycle
times is becoming more and more established.
The result of these measures is that
one has managed to continually improve the productivity of a modern
extrusion line. This has obvi- ©
EXTRUSION INDUSTRY
mit schmalem Schnittspalt und eine
optimale (häufig kombinierte) Erwärmung. Als Strangpressaggregat setzt
sich heute die Kurzhub-FrontladerBauweise immer mehr durch, die
kürzere Zykluszeiten verspricht.
Im Ergebnis all dieser Maßnahmen
ist es gelungen, die Produktivität einer
modernen Pressenlinie kontinuierlich
zu erhöhen. Das gelang offensichtlich
in einem Maße, bei dem der Standortvorteil niedrigerer Personalkosten
mehr als ausgeglichen wird.
Der Markt: Neue
Anwendungen immer wichtiger
Traditionell ist das Bauwesen der
wichtigste Markt für Strangpressprofile. In den Regionen, in denen der
Baumarkt infolge der weltwirtschaftlichen Entwicklung derzeit boomt – in
der Golfregion, in China, ansatzweise
in Osteuropa, zukünftig wohl auch in
Indien – entwickelt sich die Strangpressindustrie mit besonderer Dynamik. Die mitteleuropäischen Strang-
Seit 100 Jahren
press-Ausrüstungspartner profitieren
davon in starkem Maße.
In Deutschland ist die Bautätigkeit
hingegen in den letzten Jahren um
nahezu 50 Prozent eingebrochen. Die
schwachen Erholungstendenzen des
vergangenen Jahres lassen keinesfalls
auf ein boomendes Strangpressgeschäft schließen. Andererseits weist
die Statistik aus, dass lediglich etwa
20 Prozent der deutschen Profilproduktion exportiert werden. Wo also
bleiben die Profile?
Diese Frage berührt den Kern der
eingangs formulierten Fragestellung
nach den eventuellen Risiken der
gegenwärtigen Kapazitätserweiterungen. In den vergangenen Jahren ist es
der Branche offensichtlich gelungen,
Profilkonstruktionen in die verschiedensten Anwendungsbereiche einzuführen. In erster Linie sind hier der
Maschinenbau und das Transportwesen zu nennen. Hinzu kommen aber
in zunehmendem Maße immer mehr
und gänzlich neue Anwendungen, die
den freien Gestaltungsspielraum ©
•
100 Jahre Erfahrung bei der Herstellung von
geschmiedeten Walzen
•
Erstklassige Qualität
•
Weltweit die Nr. 1 im Bereich Arbeitswalzen
für Aluminiumfoliengerüste
•
Intensive Entwicklungspartnerschaften mit führenden
Gerüstherstellern
•
Enge technologische Begleitung unserer Kunden
•
Verlässliche Partnerschaft
ist unser Leitmotiv
... um die Welt
Steinhoff GmbH & Cie. OHG
Gerhard-Malina-Straße 65
46537 Dinslaken (Germany)
fon: +49 (0)2064 - 44 69-0
fax: +49 (0)2064 - 5 00 29
internet: www.steinhoff.eu
e-mail: [email protected]
Gerhardi
ALUMINIUM-STRANGPRESSINDUSTRIE
Profile für die Möbelindustrie (links) und Automobilbranche (rechts) mit hochwertiger
Oberfläche
Profiles with high-grade finish for the furniture industry (left) and for automotive
applications (right)
des stranggepressten Aluminiumprofils, die attraktive Oberfläche und die
gute Bearbeitbarkeit des Aluminiums
sowie vor allem das geringe Gewicht
des Materials nutzen. Im Gespräch
mit deutschen Anbietern zeigt sich
immer wieder, dass die Bedeutung
des Baumarktes zugunsten der sogenannten Industrieprofile zurückgeht.
Mit anderen Worten: Die deutschen
Presswerke leben von neuen innovativen Anwendungen. Und sie sind
von ihren neuen Märkten derart überzeugt, dass sie investieren.
Als eine interessante Konsequenz
dieser Entwicklung scheint sich derzeit ein Trend zu größeren, stärkeren
Pressenausführungen abzuzeichnen.
Dieser Trend wird sichtbar, wenn man
die projektierten Anlagen, die demnächst zur Vergabe kommen dürften,
in die Betrachtungen einbezieht. Von
mehreren Werken ist bekannt, dass
die neuen Anlagen mit Presskräften
über 50 MN ausgestattet sein werden.
Auch an dieser Tatsache wird das sich
verändernde Anwendungsspektrum
sichtbar. Im Bauwesen sind solche
Pressengrößen nicht erforderlich. N
ously been achieved to such an extent
that it has more than compensated
for the disadvantage of higher labour
costs in Germany.
The market: new applications
increasingly more important
Traditionally the building and construction industry has been the most
important market for extruded profiles. In those regions where building
and construction is currently booming
as a result of the development of the
global economy – in the Gulf region,
China and to some extent eastern Europe, as well as in India in future – the
extrusion industry is developing particularly rapidly. Central European extrusion press equipment manufacturers are benefiting greatly from this.
By contrast, building activities in
Germany have fallen back by almost
50% in recent years. In no way do
the signs of a weak recovery last year
suggest that the extrusion business is
booming. On the other hand, statistics
show that only some 20% of German
production is exported. So where are
all the profiles going? This question
touches the core of the question expressed at the beginning concerning
the possible risks associated with the
current increases in capacity. In recent
years this branch of industry has obviously managed to introduce profiled
structures into the widest possible
range of applications. First and foremost one should mention mechanical
engineering and transportation here.
In addition, there are increasingly
more and completely new applications that utilize the creative freedom
of the extruded aluminium profile,
coupled with the attractive surface
and good processability of aluminium
and above all its light weight. Time and
again in discussions with German suppliers it emerged that the importance
of the building sector is giving way to
so-called ‘industrial profiles’. In other
words, the German extrusion plants
are now living on new innovative applications. And they are so optimistic
about their new markets that they are
investing in production facilities.
An interesting consequence of this
development appears to be a trend
at the moment towards larger, more
powerful types of press. This trend
becomes apparent when one considers the planned projects for which
contracts are likely to be awarded
in the near future. It is known from
several plants that the new lines will
be equipped with presses having capacities in excess of 50 MN. This fact
also makes the changing application
spectrum apparent: such press sizes
are not needed for the building and
construction industry.
N
Hydro advances extrusion position in Spain
Hydro has acquired Expral, a privately
owned extrusion plant located near
Madrid. The company has two extrusion
presses and more than 90 employees; the
annual turnover is 34m euros. The plant is
well established locally, having celebrated
its 20th year of operations in 2007.
The takeover provides Hydro with a
strong market presence in Spain‘s two
main business regions: Barcelona and Madrid. Hydro’s La Roca plant is located on
30
the outskirts of Barcelona while Expral is
in Pinto, some 30 km south of Madrid.
Consumption in the Spanish extrusion
market last year was above 300,000 t,
with more than 50 producers on the supply side. “Expral has a good reputation in
the market and a nice mix of customers.
They have a lot of business in industrial
applications as well as in the building
industry“, says Johnny Undeli, who is responsible for Hydro‘s aluminium extrusion
operations in Europe and Asia. He emphasizes that the company‘s broad customer
portfolio makes the operations “more resistant“ to the expected downturn in the
Spanish construction industry. Expral and
the La Roca-based plant will serve customers as sister plants in a single organization
led by Rafael Fuertes, who will manage
Hydro‘s combined extrusion activities in
Spain. Today, the plants have combined
annual volume of around 30,000 t.
ALUMINIUM · 5/2008
www.grafocom.it
Aluminum Extrusion Handling System
Always in the forefront
in extrusion system since 1952
Aluminum Furnaces and Complete Casthouse plant
With the complete control over the entire extrusion process, OMAV has reached excellent levels in quality, safety and
reliability. Our results make us a referent point throughout the world. As a leader, we are even more committed to
quality, safety and reliability…a virtuous circle with a well defined scope: offer an adequate solution to each request.
OMAV S.p.A. - Via Stacca, 2 - 25050 Rodengo Saiano (Brescia) Italy - TEL. +39.030.6816.21 - FAX +39.030.6816.288
www.omav.com - e-mail: [email protected]
ALUMINIUM-STRANGPRESSINDUSTRIE
GiA – Endlich eine
Referenzanlage in Deutschland
Fotos: Gerhardi
Den etablierten Strangpressausrüstern in Deutschland, Italien
und Österreich könnte zukünftig
ein weiterer Wettbewerber gegenüberstehen. Die spanische GiA
hat sich mit der Lieferung einer
neuen 33-MN-Strangpresse an
Gerhardi Alutechnik Eintritt in
den deutschen Markt verschafft.
Eine solche Referenzanlage wird
man, wenn diese den hohen Erwartungen entsprechen kann, bei
zukünftigen Investitionsentscheidungen auch in Deutschland zu
berücksichtigen haben.
Gerhardi-Firmensitz in Lüdenscheid
Gerhardi head office in Lüdenscheid, Germany
Der im spanischen Albacete ansässige
Strangpressausrüster GiA gehört mit
knapp 300 Beschäftigten und bisher
circa 110 gelieferten Anlagen zu den
bedeutenden Anbietern von Strangpresstechnik. Andererseits zählt das
Unternehmen zu den wenigen „Full
Linern“, d. h. zu den Ausrüstungspartnern der Strangpressindustrie, die in
der Lage sind, ein komplettes Presswerk aus einer Hand zu liefern. Etwa
70 Prozent der betrieblichen Leistung
wickelt das Unternehmen selbst ab.
Das stellt GiA in eine Reihe neben
den Marktführer SMS Meer, die italienische Cometal und neuerdings
auch Otto Junker. Durch die Übernahme der französischen Clecim gewann
GiA Zugang zur modernen KurzhubFrontlader-Technologie, die heute
für neue Pressenkonstruktionen ganz
überwiegend eingesetzt wird.
32
GiA besitzt eine starke Marktposition
in Spanien und in den spanisch sprechenden Ländern Lateinamerikas.
In anderen Regionen ist die Marke
gleichfalls vertreten. In Mitteleuropa
hingegen ist das Unternehmen mit
Pressen oder Pressenlinien bisher
kaum in Erscheinung getreten. Vor
allem in Deutschland, wo die wirtschaftlichen Randbedingungen nur
technisch hochgerüsteten Presswerken eine Überlebenschance lassen,
teilten sich bisher ausschließlich
deutsche und italienische Pressenbauer den Markt.
In dieser
Situation ist
es verständlich, dass GiA
seit längerer
Zeit bestrebt
ist, sich Eintritt auch in
den
deutschen Strangpressmarkt zu
verschaffen.
Das ist jetzt
gelungen: Mit
der Gerhardi
Alutechnik
GmbH & Co.
KG in Lüdenscheid hat sich jetzt erstmals ein deutsches Presswerk entschieden, eine Presse der Firma GiA
aus Spanien zu installieren.
Die seit einiger Zeit betriebene
strategische Neuausrichtung des unabhängigen Familienunternehmens
zeigt offensichtlich Erfolge. Allein
2007 konnte der Absatz gegenüber
dem Vorjahr um zehn Prozent gesteigert werden; in den letzten fünf
Jahren wurde ein Absatzplus von 45
Prozent erzielt. Aufgrund dieser Entwicklung und der nach wie vor guten
Aussichten für das laufende Jahr soll
ab Mitte 2009 eine neue Strangpresse
bei Gerhardi für weiteres Wachstum
sorgen. Insgesamt investiert das Unternehmen am Standort rund 13,5
Mio. Euro in eine zweite Strangpresslinie. In diesem Investitionsvolumen
sind Neubauten enthalten, in denen
GiA – At last a
reference plant
in Germany
The established extrusion equipment suppliers in Germany, Italy
and Austria could soon be facing
another competitor. With the delivery of a new 33 MN extrusion
press to Gerhardi Alutechnik, the
Spanish company GiA has gained
entry to the German market. If
such a reference plant can live up
to the high expectations attached
to it, it will have to be taken into
consideration in future investment
decisions in Germany as well.
The extrusion equipment supplier
GiA located in Albacete, Spain, with
almost 300 employees and around
110 plants delivered so far, is one
of the important suppliers of extrusion technology. On the other hand,
the company is also one of the few
‘Full-Liners’, i. e. equipment suppliers
to the extrusion industry capable of
delivering a complete extrusion plant
all from the same source. Around 70
percent of its output is implemented
by the company itself. This brings
GiA into line with market leader SMS
Meer, Cometal in Italy, and more recently Otto Junker as well. By taking
over Clecim in France, GiA gained access to the modern short-stroke, frontloader technology which is nowadays
entirely predominant in the construction of new presses.
GiA has a strong market position
in Spain and the Spanish-speaking
countries of Latin America. The brand
is also represented in other regions.
In contrast, in central Europe the
company has until now hardly made
any impact with presses or extrusion
lines. Above all in Germany, where
the economic boundary conditions
are such that only extrusion plants
with highly sophisticated equipment
have a chance to survive, the market
has hitherto been shared exclusively
between German and Italian press
manufacturers.
In this situation it is understandable that GiA has for a long time been
trying to gain entry to the extrusion
market in Germany as well. This has
ALUMINIUM · 5/2008
S
AML- S T R A N G P R E S S IANLDUUMSITNRI IUEM
A LPU E
M ICN II U
now happened: Gerhardi Alutechnik
GmbH & Co. KG in Lüdenscheid has
now become the first German extrusion plant to install a press manufactured by the company GiA in Spain.
The new strategic orientation
adopted by the independent, family-owned company for some time is
clearly bringing success. In 2007 alone
sales were up by 10 percent compared
with the year before, and over the past
five years sales have increased by a
total of 45 percent. Owing to this development and to the continuing good
prospects for the current year, a new
extrusion press at Gerhardi from mid2009 should ensure further growth. In
total, the company is investing around
13.5 million euros on site in a second
extrusion line. The investment includes new buildings in which areas
will be set aside for future expansion
in the further processing sector.
EXTRUSION INDUSTRY
tion of Clecim in France, with its
know-how. Today, beginning with
billet heating systems, going on to the
press itself and ending with the cooling and run-out systems and the saws,
the company offers a manufacturing
depth in excess of 60 process all from
the same source. Gerhardi is taking
advantage of that know-how. In its
expansion plans the extrusion plant
hopes to benefit from this collaboration. The purchase of the new press
also establishes a close development
and production partnership between
Gerhardi and GiA. Most likely, however, a not unimportant part in the
purchase decision was played by the
fact that according to GiA information
the company can supply the equipment at a price unmatched elsewhere
in Europe.
For GiA too the close collaboration
with an expanding German extrusion
Werkshalle von Gerhardi
Gerhardi shop floor
With the new 33 MN extrusion press
Gerhardi plans to more than double
its present annual output of 6,500
tonnes by 2013, while also providing a backup function for the existing 20 MN press. The new press will
be designed technically so that the
production of special products such
as sections of bright alloys for highly
decorative components can be substantially increased.
Gerhardi justifies its decision in
favour of GiA on the grounds that
the company significantly enlarged
its product portfolio by the acquisi-
ALUMINIUM
· 5/2008
33
plant is extremely attractive. In times
to come Gerhardi will still have to
hold its own against the extremely
keen competition between extrusion plants. Just recently, the leading
suppliers of extrusions have been investing in modernization to prepare
themselves for future challenges.
Those challenges demand that plants
achieve the highest possible productivity with a flexibility even greater
than at present. These criteria will
also be the benchmark for GiA.
N
Flächen für den zukünftigen Ausbau
der Weiterverarbeitung vorgesehen
sind.
Mit der neuen Strangpresse vom
Typ 33 MN will Gerhardi die Produktion von zurzeit jährlich 6.500
Tonnen bis zum Jahr 2013 mehr als
verdoppeln und für die vorhandene
20-MN-Strangpresse eine BackupFunktion schaffen. Die neue Presse
wird technisch so ausgelegt sein,
dass die erfolgreiche Herstellung von
Spezialprodukten wie Profilen aus
Glanzlegierungen für hochdekorative
Bauteile deutlich ausgeweitet werden
kann.
Gerhardi begründet seine Entscheidung zugunsten dieses Anbieters damit, dass GiA durch den
Erwerb des Clecim-Knowhows aus
Frankreich sein Produktportfolio signifikant erweitert hat. Heute kann
das Unternehmen, angefangen vom
Bolzenerwärmungssystem über die
Strangpresse bis hin zu Kühlung,
Auslaufsystem und Säge mit einer
Fertigungstiefe von über 60 Prozent
alles aus einer Hand anbieten. Auf
dieses Know-how setzt man bei Gerhardi. Das Presswerk hofft, bei seinen
Expansionsplänen von dieser Zusammenarbeit profitieren zu können. Mit
dem Kauf der neuen Presse wurde
auch eine enge Entwicklungs- und
Fertigungspartnerschaft
zwischen
Gerhardi und GIA verabredet. Eine
nicht unwesentliche Rolle dürfte bei
der Kaufentscheidung auch gespielt
haben, dass GiA, eigenen Angaben
zufolge, die Anlagen zu einem in Europa konkurrenzlos günstigen Preis
liefern kann.
Für GiA ist die enge Zusammenarbeit mit einem expandierenden
deutschen Presswerk gleichfalls außerordentlich attraktiv. Gerhardi
wird sich auch zukünftig in einem
außerordentlich harten Wettbewerb
der Presswerke behaupten müssen.
Gerade in jüngerer Zeit haben sich die
führenden Strangpressanbieter mit
Modernisierungsinvestitionen auf zukünftige Herausforderungen intensiv
vorbereitet. Diese Herausforderungen
verlangen den Werken höchste Produktivität und noch größere Flexibilität ab. Diese Kriterien werden auch
die Messlatte für GiA sein.
N
ALUMINIUM · 5/2008
33
ALUMINIUM-STRANGPRESSINDUSTRIE
Pandolfo Alluminio
Ein Presswerk wie aus dem Lehrbuch
P. Johne, Haan
Pandolfo Alluminio
Pandolfo Alluminio S.p.A. mit der
Zentrale im norditalienischen Padua
gehört heute ohne Zweifel zu den
führenden europäischen Strangpressspezialisten. Das mittelständische, familiengeführte Unternehmen wurde
1969 gegründet und beschäftigt etwa
400 Mitarbeiter. Es produziert im
Werk Lentiai (Feltre) auf vier Pressenlinien bis zu 32.000 Tonnen jährlich.
Im Werk Feltre, etwa fünf Kilometer
vom Presswerk entfernt, betreibt die
Pandolfo-Gruppe zudem eine leistungsstarke Profilbearbeitung und
Oberflächenveredlung.
Umfassendes
Modernisierungsprogramm
Der Anspruch auf eine führende Rolle
unter den europäischen Presswerken
– die schließlich ihrerseits zu den
weltweit leistungsfähigsten Anbietern
gehören – ist in dem umfangreichen
und umfassenden Erweiterungs- und
Modernisierungsprogramm begründet, das Pandolfo im Jahre 2003 gestartet hat. Die Ziele dieses Projektes
sind:
• die Optimierung der Kapazitäten
in Wärmebehandlung,
Verpackung und Lagerung
34
A textbook extrusion plant
P. Johne, Haan
Fotos Herrmann + Hieber
„Liefern Sie uns eine detaillierte
Materialflussplanung einschließlich aller baulichen Änderungen
für die Automatisierung der
Korbtransporte und für die mittelfristige Produktionssteigerung
auf 35.000 Tonnen jährlich!“ Mit
diesem Auftrag, den Gianfranco
Pandolfo, Vorstandsvorsitzender
und Hauptgesellschafter des italienischen Strangpresswerkes
Pandolfo Alluminio dem Logistikspezialisten Herrmann + Hieber
erteilte, startete ein in der Branche
einzigartiges Modernisierungsund Ausbauprogramm. Der Plan
wurde erstellt und, in mehreren
Stufen, konsequent umgesetzt. Das
Ergebnis setzt neue Maßstäbe in
der Branche.
“Please provide us with a detailed
material flow plan including all
the necessary structural changes
for the automation of rack transport and for a medium-term
production increase to 35,000
tonnes per year!” That order,
given to the logistics specialist
Herrmann + Hieber by Gianfranco
Pandolfo, Chairman of the Board
and CEO of the Italian extrusion
plant Pandolfo Alluminio, set in
motion a modernization and extension programme unique in the
branch. The plan was prepared
and – in discrete stages – consistently implemented. The result sets
new standards in the branch.
Pandolfo Alluminio S.p.A., with its
headquarters in Padua in northern
Italy, is today without doubt one of
the leading European extrusion specialists. The medium-sized, familyrun company was founded in 1969
and employs about 400 people. At
the Lentiai (Feltre) works it produces
up to 32,000 tonnes of extrusions per
year on four extrusion lines. At the
Feltre works about five kilometres
away from the extrusion plant the
Pandolfo group also operates an efficient machining and surface finishing facility.
Comprehensive
modernization programme
The claim to be playing a leading part
among European extrusion plants
– which for their part are ultimately
among the most efficient suppliers in
the world – is based on the extensive
and comprehensive expansion and
modernization programme started
by Pandolfo in 2003. The aims of the
project were:
• to optimize capacities for heat
treatment, packaging and storage
• flexible automation of the material
flow from the presses to the finished-goods store and packaging
• in addition, to improve the
transparency of production; the
position and processing status of
each individual job can be
visualised by the new control
system at any time.
In all, Pandolfo is investing 15 million
euros on the project.
As its partner for this comprehensive task Pandolfo decided on
Herrmann + Hieber. Together with
Pandolfo H+H worked out a general
plan which, after approval by the customer, was implemented in a number
of stages in such manner that section
production was hardly affected at all.
When the fourth and for the time be-
ALUMINIUM · 5/2008
S
AML- S T R A N G P R E S S IANLDUUMSITNRI IUEM
A LPU E
M ICN II U
ing final stage of this comprehensive
project is completed in 2008 Pandolfo
Alluminio’s competitiveness will have
been substantially strengthened. The
project is now at the point where the
sawn section lengths are stacked in
racks and transported further on. Up
to that point Pandolfo has already optimized the working sequences on all
four presses. The plan covers flexible
automation of the next working steps:
heat treatment, storage and packaging.
This promises considerable rationalization potential for the operation and
also a substantial production increase
in the space available. The particular
challenge of the project stems from
the demand for maximum flexibility.
The assignment of materials to furnaces and packing positions according to need drastically increases the
number of logistical options.
Extension of heat treatment
In 2003 when the project started, it
was first necessary to enlarge and
modernize the heat treatment capacities. Two older heat treatment furnaces were dismantled and replaced
by new units. In 2005 the plant’s heat
treatment capacity was again massive-
ly increased by the commissioning of
a further large furnace unit (furnace
No. 7 from Otto Junker). Today, a total
of seven furnaces are available.
The racks with 8-metre section
lengths (max. 1,650 kg) pass through
furnaces Nos. 1 and 2 in 4-high stacks,
in each case two racks in line at a time
one behind the other. Furnace No. 1 is
approached by two roller tracks ©
ALUMINIUM
· 5/2008
35
EXTRUSION INDUSTRY
• die flexible Automatisierung des
Materialflusses von der Presse
bis hin zum Fertiglager und zur
Verpackung
• eine größere Transparenz der
Produktion dergestalt, dass Position und Bearbeitungsstatus eines
jeden einzelnen Auftrages durch
das neue Steuerungssystem zu
jedem Zeitpunkt sichtbar gemacht
werden.
Insgesamt investiert Pandolfo im Rahmen dieses Projektes 15 Mio. Euro.
Als Partner für das umfassende
Vorhaben entschied sich das Unternehmen für Herrmann + Hieber. H+H
erarbeitete gemeinsam mit Pandolfo
zu Beginn des Projektes einen Generalplan, der dann, nach Genehmigung durch den Kunden, in mehreren Schritten umgesetzt wurde: und
zwar so, dass die Profilproduktion nur
unwesentlich beeinträchtigt wurde.
Wenn die vierte und vorläufig letzte
Stufe dieses Projektes 2008 abgeschlossen sein wird, hat Pandolfo Alluminio seine Wettbewerbsfähigkeit
entscheidend gestärkt.
Das Projekt setzt an der Stelle an,
an der die gesägten Profilabschnitte,
in Körben gestapelt, weitertransportiert werden. Bis zu diesem Punkt hatte Pandolfo die Abläufe an allen vier
Pressen bereits optimiert und automatisiert. Die Planung umfasst die
flexible Automatisierung der nachfolgenden Arbeitsgänge: Wärmebehandeln, Lagern, Verpacken. Sie verspricht dem Betrieb ein beachtliches
Rationalisierungspotenzial und zudem eine deutliche Produktionssteigerung auf dem verfügbaren Raum.
Die besondere Problematik dieses
Vorhabens ist in der Forderung nach
maximaler Flexibilität begründet.
Durch die beliebige Zuordnung des
Materials zu Ofenanlagen und Packplätzen ist die Anzahl der logistischen
Optionen drastisch vergrößert.
Ausbau der Wärmebehandlung
2003, zum Projektstart, mussten zunächst die Wärmebehandlungskapazitäten ausgebaut und modernisiert
werden. Es wurden zwei ältere
Wärmebehandlungsöfen abgerissen
und durch neue Anlagen ersetzt. 2005
wurde die Wärmebehandlungskapa-
zität des Werkes durch die Inbetriebnahme einer weiteren Großofenanlage (Otto Junker) noch einmal massiv
gesteigert. Heute stehen insgesamt
sieben Ofenanlagen zur Verfügung.
Die Körbe mit den acht Meter langen Profilabschnitten (max. 1.650 kg)
durchlaufen die Öfen Nr. 1 und 2 in
Vierfach-Stapeln, jeweils zwei Körbe hintereinander. Ofen Nr. 1 wird
von zwei Rollenbahnen angefahren
(nimmt mithin 16 Körbe auf), Ofen Nr.
2 von drei Rollenbahnen (24 Körbe).
Die Öfen Nr. 3 und 4 sind elektrisch
beheizt und werden für Sonderaufgaben der Wärmebehandlung genutzt.
Die Öfen Nr. 5 und 6 sind gasbeheizt
und werden für kleinere Chargen
individuell betrieben; sie nehmen
jeweils acht Körbe auf. In Ofen Nr. 7,
dem zuletzt installierten Großofen,
finden drei Fünffach-Korbstapel nebeneinander und jeweils zwei hintereinander Platz. Insgesamt kann dieser
Ofen 30 gefüllte Körbe aufnehmen.
Im Bereich der Wärmebehandlung
fordert Pandolfo Alluminio, dass die
gesamte Produktion von allen vier
Pressen jedem der insgesamt sieben
Wärmebehandlungsöfen beliebig zugeordnet werden kann. Der Betrieb ist
somit frei, die einzelnen Chargen nach
unterschiedlichen Gesichtspunkten
ohne jede Einschränkung auf die vorhandenen Ofenanlagen zu verteilen.
Zudem besteht selbstverständlich die
Option, auf eine Wärmebehandlung
ganz zu verzichten.
Für die Beschickung aller Öfen ist
ein Automatikkran (Kran Nr. 1) zuständig, der über die gesamte Hallenbreite verfährt. Der Automatikkran
ist hier gleichsam das Bindeglied
zwischen den Pressen und der Wärmebehandlung. Die an den Stapeleinrichtungen gefüllten Körbe werden
mit Hilfe des Kranes auf Stellplätzen
unterhalb der Kranbahn zwischengelagert und bei Bedarf dem jeweiligen
Ofen zugeordnet. Dazu werden die
Körbe vor dem Ofen auf der jeweiligen Rollenbahn gestapelt und in den
Ofen eingefahren.
Am Ausgang eines jeden Ofens
wird die wärmebehandelte Ware kontrolliert. Dazu hat Pandolfo spezielle
Prüfplätze installiert. Sämtliche Körbe, die den Wärmebehandlungsofen
verlassen, werden durch diese ©
ALUMINIUM · 5/2008
35
ALUMINIUM-STRANGPRESSINDUSTRIE
Kontrolle erfasst. Die Prozessdaten
der Wärmebehandlung werden durch
das Transportleitsystem (TLS) erfasst,
archiviert und der übergeordneten
Betriebsrechnerebene des Werkes zur
Chargenverfolgung im Rahmen des
QS-Systems zur Verfügung gestellt.
Intelligentes Kransystem
zwischen Ofenanlagen
und Verpackung
Die kontrollierten Körbe werden zwischengelagert und bei Bedarf den einzelnen Packplätzen zugeführt. Auch
in diesem Bereich gilt die Forderung
nach uneingeschränkter Flexibilität:
Jeder Korb kann jedem Packplatz
zugeordnet werden. Für diesen Arbeitsbereich wurde ein bisher einzigartiges Transport- und Lagersystem
entwickelt.
Aufgrund der vielfältigen Transportoptionen und der dadurch bedingt größeren Lagerfläche wurde
ein System von mehreren Automatikkranen vorgesehen. Die beteiligten
Krananlagen arbeiten redundant, das
heißt sie stimmen ihre Aktionen flexibel untereinander ab. Darüber hinaus
ist als Besonderheit eine automatische Optimierung aller Transportund Lagerbewegungen vorgesehen,
in die sämtliche Transportanlagen
eingebunden sind. In der Praxis bedeutet dies, dass für jede Anforderung automatisch das Optimum (u. a.
kürzester Weg, geringste Anzahl von
Einzelbewegungen) gesucht wird. Das
geschieht unter Berücksichtigung des
Gesamtsystems, d. h. die Korbbewegungen werden nach Maßgabe des
vorgegebenen Optimums automatisch
koordiniert.
Für diese Transporte sind die
Krananlagen Nr. 2A, 2B und 3 zuständig. Kran Nr. 3 ist als einziger in drei
Achsen verfahrbar und erschließt so
zusätzliche Lagerfläche zwischen den
Ofenanlagen.
Ein weiterer Automatikkran (Kran
Nr. 4) ist für den Transport der auszuschleusenden Ware vorgesehen,
die in speziellen Körben der Weiterverarbeitung im Werk Feltre zugeführt wird. Diese Profile müssen in
spezielle Körbe umgestapelt werden.
Die Andienung der Umstapelstation
übernimmt Kran Nr. 4.
36
Bei der Planung dieses Bereiches
kam es darauf an, dass der Hallenboden frei begehbar bleibt und nicht
durch Transportanlagen verbaut ist.
Das wird erreicht, indem der Korbtransport so weit wie möglich in die
Randbereiche verlagert wurde. Der
Transport der vollen Körbe erfolgt am
Boden, der Leerkorbtransport erfolgt
generell drei Meter über Flur.
Im Anschluss an die Lagerflächen
sind die Packplätze angeordnet. Auch
in diesem Bereich können die Packplätze aus allen Lagerbereichen automatisch versorgt werden. Die Körbe
werden dazu von einem der Automa-
tikkrane zwei und drei auf die jeweilige Rollenbahn aufgesetzt und dem
vorgesehenen Packplatz automatisch
zugeführt. Derzeit stehen insgesamt
sieben Packplätze zur Verfügung. Jeder Packplatz ist mit Hilfsmitteln ausgestattet, die den Packern die Arbeit
erleichtern und die Packleistung steigern helfen. Die fertig verpackte Ware
wird mit Hilfe von Flurförderzeugen
ins Fertiglager abtransportiert, das in
einem neuen Anbau (im Aufstellungsplan noch nicht sichtbar) am Ende der
Pressenhalle untergebracht ist.
Zentrales Transportleitsystem
Der gesamte Ablauf wird von einem
zentralen Transportleitsystem gesteuert. Dieses System, das auch die Produktionsplanung unterstützt, wurde
von H+H gemeinsam mit der Firma
Aberle Steuerungstechnik in Leingarten entwickelt. Bei Pandolfo wurde
das System bereits in der ersten Phase der Projektabwicklung installiert,
so dass die nacheinander reali- ©
(and can accommodate 16 racks) and
furnace No. 2 by three roller tracks (24
racks). Furnaces 3 and 4 are electrically heated and are used for special
heat treatment tasks. Furnaces 5 and
6 are gas fired and are operated individually for smaller charges; they
each take eight racks. In furnace No. 7,
the most recently installed large furnace, three five-high rack stacks next
to one another and in each case two
in line behind one another can be accommodated, so this furnace can take
30 full racks.
In the heat treatment area Pandolfo Alluminio required that the total
production of all
four presses should
be able to go to any
of the total of seven
heat treatment furnaces, as desired.
This allows the operation to distribute
individual charges
among the existing
furnaces in accordance with various
points of view,
without any limitation. In addition, of
course, there is the
option of bypassing the heat treatment entirely.
Loading of all the furnaces is carried out by an automatic crane (crane
No. 1), which moves across the full
width of the shed. Here, the automatic
crane is as it were the link element between the presses and the heat treatment. The racks, filled by the stacking
machines, are stored intermediately
by the crane at deposition points under the crane’s path and are assigned
to the respective furnace as necessary.
For this, the racks are stacked in front
of the furnace on the correct roller
track and moved into the furnace.
At the exit from any furnace the
heat treated goods are checked, and
for this purpose Pandolfo has installed special testing points. All racks
that emerge from the heat treatment
furnaces go through these checks.
The heat treatment process data are
recorded by the transport control system (TCS), archived and transmitted
to the plant’s master-computer level
for charge tracking purposes in ©
ALUMINIUM · 5/2008
ALUMINIUM-STRANGPRESSINDUSTRIE
sierten Bereiche schrittweise ins System integriert werden konnten. Das
zentrale Transportleitsystem erfasst
sämtliche Profilkörbe über Barcodes
und verwaltet diese bis zur Einlagerung der verpackten Ware. Es ist mithin zu jedem Zeitpunkt in der Lage,
Auskunft über die aktuelle Position
eines jeden Korbes zu geben. Diese
Fähigkeit macht das Transportleitsystem zu einer wertvollen Hilfe bei
der Planung der Produktion.
Darüber hinaus hat man sich bei
Pandolfo entschlossen, auch den
Schrotttransport in das Automatiksystem zu integrieren. Soweit im
Bereich der Verpackung Schrotte anfallen, die zur Gießerei zurückgeführt
werden müssen, erfolgt das gleichfalls
vollautomatisch über ein zentrales
Transportsystem.
Aggregate können angefahren
werden
• Ausgliederung des Materialflusses
zum und vom Werk 2
• automatischer Rücktransporte
zur zentralen Schrottsammlung /
Gießerei
wurden erfolgreich umgesetzt. Zu
gewährleisten waren dabei:
• höchste Verfügbarkeit aller
Anlagen
• keine Transportschäden
• Implementieren ohne Betriebsstörung
• hohe Sicherheitsstandards
• nicht verbaute Hallen-Grundfläche.
Auch diesen Forderungen konnte im
Rahmen der Projektabwicklung voll
entsprochen werden.
the context of the quality assurance
system.
Flexibel und wirtschaftlich
erate with redundancy, i. e. they coordinate their actions flexibly with
one another. Moreover, as a special
feature automation of all the transport
and storage movements is provided,
in which all the transport units are
involved. In practice this means that
for every need, the optimum (shortest path, least number of individual
movements, etc.) is sought. This takes
place having regard to the system as
a whole, i. e. the rack movements are
co-ordinated automatically in accordance with the specified optimum.
These transport operations are
carried out by cranes Nos. 2A, 2B and
3. Crane No. 3 is the only one that can
move in three axes and this allows
the use of additional storage areas
between the furnace units. Another
automatic crane (crane No. 4) is provided for the transport of goods to be
Intelligent crane system between
furnace units and packing station
The checked racks are stored intermediately and then moved to individual
packing positions as necessary. The
requirement for unrestricted flexibility applies in this area as well: any
rack can be assigned to any packing
position. For this work area a so-far
unique transport and storage system
was developed.
Having regard to the numerous
transport options and the large storage area entailed by them, a system
of several automatic cranes was provided. The crane units involved op-
Störungsfreier Betrieb garantiert
Aus wirtschaftlicher Sicht macht der
vollautomatisierte Ablauf nur dann
Sinn, wenn der Betrieb absolut störungsfrei läuft. Aus diesem Grunde
wurde dem Ziel maximaler Verfügbarkeit besondere Aufmerksamkeit
geschenkt. Dieser Zielstellung dienen
eine Reihe von konstruktiven und
auch organisatorischen Maßnahmen.
Als ein entscheidender Punkt hat sich
die Konzeption eines neuen, an das
System angepassten Korbes erwiesen. An dieser Entwicklung waren
OMAV (als Lieferant der Stapeleinrichtungen), H+H sowie Pandolfo gemeinsam beteiligt. Jeder Korb wird im
Presswerk vor dem Einschleusen ins
Transportsystem einzeln auf Beschädigungen kontrolliert. Damit und mit
einer Reihe weiterer Maßnahmen erreicht Herrmann+ Hieber bei Pandolfo eine Gesamtverfügbarkeit von 98,5
Prozent im Jahr, für einzelne Anlagenteile sogar mehr als 99 Prozent.
Transportschrotte, im Betriebsablauf eines Presswerkes ein nicht
zu vernachlässigender Kostenfaktor,
sind bislang nicht angefallen! Im Ergebnis all dieser Maßnahmen ist eine
Profilproduktion mit optimalem, geradlinigen Materialfluss entstanden.
Die logistische Zielstellung
• automatisierter Transport des
Materials
• absolute Flexibilität, d. h. alle
38
Die positiven Auswirkungen auf die
Wirtschaftlichkeit des Unternehmens
liegen auf der Hand. Der Betrieb profitiert nicht nur vom geringeren Personalbedarf, der niedrigeren Schrottrate
und von dem störungsfreien Betrieb.
Er ist darüber hinaus bei Bedarf auch
in der Lage, die gestiegene Produktivität zu nutzen. Bei Bedarf kann die
Ausbringung des Werkes an die Erfordernisse des Marktes angepasst
werden. Die Ausbringung lässt sich
gegenüber dem Ausgangszustand um
mehr als 35 Prozent steigern.
Autor
Dr.-Ing. Peter Johne muss den Lesern nicht
näher vorgestellt werden, war er doch lange Jahre Chefredakteur dieser Zeitschrift.
ALUMINIUM · 5/2008
S
AML- S T R A N G P R E S S IANLDUUMSITNRI IUEM
A LPU E
M ICN II U
Anzeige
www.inotherm-gmbh.de
sent out at the Feltre works. These
sections have to be restacked in special racks and crane No. 4 serves the
restacking station.
In planning this area it had to be
ensured that the floor of the shed
allows freedom of movement and
is not obstructed by transport units.
That was achieved by shifting the
rack transport operations as much as
possible to the edges. Full racks are
transported at floor level and empty
ones for the most part three metres
above floor level.
The packing station is arranged
next to the storage areas. Here too, the
packing positions can be supplied automatically from any storage location.
For this, the racks are placed on the
appropriate roller track by one of the
automatic cranes 2 or 3, and automatically taken to the intended packing
position. At present a total of seven
packing positions are available. Each
is provided with auxiliary equipment
which facilitates the work of the packers and helps to boost packing performance. The ready-packed goods
are taken away by floor conveyors to
the finished-goods store located in a
new building (not yet visible in the
setup plan) at the end of the extrusion shed.
Central transport control system
The entire sequence is controlled by
a central transport control system.
This system, which also assists production planning, was developed by
H+H together with the company Aberle Steuerungstechnik in Leingarten.
At Pandolfo the system was installed
already during the first project implementation phase so that the areas
created one after the other thereafter could be integrated step by step
into the system. The central transport
control system detects all the section
racks by means of barcodes and manages their movements as far as the
storing of the packaged goods. It can
also provide information at any time
ALUMINIUM
· 5/2008
39
EXTRUSION INDUSTRY
on the current position of every rack.
This ability makes the transport control system a valuable aid for production planning.
Moreover, it was decided at Pandolfo to integrate the scrap transport
in the automatic system as well. Any
scrap produced in the packaging area
which must be sent back to the foundry is also transported there fully
automatically by a central transport
system.
• automated material transport
• absolute flexibility, i. e. approachability of every aggregate
• separation of the material flow
to and from plant 2
• automatic return transport back
to the central scrap collection
area and the foundry
have been successfully implemented.
In this it was necessary to ensure:
• maximum availability of all units
• no damage during transport
Smooth operations guaranteed
• implementation without interfering with operation
• high safety standards
• unobstructed shed floor areas.
These requirements too were fully
met during the course of project execution.
From an economic standpoint fully
automated working sequences only
make sense if operations take place
absolutely without trouble or interference. For that reason great attention
was paid to the aim of maximum availability. That aim is served by a series
of design and organisation measures.
A decisive point was the design of
a new rack adapted for the system.
OMAV, as the supplier of the stacking machinery, together with H+H
and Pandolfo, were jointly involved in
that development. Before progressing
into the transport system each rack is
examined individually in the extrusion plant for any damage. In that way,
and with a series of other measures
Herrmann + Hieber made it possible
to achieve an overall availability of
98.5% over the year, and even above
99% for some parts of the plant.
Scrap generated during transport,
a cost factor not to be overlooked in
the routine operation of an extrusion
plant, has until now not appeared at
all! The result of all these measures is a
production operation with optimal linear material flow. The logistical aims:
Highly productive and flexible
The positive effects on the company’s economic performance are very
evident. The operation benefits not
only because fewer operating personnel needed, scrap rates are low and
operations are trouble-free, but also
because the company is in a position
when necessary to make the most of
its increased productivity. The output
of the plant can be adapted to market
needs, as the situation requires. Compared with before the project started,
output can be increased by more than
35%.
Author
Dr.-Ing. Peter Johne needs no introduction.
He was Editor in Chief of ALUMINIUM for
many years.
ALUMINIUM · 5/2008
39
ALUMINIUM-STRANGPRESSINDUSTRIE
Die Strangpresskapazitäten in
der Golfregion expandieren stark
Der anhaltende Bauboom im Mittleren Osten hat zum Aufbau einer
leistungsfähigen Strangpressindustrie in dieser Region geführt.
In den letzten Jahren ist die Anzahl der Strangpressen stark angestiegen: um insgesamt 25 Linien
auf 85 zum Jahresende 2007. Das
entspricht annähernd dem Volumen der Strangpressindustrie in
Deutschland.
Die ersten Presswerke in der Region
nahmen Ende der siebziger Jahre den
Betrieb auf. Zwischen 1977 und 1979
wurden die ersten Presswerke errichtet: die Bahrain Aluminium Extrusion
Company (Balexco), das Presswerk
der Aluminium Products Company
Ltd. (Alupco) in Damman in Saudi
Arabien, Arabian Light Metals in Kuweit und Gulf Extrusions in Dubai. Im
Jahre 1980 produzierten lediglich sieben Pressen am Golf. Seitdem wurde
diese Industrie zunehmend auf- und
ausgebaut. Seit Beginn der neunziger
Jahre zählt die Strangpressindustrie
zu den wirtschaftlichen Eckpfeilern
in der Golfregion.
2003 arbeiteten in den Ländern
Ägypten, Libanon, Syrien, Kuweit,
Extrusion capacities in
the Gulf region
expanding rapidly
The building boom in the Middle
East has led to the development
of an efficient extrusion industry
in that area. In recent years the
number of extrusion plants has
increased by 25 to a total of 85 at
the end of 2007. This corresponds
approximately to the volume of the
extrusion industry in Germany.
The abundant availability of fossil
energy reserves of oil and gas soon
opened the way for the establishDie reichliche Verfügbarkeit der
ment of energy-intensive industries.
fossilen Energievorräte Öl und Gas
Nowadays not only are the world’s
wies frühzeitig den Weg zum Aufbau
largest aluminium smelters operatenergieintensiver Industrien. Heute
ing here, but there are even plans to
arbeiten hier nicht nur die weltweit
accelerate capacity enlargement. In
größten Aluminiumhütten, sondern
this situation it made sense to invest
die Planungen sehen sogar noch eiin further processing as well,
nen beschleunigten Ausbau
so as to retain at least part
der Kapazitäten vor. In dieser
of that value-addition in the
Situation lag es nahe, auch
countries concerned.
in die Weiterverarbeitung zu
investieren, um zumindest eiFor this, not only is the necnen Teil der Wertschöpfung
essary capital available, but
im Lande zu halten.
there is also a concrete need.
Dazu steht nicht nur das
Along with the intensified exnotwendige Kapital zur Vertension of tourism and finanfügung, sondern es existiert
cial services in the countries
auch ein konkreter Bedarf.
of the Gulf region, the building
Zugleich mit dem forcierten Dubal ist ein wichtiger Lieferant von Rundbarren für Profilindustry above all has gained
Ausbau von Tourismus und anwendungen im Bausektor in der Golfregion
in importance. In the context of
Finanzwesen in den Ländern Dubal is a significant supplier of extrusion billets for construc- that development the demand
photo: Dubal
der Golfregion hat vor allem tion marktes in the Gulf region
for extruded aluminium proddie Bauindustrie an Gewicht
ucts has also increased, the
gewonnen. Im Rahmen dieser Entmore so since aluminium structures
Iran, Irak, den Golfstaaten, Saudi Arawicklung entstand auch ein wachare well suited to the climatic condibien und Oman schon etwa 70 Strangsender Bedarf an Aluminium-Strangtions and are also increasingly needed
pressen. Ende 2007 war diese Anzahl
pressprodukten, zumal Aluminiumfor the extensive and often spectacular
bereits auf 85 Linien angewachsen.
konstruktionen für die klimatischen
building projects in the area.
Für 2008 rechnet man mit einem BeBedingungen und zunehmend auch
darf von insgesamt 450.000 Tonnen
The current expectation is that the
für Umfang und Art der teilweise
Strangpressprofile, wobei vor allem
meteoric building activity will conspektakulären Bauprojekte prädestiSaudi Arabien, Qatar, die Vereinigten
tinue in the coming years. In the more
niert sind.
Arabischen Emirate und Kuweit mit
highly developed states such as Dubai
Heute gehen die Erwartungen daihren starken Bauaktivitäten hinter
the major projects are mostly related
hin, dass sich die rasante Bautätigkeit
diesem Bedarf stehen.
to tourism. In other states a developin den kommenden Jahren fortsetzen
In Saudi Arabien stand in 2007
ment backlog has accumulated, and in
wird. In den hoch entwickelten Staader Presskapazität von 135.000 t ein
Iraq the reconstruction of the country
ten, beispielsweise in Dubai, sind es
Bedarf von 136.000 t gegenüber. In
only awaits willing investors.
touristisch geprägte Großprojekte. In
den Emiraten sind Kapazitäten von
The first extrusion plants in the reanderen Staaten hat sich ein Nach180.000 t installiert; der Bedarf betrug
gion began operating in the late 1970s.
holbedarf angestaut und im Irak warhier 131.000 t. Um den Bedarf von QaBetween 1977 and 1979 the first
tet der Wiederaufbau des Landes auf
tar zu decken – derzeit 17.000 t jährplants were built: Bahrain Aluminium
Investoren.
lich – sollen nach den Planungen drei
Extrusion Company (Balexco), the ex-
40
ALUMINIUM · 5/2008
S
AML- S T R A N G P R E S S IANLDUUMSITNRI IUEM
A LPU E
M ICN II U
trusion plant of Aluminium Products
Company Ltd. (Alupco) in Damman,
Saudi Arabia, Arabian Light Metals in
Kuwait, and Gulf Extrusions in Dubai.
In 1980 only seven presses were in
active production in the Gulf. Since
then the industry has become increasingly widely established and is being
extended still further. Since the beginning of the 1990s the extrusion industry has become one of the economic
cornerstones of the Gulf region.
In 2003 around 70 extrusion plants
were already operating in Egypt, Lebanon, Syria, Kuwait, Iran, Iraq, the Gulf
States, Saudi Arabia and Oman. At the
end of 2007 that number had grown
to 85. For 2008 the estimated demand
for extrusions amounts to a total of
450,000 t, this demand being fuelled
above all by Saudi Arabia, Qatar, the
United Arab Emirates and Kuwait with
their prolific building activities.
In Saudi Arabia, in 2007 the available extrusion capacity of 135,000 t
faced a demand for 136,000 t. In the
Emirates, where installed capacities
amount to 180,000 t, the demand was
EXTRUSION INDUSTRY
131,000 t. To cover Qatar’s demand,
currently 17,000 tpy, there are plans
to build three or four new extrusion
plants. The Bukhatir Group is planning a new 20,000 extrusion plant
for 20,000 t in Abu Dhabi, whose two
lines are scheduled to begin operating
in about a year.
As regards the performance of these
extrusion plants, it is an indicative fact
that about half the machines have
been supplied by SMS Meer. German
equipment partners have also been
involved in a considerable proportion
of the auxiliary equipment. The extrusion lines have been built to a standard that is completely in line with
central European requirements. If and
when one day the domestic market
becomes saturated and the demand
for building sections in those countries slackens, then they are equipped
to enter into global competition.
With their technical standards these
plants are mostly capable of producing and exporting first-rate sections,
as used for example in automotive
and mechanical engineering.
N
oder vier neue Presswerke errichtet
werden. Die Bukhatir-Gruppe plant
ein neues Presswerk mit 20.000 t in
Abu Dhabi. Die beiden Linien sollen
in etwa einem Jahr den Betrieb aufnehmen.
Was die Leistungsfähigkeit dieser
Presswerke anbelangt, ist die Tatsache bezeichnend, dass etwa die Hälfte
der Maschinen von SMS Meer geliefert worden sind. Bei den Nebenanlagen waren zu einem beachtlichen
Anteil deutsche Ausrüstungspartner
beteiligt. Es wurden Pressenlinien mit
einem Standard investiert, der mitteleuropäischen Ansprüchen durchaus
gerecht wird. Wenn eines Tages der
heimische Markt zu einem guten Teil
gesättigt sein wird und die Nachfrage
nach Bauprofilen in diesen Ländern
nachlässt, dann sieht man sich für den
globalen Wettbewerb gerüstet. Mit ihrem technischen Standard sind diese
Werke zum großen Teil in der Lage,
technisch anspruchsvolle Profile, wie
sie beispielsweise im Fahrzeug- oder
Maschinenbau verwendet werden, zu
fertigen und zu exportieren.
N
C
D
C
D
m
u
i
m
n
u
i
i
min
f or Alucm
assttiinngg
Drache
umwelttechnik
ALUMINIUM
· 5/2008
41
ALUMINIUM · 5/2008
41
ALUMINIUM-STRANGPRESSINDUSTRIE
Weitere Strangpresslinie von
SMS Meer für Presswerk in Saudi-Arabien
B. Rieth, Meerbusch
Die Al Taiseer Aluminium Factory im saudi-arabischen Riadh
beginnt mit der Installation ihrer
vierten Strangpressanlage. Mit
einer Kapazität von künftig über
40.000 Jahrestonnen baut das Unternehmen seine Position als eines
der leistungsfähigsten Strangpresswerke im Nahen Osten aus.
Hauptprodukt sind Bauprofile, die
dank der weiterhin boomenden
Bauwirtschaft in dieser aufstrebenden Wirtschaftsregion einen
sicheren Absatzmarkt haben.
B. Rieth, Meerbusch
Al Taiseer Aluminium Factory in
Riyadh, Saudi Arabia, is beginning
the installation of its fourth extrusion plant. With a future capacity
of more than 40,000 tonnes per
year the company is consolidating
its position as one of the best-performing extrusion plants in the
Middle East. Its main products are
sections for building, which have
a sure sales market thanks to the
still booming building economy in
this developing area.
The unchecked building boom in the
Middle East is manifested by a stream
of new superlatives concerning the
building of high-rise structures,
dwellings and stores. Besides the demand for normal window sections for
the housing market, this is creating a
growing demand for technologically
sophisticated building sections and
façade elements, without which the
sometimes breathtaking façade designs of full air-conditioned buildings
could not be created. Only manufacturers such as Al Taiseer Aluminium
Products, equipped in terms of plant
and production technology for the
production of the best quality within
a broad range of products, make this
possible.
To adapt the capacity of the existing plant to the rising demand, but also
because of satisfaction with the three
existing units, Al Taiseer has again decided to order its fourth complete extrusion line with a capacity of around
12,000 tonnes per year from SMS
Meer. The company began producing
in 1994 with a 24-MN, normal-stroke
press from SMS Meer, and in 2000 it
set up a second extrusion line with
another press of the same type, also
from the same manufacturer. In 2005
the third line with extrusion load 27
MN came into operation, for the first
time with Schloemann front-loading
technology.
All from a single source
Besides the planning of the plant as
a whole and the supply of all equipment, from the billet heating up to the
manual stacking of the cut-to-length
sections, including the electric and
Salem
Yasmin Gahtani
Der ungebremste Bauboom im Nahen Osten verdeutlicht sich mit immer neuen Superlativen im Bau von
Hochhäusern, Wohn- und Kaufhausanlagen. Neben der Nachfrage nach
normalen Fensterprofilen für den
Wohnungsmarkt führt er zu einem
zunehmenden Bedarf an technologisch hochwertigen Bauprofilen und
Fassadenelementen, ohne welche die
teils atemberaubenden Fassadenkonstruktionen der voll klimatisierten
Gebäude nicht realisierbar wären.
Hier kommen nur Hersteller wie z. B.
Al Taiseer Aluminium Products zum
Zug, die von der Anlagentechnik und
ihrer Produktionstechnologie her für
die Erzeugung höchster Qualität innerhalb einer breiten Produktpalette
ausgerüstet sind.
Zur Anpassung der Kapazität des
Another SMS extrusion line
for an extrusion plant in Saudi Arabia
Riadh zwischen Tradition…
… und Moderne
Riyad – a mixture of tradition …
… and modern living
42
ALUMINIUM · 5/2008
automation systems, SMS again undertook full responsibility for planning, delivery, assembly and commissioning.
For the line’s operation Al Taiseer
has access to highly qualified personnel which has accumulated its experience already from the existing units.
Efforts to achieve the highest product
quality and productivity are in this
plant too supported by a high level
of automation, for example optimization of the log discards by controlling
the furnace so that the seven-metre
long logs are used almost without loss,
which also increases productivity.
Improved energy utilization
The logs, brought in onto a supporting table, are conveyed individually
into a gas-fired rapid heating furnace
of the latest design. Thanks to the
particular arrangement of the burner
nozzles, an optimized burner concept
transfers the heat energy not only be
convection but also by radiation. The
flame action and furnace gas flow are
distributed uniformly over almost
the entire surface and bring about a
complete and homogeneous energy
flow, which also avoids the risk of
local overheating and consequent
grain boundary melting. The somewhat higher investment costs for this
furnace concept are compensated by
better energy utilization, even in energy-rich Saudi Arabia. Temperature
control during the heating of the extrusion billets is also much more accurate.
Directly behind the furnace is a
vertically acting hot shear for lowdeformation cutting with an angular
deviation of only ± 0.5°, which also
makes the use of divided billets uncritical.
Extrusion press of the
most modern design
As already in the third extrusion line
at Al Taiseer, again in this fourth plant
the tried and tested short-stroke,
front-loaded press by SMS Meer is
used. With its extrusion load of 25/27
MN and the increased billet length of
1500 mm, it is designed for the production of larger sections and ©
ALUMINIUM
· 5/2008
43
EXTRUSION INDUSTRY
mungsofen neuester Bauart zugebestehenden Werkes an die steigende
führt. Ein optimiertes BrennerkonNachfrage, aber auch wegen der Zuzept überträgt durch die besondere
friedenheit mit den drei bestehenden
Anordnung der Brennerdüsen die
Anlagen, entschloss sich Al Taiseer,
Wärmeenergie nicht nur über Konauch die vierte komplette Strangvektion, sondern zusätzlich auch über
presslinie mit einer Kapazität von
Strahlung. Flammenbeaufschlagung
rund 12.000 Tonnen pro Jahr bei SMS
und Rauchgasumströmung verteilen
Meer zu bestellen. Das Unternehmen
begann seine Produktion 1994 mit einer 24-MN-Normalhub-Presse von SMS
Meer und errichtete
im Jahr 2000 eine
zweite Pressenlinie
mit einer weiteren
24-MN-NormalhubPresse,
ebenfalls
vom gleichen Hersteller. 2005 ging
die dritte Linie mit
einer Presskraft von Die neue Kurzhub-Frontladerpresse von SMS Meer im Al Taiseer Werk
27 MN in Betrieb, New short-stroke, front-loaded press from SMS Meer, installed at Al Taiseer
wobei erstmals die
Schloemann-Frontladertechnik zum
sich gleichmäßig über nahezu die
Einsatz kam.
gesamte Oberfläche und bewirken
einen vollständigen und homogenen
Energiefluss, wodurch auch die GeAlles aus einer Hand
fahr von lokalen Überhitzungen und
daraus folgenden Korngrenzen-AnNeben der Planung der gesamten Anschmelzungen vermieden wird. Die
lage und der Lieferung aller Einrichetwas höheren Investitionskosten für
tungen von der Blockstangenerwärdieses Ofenkonzept werden selbst im
mung bis zum manuellen Stapeln der
energiereichen Saudi-Arabien durch
abgelängten Profile einschließlich der
die verbesserte Energieausnutzung
Elektrik und Automatisierung überkompensiert. Hinzu kommt eine deutnahm SMS Meer wieder die Gesamtlich genauere Temperaturführung bei
verantwortung für Planung, Lieferung,
der Erwärmung der Pressbolzen.
Montage und Inbetriebnahme.
Unmittelbar hinter dem Ofen beFür die Bedienung der Linie kann
findet
sich eine senkrecht wirkende
Al Taiseer auf hoch qualifiziertes PerWarmschere
für deformationsarme
sonal zurückgreifen, das seine ErfahSchnitte
mit
einer
Winkelabweichung
rungen bereits an den vorhandenen
von
nur
+/0,5°,
die
auch den Einsatz
Anlagen gesammelt hat. Das Bemügeteilter
Blöcke
unkritisch
machen.
hen um höchste Produktqualität und
Produktivität der Anlage wird auch
bei dieser Anlage durch einen hohen
Strangpresse modernster Bauart
Automatisierungsgrad
unterstützt,
wie z. B. bei der Blockstangen-RestWie bereits in der dritten Pressenlinie
stückoptimierung, bei der die Ofenvon Al Taiseer kommt in der vierten
steuerung für eine verlustfreie NutAnlage erneut die bewährte Kurzzung der sieben Meter langen Blockhub-Frontladerpresse von SMS Meer
stangen und damit für die Erhöhung
zum Einsatz. Mit ihrer Presskraft von
der Produktivität sorgt.
25/27 MN und der erhöhten Blocklänge von 1500 mm ist sie für die Erzeugung größerer Profile und längerer
Verbesserte Energieausnutzung
Auspresslängen ausgelegt, als dies mit
den 22/24-MN-Pressen in den beiden
Die über einen Auflagetisch bereitersten Linien möglich ist.
gestellten Stangen werden einzeln
einem gasbeheizten SchnellerwärKurzhub-Frontladerpressen ©
ALUMINIUM · 5/2008
43
SMS Meer
S
AML- S T R A N G P R E S S IANLDUUMSITNRI IUEM
A LPU E
M ICN II U
ALUMINIUM-STRANGPRESSINDUSTRIE
Überwachung und
Optimierung des Pressvorgangs
Zum Einsatz kommt das bereits vielfach erprobte Cadex-System, das von
SMS Meer speziell für das isotherme
Pressen mit einem Höchstmaß an
Produktivität entwickelt wurde. Bei
Cadex (Computer Aided Direct Extrusion) handelt es sich um ein selbst
lernendes Programm für die thermische Simulation und Optimierung
beim direkten Strangpressen. Das
Programm berechnet die optimalen
Pressparameter zur Verbesserung der
Produktivität und der Produktqualität
auf Basis von Daten, die SMS für die
unterschiedlichen
Werkstoffgüten
ermittelt und in einer Datenbank gespeichert hat. Die Pressgeschwindigkeit wird über die gesamte Bolzenlänge gesteuert. Der Temperaturgradient
(„Taper“) des Pressbolzens wird am
Presseneintritt gemessen. Das System
stellt sicher, dass die Pressgeschwindigkeit gesteigert wird, ohne dabei
44
thermisch zulässige Grenzwerte zu
überschreiten.
Pressenauslauf und Profilkühlung
für 60 Meter Auspresslänge
longer extruded lengths than is possible with the 22/24 MN presses of
the first two lines.
In the recent part short-stroke,
front-loaded presses have been found
to be the best solution in many respects for most applications and numerous end products, and are nowadays regarded all over the world as the
most advanced press design. They are
particularly noted for their compact
and therefore space-saving structure
and their great stability during the
working cycle. These advantages are
achieved by virtue of a compact press
Der Pressenauslauf ist für eine maximale Auspresslänge von 60 Metern konzipiert und wurde damit im
Hinblick auf die große Blocklänge
optimiert. Ein Doppelpuller zieht die
Pressstränge. Er wird von einem zusätzlichen Hilfspuller für die Fliegende
Säge unterstützt. Durch den Entfall
von Wartezeiten verkürzt sich der Arbeitszyklus, was
wiederum zu einer deutlichen
Steigerung der
Produktivität der
gesamten Anlage
führt. Der Zahnriemenantrieb
für den Puller
und die Fliegende Säge ergibt
eine hohe Positioniergenauigkeit und daraus
resultierend ei- Doppelpuller für 60 Meter Auspresslänge
nen
niedrigen Double puller for a maximum extruded length of 60 metres
Schrottanteil bei
frame and central billet clamping. The
gleichzeitig geringem Wartungsaufbillet handling system patented by
wand. Die Fliegende Säge führt ihre
SMS Meer also enables safe operation
Trennschnitte bei Profilaustritts-Geeven when using divided billets and
schwindigkeiten bis 40 m/Min. aus.
softer alloys.
Die Art der Profilkühlung direkt
The great economy of the shorthinter der Strangpresse ist abhängig
stroke, front-loaded presses is the revon den eingesetzten Werkstoffgüten
sult of high extrusion speed, a shorter
und den Qualitätsansprüchen der
cycle time because of reduced idle
Endkunden. Im vorliegenden Fall,
times (only 12 seconds with this press)
wo in erster Linie Bauprofile – allerand the larger billet lengths that can
dings auch für gehobene Ansprüche
be used.
– produziert werden, erwies sich eine
The container of the press is reKombination aus einer Intensivluftsistance-heated and regulated in two
kühlung in Verbindung mit Wasserzones. The maximum specific extrunebel als die günstigste Lösung. Dies
sion pressure is up to 780 N/mm2. The
gilt sowohl unter dem Gesichtspunkt
der angestrebten metallurgischen
billets used are 8 inches in diameter
Wirkung, als auch einer vertretbaren
and have a maximum length of 1500
Höhe der Investitionskosten. Die obemm.
re Haube der Intensivkühlung kann
angehoben werden, um das Abholen
Monitoring and optimization
des Stranges am Pressenmaul durch
of the extrusion process
den Hilfspuller der Fliegenden Säge
zu ermöglichen. Ein Absenken der
The system used is the already wellHaube ermöglicht es den Düsen, den
tried Cadex-System developed speoptimalen Abstand zum auslaufenden
cially by SMS Meer for isothermal
Profil einzunehmen und eine mögextrusion with the greatest possible
ALUMINIUM · 5/2008
SMS Meer
haben sich in der jüngeren Vergangenheit in den meisten Einsatzfällen
für eine Vielzahl von Endprodukten in
vielfältiger Hinsicht als beste Lösung
erwiesen und gelten heute weltweit
als die fortschrittlichste Pressenbauweise. Sie zeichnen sich besonders
aus durch ihre kompakte und damit
platzsparende Bauweise sowie durch
ihre hohe Stabilität in den Arbeitszyklen. Erreicht werden diese Vorteile
mit einem kompakten Pressenrahmen und einer zentrischen Bolzenklemmung. Die für SMS Meer patentierte Bolzenhandhabung ermöglicht
zudem einen sicheren Betrieb auch
beim Einsatz geteilter Bolzen und
weicher Legierungen.
Die große Wirtschaftlichkeit der
Kurzhub-Frontladerpresse ergibt sich
aus der hohen Pressgeschwindigkeit,
einer kürzeren Zykluszeit aufgrund
geringerer Nebenzeiten (bei dieser
Presse nur 12 Sekunden) sowie den
größeren einsetzbaren Bolzenlängen.
Der Aufnehmer der Presse ist widerstandsbeheizt und in zwei Zonen
geregelt. Der max. spezifische Pressdruck beträgt bis zu 780 N/mm2. Die
eingesetzten Bolzen haben einen
Durchmesser von 8 Zoll und eine
maximale Länge von 1500 mm.
S
AML- S T R A N G P R E S S IANLDUUMSITNRI IUEM
A LPU E
M ICN II U
productivity. Cadex (Computer Aided Direct Extrusion) is a self-teaching
program for thermal simulation and
optimization during direct extrusion.
The program calculates the optimum
press parameters for improving productivity and product quality on the
basis of data determined by SMS for
the various material grades and stored
in a database. The extrusion speed is
controlled over the full length of the
billet. The temperature gradient (‘taper’) in the extrusion billet is measured on entry into the press. The system ensures that the extrusion speed
is increased, but without exceeding
thermally permissible limit values.
Press runout and section
cooling for extruded
lengths up to 60 metres
The press runout system is designed
for a maximum extruded length of 60
metres and has therefore been optimized with the large billet length in
mind. A double puller tensions the
extruded strand. This is supported by
an additional, auxiliary puller for the
flying saw. The elimination of waiting
times shortens the working cycle, and
this in turn leads to a substantial increase of the productivity of the plant
as a whole. The toothed-belt drive for
the puller and flying saw enables high
positional accuracy and this results in
low scrap fractions and at the same
time reduces maintenance. The flying
saw makes its separating cut at section runout speeds up to 40 m/min.
The type of section cooling directly
after the extrusion press depends on
the material concerned and the quality demands of the end customer. In
the present case, where building sections – though also ones expected
to be of highest quality – are mainly
produced, the best solution was found
to be a combination of intensive air
cooling and a water mist. This applies
both from the standpoint of the metallurgical effect desired, and in terms of
acceptable investment costs. The upper hood of the intensive cooling can
be raised in order to enable the auxiliary puller of the flying saw to catch
up with the strand at the press jaw.
Lowering of the hood enables the nozzles to be positioned an optimum dis-
ALUMINIUM
· 5/2008
45
EXTRUSION INDUSTRY
tance from the emerging section and
the greatest possible quantity of air to
be directed onto the section. Depending on the degree of cooling desired,
the process can be intensified further
by the production of a water mist.
lichst große Luftmenge an das Profil
heranzuführen. Je nach gewünschtem
Abkühlgrad kann der Vorgang durch
zusätzliches Erzeugen eines Wassernebels intensiviert werden.
Kühlbett, Reck- und Sägenanlage
Cooling bed, stretching
and sawing equipment
All the equipment in this area is designed for a strand length of 60 metres.
To cool the sections down to their final temperature within the shortest
possible distance, radial fans are arranged under the cooling bed. A separate cooling position alongside the
extrusion path enables longer dwell
time over the fans. For the most careful possible treatment of the section
surfaces, transverse transport onto
the cooling bed is effected by belts
of heat-resistant Kevlar felt fabric.
Longitudinal transport is carried out
by Kevlar felt or plastic-coated rolls
of large diameter.
A stretching head at each end of the
cooling bed serves to straighten one or
more sections. When the sections have
been clamped, the stretching heads
apply a force of up to 500 kN.
The saw roller track is designed for
a packet width of 1200 mm. To ensure
careful treatment of the section surfaces, these rollers too are clad with
plastic. The saws are fitted with carbide-tipped blades. They serve to crop
and cut up the sections into lengths
of 2 to 8.5 metres. Scrap offcuts are
separated out directly at the saw. The
useful lengths are taken by a clearing
roller track to the removal conveyor
belts. From there they are loaded by
hand into racks for the final heat treatment.
The entire plant is scheduled to begin operating in the summer of 2008.
For Al Taiseer it will bring further
valuable capacity boost and make it
possible to offer an enlarged product
range for a demanding market.
Alle Einrichtungen in diesem Bereich
sind für eine Stranglänge von 60 Metern ausgelegt. Um die Profile auf geringstem Platz auf Endtemperatur herunterzukühlen, sind unter dem Kühlbett Radialventilatoren angeordnet.
Eine separate Kühlposition neben der
Anpressbahn ermöglicht eine längere
Verweildauer über den Lüftern. Zur
bestmöglichen Schonung der Profiloberflächen erfolgt der Quertransport
auf dem Kühlbett mit Bändern aus
hitzebeständigem Kevlar-Filzgewebe.
Längstransporte erfolgen über Kevlar-Filz- bzw. Kunststoff-ummantelte
Rollen mit großen Durchmessern.
Ein Reckkopf an jedem Ende des
Kühlbettes dient zum Richten von
jeweils einem oder mehrerer Profile.
Nach dem Spannen der Profile bringen die Reckköpfe eine Reckkraft von
bis zu 500 kN auf.
Der Sägenrollgang ist für eine
Paketbreite von 1200 mm ausgelegt.
Zur Schonung der Profiloberflächen
sind auch diese Rollen mit Kunststoff
belegt. Die Sägen sind mit Hartmetallblättern bestückt. Sie dienen zum
Schopfen und zum Teilen in Längen
von 2 bis 8,5 Metern. Schrottstücke
werden direkt an der Säge aussortiert.
Die Gutlängen gelangen über einen
Abfuhrrollgang zu den Entnahmebändern. Von dort werden sie manuell in
die Gestelle für die abschließende
Wärmebehandlung gelegt.
Die gesamte Anlage soll im Sommer 2008 in Betrieb gehen. Für Al
Taiseer bedeutet sie eine weitere
wertvolle Kapazitätserweiterung und
die Möglichkeit, eine vergrößerte
Produktpalette für einen anspruchsvollen Markt anzubieten.
Author
Autor
Dipl.-Ing. Bernhard Rieth is a marketing
specialist and freelance technical journalist. As proprietor of Marketing Xpertise
Rieth in Meerbusch, he advises equipment
partners of the NF metals semis industry
on marketing-related matters.
Dipl.-Ing. Bernhard Rieth ist Marketingspezialist und freier Fachjournalist.
Als Inhaber der Marketing Xpertise Rieth
in Meerbusch berät er Ausrüstungspartner
der NE-Metall-Halbzeugindustrie in Marketingfragen.
ALUMINIUM · 5/2008
45
ALUMINIUM-STRANGPRESSINDUSTRIE
Hightech-„Schmetterlinge“ aus Italien
B. Rieth, Meerbusch
Mit ihren gewölbten Brücken
sehen sie wirklich aus wie
Schmetterlinge, die sogenannten
„Butterfly Dies“ von Almax Mori
in Italien. Diese Form der Brücken
führte nicht nur zur Namensgebung dieser besonderen Strangpressmatrizen, sondern sie ermöglicht einen verbesserten Fluss des
Aluminiums aufgrund verminderter Reibung. Dies wiederum resultiert gegenüber herkömmlicher
Bauart in einer um bis zu 80 Prozent höheren Pressgeschwindigkeit und damit in einer deutlichen
Steigerung der Produktivität von
Strangpressen.
High-tech ‘butterflies’ from Italy
B. Rieth, Meerbusch
Typisches Butterfly-Werkzeug
Bereits Ende der 1990er Jahre suchten
die beiden italienischen Ingenieure
Aldo Bergagna, bei Alcoa Fossanova
verantwortlich für den Werkzeugbau,
und Claudio Pinter, Direktor der damaligen Alcoa Transformazioni, nach
einer Lösung zur Verbesserung der
Produktivität von Strangpressen. Das
Ergebnis waren Strangpresswerkzeuge, deren Brücken eine gewölbte
anstelle der bis dahin üblichen
eckigen Form aufwiesen. Das Schmetterling-ähnliche Aussehen machte die
Namensfindung für das neue Produkt
einfach: „Butterfly Die“.
Nachdem das Presswerk von Alcoa
Transformazioni 2004 den eigenen
Werkzeugbau einstellte, konnte Claudio Pinter das Werk im italienischen
Mori in eigener Verantwortung übernehmen und mit der 1965 gegründeten Almax Italia weiterführen. Almax
Mori arbeitet eng mit der 1993 gegründeten Firma Alumat S.r.l. zusammen,
die sich ebenfalls auf die Herstellung
von Strangpresswerkzeugen spezialisiert hat. Unter der Leitung der beiden
Generaldirektoren Claudio Pinter und
Piermario Locatelli haben sich beide
Firmen Almax Mori und Alumat zu
einem Verbund zusammengeschlossen, der Synergien im kommerziellen
und administrativen Bereich nutzt,
beiden Firmen aber ihre Selbstständigkeit in der technischen Entwicklung, der Kundenbetreuung und Fertigung der Werkzeuge belässt. Heute
46
With their arched bridges the
so-called ‘butterfly dies’ from Almax Mori in Italy really do look
like butterflies. The shape of the
bridge has not only given rise to
the name of these special extrusion dies but it also enables the
aluminium to flow better as a
result of reduced friction. This in
turn leads to extrusion speeds that
are up to 80% higher than those
with conventional dies and thus to
a marked increase in the productivity of extrusion presses.
The Italian engineers Aldo Bergagna,
Die-Shop Manager at Alcoa Fossanova, and Claudio Pinter, General
Manager of the former Alcoa Transformazioni, were already looking for
a way to improve extrusion press
productivity at the end of the 1990s.
The result was extrusion tooling with
bridges that had an arched shape instead of the usual angular shape. The
butterfly-like appearance made finding a name for the new product easy:
‘butterfly die’.
After the Alcoa Transformazioni
extrusion plant closed its in-house
toolmaking facility in 2004, Claudio
Pinter was able to take over the running of the plant in Mori, Italy, and
founded Almax Mori S.r.l, recalling
its origin back in 1965 as Almax Italia Spa. Almax Mori had previously
worked closely
together
with
Alumat
S.r.l.,
which had been
formed in 1993
and also specialized in the
manufacture of
extrusion tooling. Under the
management of
the two managing
directors,
Typical butterfly die
Claudio Pinter
and Piermario Locatelli, Almax Mori
and Alumat, have formed an alliance
that benefits from synergies in the
commercial and administrative fields
but allows both companies to act independently when it comes to technical
development, customer service and
tooling manufacture. Today 50 employees at each of the plants achieve
a total turnover of 16 million euros.
Butterfly dies already play an important role, accounting for about 15%
of the shipments of both companies.
Thanks to the arched bridge, which
is lowered towards the centre of the
tooling, the butterfly design allows the
aluminium to flow freely and results
in best possible filling of the spaces
behind the bridges. “Following initial
scepticism about our new development, the market has now recognised
the benefits of the butterflies”, says
Claudio Pinter. After all, every seventh
die supplied by Almax Mori exhibits
butterfly features. These are now being employed by increasingly more
users and offer the following benefits:
• improved support against
deflection of the stem
• reduced deflection of the stem
during extrusion
• reduced impact loading during
start-up of the extrusion process
• reduced friction, which leads
to a lower temperature difference
along the length of the billet and
ALUMINIUM · 5/2008
S
AML- S T R A N G P R E S S IANLDUUMSITNRI IUEM
A LPU E
M ICN II U
erwirtschaften jeweils 50 Mitarbeiter
in beiden Werken einen Umsatz von
insgesamt 16 Mio. Euro.
Mit einem Anteil von rund 15 Prozent an den Lieferungen beider Unternehmen spielen die Butterfly Dies
bereits eine wichtige Rolle. Die „Butterfly“-Konstruktion gestattet dank
der gewölbten Brücken, die zur Werkzeugmitte hin vertieft sind, während
des Pressvorgangs einen problemlosen
Fluss des Aluminiums und die bestmögliche Füllung der Räume hinter den
Brücken. „Nach anfänglicher Skepsis
gegenüber unserer Neuentwicklung
hat der Markt inzwischen die Vorteile
der Butterflys erkannt“, sagt Claudio Pinter. Immerhin weist bereits jedes siebte
von Almax Mori
gelieferte Werkzeug die Butterfly-Merkmale
auf. Diese werden
inzwischen von
CAM-unterstützte Konstruktion von Präzisionswerkzeugen
immer mehr AnCAM aided design of high precision dies
wendern mit folgenden
Vorteilen
genutzt:
Sie
850 mm are shipped from the plants
in Mori (TN) and Ciserano near Ber• bieten eine verbesserte
gamo in Italy. These dies are not only
Unterstützung des Stempels
used to extrude standard profiles:
• bewirken ein verringertes Ausboth die manufacturers have conweichen des Stempels während
siderable experience with tooling for
des Pressvorgangs
complex special profiles, including
• bieten eine verminderte Stoßhard alloys such as 7003, 7005, 7020
belastung beim Anpressen
and 7075, as well as for indirect ex• bieten eine verminderte Reibung,
trusion. In addition to the customer
die zu einer weniger starken Tembase in Italy, shipments are made priperaturdifferenz über die Bolzenmarily to extrusion plants in western
länge und damit auch zu geringeand eastern Europe. Also customers
ren Änderungen des Pressdrucks
in Middle Eastern countries such as
während des Pressvorgangs führt
Iran appreciate the quality and deliv• und schließlich daraus folgernd
ery reliability of the Italians. Almax
eine um bis zu 80 Prozent höhere
Mori is particularly proud of being
Pressgeschwindigkeit.
nominated for the title of ‘Best AluEine weitere von Almax Mori entmil Supplier since 1988’ by the Alumil
wickelte Besonderheit der WerkGroup, which is based in Greece and
zeuge ist der sog. „Amvico Cut“ für
currently operates 13 extrusion plants
Werkzeuge für besonders schwierige
with a total capacity of 85,000 tonnes
Profile. Durch eine Kombination aus
in south-eastern Europe.
Drahterodierung und Fräsen in VerIn addition to extrusion tooling,
bindung mit einer stufenförmigen
the Almax Mori and Alumat alliance
Ausbildung der Brücken werden bealso supplies other important comsonders kritische Teile der Matrizen
ponents for extrusion presses, such
bestmöglich unterstützt.
as die-holders, bolsters, containers,
Monat für Monat verlassen etwa
shear blades, dummy blocks, cleaning
800 Werkzeuge im Durchmesserdummy blocks and press stems. ©
bereich von 40 bis 850 mm die Werke
thus also to smaller changes in the
extrusion pressure during
extrusion
• and as a result of this an up to
80% higher extrusion speed.
Another tooling speciality developed
by Almax Mori is the so-called ‘Amvico Cut’ for the dies used for particularly difficult to extrude profiles. By
using a combination of wire erosion
and milling together with a stepped
design of the bridges, the best possible
support is provided for particularly
critical parts of the dies.
Month for month some 800 dies
with diameters ranging from 40 to
Photos: Almax / Alumat
EXTRUSION INDUSTRY
ALUMINIUM
· 5/2008
47
in Mori (TN) und Ciserano in der
Nähe von Bergamo. Diese Werkzeuge
werden nicht nur zum Pressen von
Standardprofilen eingesetzt. Beide
Werkzeughersteller verfügen über
eine große Erfahrung mit Werkzeugen für komplexe Sonderprofile, zum
Teil auch für hochfeste Legierungen
wie 7003, 7005, 7020 und 7075, sowie
für Indirektpressen. Beliefert werden
neben dem Kundenstamm in Italien
in erster Linie Strangpresswerke in
West- und Osteuropa. Auch Abnehmer
aus dem Nahen Osten, wie z. B. Iran,
wissen die Qualität und Liefertreue
der Italiener zu schätzen. Besonders
stolz ist man bei Almax Mori, von der
Alumil-Gruppe mit Sitz in Griechenland (die derzeit 13 Strangpresswerke
in Südosteuropa mit einer Kapazität
von 85.000 Tonnen betreibt) zum
„Best Alumil Supplier since 1988“
nominiert worden zu sein.
Neben den Presswerkzeugen liefert
die Gruppe Alumax Mori & Alumat
auch andere wichtige Komponenten
von Strangpressen, wie Werkzeughalter, Druckscheiben, Rezipienten,
Schermesser, Räumscheiben, Reinigungsscheiben und Pressenstempel.
High-value-Partner
anspruchsvoller Kunden
Die Erwartungen der Betreiber von
Strangpressen an die Werkzeuge
komprimiert Claudio Pinter auf die
drei Begriffe „besser – schneller – billiger“ und erklärt das so:
• „Besser“ ist die Forderung nach
Werkzeugen mit verminderter
Reibung und geringerer Stoßbelastung. Die Antwort heißt
Butterfly.
• „Schneller“ bedeutet kürzestmögliche Durchlaufzeit von der Konzeption bis zur Auslieferung. Erreicht durch optimale Abläufe in
Verbindung einer rechnergestützten Konstruktion und weitgehend
automatisierter Fertigung.
• „Billiger“ verstehem Alumat und
Almax Mori als Herausforderung,
mit einer durchrationalisierten
Konstruktion und Fertigung höchste
Qualität in einem gesunden und
fairen Preisverhältnis zu Billigherstellern anbieten zu können.
Die Erfüllung dieser drei Grund- ©
ALUMINIUM · 5/2008
47
ALUMINIUM-STRANGPRESSINDUSTRIE
forderungen ist für die Unternehmensgruppe aber noch nicht der
alleinige Weg zum Erfolg. Neben der
Qualität der Produkte bemüht sich
das Unternehmen besonders um die
Qualität seiner Kundenbeziehung.
„Wir können auf Dauer nur Erfolg
haben, wenn wir zu unseren Kunden
eine enge Partnerschaft entwickeln.
Dies ist nur möglich, wenn zwischen
beiden Partnern alle Möglichkeiten
besprochen werden und die beste
Lösung für ein den Bedürfnissen
entsprechendes Erzeugnis gewählt
wird“, so Pinter. Das wesentliche
Unternehmensziel beschreibt er so:
„Wir wollen von unseren Kunden als
ihr „High-value-Partner“ angesehen
werden.“
Ähnlich bedeutsam stuft Pinter
auch die Beziehung zu seinen Materiallieferanten ein. Auch mit diesen
pflegt die Unternehmensgruppe einen stetigen konstruktiven Dialog zur
Sicherstellung der garantiert bestgeeigneten Stahlsorten und deren Wärmebehandlung.
Die wirtschaftliche und gleichzeitig qualitativ hochwertige Herstellung
der Werkzeuge erfordert Konstruktions- und Fertigungsstätten, die über
modernste Maschinen und Einrichtungen verfügen. Dies beginnt bei den
rechnergestützten 3D-CAM-Systemen
mit über 30 Terminals, auf denen die
Werkzeuge genau nach den Profilvorgaben der Kunden entwickelt werden.
Immerhin handelt es sich bei den meisten gelieferten Werkzeugen um Neukonstruktionen für neue Profilformen.
Hier kommt es besonders auf die Qualität sowohl der Formgebung, als auch
der Bearbeitung der Werkzeuge an,
um z. B. die Zahl der Testpressungen
zu reduzieren und damit die Kosten zu
senken. „Unser CAM-System erlaubt
es uns, dem Markt eine Qualität anzubieten, die beim Einsatz herkömmlicher Methoden nicht denkbar wäre“,
erklärt Claudio Pinter.
Die Bedeutung, die Alumat und
Almax Mori dem Engineering zumessen, spiegelt sich auch darin,
dass in diesem Bereich nahezu gleich
viele Mitarbeiter tätig sind wie in der
mechanischen Fertigung. Mit dem
Ziel, die Fertigungstiefe so groß wie
möglich zu halten und manuelle Arbeiten so weit wie möglich zu redu-
48
zieren, sind die Fertigungsbetriebe
beider Unternehmen mit modernsten
Präzisions-Werkzeugmaschinen von
renommierten europäischen und japanischen Herstellern ausgerüstet.
Zu erwähnen sind hier 10 Horizontal-, 4 Vertikal- und 6 Hochgeschwindigkeits-CNC-Bearbeitungszentren.
Besonders stolz ist man aber auf die
13 Drahterodier- und die 10 Funkenerodiermaschinen zum schnellen und
präzisen Abtragen der komplexen
Formen aus dem Vollmaterial.
High-value partner
for demanding clients
Claudio Pinter condenses the expectations of extrusion plant operators
with respect to tooling in three words:
better, quicker, cheaper. He explains
this as follows:
• ‘better’ is the requirement for
dies with reduced friction and
lower impact loading. The answer
is ‘butterfly’;
• ‘quicker’ means the shortest
possible lead time from conception to shipment. This is achieved
Mit Innovationen in
by having optimal procedures
eine sichere Zukunft
coupled with computer-aided
design and manufacturing that is
Zur ihrer künftigen Weiterentwickautomated to a large extent;
lung durch neue und verbesserte
• for Alumat and Almax Mori
Technologien investiert die Unter‘cheaper’ represents the challenge
nehmensgruppe Jahr für Jahr sechs
to
use thoroughly rationalized
Prozent ihres Umsatzes in Forschung
design
and manufacturing to offer
und Entwicklung. Neben der stänthe
highest
possible quality at a
digen Verbesserung der bestehenden
price
that
is
healthy and fair comKonstruktionen und Prozesse orienpared
with
cheap
manufacturers.
tiert man sich an den Anforderungen,
die von der Profilverarbeitung an die
Fulfilling these three basic requireStrangpressindustrie gestellt werden.
ments is not the only way to success
Als Beispiel nennt Pinter die Entwickfor the alliance. In addition to the quallung von Werkzeugen für die Legieity of their products, the companies
rungsgruppe 7075.
pay particular attention to the quality
of their customer
relationships. “We
can only be successful in the long
term if we develop
a close partnership
with our clients.
This is only possible if both partners discuss the
available options
and choose the
best
solution for
Drahterodiermaschinen
Wire erosion machines
a product to fulfil
the requirements”, says Pinter. He
Die Vision der Unternehmensleitung
describes the key aims of the alliance
von Alumat und Almax Mori geht
thus: “We want our clients to regard us
noch weiter: „Wir arbeiten im Rahas their ‘high-value partner’.”
men eines geförderten ForschungsPinter regards the relationship
projektes daran, eine Simulation des
with his material suppliers as being
gesamten Strangpressprozesses unter
of similar importance. The alliance
Einbeziehung der Werkzeugform daralso maintains an on-going, construczustellen. Wenn wir hier weiter sind,
tive dialogue with them to guarantee
können wir Betriebs-Knowhow und
that the most suitable types of steel
Konstruktionserfahrung miteinander
and heat treatment are used.
verbinden und damit ein noch wertvollerer „High-value-Partner“ für unThe economical and at the same
sere Kunden werden“, umreißt Clautime high-grade manufacture of the
dio Pinter seine Ziele.
N dies requires design and manufactur-
ALUMINIUM · 5/2008
S
AML- S T R A N G P R E S S IANLDUUMSITNRI IUEM
A LPU E
M ICN II U
ing facilities equipped with the latest
machine tools and equipment. This
begins with the computer-aided 3DCAM systems with over 30 terminals
on which the tooling is developed precisely in accordance with the profile
requirements of the clients. After all,
in most cases the tooling supplied is
a new design for a new profile shape.
Here, the quality of both the design and
the machining is important, for example to reduce the number of trial extrusions and thus costs. “Our CAM system
allows us to offer a quality that would
be inconceivable using conventional
methods”, explains Claudio Pinter.
The importance that Alumat and
Almax Mori attach to engineering is
also reflected in the fact that there are
almost as many people employed in
this area as there are in mechanical
machining. The manufacturing facilities of both companies are equipped
with the latest machine tools from
well-known European and Japanese
manufacturers with the aim of keep-
EXTRUSION INDUSTRY
ing the level of in-house production to
a maximum and that of manual work
to a minimum. One should mention
here the ten horizontal, five vertical
and six high-speed CNC machining
centres. The companies are particularly proud, however, of the 13 wire
erosion machines and the ten spark
erosion machines used for the rapid
and precise removal of metal when
producing complex shapes from solid
material.
3D-Modellerstellung eines ButterflyWerkzeugs
A secure future with innovations
Year after year the alliance invests 6%
of its turnover in research and development to secure its future growth via
new and improved technologies. In
addition to the on-going improvement
of existing designs and processes, the
alliance orients itself to the demands
placed on the extrusion industry by
end users. As an example, Pinter cites
the development of tooling for 7075
alloys.
The vision of the top management
of Alumat and Almax Mori goes even
further: “As part of a sponsored research project we are working on a
simulation of the whole extrusion
processes including the shape of the
dies. When we are further along this
road we can combine process expertise and design experience and thus
become an even more valuable ‘highvalue partner’ for our customers”, says
Claudio Pinter outlining his aims.
N
3D modelling of a butterfly die
Extrusion Tooling for
High-End Profiles
Double-Puller
with Flying Saw
and Pincer
Packaging Systems
Tool Handling
Equipment
(Press-Rest Shear
and Tool-Dismantling
Press)
Billet Saw and Shear
Billet Loader
…
S+C MÄRKER GmbH is one of the leading manufacturers
of tooling systems for extrusion presses worldwide.
The products and services of S+C MÄRKER range from
the in-depth review and consultation on the materials
to be used, the design and engineering of parts for the
corresponding purpose, and up to the service and relining
of containers in our Extrusion Service Centre in Lindlar.
Our strengths tailored to your individual requirements:
s design of extrusion tooling and in-depth metallurgical
consultation
s manufacture of containers and other extrusion tooling
s re-lining service and repair of containers
s stock-service for pre-machined liners, enabling
short lead times
s state-of-the-art heat
treatment facilities
s state-of-the-art
machine shop
S+C MÄRKER GMBH
Steel Technologies
Sonnenbergerstraße 4, A-6820 Frastanz
Tel. (+43) 5522 / 51 7 10-0, Fax (+43) 5522 / 51 7 10-13, www.reisch.at
ALUMINIUM
· 5/2008
49
Please visit us:
May 28 - 30, 2008
Chinese Export Commodities Fair
Pazhou Complex, Guangzhou
Booth 1C61 · Hall 5.1
P.O. Box 11 40 · 51779 Lindlar · Germany
Phone: +49 (0) 2266-92482 · Fax: +49 (0) 2266-92509
Email: [email protected] · www.sc-maerker.de
ALUMINIUM · 5/2008
49
ALUMINIUM EXTRUSION INDUSTRY
Trends and perspectives in the
automation of aluminium extruders
M. Pandit, W. Deis, T. Heger, H. Hengen, Kaiserslautern
Automation offers considerable
advantages to aluminium extruders. The availability of adjustable
electro-hydraulic and hydraulic
actuators, programmable logic
controllers, digital electronics and
facilities for data processing and
management, besides reliable and
accurate measurement devices
such as non-contact pyrometers
for monitoring and controlling
the extrusion process of metals,
has made automation a powerful
tool for tightening quality control
and increasing the productivity
of industrial extruders. However,
the implementation of automation,
especially in extruders already in
operation, can be a rather slow
process. Grounds for this could include imagined difficulties of coming to terms with the wide variety
of extrusion practices and range
of products involved, keeping up
with the ever increasing possibilities offered by measurement and
control devices and algorithms
and also overcoming the hesitation
of extruder managers and operators to adopt new technologies.
Diagrams: Pandit
One important factor for an automation system to find acceptance by
the operating crew, is that it should
be as simple as possible and involve
little learning of new techniques. By
interacting with the crew and studying their functions and manipulations
while operating an extruder during
production, a user-friendly automation has been evolved. This is based
Fig. 1: Automation hierarchy
50
on keeping the manipulations the
same as those in extruders without automation and using the settings of the
operator to optimize the process automatically. At the same time important
process variables and the progress of
optimization are displayed to the operator, so that he can intervene if he
decides to do so. These are the issues
dealt with in the following sections.
Automation of extruders
Total automation of an extruder plant
implies that production control and
management and extrusion process
control form a coherent and consolidated system in which production is
maximized and the product quality is
optimized. Extrusion process control
consists in selecting reference inputs
for the process appropriately and
operating the extruder in such a way
that the actual process variables follow the reference inputs. In general
the tasks which an automation system
for extrusion process control has to
perform are:
• Measurement and visualization
• Hierarchical process control
– Feed-back control of individual
variables
– Process control and optimization
• Quality control and fault diagnosis
• Data archiving and recipe
management.
The scheme in Fig. 1 gives an idea of
the interrelationships of the various
tasks. The tasks shown in the lower
levels are prerequisites of those higher
up. In the case of most extruders only
some of the tasks are implemented.
For implementing a total automation of the extruder plant, production
planning, process control and optimization and quality management have
to act in concert. Extrusion process
control and optimization consists in
determining the ideal runs of process
parameters such as billet temperature, ram speed, extrusion force and
profile temperature at the die exit
which correspond to the alloy composition, profile geometry and material
properties of the product. As detailed
quantitative information correlating
quality with the process parameters
is seldom available, the operation of
extruders is largely based on the skill
and experience of the process engineers and operators. The situation can
be changed by providing means for
systematic process evaluation and by
acquiring knowledge of the relation
between process parameters and the
quality of the extruded profile, and
using this knowledge for determining
the appropriate reference inputs and
allowed ranges of process parameters
for control within tight tolerance limits. The next step of computerized
feedback control would then be a
natural follow-up.
Implementation of automation
for an aluminium extruder
Extruder operation per se: Most aluminium extruders in operation are of
the direct type shown in Fig. 2 (however, with manual control).
Extruder operation is cyclic: A billet B is heated in the furnace Fu to a
predetermined temperature of ϑB (l),
with l = axial co-ordinate, sometimes
with a taper, such that the front end
(l = 0) is at a higher temperature than
the rear end. The heated billet is loaded into the Container C. By employing
a velocity control loop, a controlled
force F is applied to the ram R and the
metal is extruded such that the ram
velocity vR(l) lies in a suitable range
determined by experience and set by
ALUMINIUM · 5/2008
S
AML- S T R A N G P R E S S IANLDUUMSITNRI IUEM
A LPU E
M ICN II U
the operator and controlled employing a velocity control loop by the Programmable Logic Controller (PLC).
Then the exit temperature will also
lie in a suitable range. After completion, the next billet is loaded and the
process repeated.
Process control and optimization
with automation: The productivity of
the plant depends on the extrusion
time (i. e. the time taken to extrude a
billet) which in turn depends on the
ram velocity run. Criteria for quality
of the product are the surface finish,
homogeneity of the metal and the
mechanical properties such as tensile
strength. Experience and knowledge
in metallurgy reveal that the quality
depends on the exit temperature ϑE,
profile velocity vP and billet temperature ϑB. These three quantities are not
independent of each other and also
depend on the force F [1].
The potential of an extruder is optimally exploited, if the extrusion rate
v is constant at its maximum allowed
value while at the same time the exit
temperature ϑE is constant and takes
on the maximum constant value permissible and the billet temperature ϑB
is within the prescribed limits (isospeed, iso-thermal operation). Thus
for optimal extrusion the ideal values
and tolerance ranges for a) the billet
temperature, b) the extrusion rate
and c) the profile temperature have
to be prescribed (depending on the
alloy composition, die geometry and
product quality required). During extrusion, the variables have to be kept
within prescribed limits in the neighbourhood of the prescribed values.
For certain applications it is necessary to cool the profile as it comes
out of the die with a certain minimum
cooling rate. To ensure this, it may be
necessary to take this into account
while determining the reference inputs for exit temperature and extrusion speed [2].
Feed-back control: This is achieved
by employing feed-back control. However, there is the problem that three
quantities have to be controlled (i. e.
kept within certain limits) employing
only two inputs. The problem is solved
by employing hierarchical control:
individual billet furnace and velocity
feed-back control loops are employed
ALUMINIUM
· 5/2008
51
EXTRUSION INDUSTRY
to ensure that the billet temperature
ϑB(l) and the ram velocity v(l) conform with inputs ϑBRef(l) and vRef(l).
A superimposed profile temperature
control loop adjusts the reference inputs ϑBRef(l) and vRef(l) from cycle to
cycle such that all process variables
are within optimal ranges [3].
Due to the large masses of the heated material, the temperature control
of the billet heating furnace is sluggish and subject to transient error.
To suppress adverse effects on the
profile exit temperature ϑE which is
the primary variable to be controlled,
it is necessary to measure the actual
run of the billet temperature as the
billet is introduced into the container
with a pyrometer; and adjust the ram
velocity run over the cycle such that
its value is as large as possible, within
the permissible limits and simultaneously the exit temperature is constant
and takes on the prescribed value. Ultimately, the exit temperature is controlled via the extrusion velocity if
necessary supplemented by the billet
temperature profile [4]. The measurement and control of the exit temperature ϑE is the most challenging task in
the automation of metal extruders. To
accomplish this, one needs a suitable
non-contact pyrometer and appropriate control methods.
Process visualization task: By continuously presenting salient variables
in a suitable form, the operator is
enabled to assess the effects of his inputs on the productivity and product
quality. With time he is able to correlate the process parameters such as
exit temperature and extrusion speed
with product quality such as surface
finish and accuracy of section geometry. This has proven to be a powerful
instrument for process optimization
in the installations to-date.
Data acquisition and evaluation:
The prescription of the process parameters has hitherto been done largely on
the basis of empirical considerations
and experience, as the information
available on the influence of the temperatures on the product quality (such
as surface finish, material strength
etc.) under industrial conditions is
rather qualitative than quantitative. In
the new system envisaged, the process data can be continuously acquired,
stored and analysed in order to obtain
an adequate basis for prescribing the
process parameters accurately for increasing productivity and enhancing
product quality. This is one more task
of the automation system.
Temperature measurement
and control in an extruder
To implement the automation, various
measurement and control tasks have
to be envisaged. For many of these
standard solutions are available. In the
following, we restrict our attention to
the measurement and control of the
crucial variable, viz. the exit temperature. Simulation models suitable for
determining the exit temperature in
industrial application are difficult to
realize because of the large number
of process variables involved, which
change with the material, geometry
of the profile, extrusion conditions
and time. Non-contact pyrometers,
which have experienced spectacular
progress over the past two decades
provide an excellent means for measuring the profile temperature at the
die exit for implementation of automation [5, 6].
For the hierarchical control scheme
employed, the basic functionality to be
realized is the determination of the appropriate run of the ram velocity vk+1(l),
which corresponds to the desired exit
temperature ϑd and the actual measured billet temperature as a function
of the ram position and the driving of
the velocity control loop with this as
reference input. For this, measured
runs of the billet temperature, the exit
temperature and other process variables, including the limits on the cooling capacity, are considered. Signal
processing is necessary to eliminate
disturbances in the measured signals.
In the case of multi- strand extrusion,
appropriate signal processing means
have to be adopted to determine the
temperature of the sections exiting the
die as described in [4].
A robust and accurate control
is achieved using iterative learning
control in combination with a predictive component [2]. The algorithm is
as follows:
vk+1(l) = vk(l) + Δvk+1(l) ,
Δvk+1(l) = F[ϑd, ϑk(l), ϑk+1(l), ϑB k(l),
©
ALUMINIUM · 5/2008
51
ALUMINIUM EXTRUSION INDUSTRY
ϑB k+1(l), pk+1(l), vk(l),vk+1(l), ΔϑCk (l)]
with:
maintenance.
The configuration is shown in Fig.
2. The implemented functions:
l
Ram position
1. Data acquisition, processRam velocity in the previous cycle k
vk(l)
ing and presentation: runs of
Ram velocity in the current cycle k+1
vk+1(l)
profile temperature, extrusion
Δvk+1(l) Increment of input calculated for cycle k+1
force and ram velocity etc. are
Desired run of exit temperature (constant over l)
ϑd
continuously measured durRun of exit temperature in the previous cycle k
ϑk(l)
ing extrusion and displayed
Run of exit temperature in the current cycle k+1
ϑk+1(l)
as functions of the extruded
ΔϑCk (l) Cooling in cycle k
length. Besides, the extrusion
Billet temperature in the previous cycle k
ϑB k(l)
time per billet and the mean
ϑB k+1(l) Billet temperature in the current cycle k+1
and variance of the temperature
Extrusion force in the current cycle
pk+1(l)
over the cycles are shown.
F [...]
Control operator.
2. Ram speed and billet temperature optimization: at the start of
Furthermore, the reference input to
every cycle, optimal process inputs
the billet furnace is determined on the
are calculated and sent to the respecbasis of the measured runs of the varitive PLC(s).
ables in the previous cycles. Using a
similar algorithm, the reference input
3. Archiving and retrieval of best recito the induction furnace is calculated
pes: best process inputs for an order
to achieve the optimal billet temperaare identified and stored; the best inture profile.
puts are retrieved automatically if the
A similar algorithm is employed to
order is repeated.
determine the reference input to the
The system can be employed in
control loops for the cooling rate.
various configurations. The following
gives some of the possibilities:
a) Manual optimization for extruders
Implementation of the
with
controls for installation
• relay or PLC manual
in industrial extruder plants
• control valve position/pump
stroke or ram velocity as control
The control methods described have
input and
been implemented in an automation
• no billet temperature control.
system – the Modular Measurement
During extrusion the optimal input
and Automation System for Extruders
run is calculated on the basis of the
– (MoMAS) and installed in industrial
measured billet temperature and the
extruders [7, 8]. Important aspects to
inputs and outputs in the previous
be fulfilled during the design of the
cycle, and displayed on the monitor
system in order to make the system
as a function of ram position, besides
attractive for industrial application
the reference input given manually by
were ease of installation and integrathe operator. The operator can now
tion into existing plant, operation and
adjust the manual reference input
displayed on the monitor to concur
with the optimal run suggested by the
algorithm. This system is very simple
to install but has the disadvantage that
the operator has to adjust the input
manually. To eliminate this disadvantage, it is possible to programme the
PLC to take over the operator input
for the subsequent cycles.
b) Automatic optimization for extruders with
• PLC control
• velocity control loop and
• no billet temperature control.
During every cycle, the position of the
ram and the profile exit temperature
are transmitted to the MoMAS PC
during the extrusion. After the end
of an extrusion cycle and before the
beginning of the subsequent extrusion cycle, the billet temperature is
measured as the billet is introduced
into the container. The optimal run of
the ram velocity is calculated on the
basis of the measured billet temperature. The run is sent automatically as
reference input to the PLC and displayed to the operator as a function of
ram position. The operator intervenes
only if he wants to. He has to set the
reference input temperature for the
billet furnace.
c) Total automatic optimization for
extruders with
• PLC control,
• velocity control loop and
• billet taper temperature control.
After the end of an extrusion cycle
and before the beginning of the next
cycle, the optimal reference input run
of the axial temperature distribution
of the billet is calculated and sent as
reference input to the furnace temperature controller. The temperature
of the billet coming out of the furnace
is measured as it is introduced into the
container. The optimal run of the ram
velocity is calculated on the basis of
the actual measured billet temperature
just before extrusion starts, and transferred to the PLC. The run is displayed
to the operator as a function of ram
position and sent as reference input.
MoMAS for industrial installation
Fig. 2: Extruder with MoMAS
52
MoMAS has been developed with the
goals of simplified installation, com-
ALUMINIUM · 5/2008
S
AML- S T R A N G P R E S S IANLDUUMSITNRI IUEM
A LPU E
M ICN II U
EXTRUSION INDUSTRY
MoMAS for industrial plants
The modules
•
The MoMAS . DLL-package
(copy protected)
•
The PLC-Application layer
(complimentary software !)
•
A Watch Dog for
supervision
Fig. 3: Configuration of MoMAS Software
missioning and maintenance in extruder plants, and also ready acceptance by plant personnel. The software
has been divided and encapsulated
into modules as shown in Fig. 3:
• The MoMAS DLL optimization
package
• The PLC-application which can
be employed and configured by
the plant maintenance crew. This
can be used to link MoMAS with
external data handling and processing systems, databases etc.
• A watch-dog.
A data base is provided in which all
process data including best recipes
can be stored and retrieved. This includes the actual runs of extrusion
rate and billet and profile temperature
for the extruded profile and the best
values of process parameters which
correspond to the shortest extrusion
time for every order, immediately before the die is changed.
A language module is provided
which enables the language of display
and dialogue at the operator console
to be selected.
Features of MoMAS which contribute to its success in industrial installations are:
• Ease of using the system by the
operator for process control and
monitoring
• The PLC- software part is autonomous and open; it can be easily
adapted to PLC by plant maintenance crew
• The communication between the
extruder PLC and the MoMAS Industrial PC is greatly simplified by
employing OPC as depicted in
Fig. 4
• No safety measures additional to
those in the PLC are necessary
• Simple database connection via
ALUMINIUM
· 5/2008
53
Fig. 4: Communication of MoMAS with PLC
different protocols is possible
Simplified set-up and
configuration / commissioning
• Changes in PLC system or database system can be implemented
with little effort by plant
maintenance crew
• No additional hardware apart
from an Industrial PC and
temperature sensors are necessary
• An easy to use and access
database
• Language in the operator monitor
can be changed simply.
MoMAS has been installed in various
configurations Australia, Europe and
Australia plants [7, 8], viz.:
3 presses in Germany (Sapa,
Alcan and Research Centre
for Extrusions, Berlin)
1 press in Sweden (Sapa)
2 presses in Italy (Alex and
Cometal)
2 presses in the USA (Sapa)
4 presses in Australia (Capral)
2 presses in Russia.
Analysis of production statistics over
a six-month period showed that the
mean extrusion rate with automation
was over 6% higher compared to extrusions without automation.
The following are three examples
of installed versions in operation:
March 2001: Extruder: 8“ SMS 2,000
tonne press; air and water cooling
• Billet heating: gas fired furnace
and induction furnace for taper
• Temperature measurement:
pyrometer for profile; pyrometer
for billets
• Mode of operation: profile temperature control via ram speed
(reference input to control loop);
manual input of optimal taper as
(reference input to furnace).
March 2004: Extruder: 8“ Cometal
1,600 tonne press; air and water cooling
• Billet heating: gas fired furnace
with several zones
• Temperature measurement:
pyrometer for profile; thermocouple array for billets
• Mode of operation: profile
temperature control via ram
speed (reference input to control
loop); manual / automatic optimal
reference input to billet furnace
April 2005: Extruder: 9“ Cometal
3,300 tonne press; air and water cooling
• Billet heating: gas fired furnace
with several zones
©
ALUMINIUM · 5/2008
53
ALUMINIUM EXTRUSION INDUSTRY
Extruder operation
with MoMAS
No. of billets extruded
30,381
Mean extrusion rate mm/s
10.02
RMS error of exit temp. ϑProf °C
12.1
Stand. dev. of ϑProf
3.89
without MoMAS
26,180
9.29
(28.8)
4.21
Table 1: Results obtained in an industrial extruder over a period of six months
• Temperature measurement:
pyrometer for profile; thermocouple array for billets
• Mode of operation: profile
temperature control via ram
speed (reference input to control
loop) and billet temperature
profile; automatic optimal
reference input to billet furnace.
Results and
experience with MoMAS
Experience with the automation system covers a wide range, starting with
little impact (in plants in which it is
used only as a visualization tool) to
a substantial increase in the mean
extrusion rate. The latter was calculated from the data collected by the
acquisition system over a six month
period comprising more than 50,000
extrusions was analysed. On average,
the mean extrusion rate was 7% higher for extrusions with automation as
compared to extrusions without automation [7].
A further productivity increase observed was attributed not only to the
automatic optimization but also to the
fact that the operators had a better feel
for the process and could manipulate
the process more tightly. With a few
weeks’ experience, the operators usually manipulate the variables using
the information offered by the process visualization and have the process
fully in their grasp. Fig. 5 shows runs
of process variables measured in an
industrial extruder with MoMAS.
Some observations: Experience
indicates, that for implementing the
automation in industrial units, the
following tasks require special attention:
Billet temperature measurement
and control: Contact thermometers
are prone to wear. Pyrometers are
preferable. Measures have to be implemented to clean the pyrometer lens
at regular intervals. The billet furnace
has an inherent lag over the cycles.
Ram speed control: In some cases,
speed control is effected by measuring and controlling the profile speed.
It is indeed customary that extruder
operators set and watch the profile
speed rather than the ram speed,
which leads to the situation that profile speed is the directly controlled
quantity. However, the elasticity of
the profile leads to control problems
which can be suppressed by choosing
the ram speed as the control variable
and obtaining the profile speed by
multiplying it by the extrusion ratio.
Speed control requires a suitable sensor with sufficient resolution for the
position of the ram, and electronics to
calculate the ram velocity. An actuator is needed to interface the electronics with the hydraulics. A PID-type
controller algorithm incorporated in
the PLC generally yields satisfactory
performance.
Press force limitation: In the interest of maximising productivity, it is a
good strategy to exploit the capacity
of the press fully. This means that
the billet temperature would be sufficiently low, provided of course, it is
allowed by the material aspects. The
optimization of billet temperature
and ram speed then calls for a specialized consideration. This has been
provided for in MoMAS.
Issues to be considered for
the installation of automation
Fig. 5: Runs of process variables measured in an industrial extruder with MoMAS
54
An extruder plant manager has to face
the question whether or not, and to
what degree he should introduce automation. It is not seldom that an automation system is installed and not
then used. To pre-empt such a situation it is necessary to consider the following criteria and first of all ensure
that the prerequisites for introducing
automation are met:
Commercial viability
• Is the extruder plant working at
its full capacity?
ALUMINIUM · 5/2008
S
AML- S T R A N G P R E S S IANLDUUMSITNRI IUEM
A LPU E
M ICN II U
• Is there demand for the higher
product quality?
• Is a new market sector being
envisaged?
Technical feasibility
• Are the hydraulics and ram
position / speed control adequate?
• Is the billet furnace temperature
control working satisfactorily?
• Is the puller control adequate?
• Is the PLC capable of handling
the data traffic?
Acceptance by the crew
• Is the crew interested and
motivated?
• Is the crew capable of coping
with the new system?
Simplification of installation and
maintenance of an automation system
is achieved by employing a modular
software structure and OPC for the
communication with the PLC has
greatly contributed to the acceptance
by industry.
Conclusions
Automation systems for extruders
employing modern instrumentation and iterative learning control
have attained maturity and can be
employed with success in industrial
plants. Long-term tests in industrial
extruders have proved that automation yields increased productivity and
more uniform product quality. Isothermal extrusion at constant extrusion rate has been implemented employing control and signal processing
techniques with pyrometers. Tapered
heating / cooling leads to better quality and productivity.
However, the installation and active use of an automation system,
even if one is installed, seem to meet
with lukewarm interest in the case
of some plant managers and operators. This can change once customers
ALUMINIUM
· 5/2008
55
EXTRUSION INDUSTRY
for the products come up with more
stringent quantitative product specifications and the demands on the efficiency of running a plant increase.
Finally, referring once again to Fig.
1, one can see that in most cases at
most only the lower two levels of the
hierarchy have been implemented;
the higher two levels and the potential gains which go wit it are yet to
be tapped.
Acknowledgements
Besides the industrial establishments
Alusingen in Singen, Pechiney in
Landau and the Sapa plants in Offenburg and Sweden, the Research
Centre for Extrusions of the Technical University in Berlin provided help
during the development and testing of
the MoMAS system. The development
and fabrication of an automation system to meet the requirements of industry initiated by an idea sparked off
in a research and teaching institute
have been made possible by the perseverance of a team of students who
worked on their Master’s and PhD
projects over a period of 15 years.
References
[1] Akeret, R.; Strehmel W.: Heat balance and exit temperature control in the
extrusion of aluminium alloys, Proc. Aluminium Technology, London, 1986, pp.
114.1-114.7.
[2] Pandit, M; Heger,T.; Hengen, H.: Comprehensive Extrusion Automation for Isothermal Iso-speed Extrusion with Guaranteed Cooling Rate, Extrusion Technology
Symposium, Orlando, 2008.
[3] Pandit, M.; Buchheit, K.: Isothermes
Strangpressen Teil I, ALUMINIUM 71
(1995) issue 4, p. 802-805, Teil II ALUMINIUM 71 (1995) issue 5, p. 54-57.
[4] Pandit, M.; Baque, S.; Deis, W.; Müller,
K.: Implementation of Temperature Measurement and Control in Aluminum Extru-
sion, Proc. Intnl. Extrusion Technology
Symposium, Chicago, 2000, pp., 387-396.
[5] Pandit, M.; Baqué, S.; Spieß, A.: Performance of Temperature Measurement and
Control Systems in Industrial Aluminium
Extruders, Teil I ALUMINIUM 73 (1997)
issue 11, p. 802-805; Teil II ALUMINIUM
74 (1998) issue 1/2, S. 54-57.
[6] Pandit, M.: Trends and Perspectives
concerning Temperature Measurement
and Control in Aluminium Extrusion, ALUMINIUM 76 (2000) issue 7/8, S. 564-573.
[7] Pandit, M.; Rothweiler, V.: MoMAS
–New measurement and automation system increases productivity of extrusion
plants, ALUMINIUM 78 (2002) issue 3, p.
130-138.
[8] Pandit, M.; Deis, W.; Hengen, H.; Heger, T.; Bostedt, L.; Lewin, K.: New Mobile
Measurement and automation system installed at Sapa in Finspang, ALUMINIUM,
80 (2004), issue 5.
Authors
Dr.-Ing. Madhukar Pandit was Professor
and Head of the Institute of Control Systems and Signal Theory of the Technische
Universität Kaiserslautern until 2004.
He continues to work as Professor at the
University. Areas of work: applications of
automation in the fields of automotive and
industrial processes, especially extrusion
of metals.
Dr.-Ing. Wolfgang Deis obtained his Dr.Ing. degree from the Technische Universität Kaiserslautern in control engineering.
He currently develops and implements
process control systems in an industrial
firm in Frankfurt a. M.
Dr.-Ing. Thomas Heger obtained his Dr.Ing. degree in industrial image processing
at the Technische Universität Kaiserslautern. He is presently working for a
company in the automotive sector and is
concerned with advanced applications of
image processing.
Dr.-Ing. Heiko Hengen obtained his Dr.Ing. degree in the area of control systems at
the Technische Universität Kaiserslautern.
He is Managing Director of the company
Ingenieurbüro Hengen GbR (automation,
control systems, signal- and imageprocessing, software and hardware development)
in Kandel near Karlsruhe.
ALUMINIUM · 5/2008
55
ALUMINIUM EXTRUSION INDUSTRY
Trends and perspectives of
the aluminium extrusion industry in India
Gopal M. Pai, Mumbai
Aluminium extrusions, with their
versatile and user-friendly features
and properties, have come to occupy an important position amongst
all the downstream products of
aluminium. Both qualitatively and
quantitatively, the demand and
consumption of aluminium extrusions are increasing rapidly in a
multitude of applications, mainly
due to their unique and advantageous physical, mechanical, electrical, metallurgical and thermal
properties. The invention of the
aluminium extrusion manufacturing process and its practice are
grace and boon to engineering and
general applications.
In the Indian scenario, the aluminium
extrusion industry has played a role full
of challenges, attracting mostly medium and small investors, mostly driven
by the lure of excellent financial
performance and the success of a
few extruders who effectively faced
and handled several challenges and
have profited from the existing opportunities. The industry, especially in India, has many challenges
and an equal number of opportunities. Of those who plunged into this
sensitive business, some have prospered and progressed, some are
managing fairly well and a few are
struggling to emerge from the crisis
for survival and existence. But there
are many who realized too late how
difficult the business is, came adrift,
made large losses and paid a price for
the hasty and wrong decision they took
to enter into the business. In reality the
extrusion business is not as simple as it
appears, but requires profound knowledge with adequate infrastructure
and provisions. On a long-term basis,
when this business is conducted with
adequate precautions in a systematic,
ethical and dignified way it can be paying and lucrative. On the other hand,
high-gain and short-term policies lead
to a disastrous situation. A few extrud-
56
ers are midway, in a state of confusion,
not knowing whether to continue or to
close down. At the same time, a handful of extruders are enjoying the fruits
of successful business operation.
The scenario or trends and perspectives of the aluminium extrusion
industry in India can be understood in
a broad way by briefly looking at the
past, understanding the present and
forecasting the future.
Situation in the past
The aluminium extrusion industry
was highly fragmented, not matured
and not booming until the year 1970.
This was mainly due to a shortage
of aluminium metal in the country,
and to government policies such as
controls on aluminium distribution.
There was no scope for popularising
aluminium extrusions and no encourPhotos: Salco
Numerous profiles from Salco Extrusions
agement and incentive to set up new
extrusion plants. In the 1980s signs
of development arose as the availability of aluminium metal improved,
mainly due to the commissioning of
the National Aluminium Company
(Nalco) and the liberalization of
governmental policies. In the 1990s
progress accelerated in the demand
for as well as the supply of aluminium extrusions. Awareness of the applications of aluminium extrusions
started spreading as more and more
applications emerged, especially in
the architectural field. As a result, the
aluminium extrusion business started
prospering. Accordingly, more extrusion plants were set up.
In the late 1990s the demand
slackened, mainly because of the
worldwide recessional trend, that
was visible throughout the entire industrial field. Until 1990 almost all
extrusion plants, balancing equipment and accessories were imported.
The share of capital expenditure was
very high. Though a few companies in
India started manufacturing extrusion
presses, they were not comparable to
international standards at that time.
In the 21st century, the extrusion
business has experienced all-round
progress. The availability of aluminium raw material improved considerably and has been free from problems.
New applications and technologies
have emerged. Competitiveness has
led to better quality, service and
productivity. A general awareness
of the virtues of aluminium and the
versatility of the extrusion process
has become widespread.
On the one hand, the people
in the extrusion industry have
realized the importance of quality standards and implemented
precision inspection and testing
techniques. On the other hand the
unhealthy competition that started
in India gave aluminium extrusion
products a bad name because unethical trade practices led to a downgrading of the quality, mainly due to
reduced wall thickness. This discouraged consumers, thus giving a chance
for alternative materials to creep in.
To mention a few milestones, Indian Aluminium Co. Ltd. (Indal) set up
an aluminium extrusion plant in 1955
at Alupuram in Kerala. This plant, regarded as a modern one at that time,
was the country’s first extrusion plant.
Jindal in the private sector made, and
is continuing to make, significant contributions to the aluminium extrusion
business. Hindalco, which is a public
ALUMINIUM · 5/2008
S
AML- S T R A N G P R E S S IANLDUUMSITNRI IUEM
A LPU E
M ICN II U
Installed capacity Production
(in tonnes)
(in tonnes)
Primary
30,000
20,000
Secondary
80,000
35,000
Unorganized
50,000
20,000
Defence
15,000
5,000
Total
175,000
80,000
Sector
Capacity and utilisation of plants in
1998/99
Year
Demand
(in 1,000 t)
Supply
(in 1,000 t)
2001
2002
2003
2004
2005
125
135
150
160
175
130
140
150
150
175
Demand and supply of extrusions in the
period 2001 to 2005
limited sector company, established a
substantial presence in the business.
Until 1990 there were only around
25 big and small working extrusion
plants in India, whereas after 1990
many extrusion plants were set up. In
general, the industry had been facing
stagnant production and very low capacity utilization for many years and
was struggling or fighting for growth.
Many unfavourable factors including
lower price realization have made the
task difficult; utilization of installed
capacity was less than 50% (see table
1). The development of demand and
supply of extrusions for the period
2001 to 2005 is given in table 2.
As regards growth rates, until 2005
average demand and manufacturing
growth was 8% per year. According
to forecasts from 2007 until 2010 the
average demand growth is expected
to rise 12% per year, installed capacity is expected to increase by 15% per
annum, and manufacturing capacity
is expected to increase by 10 to 12%
per year.
EXTRUSION INDUSTRY
extrusions, but without making their
existence known to associations or
agencies. This situation is a challenge
also faced by those planning to enter
the business and by those wishing
to expand. In general, one can say
there is an ‘organized sector’ which
is made up of mostly large extruder
companies which are known to associations and other organizations and
which take active part in exhibitions,
conferences etc. Then there is the ‘unorganized sector’ consisting of all the
extruder companies not belonging to
the organized sector.
During recent times, several small
and medium-sized extrusion plants
have appeared, especially in Northern India and in particular in Punjab,
Haryana, North Gujarat, Jammu and
Kashmir etc. In general, Northern and
Western parts of India dominate with
regard to the number of extrusion
plants in comparison to the Eastern
and Southern parts. Based on rough
estimates and information gathered,
the situation at present is as follows:
• In India 250 extrusion presses
are installed with a total capacity
of 450,000 tonnes; 150 extrusion
presses are in operation, manufacturing 300,000 tonnes per year;
thus capacity utilization is two
thirds.
• An increasing number of extrusion plants are being set up; some
are in the planning stage.
• A few extrusion plants which
were set up without analysis and
planning, swayed by the allure of
the flourishing extrusion industry,
have closed down.
• Process and product technology
have been upgraded to compara-
ble international standards.
• Small extrusion plants have been
set up mostly in the unorganized
sector.
According to an estimated survey, to
date there are 125 known extrusion
manufacturing companies with 250
extrusion presses installed both in the
organized and unorganized sectors.
35% of the plants have closed down,
are not performing satisfactorily or
are struggling for survival. 25% of the
plants are managing to survive. 15% of
the plants are showing improvements.
25% of the plants are doing well, and
of these a few are well established and
doing extremely well.
The overall consumption of aluminium in general and aluminium
extrusions in particular, though currently very low in India as compared
to that of developed countries, is
growing at a faster rate. However, due
to the very large population the figure
of per-capita consumption is increasing only slowly.
The manufacturing technology,
both with respect to products and to
processes, is being upgraded. More
and more intricate shapes and profiles
in various alloys are being produced.
It is necessary for every extruder to
upgrade the technology periodically.
Adoption of new technology helps
not only to enhance quality, but also
to reduce the cost of the product. To
get to know the latest technology, extruder managers and engineers regularly attend national and international
conferences and exhibitions and participate in conferences and seminars.
Modern technology is availed by collaboration, through consultants and
by self-learning and practice.
©
Present situation
Currently, the aluminium extrusion
industry is growing rapidly. In India,
at any time it is difficult to gather correct data pertaining to the aluminium
extrusion industry, especially data
concerning installed and utilized capacities. There are several extrusion
companies spread all over the country
meeting local demands for aluminium
ALUMINIUM
· 5/2008
57
The use of aluminium in key sector industries, in percent (estimated)
ALUMINIUM · 5/2008
57
ALUMINIUM EXTRUSION INDUSTRY
Research and development is an important activity which has to be continuously pursued in order to achieve
progress in the development of new
alloys, new applications, enhanced
quality, more usage or consumption
and cost reduction. In spite of its importance, in India many aluminium
extruders still do not give R & D the
attention it deserves.
Aluminium extrusions from India
are well accepted in the international
Extrusion presses ...
market. The demand, even from developed countries, is increasing day
by day. A few aluminium extrusion
companies are successfully exporting
substantial quantities of aluminium
extrusions world wide. There is a
growing scope for export business.
Achieving competitiveness is
important for enhancing business.
Healthy competition is welcome at
any time, but periodic price wars
that result in cut-throat competition
should be avoided. Unethical, shortterm gain policies are disastrous. It is
known that at present a few extruders
operate less than ethically in India.
Quality consciousness is increasing
among extruders in India, but there is
still vast scope for further improvement. Standards with regard to alloy,
temper, finish, size and tolerance are
Item in 1,000 tonnes
Installed capacity
Operating capacity (production)
Domestic demand
Captive consumption
Export
No. of extrusion presses
(small, medium and large)
being adhered to strictly. For general
extrusions at present, manufacturing
undersize while labelling and selling
as full size is still in practice, which
is misleading for users. Slowly, however, this practice is vanishing.
At present in India there is a lack of
support and encouragement for new
applications of aluminium extrusions.
It is important to remember that development of new applications helps
in the long term by enhancing the demand and consumption
of aluminium extrusions. Indian extruders
ought to pay greater attention towards this. In
general, in India for the
existing and operating
extrusion plants this is
a good time for growing by experience, expertise and knowledge
of the field, along with
improved infrastructures,
capacities and abilities.
Those planning to enter the business
should be cautious and take the right
decisions.
Some difficulties currently experienced by the aluminium extrusion industry can be summarized as follows:
• Steep and frequent increases in
the LME price of aluminium have
had a serious effect on the Indian
market, resulting in unstable
supply and price of the main raw
material, aluminium metal.
• Price rises occur in leaps and
bounds, initially monthly, recently
fortnightly and perhaps even
weekly in the days to come.
• Steep and frequent price increases have made the entire aluminium downstream manufacturing industry unstable in general,
and affect the aluminium extrusion
2007
450
300
225
25
50
2010
650
425
300
50
75
Year
2015
900
650
500
50
100
250
300
450
Note : A few extruders captively consume aluminium extrusions
Predicted growth rates of aluminium extrusions
58
2020
1,250
1,000
700
100
200
500
business in particular.
• Alternative materials such as
plastics, polymers etc. are gaining
popularity.
• The high price of aluminium is
the main reason for shying away
from newer applications of
aluminium extrusions.
Future prospects
The future for aluminium and aluminium extrusions in India is promising
and bright. Conditions for realizing
this are that the managers of existing extruder plants which are planning capacity expansion, and new
entrants, must make a thorough and
correct study of the pros and cons of
increasing the present capacity, take
precautionary steps, possess the capacity to face and handle challenges,
make the best use of the available expertise and opportunities, and have
all the required infrastructure. The
estimated ambitious future growth of
general industry in India, amounting
to 10 to 12%, will take the aluminium
extrusion business along with it and
provide the incentive to grow at the
same rate of around 12%. To achieve
healthy growth it is necessary to
avoid unethical practices, unhealthy
competition, short-term policies etc.
It is up to the industrial players in the
field of aluminium extrusion to make
their operation viable by selecting
their product mix economically and
by not entering into an uneconomical
price war.
Table 3 shows the predicted growth
of aluminium extrusions in India with
regard to demand and supply.
The following aspects contribute
significantly towards brightening the
prospects of the aluminium extrusion
business in India:
• widening of scope for new
applications in which aluminium
extrusions find a major role,
• increasing the awareness of the
excellent properties and uses
of aluminium extrusions,
• exploring new alloys and their
properties,
• increasing consumption in
present applications,
• acquaintance with international
new technologies and their
ALUMINIUM · 5/2008
S
AML- S T R A N G P R E S S IANLDUUMSITNRI IUEM
A LPU E
M ICN II U
adoption in India,
• elimination of unhealthy
practices, both technically and
commercially,
• improving quality standards,
• growth of exports,
• introducing high-tech products
such as premium windows and
doors in practice,
• use in rail coaches, wagons and
containers,
• use in new applications such as
man-driven vehicles and grain
storage bins in rural areas,
• intensifying research and development for new applications, new
alloys, marketing methods and
cost reduction.
Improvement and upgrading of the
whole range of processes, starting
with the procurement of raw materials and ending with the despatch of
finished goods, are needed. This can
be achieved by research work in the
respective areas. Modern technology
and innovative working practices are
required for manufacturing quality
and intricate shapes at reasonable
cost. These are sound footings for exploiting the potential business opportunities. Metal purity, alloying, billet
Salco Extrusions (P) Ltd is an ISO
9001:2000 certified organization,
which manufactures aluminium extrusions, and is promoted and managed
by techno-professionals having around
40 years experience in the field. The
company has installed 7 MN and 12.5
MN capacity extrusion presses. The
company provides uninterrupted service to its customers since its founding
in 1980. Salco manufactures special
extrusions according to customers‘
requirements, in all extrudable alloys
including those used in defence applications. Salco provides excellent service
for developing new applications of
aluminium extrusions and encourages
the promotion of aluminium extrusion
use in various applications. The company is equipped with all extrusion
manufacturing and related facilities
along with quality control, testing and
inspection. For continuous improvement and upgrading, the company is
equipped with in-house R&D facilities.
ALUMINIUM
· 5/2008
59
EXTRUSION INDUSTRY
storage bins etc., especially in
casting, homogenizing, dies and tools,
rural areas.
the extrusion process itself, ageing,
•
Penetration of aluminium extruhandling and packing are the factors
sion applications in rural areas.
and stages which need due care. Such
care, in conjunction
with controls, inspection and checking,
yields products of
the desired superior
standard. Improving
recovery and productivity through process
optimization will result in cost reduction.
Penetration into new
areas of application
for aluminium extru- ... at Salco Extrusions in India
sions, improved postextrusion processes and new systems
Conclusions
for market penetration are some of the
areas which will result in increased
The scenario of the aluminium exuse of aluminium extrusions. All this
trusion industry in India has been
can be achieved with constant R & D
depicted with regard to past, present
work, to which progressive industries
and future. Several factors are inshould pay full attention.
volved. Most of the extrusion presses
Some corrective measures which
are under-utilized. Most extruders
would help the progressive developspend far too much time in the franment of the aluminium extrusion intic quest to secure orders. Installation
dustry are listed below:
of additional presses (expansion) is
• Formation of policies which enplanned, the moment the production
sure stable prices and an abunexceeds 70% of the installed capacdant supply of aluminium metal.
ity. In general, neither a shortage nor
• Widening of the scope for new
a glut of extrusions has been observed
applications, besides increasing
in the market in recent times. Market
usage in the present applications.
demand and supply position match
• Implementation of measures to
each other. According to the reports
ensure standards, above all with
published on the performance of a few
regard to quality.
extrusion companies in the organized
• Self-discipline by extruders
sector, the companies are in comfortthemselves.
able, if not in excellent shape. There is
• Upgrading of plants, machines,
excellent scope for the growth of this
technology and processes.
industry in India.
• Adoption of economical measures.
• Enlarging significant presence in
Author
the export market.
Gopal M. Pai is Chairman and Managing
• Contributing to and taking advanDirector of Salco Extrusions (P) Ltd, which
tage of the positive and supporthe founded 28 years ago. He obtained his
ing role of Associations.
B.E. (Mech.) Degree from Karnataka Uni• Implementation of government
versity in 1968 and first worked in a copper and copper alloy extrusion plant. For
policies to safeguard the interests
the last 38 years Mr. Pai has worked in
of the aluminium extrusion
the field of aluminium extrusions. His exindustry.
perience covers a wide area from project
• Compliance with of Bureau of
design to techno-commercially handling
Indian Standards (BIS) standards
the business. He is Vice President of the
Aluminium Association of India (AAI),
to avoid unethical practices.
Chairman of the Database / Application
• Making available subsidies and
Committee of AAI and a member of manencouragement by the governagement and organization committees of
ment in some application fields
several other trade, industry and social
such as man-driven vehicles,
organizations.
ALUMINIUM · 5/2008
59
MARKT UND TECHNIK
Steinert Elektromagnetbau GmbH
Separationsspezialist in der Rohstoffwirtschaft
Die Steinert Elektromagnetbau
GmbH mit Sitz in Köln zählt zu
den weltweit führenden Unternehmen in der Separationstechnik
für die Branchen Recycling und
Mineralien. Die Bandbreite von
Separationslösungen reicht vom
klassischen Überbandmagnetscheider über Magnettrommeln
und Wirbelstromscheider bis hin
zu modernster Sensorsortierung.
Der Aluminiumbranche verbunden ist das Unternehmen sowohl
über die Separationstechnik als
auch über „Anofol“, einem eloxierten Aluminiumband, das in
elektromagnetischen Spulen zur
Anwendung kommt.
Das Recycling von Metallen und anderen Werkstoffen wird vielfach vor
allem unter umweltpolitischen Vorzeichen diskutiert und die Klimaschutzdiskussion tut ihr Übriges, dass bei
der Rückgewinnung und Wiederverwertung von Sekundärrohstoffen
vor allem die ökologische Dimension
herausgestellt wird. Demgegenüber
wurde besonders in der Aluminiumindustrie schon früh immer wieder
darauf hingewiesen, dass Aluminium
ein wertvoller Sekundärrohstoff ist,
der sich auch unter wirtschaftlichen
Aspekten zu recyceln lohnt. Diese Erkenntnis hat sich angesichts der seit
Jahren steigenden Rohstoffpreise auf
breiter Front etabliert. Sie rückt damit
verstärkt Unternehmen wie Steinert
in den Blickpunkt, die leistungsstarke
separationstechnische
Maschinen
entwickeln und anbieten, um über
eine hohe Sortenreinheit der Materialströme ein effizientes Recycling
zu unterstützen.
Steinert ist mit seinen Anlagen jedoch nicht allein auf die Recyclingbranche fokussiert. Separationstechnische Maschinen sind für die Primär- und Sekundärrohstoffwirtschaft
gleichermaßen von Bedeutung. Für
Ulrich Kohaupt, Leiter Geschäftsfeldentwicklung/Marketing bei Steinert,
ist diese begriffliche Trennung ohnehin überholt. „Wir sehen uns als
Separationsspezialisten für die Roh-
60
Steinert Elektromagnetbau GmbH
Separation specialist
in the raw materials economy
Steinert Elektromagnetbau GmbH
in Germany is one of the leading companies worldwide in the
field of separation technology
for the recycling and mineral ore
branches. The range of separation
systems extends from classical
overband magnetic separators,
through magnetic drum and eddy
current separators, to state-of-theart sensor-based sorting equipment. The company’s connection
with the aluminium branch stems
both from separation technology,
and through ‘Anofol’, an anodized
aluminium strip used in highpower electromagnetic coils.
The recycling of metals and other materials is often discussed mainly from
the standpoint of environmental policy, and the climate protection debate
has ensured that in the recovery and
re-use of secondary raw materials it
is above all the ecological dimension
which is stressed. In contrast, particularly in the aluminium industry
it has long been pointed out that
aluminium is a valuable secondary raw
material, which it
pays to recycle even
from the economical point of view.
Recognition of that
fact has become
widespread in light of
the rise in raw material
prices that has persisted for
years. Accordingly, this increasingly draws attention to companies
such as Steinert, which develop and
supply effective machines for separation technology in order to support
efficient recycling by virtue of a high
level of sorting purity in the material
flows.
With its equipment, however,
Steinert does not focus exclusively
on the recycling branch. Separation
technology machinery is of equal
importance for the primary and the
secondary raw materials economy.
For Ulrich Kohaupt, Head of Business
Development/Marketing at Steinert,
this conceptual distinction is in any
case outdated. “We regard ourselves
as separation specialists for the raw
materials economy as a whole. For
economic reasons, in the metals sector as well there is nowadays an increasing amalgamation between primary and secondary raw materials, as
can in part be observed already in the
plastics industry or in copper extraction. Ultimately, it is a question of providing raw materials with particular
property profiles. With sophisticated
machine technology we help our customers to implement efficient processes and so to ensure the maximum
raw materials recovery”, he explains.
The company Steinert is among the
worldwide market leaders in separation technology. Since its foundation
early in the 20th century the company has been active in
the processing of
material
Wirbelstromscheider der Steinert Elektromagnetbau GmbH
Eddy current separator of Steinert Elektromagnetbau GmbH
flows: at first using only magnets to
separate coarse ferrous materials
from bulk material, whereas today
ALUMINIUM · 5/2008
MARKETS AND TECHNOLOGY
stoffwirtschaft insgesamt. Aus wirtschaftlichen Gründen wird es auch im
Metallbereich zunehmend eine Verschmelzung zwischen Primär- und
Sekundärrohstoffen geben, wie sie
zum Teil heute schon in der Kunststoffindustrie oder Kupfergewinnung
anzutreffen ist. Letztlich geht es um
die Bereitstellung von Rohstoffen mit
bestimmten Eigenschaftsprofilen. Mit
einer ausgefeilten Maschinentechnik
helfen wir unseren Kunden, effiziente
Prozesse zu implementieren und so
eine maximale Rohstoffgewinnung
sicherzustellen“, erläutert er.
Fotos: Steinert
high-tech machines can extract even
tiny microparticles. Business is globally orientated and is supported by
sales organizations in the USA, Brazil
and Australia (with production facilities as well in the latter two). Shortly,
a sales office will also be opened in
Japan.
With its sophisticated separation
systems Steinert also regards itself
as a technology leader in the market.
The company’s equipment falls into
the upper price bracket. About this,
Kohaupt admits quite frankly that the
competition offers many cheaper ma-
Eddy current separator in operation
chines, “… but our equipment extracts
more raw material in a greater state
of purity out of the material flows,
and for our customers that can pay
for itself within a couple of months”,
he says.
The product range
The central aggregate for the recovery of NF metals is the eddy current
separator, which is used particularly
when shredder material, municipal
waste, incinerator ash, electronic
scrap or foundry sand are processed
and also when old wood has to be
recovered as free as possible from
metals. The equipment consists of a
short conveyor, in whose head drum
there is a rapidly rotating system of
permanent magnets – the pole system
– which generates high-frequency alternating magnetic fields. These create strong eddy currents in the ©
ALUMINIUM · 5/2008
Wirbelstromscheider im Einsatz
Die Firma Steinert zählt zu den weltweiten Marktführern in der Separationstechnik. Seit seiner Gründung
Anfang des 20. Jahrhunderts ist das
Unternehmen in der Aufbereitung
von Stoffströmen tätig: anfangs allein
über Magnete, die grobe eisenhaltige
Werkstoffe aus Schüttgütern abtrennen, während heute hochtechnische
Maschinen selbst filigrane Mikroteilchen aufspüren. Das Geschäft ist
global ausgerichtet und wird durch
Vertriebsgesellschaften in den USA,
Brasilien und Australien (in den beiden letztgenannten auch mit Produktion) unterstützt. In Kürze wird ein
Vertriebsbüro in Japan eröffnet.
Mit seinen ausgefeilten Separationssystemen sieht sich Steinert zudem als Technologieführer im Markt.
Die Anlagen des Unternehmens sind
im oberen Preissegment angesiedelt.
Kohaupt gibt unumwunden zu, dass
der Wettbewerb vielfach preiswertere
Maschinen anbietet, „aber unsere
Anlagen holen mehr Rohstoffe in
größerer Reinheit aus den Stoffströmen heraus und das rechnet sich für
unsere Kunden in ein paar Monaten“,
sagt er.
Die Produktpalette
Zentrales Aggregat für die Rückgewinnung von NE-Metallen ist der Wirbelstromscheider, der insbesondere dort
eingesetzt wird, wo Schreddermaterial, Hausmüll, Müllschlacke, Elektronikschrotte oder Gießereisande
aufbereitet werden oder auch Altholz
möglichst frei von Metallen gewonnen werden soll. Die Anlage besteht
aus einer kurzen Bandstrecke. In der
Kopftrommel befindet sich ein schnell
rotierender Permanentmagnet – das
Polsystem, das hochfrequente, magnetische Wechselfelder erzeugt. Sie
verursachen starke Wirbelströme in
den NE-Metallteilchen, die ihrerseits
dem äußeren Feld entgegenwirkende
Magnetfelder aufbauen. Dadurch werden die NE-Teilchen aus dem übrigen
Materialstrom abgelenkt. Steinert
hat dieses Prinzip durch ein „exzentrisches Magnetpolsystem“ verbessert: Das patentierte, exzentrisch in
der Kopftrommel angeordnete Magnetpolsystem zeichnet sich dadurch
aus, dass der Rotor innerhalb der
Trommel verstellt werden kann; das
ist vorteilhaft, um zum Beispiel kleine
sowie flache, lange Teilchen auszusortieren. Dadurch kann die Wirkung
der magnetischen Wechselfelder genau auf den Eingriffspunkt eingestellt
werden, an dem das Material die
größte Krafteinwirkung erfährt und
die Abwurfparabel damit maximal
beeinflusst wird. Die NE-Teilchen
werden so optimal abgelenkt. Weil zudem keine Magnetfelder an anderen
Stellen des Gurtsystems aufgebaut
werden, können Resteisenmetalle
an der Kopftrommel nicht anhaften,
was den Verschleiß von Band und
Trommelmantel reduziert. Steinert
bietet verschiedene Baureihen seiner
NE-Scheider an, die sich für unterschiedliche Korngrößen eignen. Für
die Feinfraktion im Schredder oder
für die Behandlung von Gießereialtsanden aus der Aluminiumindustrie kommen Maschinen für eine ©
61
MARKT UND TECHNIK
Korngröße oberhalb 1 mm zum Einsatz, die höchste Metallausbringung
auch in einem feinen Bereich sichert,
der häufig als nicht sortierbar gilt.
Dieses exzentrische Magnetscheidesystem führt zu einem höheren Ausbringen und größeren Reinheiten, die sich rechnen. Kohaupt
verweist darauf, dass bei einer Metallaufbereitung rund zwei Prozent mehr
Ausbringen und die erhöhte Verfügbarkeit gegenüber dem zentrischen
System die jährlichen Gewinne um
bis zu 300.000 Euro steigen lassen.
Und dies bei einem Mehrinvest von
lediglich 30.000 bis 40.000 Euro. Die
Zahlen sprechen für sich: Über 2.200
Einheiten des exzentrischen Wirbelstromscheiders hat das Unternehmen
bis 2007 verkauft.
Der Wirbelstromabscheider mit
dem patentierten Polsystem hat die
marktführende Stellung von Steinert
in den 1990er Jahren wesentlich begründet. Weil aber das Ausruhen auf
erreichte Erfolge heute, in einer Zeit
immer kürzer werdender Innovationszyklen, schnell zu Marktverlusten
führt, hat das Unternehmen ab 2000
seine Anstrengungen verstärkt, mit
weiteren innovativen Entwicklungen
seine Marktführerschaft zu sichern
und auszubauen – mit Erfolg. „Besonders stolz sind wir darauf, dass wir seit
Anfang dieses Jahrzehnts neben der
Magnetscheidung die Sensorsortiersysteme haben, bei denen ein Stoffstrom mit speziellen Sensoren – zum
Beispiel einer Kamera oder Metallde-
Invest Maschine
Verfügbarkeit
Sonst. Investionen, Personal,
Energie, Abschreibung
Ersatzteile, Personal
spez. Kosten
Ausbringen
Reinheit
Produktion
Wert
Gesamte Einnahmen
Gesamtkosten pro Jahr
Gewinn pro Jahr
Jährlicher Unterschied
tektoren – erkannt, das Signal über einen Computer ausgewertet und dann
mittels computergesteuerter Ausblasdüsen ausgeschleust wird. Dies alles
geschieht in Millisekunden“, erläutert
Kohaupt.
So unterscheidet das 2001 eingeführte
Induktionssortiersystem
ISS zwischen Eisen, NE-Metallen
und Edelstahl, außerdem zwischen
dünnwandig und massiv. Es ergänzt
Magnetscheidung und NE-Sortierung, wenn metallische Bestandteile
nicht mit diesen beiden Verfahren
abtrennbar sind. Es ersetzt die teure
und wenig effektive Handsortierung,
setzt aber einen gewissen Mengendurchsatz voraus, damit der Betrieb
der Anlagen wirtschaftlich ist. Die
bisherigen Erfahrungen zeigen, dass
sowohl Reinheit als auch Ausbringen
deutlich über 90 Prozent liegen, was
die Rückgewinnung der Wertstoffe
gegenüber einer Handsortierung
mehr als verdoppelt. „So lassen sich
pro Stunde und Meter Arbeitsbreite
rund zehn Tonnen Metall sortieren,
bei einer Arbeitsbreite von drei Metern mithin dreißig Tonnen pro Stunde“, rechnet Kohaupt vor.
Mit dem 2006 eingeführten
Steinert-Farbsortiersystem FSS, dem
als Erkennungskriterien Farbe, Helligkeit, Korngröße und -form dient,
lassen sich zum Beispiel Kupfer,
Zink und Bronze einzeln trennen. Ein
weiterer großer Einsatzbereich für
den FSS ist die Sortierung von Mineralien.
Aufgabe pro Jahr
Steinert
exzentrisch
85.000 €
95%
NF metal particles, which for their
part produce magnetic fields which
oppose the external field. This interaction causes the NF particles to be
deflected from the rest of the material
flow. Steinert has improved this principle by means of an ‘eccentric pole
system’: the patented magnetic pole
system arranged eccentrically in the
head drum is distinguished by the fact
that the rotor can be adjusted within
the drum; this is an advantage, for example for the sorting out of small and
flat, long particles. In this way the action of the alternating magnetic fields
can be brought to bear accurately on
the desired point of attack, where the
material is subjected to the greatest
force so as to have the maximum effect on the discharge parabola. Accordingly, the NF particles are optimally deflected. In addition, since no
magnetic fields are produced at other
points of the belt system, no residual
ferrous metals can stick to the head
drum and this reduces wear on the
belt and the self-cleaning drum shell
to a minimum. Steinert offers various
model series of its NF separators, each
suitable for a different range of particle sizes. For fine shredder fractions
or for the treatment of used foundry
sand from the aluminium industry the
machines employed are designed for
particle sizes larger than 1 mm; these
ensure the greatest possible metal
yield even in a range so fine that it
is often regarded as not suitable for
sorting.
Aufgabe 10 t/h, NE: 4%
38.400 t/y 16 h/d; 240 d/y 2 Schichten
Andere
Unterschied zu Steinert
zentrisch
60.000 €
-29%
zusätzliches Invest
92%
-3%
wegen Trommelmantel und Band
ähnlich
3.500 €/y
2,5 €/t
90%
90%
1.313 t/y
720 €/t
945.562 €/y
96.768 €/y
848.793,60 €/y
13.500 €/y
2,8 €/t
88%
89%
1.244 t/y
712 €/t
885.404 €/y
109.056 €/y
776.348,50 €/y
72.445,10 €/y
286%
13%
-2%
-1%
2 Trommelmäntel pro Jahr – zentrisch
wegen Verstellbarkeit
wegen Verstellbarkeit
-6%
13%
-9%
Vorteil Steinert
Vorteile eines Steinert-Wirbelstromscheiders: 2 Beispielrechnungen (s. auch Tab. rechts) mit unterschiedlicher Aufgabenstellung
62
ALUMINIUM · 5/2008
MARKETS AND TECHNOLOGY
This eccentric magnetic separator
system gives higher yield and greater
purity, which pay good dividends.
Kohaupt points out that with a metal
yield of about two percent more, and
higher availability than that of a centric system, annual profits can be increased by up to 300,000 euros – and
this, for an additional investment of
only 30,000 to 40,000 euros. The figures speak for themselves: by 2007 the
company had sold more than 2,200 eccentric eddy current separators.
The eddy current separator with
its patented pole system essentially
laid the foundation for Steinert’s
market-leading position in the 1990s.
However, since resting on successes
already achieved soon leads to market
losses today, at a time when innovation cycles are continually becoming
shorter, since 2000 the company has
increased its efforts to consolidate
and extend its market leadership
with other innovative developments
– with success. “We are particularly
proud that since the beginning of the
present decade, besides magnetic
separation we also have sensor-based
sorting equipment, with which a material flow is recognized by means of
special sensors – for example a camera or metal detectors –, the signal is
evaluated by computer, and then the
material is separated off by computercontrolled air jets. This all happens in
milliseconds”, explains Kohaupt.
Thus, the ISS induction sorting
system introduced in 2001 dis- ©
Mit dem ebenfalls 2006 eingeführten
Steinert-Röntgensortiersystem XSS
eröffnen sich vollkommen neue Sortieransätze – z. B. bei der Aufbereitung
der gemischten NE-Metalle im Autoshredder und der Rückgewinnung
von Aluminium. Die geschieht heute
vielfach noch durch Schwimm-SinkSortierung: Bei der Trennung von Aluminium und Kupfer wird feines Ferrosilizium in Wasser suspensiert, sodass
das Flüssigkeitsgemisch eine Dichte
aufweist, die zwischen der Dichte der
zu trennenden Metallen liegt. Dieses
Verfahren führt jedoch dazu, dass
die Aluminiumoberfläche mit feinen
Eisenteilchen überzogen wird. Eisengehalte im Aluminium sind jedoch
unerwünscht, da sie ab Gehalten von
rund 0,2 Prozent negativen Einfluss
auf die Bruchdehnung haben. Die
Trockenaufbereitung durch neuartige Röntgensortiersysteme vermeidet
diesen Nachteil und ist zudem kostengünstiger als das Nassverfahren.
Mit dem XSS-System lassen sich
metallische oder organische Materialströme anhand unterschiedlicher Materialdichten erkennen. Ausschlaggebend für die Sortierung ist die Atommasse der wichtigsten chemischen
Elemente. Je weiter die Elemente im
Periodensystem auseinanderliegen,
desto besser kann man sie mit der
Röntgensortierung erkennen. Das XSS
dient zur Trennung von Leicht- und
Schwermetallen, nachdem Eisen und
NE-Metalle gewonnen wurden. Die
Röntgensortierung ermöglicht die Ab-
Input 20 t/h, NF 8%
Nominal input per year 76.800 t/y 16 h/d; 240 d/y
Invest machine
Availablity
Other investment, costs for
personal, power, depreciation
Spare parts, personal
Costs per tonne input
Recovery
Purity
Production
Value
Total earnings
Total costs per year
Earnings per year
Difference
at the end of the year
Steinert eccentric
85,000 €
95%
Others centric
60,000 €
92%
-29%
-3%
trennung von Aluminium und Magnesium aus einer schwermetallreichen
Fraktion wie Kupfer, Bronze, Zink und
Blei. Darüber hinaus lassen sich Aluminiumguss- und -knetlegierungen
voneinander trennen. Die Sortierung
basiert auf dem Erkennen des Siliziumanteils in den Gusslegierungen.
Eine Reihe weiterer innovativer
Separatoren rundet die SteinertProduktpalette ab: zum Beispiel der
Hochgradient-Magnetscheider (u. a.
für die Sandindustrie) oder Hochgradient-Magnetfilter zur Filterung
von Flüssigkeiten, die anschließend
in Nasstrommelscheidern aufbereitet werden. Nasstrommelscheider
werden zudem standardmäßig in der
Kohleaufbereitung zur Schwertrübesortierung eingesetzt, um feinen Magnetit zurückzugewinnen.
Dieser gesamte Geschäftsbereich
mit seinen vielfältigen Sortiersystemen ist das Hauptgeschäft von
Steinert. Der Umsatz (2007: 40 Mio.
Euro) hat sich in den vergangenen
vier Jahren äußerst schwungvoll entwickelt, nämlich verdreifacht. Diese
Dynamik rührt zu einem guten Teil
aus dem Verkauf der Sensorsortieranlagen. In diesem relativ jungen
Geschäftsfeld hat Steinert weltweit
inzwischen mehr als 200 Anlagen
verkauft, vor allem in die USA, aber
auch nach Japan und Russland. Heute
ist Steinert weltweit der einzige Hersteller, der sowohl Magnetscheider
als auch Sensorsortierung anbieten
kann.
©
2 shifts
diffence to Steinert machine
additional invest due to technology
due to drumshell and belt
equal
3,500 €/y
2.5 €/t
90%
90%
5,253 t/y
720 €/t
3,782,246 €/y
193,536 €/y
3,588,710.40 €/y
13,500 €/y
2.8 €/t
88%
89%
4,974 t/y
712 €/t
3,541,618 €/y
218,112 €/y
3,323,505.90 €/y
265,204.50 €/y
286%
13%
-2%
-1%
2 drumshells a year - centric
due to adjustability
due to adjustability
-6%
13%
-7%
Advantage Steinert
Advantages of Steinert eddy current separator: 2 calculations (see also Tab. on the left) with different input samples
ALUMINIUM · 5/2008
63
MARKT UND TECHNIK
Das Induktionssortiersystem ISS analysiert Metallschrotte mittels magnetischer Induktion
The Induction Sorting System ISS analyses the material by means of electro magnetic
induction
Eloxalband für
elektromagnetische Spulen
Dagegen nimmt sich der Geschäftsbereich Anofol eher bescheiden aus.
Das soll sich jedoch ändern. „Wir wollen diesen Geschäftsbereich deutlich
ausbauen. Durch unsere Magnetscheider haben wir großes Knowhow
im elektromagnetischen Spulenbau
und sehen gute Möglichkeiten, diese
Erfahrungen in anderen Technologiebereichen zu nutzen“, sagt Kohaupt.
Anofol bezeichnet anodisiertes
Aluminiumband, das Steinert für die
Spulen in seinen elektrischen Magnetscheidern einsetzt – zum Beispiel in
Lasthebemagneten, Überbandmagnetscheidern oder Magnettrommeln.
Diese Spulen sind sehr kompakte,
thermisch stabile Blöcke mit ausgezeichneter Wärmeleitfähigkeit. Durch
die Verwendung von Aluminium statt
Kupfer als Leitmaterial lässt sich bei
Lasthebemagneten die Totlast um die
Hälfte reduzieren. Damit wird das
Eigengewicht des Magneten geringer
und die Krananlage kann deutlich
mehr Nutzlast heben.
Schon in den 1960er Jahren wurde in Lasthebemagneten eloxiertes
Aluminiumband eingeführt, das die
mit Kupferdraht gewickelten Spulen
ersetzte. Der Grund dafür: Kupferdraht muss mit einem isolierenden
Lack überzogen werden, der temperaturempfindlich ist, während die
anodisierte Oxidschicht des Aluminiums temperaturunempfindlich ist.
Auf diese Weise konnte man Last-
64
hebemagneten in der Stahlindustrie
für den Transport heißer Walzbarren
im Dauerbetrieb einsetzen und damit
den Umschlag erheblich steigern.
Heute ist Anofol als Leitermaterial
in anspruchsvollen Herstellerkreisen
Standard. Anofol-Spulen werden in
fast allen Bereichen der Elektrotechnik eingesetzt: zum Positionieren,
Steuern, Bewegen, Öffnen, Schließen,
Heizen, Senden und Kontrollieren.
Steinert schneidet das Aluminiumband selbst, anodisiert in einer
eigenen Eloxalanlage (2 Anodisierlinien, max. Kapazität 350 jato) und
baut auch die Spulen selbst. Um eine
hohe Qualität des eloxierten Bandes
sicherzustellen, ist eine spezielle
Schneide- und Kantenbearbeitung
erforderlich, um Grate zu beseitigen
und das Kantenprofil abzurunden.
Scharfe Kanten sind problematisch,
weil sie zu Beschädigungen an den
Eloxalschichten der gewickelten
Spulen führen können. Die moderne
Bandschneideanlage zum Längsteilen
der Eloxalbänder arbeitet in der Breite bis 800 mm und verfügt über eine
Kapazität von 10.000 Jahrestonnen;
der höheren Auslastung wegen wird
sie auch für Lohnarbeiten eingesetzt.
Auch hier wird auf eine gute, saubere
Schneidkante geachtet.
Mit der Separationstechnik und
dem eloxierten Aluminiumband hat
Steinert zwei Geschäftsbereiche, die
gleichermaßen das Potenzial aufweisen, sich auch in den kommenden Jahren dynamisch weiterzuentwickeln.
N
tinguishes between iron, NF metals
and stainless steel, and also between
thin-walled and massive material.
Magnetic separation and NF sorting
are supplemented in cases when metallic constituents cannot be separated
by these two methods. This replaces
the costly and not very effective sorting by hand, but presupposes a certain
quantity throughput if operating the
unit is to be economical. Experience
so far shows that both purity and yield
are substantially higher than 90 percent, which more than doubles the recovery of the material compared with
manual sorting. “So per hour and per
metre of working width we can sort
about ten tonnes of metal, or thirty
tonnes per hour with a 3-metre working width”, estimates Kohaupt.
With the Steinert-FSS colour sorting system introduced in 2006, for
which colour, brightness, particle
size and particle shape serve as recognition criteria, e. g. copper, zinc and
bronze can be separated individually.
Another major field of application for
the FSS is the sorting of mineral ores.
And the Steinert-XSS X-ray sorting system, also introduced in 2006,
opens up completely new approaches
to sorting – such as for the processing
of mixed NF metals in an automatic
shredder and the recovery of aluminium. Nowadays this is often done by
float-sink sorting. For the separation
of aluminium and copper, fine ferrosilicon is suspended in water so that
the liquid mixture will have a density
between that of the metals to be separated. This method, however, causes
the surface of the aluminium to be
covered with fine ferrous particles.
But for aluminium to contain iron is
undesirable, because above about 0.2
percent it has an adverse effect on
the elongation at fracture. Dry separation by means of the new X-ray system avoids this drawback and is also
cheaper than the wet method.
With the XSS system metallic or
organic material flows can be recognized by virtue of their different densities. The decisive factor for sorting
is the atomic mass of the most important chemical elements present. The
further apart the elements are in the
Periodic Table, the better they can be
recognized and distinguished by X-
ALUMINIUM · 5/2008
MARKETS AND TECHNOLOGY
ray sorting. XSS is used to separate
light and heavy metals once the iron
and NF metals have been extracted.
X-ray sorting enables the separation
of aluminium and magnesium from a
fraction rich in heavy metals such as
copper, bronze, zinc and lead. It is also
possible to separate wrought and cast
aluminium alloys from one another.
The sorting is based on recognition of
the silicon fraction present in casting
alloys.
Steinert’s product range is rounded
off by a series of other innovative separators: for example the High Gradient Magnetic Separator (for the sand
industry among others) or the High
Gradient Magnetic Filter for the filtration of liquids which are then treated
in a wet drum separator. Wet drum
separators are also used routinely in
coal preparation, for sorting out the
heavy medium in order to recover fine
magnetite.
This entire business sector with
its varied sorting systems is Steinert’s
main line of activity. The company’s
turnover (2007: 40m euros) has developed exceptionally vigorously namely
trebled, during the last four years.
Such a dynamic development is largely based on the sale of sensor sorting
units. In that relatively young field of
business Steinert has since sold more
than 200 units worldwide, mainly in
the USA but also in Japan and Russia.
Today, Steinert is the only manufacturer in the world capable of providing not only magnetic separators, but
also sensor sorting equipment.
ing magnets, suspension magnets or
magnetic drums. These coils are very
compact, thermally stable blocks with
outstanding thermal conductivity. By
using aluminium instead of copper
as the conducting material, the total
load can be reduced by 50 percent.
The magnet’s own weight is smaller,
so the crane unit can lift a substantially larger useful load.
As early as the 1960s anodized
aluminium was introduced for lifting
magnets, in which it replaced coils
Eektromagnetische Spule aus dem hochwertigen, inerten Aluminiumband Anofol
Electro-magnetic coil made from the highgrade, inert aluminium strip material
Anofol
wound with copper wire. The reason
for this was that copper wire has to
be coated with an insulating layer,
which is temperature-sensitive, while
the anodic oxide layer on aluminium
is not sensitive to temperature. In the
steel industry this made it possible to
use lifting magnets over long periods
for the transport of hot rolling slabs,
and so to increase output considerably. Today Anofol is used as standard for the conductor material by demanding manufacturers. Anofol coils
are used in almost every sector of
electrical engineering: for positioning,
controlling, moving, opening, closing,
heating, transmitting and monitoring.
Steinert cuts the aluminium strip
itself, anodizes it in an anodising plant
of its own (which has two anodising
lines, with maximum capacity 350
tpy) and also constructs the coils itself. To ensure a high quality of the anodized strip a special slitting and edge
preparation unit is needed in order to
remove burrs and round off the edge
profile. Sharp edges are problematic
because they can result in damage to
the anodic layer on the wound coils.
The modern strip slitting machine for
slitting the anodized strips works in
widths up to 800 mm and has a capacity of 10,000 tonnes per year; to maximize the use of the machine, it is also
used for contract jobs from outside.
Here too, attention is paid to getting a
good, clean cut edge.
With separation technology and
anodized aluminium strip Steinert
has two business activities, both of
which have in equal measure the potential to develop further in a dynamic
way in coming years as well.
N
Anodized strip
for electromagnetic coils
In contrast to the separation business, the Anofol sector is small. But
this is expected to change. “We want
to extend that part of our business
substantially. Thanks to our magnetic
separators we have a great deal of
know-how about electromagnetic coil
construction and we see good potential for putting that experience to good
use in other technological areas”, says
Kohaupt.
Anofol is the name given to anodized aluminium strip used by Steinert for the coils in its electric magnetic separators – for example in lift-
ALUMINIUM · 5/2008
65
CO M PA N Y N E W S W O R L D W I D E
Rio Tinto Alcan
Aluminium smelting industry
EU Commission
investigates Rio Tinto Alcan
The European Commission has formally started proceedings against Alcan, the Canadian aluminium producer that Rio Tinto bought for US$38bn
last October. The Commission has
sent a ‘statement of objections’ to Alcan outlining its preliminary view that
the group has abused its dominant
position in the market for aluminium
smelting technology.
Alcoa accused of conspiracy
Alcoa has been accused of a 15-year
conspiracy involving overcharging,
fraud and bribery by a company controlled by Bahrain. Aluminium Bahrain has alleged in a lawsuit filed in a
U.S. Federal court that Alcoa steered
payments for an aluminium precursor ingredient to a group of companies abroad, in order to pay kickbacks
to a Bahrain government official. The
firm also alleged that Alcoa had overcharged it for the precursor material,
alumina. Alcoa said it will defend
itself vigorously following the allegations. The suit seeks damages in excess of US$1bn, including punitive
damages.
China’s aluminium
output 5% down in 2008
China’s recent snowstorms and
power outages may reduce primary
aluminium output by about 600,000
tonnes this year, equal to 5% of the
66
country’s 2007 output. Reduced output in China, coupled with long-term
power supply problems in Southern
Africa, and the weak dollar have
driven world aluminium prices above
US$3,000 a tonne for the first time
since May 2006, when prices hit a
record of US$3,310. But China may
still produce 22% more of the metal
this year than in 2007, or about 15m
tonnes, from capacity of 18.5m tonnes.
China expected aluminium output to
reach 15.5m tonnes this year, but has
revised that down to 14.9m. China’s
worst winter weather in decades damaged power networks in late January
and early February. This aggravated
coal-related power shortages and
forced output cuts or shutdowns on
energy-guzzling aluminium smelters
in the provinces of Guizhou, Guangxi,
Hunan, Sichuan and Yunnan. Most
smelters have since resumed production and will be back at full operation
in April.
China may hit energy
use target for first time in 2008
China’s fight against pollution has become an international issue, as it tries
to cut choking smog and present a
sparkling face during the 2008 Olympic Games, due to be held in Beijing
in August. China aims to reduce emissions of sulphur dioxide, the main
pollutant in acid rain, by 6% this year
compared with 2005 levels. It also
plans to reduce by 5% the chemical
oxygen demand of its rivers, which is
a measure of water pollution over the
same period.
Nalco in talks to set up
aluminium smelter in Iran
India’s National Aluminium Co (Nalco) has received an expression of interest from a government-owned Iranian firm for a joint venture to set up
an aluminium smelter in Iran. Nalco
is looking at smelter projects where
energy supply is reliable and at lower
cost. It may not be easy to set up a
smelter in Iran, as India may face pressure from the US government which
has imposed sanctions on this energyrich nation. Gulf nations are not providing such cheap energy any more,
as the governments there nowadays
bargain hard for a larger portion of
profits from any such venture. Still,
Iran is not the only destination in the
Gulf region that interests Nalco, which
could also consider other countries. In
the project’s first phase, Nalco plans
to set up a 250,000 tpy smelter and a
750 MW power plant by the end of
2012, and then add 250,000 tpy and a
500 MW later. The project will need
1m tpy of alumina, which Nalco will
supply from India.
Orissa’s aluminium output
to reach 1m tpy in three years
India’s Orissa state plans to more than
double its aluminium production to
1m tpy within the next three years.
The bauxite-rich state also expects
alumina production to touch 6.5m
tpy in that time. Orissa’s two smelters
are 345,000 tpy National Aluminium
Co (Nalco) at Angul and 100,000 tpy
Hindalco at Hirakud. Orissa’s three
alumina producers (Nalco with 1.58m
tpy, Vedanta Aluminium with 700,000
tpy and Hindalco with 300,000 to
400,000 tpy) all plan new capacity.
Nalco is set to expand aluminium
capacity to 460,000 tpy and alumina
refining capacity to 2.1m tpy. Vedanta is setting up a 245,000 tpy smelter
in the state which will be expanded
to 500,000 tpy in a second phase.
Hindalco is building a smelter with
260,000 tpy in the first phase and a 1m
tpy alumina refinery under its Adity
Aluminium project, while also setting
up a 1.5m tpy in an alumina refinery
under the Utkal Alumina project.
ALUMINIUM · 5/2008
CO M PA N Y N E W S W O R L D W I D E
Orissa has five other aluminium
projects in the pipeline, including a
1.4m tpy alumina refinery and a 2.5m
tpy aluminium smelter under an L&TDubal venture.
Meanwhile Orissa has received
project proposals from: major bauxite
miner Ashapura Group, large ferroalloy producer IMFA group, and ceramic producer Euro Group as well as
from R&B Transmissions. All new aluminium projects approved by Orissa
will also have smelting capacities.
Alcoa and the
government of Quebec reach
renewable power agreement
Alcoa has reached an agreement with
the government of Quebec on a new,
renewable energy contract to supply
the three Alcoa smelters in the province (Becancour, Baie Comeau and Dechambault) through the year 2040, and
so enabling Alcoa to invest US$1.2bn
to upgrade and expand aluminium
production at Baie Comeau to 548,000
tpy. Initial engineering studies for the
upgrade and expansion activity at Baie
Comeau begin in early 2008, with the
majority of the investment planned for
the final stages of the project. Conversion and upgrade of the smelter, as
well as expansion by 110,000 tpy, will
be completed by 2015.
Prior to this agreement, Alcoa’s
smelters in Quebec produced more
than 1.1m tpy of aluminium and employ 3,600 people directly. In addition
to the direct benefits, the smelters will
generate more than US$1.8bn in economic spin-offs per year in the province as a result of this agreement.
Vedanta plans aluminium
smelter in West Bengal
Vedanta Aluminium Ltd, a unit of
Vedanta Resources Plc, is planning a
650,000 tpy aluminium smelter and
a 3,000 MW power plant at a cost
of US$5bn in West Bengal. Vedanta
signed an MoU with the West Bengal government. The entire project
is expected to be completed in three
years with the power plant coming
up in two phases. West Bengal has no
ALUMINIUM · 5/2008
bauxite reserves but it has abundant
coal. The project will be realized in
the coal belt of Ranjigunj at Bidhan
Bag. Vedanta is likely to get immediate possession of 275 acres by taking
over the land of the former 30,000
tpy smelter West Bengal Aluminium
Corp. This plant was set up in 1952
but later closed.
Furthermore, Vedanta has started
trial production at its new 245,000
tpy smelter in Jhursuguda in the eastern state of Orissa in early April. The
smelter’s main output will be aluminium billets and ingots. Preparatory
work has already begun on a second
phase to double capacity to nearly
500,000 tpy in three years. Work on
the smelter has been completed one
year ahead of schedule. The new
smelter at Jhursuguda will increase
Vedanta’s total aluminium production to 675,000 tpy from the current
430,000 tpy.
Guangdong’s power crunch
cuts China aluminium demand
A power shortage in Guangdong, an
aluminium products manufacturing
base in China, is reducing output of
the products and so the consumption
of primary aluminium. Some 300,000
tonnes of aluminium ingots, or nearly
a third of China’s monthly production
and 30% of consumption, are probably
stored in private and public warehouses in fabricators’ bases of Guangdong
and eastern provinces. The stocks
included 157,638 tonnes recorded in
Shanghai Futures Exchange’s warehouses. Part of the stocks could be sold
on global markets if overseas prices
surpass Chinese prices by 15%, which
is enough to compensate for China’s
15% export tax. Guangdong could see
a supply gap of 12 GW during peak
demand around June, according to
Chinese media. Part of Guangdong’s
supply gap of electricity originated
from China’s southwest region, as
power networks in that region were
damaged by the worst winter weather
in decades, and are not expected to
restore full operations for weeks to
come. Outages could cut aluminium
consumption by 20,000 tpm just for
Nanhai.
Smelters were also willing to sell more
metal to maintain cashflow because
they were receiving fewer bank loans
as a result of Beijing’s credit tightness. “We are now willing to export
at a discount of US$50 a tonne from
international prices, without paying
the export tax”, a trade manager said.
The tax was US$470 a tonne, based
on current prices. Increased supply is
discouraging fabricators from building stocks, a trader in Shenzhen said.
He estimated that stocks total more
than 60,000 tonnes of aluminium
ingots in Nanhai’s warehouses, double of the normal levels of 20,000 to
30,000 tonnes.
Rio Tinto to partner
Algerian smelter project
Rio Tinto Alcan has agreed to partner
Algerian private company Cevital in
an aluminium smelter project costing
about US$7bn. The first phase of the
project would involve a smelter with
a capacity of 720,000 tpy of primary
aluminium.
Komi Aluminium project
suspended for two years
UC Rusal suspended the Komi Aluminium project for two years because
it has failed to find access to an energy source. As reported earlier, Komi
Aluminium belongs to Rusal’s priority
projects as it strengthens the resource
base of the company, and it is also a
key element among projects for new
aluminium capacities in Russia. The
production at the complex in Komi
was projected in 2009. Its start-up
would increase Rusal’s alumina production in Russia by more than 40%.
The Komi project, near Ukhta in
the Komi Republic, includes: a 1.4m
tpy alumina refinery; the expansion
of the Middle-Timan bauxite deposit
from 2.4m to 6.4m tpy; and possibly
an aluminium smelter with a capacity between 300,000 and 500,000 tpy,
depending on power availability. For
the time being only the first phase of
the project has been partially realized.
But Rusal has not given up the project,
which will cost about US$2bn.
©
67
CO M PA N Y N E W S W O R L D W I D E
Chalco to bear
higher energy costs
Since the Chinese government has
banned favoured electricity prices for
aluminium smelters, Aluminium Corp.
of China will have to pay much higher
energy costs in 2008. The power price
rose more in the provinces and regions
of Yunnan, Shandong, Henan, Guangxi
and Liaoning than in other provinces.
Prices rose there by 12.75%, 27.75%,
13.33%, 20.41% and 24.01% respectively. Based on China’s current techniques, power accounts for 35% of the
total cost in electrolytic aluminium
production. Per tonne of electrolytic
aluminium smelters consume 14,500
kWh on average; therefore, a rise of
0.01 yuan in power price will raise the
production cost by 145 yuan. Statistics showed that Chalco so far has six
main electrolytic aluminium subsidiaries with a total production capacity
of 995,200 tpy. The power price rise is
expected to lift the production cost by
some 670m yuan in 2008.
Dubal commissions
additional smelter capacity
at Jebel Ali plant
State-owned Dubai Aluminium Company Ltd. has consolidated its status
as the seventh largest aluminium
smelter in the world by raising the
production capacity of its Jebel Ali
plant to 950,000 tpy. This follows the
commissioning on 21 February of the
second phase of the company’s latest
expansion project. This expansion entailed a 32-pot, 22,000 tpy extension of
Potline 5, completed in July 2007 and
a 40-pot, 40,000 tpy extension of Potline 6. The combined Potline 5-6b expansion project, completed at a cost of
US$236m, brought the number of aluminium reduction cells of the plant to
1,557 pots, arranged in eight potlines.
Construction of this two-phased expansion project began in June 2006.
Since then the plant achieved remarkable safety record of more than 7m
man-hours worked without any lost
time injuries over the 20-month period. More than 3,000 workers were
on site at the peak of the construction
phase. The 40 new cells of Potline 6b
68
incorporate Dubal’s proprietary DX
technology, which operates at more
than 340 kA, to yielding 2.615 tonnes
per cell per day (60.4% more than the
1.630 tonnes per cell per day achieved
using conventional reduction cell
technology). Dubal’s DX technology is
also 5.9% more energy efficient than
earlier generation technologies, thus
offering environmental advantages.
BHP will slash aluminium
output on African power crisis
BHP Billiton could cut over 120,000
tpy of aluminium production from its
South African operations as a result
of the power shortages at its primary
power utility Eskom. BHP has been in
talks with its employees about a possible closure of two of the potlines at
its Bayside smelter. This could affect
up to 400 permanent employees and
500 contract employees. A closure of
potlines B and C at Bayside would cut
capacity by 92,000 tpy and the combined loss of all three smelters would
be about 120,000 tpy. BHP took the
decision after learning that the power
cutbacks were set to last for several
years rather than several months. Hillside and Mozal will continue to operate
at 90% of normal peak power demand.
The 100%-owned Bayside smelter
produced 194,000 t of primary metal
in 2007, Hillside produced 704,000 t,
while Mozal produced 563,000 t.
al Complex is owned by Tousea-e-rah
Avard Parsian Co. About 30% of the
required investment for the project
will come from Sabzevar, while the
rest will come from bank loans and
raised funds. However, there is uncertainty surrounding the project due
to current international tension surrounding Iran’s nuclear ambitions.
Rio Tinto in discussions
on timing of Coega project
Rio Tinto Alcan is in discussions with
the South African government regarding the timing of the Coega smelter
project near Port Elizabeth, South
Africa. A team, consisting of members
from government, Rio Tinto and Eskom, are reviewing the terms of the
project in order to align its timing with
the availability of secure power generation capacity from Eskom. A longterm energy agreement for the proposed smelter was signed with Eskom
in November 2006, and an agreement
for infrastructure and job training support was concluded with Coega Development Corporation in July 2007. The
Industrial Development Corporation
of South Africa (IDC) is a 15% partner
in the project. An additional ownership allocation of no less than 5% has
been reserved for Broad Based Black
Economic Empowerment partners.
Rio’s Sarawak
smelter project moves ahead
Chinese firm in deal with
Iran aluminium smelter project
China Nonferrous Metal Industry’s
Foreign Engineering and Construction Co. (NFC) signed a deal with
project owner Sabzevar Pars Sarbedaran Aluminium Industrial Complex
to set up an aluminium complex with
a capacity of 120,000 tpy in northeastern Iran. The plant would be built
over three years with an investment of
US$775m in the town of Sabzavar in
Razavi Khorasan province. Under the
contract, NFC will design, supply and
install equipment, provide technical
services for construction, and conduct test runs and training. Sabzevar
Pars Sarbedaran Aluminium Industri-
Rio Tinto Alcan’s 550,000 tpy aluminium smelter project in Sarawak state,
Malaysia has been granted a manufacturing license. Rio owns 60% of the
joint venture called Sarawak Aluminium Co (Salco) with the state’s biggest
conglomerate Cahya Mata Sarawak
(CMS) owning the rest. The US$2bn
project in Similajau will eventually
have a capacity of 1.5m tpy with the
first production expected in 2010.
The license comes one month after
Rio and CMS signed a memorandum
of understanding with Sarawak Energy to start negotiations for power from
the Bakun hydro-electric dam project,
and seven months after Rio and CMS
agreed to start feasibility studies. Sal-
ALUMINIUM · 5/2008
CO M PA N Y N E W S W O R L D W I D E
co has appointed Bechtel Corp. to undertake an engineering study which
is expected to be complete between
October and January 2009.
Site preparation for
Japan’s Mitsui may join UC
Rusal’s Sakhalin smelter projects
UC Rusal said Japan’s Mitsui has expressed interest in joining its project
to build two aluminium smelters and
adjoining power plants in Sakhalin.
The first project calls for the construction of a smelter with a capacity of 750,000 tpy, along with a 2,300
MW power plant. The total cost is estimated at US$7bn. The second project
calls for the construction of a smelter
with a capacity of 300,000 tpy along
with a 1,200 MW power plant. This
roughly US$4bn project also involves
the development of the Solntsevsky
strip mine so that it can provide 4.5m
tpy of coal to the power plant. The
region’s administration is considering
these projects as part of its fuel- and
energy-sector development strategy
to 2010 and beyond, to 2020.
Helguvik smelter has started
Century Aluminum’s wholly owned
subsidiary Nordural Helguvik has
started the initial site preparation
for a 250,000 tpy greenfield primary
aluminium smelter to be constructed
near Helguvik, Iceland. Consistent
with Nordural’s approach for the
company’s 260,000 tpy Grundartangi
smelter, this new facility will be built
in stages. The first stage of 150,000 tpy
is expected to be on line by late 2010.
Work now underway at the Helguvik
smelter site includes the construction
of access roads, fencing and a temporary project office. Major construction
work will begin in the near future. N
Bauxite and alumina activities
gions, which need expensive investment in infrastructure and beneficiation, will make it more difficult to
estimate costs. Many of the regions
where bauxite is plentiful – Vietnam
in particular – are in less accessible
areas. At the same time, if the alumina price is not at levels which justify
the investment, then the project will
likely be postponed.
Hydro is pushing ahead with its own
plans to build a massive alumina refinery, 5 km away from its Alunorte plant.
Construction will be in four stages of
which the first 1.86m tpy stage will start
in summer 2008. Hydro owns 20% of
this new project, with Vale holding the
remaining share. The plant will be a
copy of Alunorte, which is 57% owned
by Vale and 34% by Hydro.
Economists predict that world
demand for aluminium will grow by
5% per year between 2007 and 2025,
taking aluminium output to 53m tpy.
To feed the smelters,109m tpy of alumina capacity will also have to come
on stream over the same period. This
equates to 6m tpy of new refinery capacity for each of the next 18 years,
and represents a major challenge to
the industry to develop mineral and
energy resources.
Vale sees alumina output
at 5.3m tpy in 2008
Soaring costs could
delay alumina projects
Worsley expansion
clears final hurdle
The rapid consolidation of the metals and mining industry, and soaring
capital expenditure, could delay new
and much-needed alumina refining
and bauxite mining projects. Bauxite
mining projects in less accessible re-
BHP Billiton and its Japanese joint
venture partners are poised to decide
as early as May whether to push ahead
with a US$2bn expansion of the Worsley alumina refinery near Collie. The
partners have obtained final en- ©
AOS
viewing the allegations and intends to
vigorously defend the claim. However,
Alumina is not a defendant in the suit.
Alba, the world’s tenth largest aluminium producer, says Alcoa is its major
supplier of alumina, a key ingredient
in making aluminium.
Brazilian mining and metals group
Vale expects alumina production of
5.3m tpy in 2008 versus 4.3m tonnes
in 2007. The increase will come from
an expansion at the Brazilian alumina company Alunorte, in which Vale
owns a 57% stake, Norway’s Hydro
holds 34% and private Japanese and
Brazilian companies hold the balance.
The new capacity at Alunorte is due to
come on stream in July or August.
Aluminium Bahrain begins
fraud litigation against Alcoa
Aluminium Bahrain has begun litigation against Alcoa, Alcoa World Alumina and two individuals in a U.S.
Federal district court in Pittsburgh,
Pennsylvania. Aluminium Bahrain
(Alba) alleged that Alcoa and the other defendants have engaged in a conspiracy involving fraud, bribery and
overcharging with respect to the sale
of alumina to Alba. Alba was suing Alcoa for at least US$1bn, for overcharging the company for alumina over the
past 15 years. Alba claimed it overpaid
by US$65m annually for the alumina
between 1993 and 2007. Alcoa is re-
ALUMINIUM · 5/2008
69
CO M PA N Y N E W S W O R L D W I D E
vironmental approvals, allowing them
to lift Worsley’s alumina capacity from
3.7m to 4.7m tpy. The original budget
was tipped at US$672m, but BHP
forecasts the total cost at US$2bn.
First production from the expansion
is due by late 2010. BHP mines bauxite at Boddington and ships Worsley’s
alumina through the port of Bunbury
to aluminium smelters around the
world.
Cape Alumina plans to
fund 7m tpy bauxite mine
Cape Alumina, a bauxite exploration company based in Australia
and partly owned by China’s largest independent alumina-aluminium
company, plans to list on the Australian stock exchange to raise funding
for its planned new bauxite mine in
northern Australia. The mine, which
could produce 7m tpy of bauxite, will
supply alumina refineries China. The
company hopes first to raise A$30m
(US$28.3m) to fund the feasibility study, with a second fund raising
planned for 12 to 18 months later to
finance building the mine. Cape Alumina is still at a pre-feasibility stage
for its Pisolite Hills plateau deposit,
which it believes could have an estimated resource of 50-60m tonnes of
dry bauxite. Completion of analytical
work is expected soon. Before the
main deposit, Cape Alumina plans to
start mining of a smaller deposit by
2010 in order to generate cashflow
to invest in construction of the larger
mine at Pisolite Hills. Cape Alumina
is owned by a consortium led by Metallica Minerals, which owns 40%;
Chiping Xinfa Huayu Alumina Co
with 17.5%; RCF IIILP and RCF IVLP,
a US private equity firm holds 17.5%;
and Bondline Ltd, an eastern European based investment holds 25%. The
company holds an exploration permit
covering an area of 2,500 km2 of western Cape York.
Ormet to sell its
600,000m tpy alumina plant
Louisiana Ormet Corp, searching for
ways to cut costs, is giving serious con-
70
sideration to selling its idled 600,000m
tpy alumina refinery in Burnside, Louisiana. The Canonsburg, Pennsylvaniabased company has not entered into
an agreement to sell the plant, which
closed in late 2006 because of a slump
in worldwide prices for alumina and
rising natural gas prices, but sources
said Ormet is willing to entertain offers to divest of the facility. Ormet,
which lost about US$47m last year,
recently restarted the sixth and final
potline at its Hannibal, Ohio, aluminium smelter, and the plant is producing
at the rate of about 260,000 tpy. More
than 1,000 people are now employed
at the smelter. In late 2007, the company laid off six of the 12 people still
employed at the alumina plant. Ormet
also shuttered a bulk marine terminal
at Burnside that served the alumina
plant and provided third-party stevedoring services on the Mississippi
River. The alumina plant had about
250 employees when it closed.
has done exploration work in excess
of US$4m to define bauxite reserves
on and around the Bolaven Plateau
in Champasak province, and believes
mineable reserves could reach 1bn
tonnes of bauxite.
Rio Tinto Alcan on
track for Yarwun launch
Rio Tinto Alcan would begin shipment
from expanded capacity at its Yarwun
alumina refinery in Queensland, Australia, during the second half of 2010
as planned. The US$1.8bn project will
more than double the annual production of the refinery, lifting output from
1.4m tpy to 3.4m tpy by 2011. Since
the expansion project began, engineering is approaching 25% completion, with over US$900m committed
by the end of February.
Nalco opens Andhra Pradesh
aluminium project tender
Sino-Australian bauxite JV in
Laos to add refinery and smelter
China’s Nonferrous Metal Industry’s
Foreign Engineering & Construction
Co (NFC) plans together with Australia’s Ord River Resources to build a 4m
tpy alumina refinery in Laos as part of
the Bolaven Plateau bauxite project.
The refinery will be built in three stages: 1.2m tpy in the first before being increased to 2.4m tpy in the second and
finally to 4m tpy. A 2m tpy aluminium
smelter will also be built at the third
stage. The project in southern Laos is
spearheaded by Laos-registered SinoAustralian Resources (Sarco), a 51:49
joint venture between NFC and Ord
established in 2007. Sarco aims to start
feasibility studies on constructing the
refinery in the Bolaven Plateau once
surveys confirm that there are 300m
tonnes of bauxite in the area. It envisions starting construction of the
refinery in 2010. Sarco has started
a feasibility study on transportation
options for bauxite exports from the
Bolaven Plateau to China. If this feasibility study is positive, Sarco will first
start to sell bauxite while the other feasibility studies and the refinery design
and construction are underway. Sarco
National Aluminium Company Ltd,
India’s state-owned primary aluminium producer, is mulling the construction of a greenfield bauxite mine
and alumina refinery in the southern
Indian state of Andhra Pradesh. The
company has issued a global tender
to prepare a feasibility report which
should be submitted by 21 April. Nalco is interested in setting up a bauxite-alumina complex in the East Godavari and Vishkhapatham districts
of Andhra Pradesh. Nalco has invited
interested and competent consultants
to offer a technical and economic feasibility study on its Andhra Pradesh
plan.
Chalco wins nod to build
an 800,000 tpy capacity plant
Aluminum Corp. of China Ltd. (Chalco), the nation’s largest aluminium
producer, has won government approval to build an alumina plant with
a capacity of 800,000 tpy in Xing Xian
County, Shanxi Province. China’s State
Asset Supervision and Administration
Commission made the remarks on its
website without giving any details on
ALUMINIUM · 5/2008
CO M PA N Y N E W S W O R L D W I D E
the construction time and investment
size. The plant will fully utilize the
rich bauxite resources in Xing Xian
County, where the proved bauxite resources are about 130m tonnes.
Political protest over bauxite
allocation in Andhra Pradesh
The Indian central government’s decision to allocate bauxite reserves in
Andhra Pradesh state to two alumina
refineries raised political protest. Opposition members walked out of Andhra Pradesh assembly after accusing
the ruling Congress party of giving
away the state’s bauxite resources and
of damaging tribal life and ecology. The
refinery projects belong to Sultanate of
Ras-al-Kahaimah, which also plans to
add a smelter, and to Jindal South West
(JSW) Aluminium Ltd. whose plans
include a 3m tpy alumina refinery
with 500,000 tpy aluminium smelter.
Private enterprises are not allowed to
mine bauxite in Andhra Pradesh, so
state-owned Andhra Pradesh Mineral
Development Corp. will mine on behalf
of the private companies. JSW, which
is also building a refinery and smelter
in the Vizianagram district, announced
that work is going well, and it fears no
disruption in bauxite supply.
N
Hydro
Recycling and secondary smelting
Bavaria contemplates
selling Fonderie
Aluminium de Cléon to Renault
Bavaria Industriekapital AG has sold
its aluminium high-pressure diecaster Fonderie Aluminium de Cléon
(FAC) to Renault. FAC delivers transmission housings and engine blocks
to Renault, PSA and Getrag Ford.
Bavaria acquired the foundry at the
end of 2007 as part of the takeover
of three French entities from Teksid
SA in Luxembourg. FAC was created
in 1964 by Renault on the site of the
foundry in Cléon. In 1999, Renault
sold its foundries to Teksid, a subsidiary of FIAT in which Renault acquired
a share of the capital. The previous
Renault foundries were all world
leaders in foundry technology. After
successful negotiations between Bavaria and Renault, the Work Councils
of FAC and Renault’s plants in Cléon
ALUMINIUM · 5/2008
have been informed that Renault intends to revive its aluminium die casting activities in Cléon (FAC) through
a dedicated subsidiary company. Renault plans to invest in FAC in order to
further improve its competitiveness
of the company, which will continue
on the existing site. Renault will also
implement the Renault Production
System (SPR) to complement the turnaround programme already initiated
by Bavaria. Within this framework,
Renault will secure employment for
the employees of FAC, either on the
site of Cléon or in other production
units of the Renault Group, in particular in High-Normandy.
Collapse of aluminium plant deal
An offer from a Russian company to
buy a Conwy Valley aluminium company has fallen through. The offer for
Dolgarrog Aluminium was accepted
in February, but KPMG in Manchester said that had now collapsed. The
plant, which employed 170 at its casting and rolling aluminium mill, went
into administration in August 2007.
The Welsh Assembly Government will
now lead an action group to develop a
strategy for the site and area. Dolgarrog Aluminium was set up six years
ago, following a management buy-out
of the former Alcoa plant, but stopped
production in November 2007.
Arco commissions lower
emission recycle centre furnace
Arco Aluminum Inc, a subsidiary of
BP, has started production in its new
multi-chamber melting furnace at
Logan Aluminum, its jointly owned
aluminium rolling mill in Russellville,
Kentucky. The recycle centre receives
and melts scrap aluminium consisting
of used beverage cans, painted siding,
lithographic sheet and scrap from various third-party manufacturing plants
such as can plants. Using this furnace, the Logan plant eliminates the
shipment of molten aluminium over
public roadways, reduces operational
complexity and improves production
efficiency. The total output of finished
rolled aluminium sheet at Logan ©
On the move
Leonard Rifkin, Omnisource chairman,
passed away at the age of 76.
Hydro has appointed Inge K.
Hansen as a new member of the
board of directors to replace Svein
Rennemo, who has asked to step
down as member of the board.
Alcoa appointed Kenneth Wisnoski
President, Global Primary Products
– Growth, Energy, Bauxite and Africa.
He succeeds Jon Erik Reinhardsen,
who resigned from Alcoa.
Hydro Aluminum North America
has appointed Allan Bennett as Vice
President of Sales and Marketing for
the company’s Western Region.
Alcoa’s board of directors elected
Donna Dabney a Vice President of the
corporation.
71
CO M PA N Y N E W S W O R L D W I D E
remains unchanged. This technology
provides several advantages: it uses
no flux, creates no salt cake, produces
lower emissions, provides increased
operator safety, and maximises production and energy efficiency.
The new technology built into the
centre reduces risk, increases recovery, burns organic fumes for part of
its heating power, and opens opportunities for new engineering efficiencies. This recycle centre uses the most
advanced aluminium melting furnace
technology available. This particular
furnace technology has been used extensively in Europe and has proven
to be one of the best environmental
choices available worldwide. This
is the first time this technology has
been introduced in the United States.
The innovative design of the furnace
provides high metal yields with lower
energy demands, resulting in significantly reduced air emissions.
China Direct turns
to aluminium recycling
Magnesium producer China Direct
Inc. (CDI) plans to commission its first
aluminium recycling plant in Shanghai in the second quarter of 2008. The
plant will recycle aluminium wire to
produce up to 1,000 tpy of aluminium
powder. Aluminium powder, which
consists of 99.65% pure aluminium, is
used in industries such as electronics
as well as in metal coatings and in rust
proofing. The plant will be constructed
in the Nanhui district on the southern
outskirts of Shanghai. The plant is under CDI Metal Recycling Co, which is
83.3% owned by CDI’s wholly owned
CDI Shanghai Management Co. CDI,
which is to contribute US$352,000 to
construct the recycling facilities of the
original plant, intends to add an additional 4,000 tpy by June 2009.
N
Aluminium semis
Trust for an undisclosed sum. The
two aerospace fastener manufacturing businesses are located in Newbury Park, California, and employ
240 people. The two businesses had
combined revenues of US$51m in
2007. Alcoa’s aerospace revenues
have grown from about US$1.5bn in
2002 to more than US$3.7bn in 2007.
Alcoa’s fastener business is based in
Torrance, California, and has 6,600
employees and operates at 26 locations in nine countries. It has recently
opened production facilities in China,
Mexico and Hungary.
Alcan Ravenswood outage
hits heat-treat plate production
Shipments of heat-treat plate out of
Alcan Rolled Products-Ravenswood
LLC have been disrupted as the aluminium producer was forced to take
down a critical piece of equipment
earlier than planned. The disruption
will effect production of 2000 and
7000 aerospace grade and 6000 series
general engineering plate at Alcan’s
Ravenswood, West Virginia site, and
resulted from the idling of a stretcher,
which relieves stresses in the metal.
Estimates of when problems will be
fixed range from mid-April to as long
as eight weeks. Ravenswood had ear-
Hydro
The Author
EUROPE
EU clears Rank to buy
packaging business of Alcoa
The European Commission cleared
New Zealand-based Rank Group
Ltd. to buy the packaging and consumer business unit of Alcoa Inc. for
US$2.7bn. The businesses being sold
include the Closure Systems International, Consumer Products, Flexible
Packaging and Reynolds Food Packaging units. In total, these businesses
have approx. 9,300 employees in 22
countries. Together, the units generated about US$3.2bn in revenues and
72
US$95m in after-tax operating income
in 2006. The Rank Group consists of
a number of companies controlled by
Graeme Hart, including wood products, building supplies, pulp and paper and packaging.
AMERICA
Alcoa expands aerospace
presence with two acquisitions
Alcoa has acquired Republic Fastener
Manufacturing Corporation (‘Republic’) and Van Petty Manufacturing
(‘Van Petty’) from The Wood Family
The author, Dipl.-Ing. R. P. Pawlek
is founder of TS+C, Technical Info
Services and Consulting, Sierre
(Switzerland), a new service for the
primary aluminum industry. He is also
the publisher of the standard works
Alumina Refineries and Producers of
the World and Primary Aluminium
Smelters and Producers of the World.
These reference works are continually
updated, and contain useful technical
and economic information on all alumina refineries and primary aluminum
smelters of the world. They are available as loose-leaf files and/or CD-roms
from the Aluminium-Verlag, Marketing & Kommunikation GmbH in Düsseldorf as well as by online ordering
via www.aluweb.de (Alu-Bookshop)
from Giesel Verlag GmbH.
ALUMINIUM · 5/2008
CO M PA N Y N E W S W O R L D W I D E
lier planned to take the stretcher down
this summer for repair, but during a
routine maintenance project cracks
were discovered in the equipment
which necessitated its shutdown.
Aleris to close Ohio
coil coating facility
US aluminium producer Aleris International will permanently close its
Bedford, Ohio coil coating facility.
Production will be phased out by the
end of the second quarter of 2008 and
will be transferred to other Aleris facilities. A US$4.8m restructuring cost
will be booked for the closure of Bedford, which supplies coated aluminium coil for building and construction,
transportation, distribution and consumer durable applications.
out in the second quarter and operations will continue until the end of
June in order to allow the company
to meet existing customer orders. The
converter foil production line is used
primarily in the manufacture of a variety of flexible packaging products.
“Global over-capacity has created
very challenging business conditions
in the North American market for
light gauge converter foil”, said Kevin
Greenawalt, President, Novelis North
America. “We’ve taken aggressive
steps to reduce costs but with ongoing
oversupply issues, we have reached
the conclusion that we must reduce
Novelis’ participation in the North
American converter foil market.” Approx. 110 employees will be affected
by the closure.
90,000 tonnes produced in 2007. The
output rise is attributed to the gradual
development in China’s Western and
Middle Region, lifting Chinese domestic demand for aluminium extrusion products. In 2007 the company
exported about 30% of its aluminium
extrusion output, mainly to Australia,
Singapore, the US, Italy and Germany.
The Chinese government abolished
the 13% value-added tax rebate for
aluminium extrusion exports in late
2007, thus trimming the aluminium
extrusion sector’s profits. Xingfa Aluminium is expected to float shares
on the Hong Kong Stock Exchange in
2008.
ASIA
Aluminium Corp of China has started
construction of a 100.000 tpy aluminium foil project. The 3.7bn yuan
(US$521m) foil plant in southwestern
Sichuan province will be constructed
in two phases and produce foil of
thickness lower than 0.01 mm. The
realisation of this project will take
between 1.5 and 2 years to complete.
Novelis to close
Louisville converter foil plant
Xingfa Aluminium to lift
extrusion output significantly
Novelis announced the closure of
its light-gauge converter foil plant in
Louisville, Kentucky, as plans to find a
buyer failed. Production will be phase
Xingfa Aluminium, located in Foshan
City of Guangdong Province, expects
its aluminium extrusion output to rise
to 150,000 tpy by 2010, up from over
Suppliers
Rusal expands cathode
production capacity in China
UC Rusal has acquired a cathode plant in
Baoguan, which is located in the administrative centre of Taiyuan, within Shanxi
Province. The current capacity of the
plant is 9,300 tpy of cathode blocks, and
Rusal plans to increase this to 20,900 tpy
by 2010 with a total investment of more
than US$20m. The Baoguan plant is now
the second asset which UC Rusal owns in
China, following its purchase of a 15,000
tpy cathode plant in the Linshi district of
the Shanxi Province in April 2006.
ABB wins
US$53m contract in Dubai
Power and automation technology group
ABB has won a US$53m contract from
Dubai Aluminium Company Ltd. (Dubal)
to upgrade electrical and automation
Chinalco builds
aluminium foil project
Novelis completes expansion
of Korean aluminium mill
systems at the company’s 480-hectare
smelter complex in Dubai. Under the
terms of the contract, ABB will replace
16 high-voltage regulating transformers
(rectiformers, used to convert alternating
current to direct current) with five larger
units, rated at 86 MVA, to increase capacity and combine two smelting potlines.
ABB will provide design, installation and commissioning services for the
project, and dismantle the existing equipment. The delivery includes control and
protection systems, 250 kA field-oriented
measuring equipment, and upgrades to
existing high-voltage cables, low-voltage
and control cables, fire detection and firefighting equipment. This order follows
a similar contract awarded by Dubal in
2006. ABB was commissioned to deliver
a similar scope of supply for an earlier
expansion of this smelter complex.
Commissioning of the new units is
scheduled for completion in late 2009.
Novelis Korea Ltd, which is a joint
venture between Novelis (68%),
Taihan Electric Wire Co. (31%) and
Hyundai Group (1%), has completed
a US$30m expansion of its rolling mill
in Yeongju, South Korea. The expansion included the addition of a fourth
stand on the plant’s continuous hot
rolling mill along with improvements
to the plant’s cold rolling mill, coating
line and associated finishing equipment. The capacity of the plant will be
boosted by 100,000 tpy. Novelis is the
leading supplier of aluminium sheet
in South Korea, China and Southeast
Asia. The company’s subsidiaries in
the region shipped a combined total
of 515 kt of aluminium products in
2007. Novelis expects the Yeongju expansion to further increase its aluminium rolling capacity by approximately
100 kt annually.
N
ALUMINIUM · 5/2008
73
RESEARCH
Metal science view on aluminium alloys extrudability
V. V. Zakharov, I. A. Fisenko, VILS, Moscow
a dramatic reduction of elongation in
the field of subsolidus temperatures
(tenth fractions of one percent in case
of brittle intergranular failure) [1].
Taking into account low strain resistance within this temperature interval,
rupture strength becomes extremely
low.
As extruded semiproducts run out
of the die channel, dynamic tensile
stresses arise on semiproduct surface.
The level of such stresses growths with
raising outflow rate. Thus, an increase
of outflow rate causes a decrease in
rupture strength and at the same time
tensile stresses are developing on the
surface of extruded semiproducts.
So, as a certain critical level of outflow rate has been achieved, tensile
stresses exceed rupture strength and
cracks start to form on the surface of
Surface cracking of extruded semiextruded semiproduct.
products can be described as follows.
Reduction of outflow rate results
Extrusion-induced deformation work
in
decreasing
quantity of eliminated
is eliminated as heat and temperature
heat
and
metal
temperature and inof extruded metal raises. As subsolidus
creasing
rupture
strength on the one
(pre-melting) temperatures have been
hand
and
in
lowering
of tensile stressachieved, alloy ductility decreased
es
on
the
other
hand.
Rupture
strength
sharply result from embrittlement of
exceeds
tensile
stresses
and
cracks
do
grain boundaries. Viscous intragranunot
appear.
lar failure that take place at temperaThe physical meaning of critical
ture of maximum ductility transforms
outflow
rate is transformation of the
to brittle intergranular one. It causes
nature of extrusion-induced
failure from the predominantly viscous intragranular
fracture to a brittle intergranular one upon exceeding
the critical conditions.
If this scheme of extrusion-induced crack initiation
in aluminium alloys is taken
as a basis, the main factors
determining maximum permissible outflow rate are
as follows: level and rate of
metal temperature being increased during extrusion and
solidus temperature, which
determines temperature of
crack initiation. Let us consider the influence of these
Fig. 1: Outflow rates of commercial aluminium alloy
sections as correlative dependence on their strain
two factors.
resistance under temperature-rate conditions of exUnder other conditions
trusion
being equal, the level and rate
One of the main extrudability
characteristics of aluminium alloys is maximum permissible
outflow rate, i. e. a rate which,
when exceeded, causes surface
cracking of extruded semiproducts. Maximum permissible outflow rate is a structure-sensitive
characteristic. It can vary within
two orders of magnitude depending on aluminium alloy grade and
billet structure. Maximum permissible outflow rate has a significant
influence on production process,
since it defines operating outflow
rates (which are a little bit lower
than maximum permissible rate)
determining of extrusion equipment output.
74
of temperature increase is defined by
resistance of the given alloy to strains
arisen in the course of extrusion. The
temperature of extruded alloy at the
die channel outlet is a direct function
of strain resistance peculiar to this alloy: the higher strain resistance of that
alloy, the higher intensity of temperature increase during extrusion and the
quicker achievement of subsolidus
temperature. Strain resistance under
temperature-rate conditions of extrusion is the main characteristic defining maximum permissible outflow
rate. The logarithm of maximum permissible outflow rate of commercial
aluminium alloys is shown in Fig. 1
as a function of their strain resistance
under temperature-rate conditions of
extrusion. Irrespective of chemical
and phase composition of alloys, experimental points lay on one straight
line. Such experimental data were
repeatedly published in the scientific
and technical literature. The authors
showed own data to explain determining role of strain resistance.
Solidus temperature has a certain
influence on maximum permissible
outflow rate. The higher solidus temperature, the higher crack initiation
temperature is. Solidus temperature of
commercial aluminium alloys can vary
within a wide range. Solidus temperature of high-alloyed aluminium alloys
such as D16 (AA2024), AK8 (AA2014),
V95 (AA7075) is about 500°C and for
low-alloyed aluminium alloys such as
AD31 (AA6063) or AMg1 (AA5006)
- 620 to 640°C. High solidus temperature shifts up of the crack initiation
temperature into the field of higher
temperatures and enables conduction
of extrusion process at higher temperatures without formation of cracks or,
in other words, promotes an increase
of maximum permissible outflow rate.
At the same time it is necessary to note,
that solidus temperature and strain resistance are not independent factors.
Both parameters depend on chemical
composition of the given alloy. As a
rule, the higher strain resistance of an
alloy, the lower solidus temperature.
ALUMINIUM · 5/2008
RESEARCH
There is a widespread opinion that
the crack initiation temperature corresponds to initial temperature of fusion, i. e. overburn temperature. In fact,
this temperature is a bit lower since
cracks are formed not only due to high
temperature, but also by simultaneous
action of tensile stresses. The level of
tensile stresses can vary, therefore the
crack initiation temperature is not a
constant, but can change within a certain range depending on value of the
above-mentioned tensile stresses. The
higher tensile stresses, the lower crack
initiation temperature is.
Sometimes, the value of outflow
rate causing the start of surface quality degradation of extruded semiproducts can be considered as the
maximum permissible outflow rate.
Worsening of surface in case of an
increase of outflow rate precedes the
crack initiation process and, consequently, the maximum permissible
outflow rate defined by degradation
of surface quality is always a bit lower
than the maximum permissible outflow rate defined by crack initiation.
More important for practical use is
the first maximum permissible outflow rate, i.e. the rate correlated with
surface deterioration of extruded
semiproducts since working outflow
rate is still lower and its value is regulated by the first maximum permissible outflow rate.
As we have mentioned above,
strain resistance is the key factor defining the maximum permissible outflow rate. Strain resistance depends
on alloy chemical composition and
structure of a billet to be extruded.
Chemical composition has a dramatic
effect on maximum permissible outflow rate. An increase in content of
alloying components and impurities
existing in aluminium solid solution
causes solid solution hardening and
strain resistance raises. For instance,
strain resistance of AMg1 and AMg6
alloys (average content of Mg is about
1.1 and 6.3%) is ~ 45 MPa and 120
MPa respectively under temperaturerate conditions of extrusion process
[3]. The above-mentioned growth of
strain resistance causes a decrease in
maximum permissible outflow rate
from ~ 65 m/min down to 1 m/min. A
reduction in solidus temperature from
ALUMINIUM · 5/2008
638°C down to ~ 560°C should be taken into account as well [4], because
it promotes an earlier occurrence of
cracks limiting the outflow rate.
An important conclusion can be
drawn from the above: solid solution
should be depleted as much as possible in order to increase outflow rate in
the course of extrusion of aluminium
alloys. In this case the minimum level
of strain resistance will be provided.
In other words, a billet should be subjected to deep annealing. Particles of
excess phases formed due to this annealing process do not provide raising strain resistance and decreasing
plastic properties.
The morphology of these particles
should meet the following requirements:
Particles should be distributed uniformly throughout aluminium matrix.
The particles located as a continuous
ring on grain boundaries cause embrittlement, reduction of strain resistance
and crack initiation temperature. As
a rule, it is crystallization-originated
particles (eutectic) not dissolved during homogenizing annealing.
The shape of particles is of a certain importance. The finer particles
and the lower ‘surface area/volume of
particles’ ratio, the lower their contribution in ductility reduction is. Perfectly, particle shape should approach
to the spherical form.
The particle size of surplus phases
precipitated from solid solution can
change from the tenth fractions of micron up to several microns depending
on the nature of phases and conditions
of billet cooling from homogenization
temperature. Rather disperse particles
(less than 1 μm in size) enable to raise
strain resistance and, consequently, to
reduce outflow rate. Moreover, disperse particles formed by the basic
alloying components of aluminium alloys (zinc, copper, magnesium) can be
dissolved at extrusion under action of
temperature elevation and an intensive plastic deformation. This process
leads also to raising strain resistance
and to reduction of outflow rate. Large
particles, more than 10 μm in size
(crystallization-originated particles),
reduce surface quality in case of an
increase in outflow rate. Compactshaped particles of 1-10 μm in size
have an insignificant effect on strain
resistance and plasticity parameters.
Also, they do not worsen surface quality and, consequently, are the most
favourable.
Changes of grain and dendritic
structures of billets extruded from alloys with homogeneous structure of
solid solution do not influence to outflow rate. When alloys with heterogeneous structure are extruded, changes
of grain and dendritic structures can
effect to morphology of excess phases. The above can lead to a change of
maximum permissible outflow rate.
Thus, achievement of high outflow rate during extrusion process is
enabled by the following structure of
aluminium alloy billets: solid solution
depleted to the maximum extent with
inclusions of compact-shaped excess
phases of 1-10 μm in size uniformly
distributed throughout aluminium
matrix.
Heterogeneous annealing of billets
carried out upon homogenization is
one of the ways to produce billets with
required structure. Homogenized billets are cooled down to temperature
of minimal stability of solid solution
of the alloy under treatment. Then billets are subjected to isothermal holding during 1-3 hrs and cooled down to
room temperature [5].
Temperature and holding time
are key parameters of heterogeneous
annealing. Heterogeneous annealing
temperature corresponds to the temperature of minimal stability of solid
solution of the alloy under treatment.
There are two reasons for choice of
this temperature. Firstly, annealing
of billets at this temperature causes
the maximal increase of outflow rate
at extrusion due to formation of the
structure, which is optimal in respect
of workability. Secondly, realization of heterogeneous annealing at
temperature of minimal stability of
solid solution took shortest time as
compared with duration of heterogeneous annealing at lower or higher
temperatures. ‘Subordinated’ parameters of heterogeneous annealing are
as follows: rate of billet cooling from
homogenization temperature down
to heterogeneous annealing temperature and cooling rate from temperature of heterogeneous annealing. ©
75
RESEARCH
strated in practice, that cooling rate of
D16 alloy billets (AA2024 alloy type)
from homogenization temperature of
490°C down to heterogeneity temperature of 360°C should be higher
than 200°C/h. In this case, efficiency
of heterogeneiting annealing is high
enough.
Heterogeneous
annealing
at
temperature of minimal stability of
solid solution (360°C for D16 alloy
(AA2024 type) and 320°C for V95
alloys (AA7075 type)) provides an
intensive and rather full disintegration of solid solution of basic alloying elements in aluminium. At the
same time, basic alloying elements
have higher equilibrium solubility in
aluminium at this temperature than
at room temperature. Decreasing the
rate of billet cooling from heterogeneity temperature causes a reduction in
solid solution concentration and a noticeable increase of outflow rate (Fig.
3). As experiments showed, the rate of
cooling from heterogeneity temperature should be lower than 50°C/h.
Reduction degree λ at extrusion
affects significantly the
efficiency of heterogeneous annealing (Fig.
4). The latter decreases
with increasing λ. It can
be explained by the fact
that true strain rate and
quantity of eliminating
deformation-induced
heat increases with rising reduction degree.
It results in a quick
increase of metal temFig. 2: Efficiency of heterogeneiting annealing of D16 alloy billets (AA2024) as a dependence of cooling rate from
perature and dissoluhomogenization temperature down to heterogeneity temtion rate of excess phase
perature
particles.
Thus, it is possible
to raise outflow rate at
extrusion of D16 alloy
sections and bars almost
twice due to proper realization of heterogeneous annealing.
This effect can be
even higher for some
Al-Mg-Si and Al-Mg-SiCu alloys.
Al-Mg-Si alloys are
one
of the most widely
Fig. 3: Efficiency of heterogeneiting annealing of D16 alloy
billets (AA2024) as a dependence of cooling rate from
used systems among
heterogeneity temperature down to room temperature
commercial aluminium
They affect noticeably outflow rate at
extrusion of aluminium alloys.
The rate of billet cooling from homogenization temperature down to
heterogeneous annealing temperature
is of great importance. The higher this
rate, the higher efficiency of heterogeneiting annealing is (Fig. 2). It can be
explained by extending time of billet
exposure at subsolvus temperatures
under conditions of low supersaturation solid solution with decreasing
cooling rate. In this case, the number
of centers of excess phase particle
nucleation is low. The particles arise
and grow on grain boundaries and
dendritic arms. Such particles allow
reducing critical temperature (crack
initiation on the surface of extruded
semiproducts) and maximum permissible outflow rate. Therefore cooling
rate of billets from homogenization
temperature down to heterogeneity
temperature should be maximal in
order to minimize time of exposure of
billets in this high-temperature area
where particles of undesirable morphology are formed. It was demon-
76
Fig. 4: Efficiency of heterogeneiting annealing of D16 alloy billets (AA2024) as
a dependence of reduction degree λ at
extrusion process
alloys. The international standard on
chemical composition of aluminium
alloys [6] lists 81 grades of commercial Al-Mg-Si alloys. The total content
of basic alloying components (Mg and
Si) in these alloys can vary within 0.65
to 2.6% range. That causes a noticeable difference in their operating and
technological properties. Usually,
continuous cast billets of Al-Mg-Si
alloys are subject to deep homogenization with the subsequent regulated
cooling. Exposure at homogenization
temperature leads to elimination of
the consequences of nonequilibrium
crystallization: particles of excess
Mg2Si phase of crystallization-induced origin (eutectic) are dissolved;
particles of insoluble β (AlFeSi)
phase of needle-shaped morphology
(also formed by eutectic reaction)
are transformed stepwise to α phase
particles (AlFeSi) which have more
compact form. Owing to a decrease
in equilibrium solubility of magnesium and silicon in aluminium during billet cooling from homogenization temperature, their precipitation
from solid solution is accompanied
by formation of secondary particles of
Mg2Si phase. Dispersiveness of Mg2Si
phase particles depends on cooling
rate of billets. From the point of view
of extrudability, optimum dispersiveness is reached at cooling rate of 200600 °C/h. However, such technology
cannot be considered as optimum for
all Al-Mg-Si alloys. It is expedient to
divide Al-Mg-Si alloys in two groups
depending on total content of Mg and
Si: low-alloyed compositions with the
total content of Mg and Si up to ~ 1.2%
and medium-alloyed ones with the
total content of above-named compo-
ALUMINIUM · 5/2008
RESEARCH
to a rather full extent. After 15 minutes holding, particle spheriodization
degree noticeably exceeds that after
conventional homogenization procedure at 560 to 580°C, 6 hrs.
3. Cooling rate of low-alloyed AlMg-Si alloy billets from homogenization temperature has an insignificant
effect on disintegration kinetics of solid solution of Mg and Si in aluminium,
morphology of solid solution disintegration products and residual concentration of solid solution. That is why
the workability does not depend on
rate of cooling from homogenization
temperature in the course of extrusion of these alloys.
Based on these laws, the authors
[7-10] have offered the following production scheme for low-alloyed AlMg-Si alloys. Ingots are to be subject
to heating up to 600°C in induction
or gas furnace of the press, holding
at this temperature during 10 to 15
min., cooling down to extrusion temperature (~ 500°C) and
then to high outflow
rate extrusion followed
by die quenching. This
advanced technology
would allow reducing
expenses per a product
unit noticeably without
worsening of section
quality. From the point
of view of temperature
maintenance accuracy
within 600 ±5°C range
and exposure sufficient
for spheroidization of
Al-Fe-Si phase particles, combination of homogenization annealing and pre-extrusion
heating in the press’
furnace is a ‘bottleneck’ of this production
scheme. In our opinion,
the common production scheme would be
more reliable at the first
stage of works, but with
operating parameters
Vlim – maximum permissible outflow rate; Pmax – the maximal pressure of pressing; Rz – roughness of section surchanged according to
face; σB (UTS) – ultimate tensile strength of quenched and
recommendations specartificially aged sections
ified in works [7-10].
Thus, for production of
Fig. 5: AD33 alloy billet and section properties (AA6061) as
a function of temperature of heterogeneiting annealing of
low-alloyed Al-Mg-Si
billets.
alloys homogenization
nents ~ 1.3 to 2.6%. Preparation of billets made from these alloys for highrate extrusion differs essentially.
Researches executed in the ‘MISiS’ University, Moscow, under the
direction of Prof. V. S. Zolotorevsky,
certain laws of phase transformations
in low-alloyed compositions had been
revealed. The above laws have served
as a basis for creation of a new scheme
for manufacturing extruded sections
and for optimization of temperature,
time and rate parameters [7-10]. The
laws are as follows:
1. Solidus temperature of low-alloyed Al-Mg-Si alloys (6063, 6060,
6101, 6006 type etc.) is rather high:
610 to 630°C. It enables to raise homogenization temperature from 560
to 580°C up to 600°C without risk of
overburn.
2. Mg2Si phase particles of eutectic
origin dissolve at 600°C within 7 minutes. Spheriodization of AlFeSi phase
particles occurs during this period
ALUMINIUM · 5/2008
temperature should be raised from
560-580°C up to 595-605°C if exposure is 1 hour. It is necessary to carry
out homogenization annealing in homogenization furnaces providing the
required temperature accuracy. It
should be followed by non-regulated
cooling down to room temperature,
pre-extrusion heating and high-rate
extrusion combined with die quenching. This new technology has the following advantages over the common
process: reduction of homogenization
time from 4 to 6 hrs down to 1 h, absence of regulated cooling and availability of high quality of the produced
sections.
Such technology is an intermediate step anticipating commercialization of a more progressive and effective technology described in works
[7-10].
Medium-alloyed Al-Mg-Si alloys
Extrudability, structure and properties of medium-alloyed Al-Mg-Si alloy sections (total content of Mg and
Si 1.3 to 2.6%) obey other laws than
low-alloyed compositions do. These
alloys are very sensitive to processing parameters. Solidus temperature
of these alloys is substantially lower.
Therefore homogenization temperature of medium-alloyed billets usually varies within 520 to 580°C range.
The morphology, dispersivity of the
phases that form result from disintegration of Mg and Si solid solution in
aluminium and completeness of disintegration of solid solution depends
on rate and conditions of billet cooling
from homogenization temperature.
Accordingly, extrudability, section
structure and properties depend on
billet cooling conditions. That is why
cooling of medium-alloyed Al-MgSi alloy billets from homogenization
temperature should be regulated.
As it was mentioned above, rate of
cooling of Al-Mg-Si alloy billets from
homogenization temperature should
be within 200 to 600°C/h. In this
case, relatively low extrusion forces
and high outflow rate can be available
owing to low residual concentration
of solid solution of Mg and Si in aluminium and to uniform distribution
of products of solid solution ©
77
RESEARCH
a – sections produced from billets homogenized at 275°C;
b – sections produced from billets homogenized at 375°C
Fig. 6: Structure of AD33 alloy quenched sections (AA6061) x 100
disintegration. More high extrudability can be reached due to isothermal
treatment of billets applied prior to
extrusion process [11].
Some curves demonstrating the effect of temperature of isothermal annealing (τ=3 h) of AD33 alloy billets
(AA6061) carried out after homogenization at 520°C, 4 h on maximum permissible outflow rate Vlim, maximum
extrusion pressure P, surface roughness of sections Rz, ultimate strength
UTS, elongation δ and volume fraction of recrystallized structure Vp in
quenched and artificially aged sections are given in Fig. 5. All curves have
an extreme rate. Minima and maxima
of curves correspond to the two temperature areas of isothermal annealing: 275 to 300°C and 375 to 400°C
respectively. Maximum permissible
outflow rate for billets annealed at
275 to 300°C and 375 to 400°C has its
maximum values as 50 and 45 m/min
respectively. In this case, extrusion
pressure is minimal. Variation of surface roughness of extruded sections is
very unusual. The sections extruded
from billets annealed at 275 to 300°C
have minimum surface roughness
12 μm, but surface roughness of sections produced from billets annealed
at 375 to 400°C is characterized by
maximum roughness 17 μm. Ultimate
tensile strength of quenched and artificially aged sections reaches its maximum (420 MPa) for billets annealed at
275 to 300°C and comes to minimum
(320MPa) in case of billet annealing at
375 to 400°C. Changes of elongation
δ occurred depending on isothermal
annealing temperature are opposite
to the tendency of UTS variation.
Changes of section structure define
the effect of billet annealing temperature on mechanical properties.
The sections produced from billets
annealed at 275 to 300°C have completely non-recrystallized structure
(0% of recrystallization), but recrystallization degree of sections extruded
from billets annealed at 375 to 400°C
is about 80% (Fig. 6).
The above-described laws of property changes depending on annealing temperature of AD33 alloy billets (AA6061)
can be explained by
changes in morphology of solid solution
disintegration products (particles of
Mg2Si phase) and completeness of disintegration as well. The temperature
range of lowered stability of solid solution in AD33 alloy (AA6061) is within
250 to 450°C (Fig. 7). The temperature
of minimal stability of solid solution of
Mg and Si in aluminium is 375°C. This
temperature corresponds to the maximum disintegration rate. Relatively
large particles of Mg2Si phase precipitate at this temperature as rather compact plates (Fig. 4a). In the specified
temperature interval (250 to 450°C)
there is an area 275 to 300°C (Fig. 7)
in which Mg2Si particles precipitated
from solid solution are more dispersive, have a more compact shape coming nearer to a cube (Fig. 8b). Moreover,
within this temperature area the completeness of disintegration is higher.
So, upon annealing at 375°C, 3 hrs (at
the top bend of C-curve) disintegration degree of solid solution is 60% in
comparison with completely annealed
alloy. Annealing at 275 or 300°C, 3 hrs
(near to the bottom bend of C-curve)
results in 90% disintegration of solid
solution. Differences in morphology of
the particles precipitated at 375°C and
at ~ 285°C and distinctions in residual
concentration of solid solution (completeness of disintegration) cause differences in their effect on properties
and workability of alloys.
Relatively disperse compactshaped particles formed at 275 to
300°C, strong depletion of solid solution promote an improvement of
surface quality of sections, rising
recrystallization temperature and,
consequently, keeping up the non-recrystallized structure in sections after
their heating prior to quenching. On
the contrary, more rough particles
precipitated at 375°C worsen surface
quality and promote recrystallization.
Table 1
Efficiency of heterogeneiting annealing at 275 to 300°C, 3 hrs and
regulated cooling of billets from homogenization temperature
(Vox = 300°C/h)
Fig. 7: C-curves for the beginning of solid solution disintegration in AD33 alloy billets (AA6061)
78
Treatment conditions
Vlim,
m/min
Pmax,
MPa
Rz,
μm
UTS,
MPa
300°C, 3 hrs
Cooling 400°C/h
48
30
11,4
13,0
12
16
420
350
The note: Vlim – maximum permissible outflow rate; Pmax – maximum extrusion force; Rz – surface roughness of sections; UTS – ultimate tensile strength of quenched and artificially aged section
ALUMINIUM · 5/2008
RESEARCH
a
a – 275°C; b – 375°C;
b
b – 375°C;
c
c – slow cooling from homogenization temperature with the rate of 10°C/h.
Fig. 8: Structure of continuous-cast billets of 134 mm in diameter from AD33 alloy (AA6061) subjected to homogenization and the
subsequent heterogeneity at different temperatures during 3 hrs x 200
In both cases extrudability of alloys
rises.
Hence heterogeneiting annealing
of billets from medium-alloyed AlMg-Si alloys at 275 to 300°C, 3 hrs is
more preferable because it provides
a noticeable growth of extrudability,
lowered roughness of section surface
and high strength properties owing
to keeping up structural effect. Efficiency of low-temperature heterogeneiting annealing is higher than that
of regulated cooling of billets from homogenization temperature (Table 1).
Thus, low-alloyed Al-Mg-Si alloys
(total content of Mg+Si ≤ 1.2%) should
be subjected to high-temperature homogenization at 600°C, 1 h with the
subsequent unregulated cooling in order to increase extrudability and provide high quality of sections. On the
other hand, homogenized alloys with
total content of Mg+Si ≥ 1.2% should
be cooled down to 275 to 300°C rapidly (Vcool ≥ 300 degrees/hour), exposed
at this temperature during 3-4 hours
and then extruded with high outflow
rates.
References
1. I.I. Novikov, “Gorjachelomkost of nonferrous metals and alloys”, Moscow, “Nauka” Publishers, 1966, 300p.
2. Reiso Oddvin, The effect of Microstructure on the Extrudability. Of Some
Aluminium Alloys/Hydro Aluminium,
Metallurgical R&D Centre, Sunndalsora,
Norway, 1992.
3. P.G. Mihklyaev, “Mechanical properties of light alloys at temperatures and
rates of pressure treatment”, Reference
book, Moscow, „Metallurgy“ Publishers,
1994, 300 p.
4. Reference book on aluminium alloys,
edited by V.I. Elagin, Moscow, VILS, 1978,
130 p.
5. V.V. Zakharov, “Prospects of heterogeneiting annealing of aluminium alloy bil-
ALUMINIUM · 5/2008
lets”, Tsvetnye metally Publishers, 1994,
No.5, pp. 42-47.
6. International Alloy Designations and
Chemical Composition Limits for Wrought
Aluminum and Wrought Aluminum Alloys,
Unified North American and International
Registration Records, The Aluminum Association, 900 19th, N.W. Washington. D.C.
2006.
7. V.S. Zolotorevsky, V.K. Portnoy, L.P.
Trifonenkov, P.Yu. Bryantsev, E.G. Chuvashov, “Research and optimization of
heat treatment conditions of 6xxx aluminium alloy billets”, Tsvetnye metally Publishers, 2005, No.4, pp.90-94.
8. V.S. Zolotorevsky, P.Yu. Bryantsev, V.K.
Portnoy, V.S. Levchenko, M.V. Zhirnova,
“Research of the effect of Mn, Cu and Cr
additives on structure of Al-Mg-Si alloy
billets at heat treatment”, News of high
schools, Tsvetnaya metallurgiya Publishers, 2005, No.4, p. 41-47.
9. Bryantsev P.Yu., Zolotorevskiy V.S.,
Portnoy V.K., “The effect of heat treatment and Mn, Cu and Cr additions on the
structure of ingots of Al-Mg-Si-Fe alloys”,
Proceedings of 10th International Conference on Aluminium Alloys, Vancouver,
Canada, 9-13 July 2006, Trans Tech Publication Ltd, 2006, pp. 401-406.
10. Bryantsev P.Yu., “Research and optimization of conditions of heat treatment of
Al-Mg-Si alloy billets”, The author‘s abstract
of dissertation to compete for PhD degree
(Technical Sciences), Moscow, 2007.
11. V.V. Zakharov, Heat treatment of AlMg-Si alloy billets, Tsvetnye metally, 1994,
No.6, pp. 46-50.
Author
Valery V. Zacharov, Dr. Sci., Chief of the
Laboratory of Metal Science of Aluminium Alloys of the All Russian Institute
of Light Alloys (VILS). He is well known
for his works in theory Al-Zn-Mg alloys,
scandium alloyed aluminium alloys, metal
science aspects of extrudability.
Irina A. Fisenko, Dipl. Ing., senior staff
scientist of the All Russian Institute of
Light Alloys (VILS), specialist in the field of
metal science, heat treatment and extrusion of aluminium alloys.
Technology and innovative research project
UC Rusal will sponsor studies into future
uses of aluminium. The Global Technology and Innovative Research Project is
a UC Rusal initiative, supported by the
International Aluminium Institute (IAI).
The key objective of the programme is
to encourage greater use of sustainable
aluminium products globally, through the
application of advanced technologies and
innovations.
UC Rusal will commission up to ten
research projects by the end of 2011,
fixing the budget for each project on a
case-by-case basis that will reflect the
timing and complexity of the proposal.
The majority of research projects will start
between 2009 and 2011, to bring the po-
tential prototypes and new applications
to the market in the following three to
seven years.
Over the next three years, the initiative will be searching for commercially focussed and innovative researchers worldwide, and will commission projects from
selected universities and research centres
via a public tender competition. The internationally leading universities of technology are expected to participate in the
research projects. All results of the projects
will be made available to the whole industry. The proposed role of the IAI will
be to link the global research centres
and to assist in the launch and implementation of the research projects. paw
79
RESEARCH
Functional development of the tooling for providing
expansion of the indirect extrusion usability
V. L. Berezhnoy, Moscow
The reality is that conventional direct
extrusion (DE) with its non-uniform
frontal and turbulent step-by-step
metal flow (Fig. 1a) is used much
more than perfect extrusion processes such as conventional indirect
extrusion (IE) with its laminar metal
flow (Fig. 1b) and more effective indirect extrusion with active friction
forces (or friction-assisted indirect
extrusion – FAIE) with its controllable deformation, intensive peripheral
flow in the container and even front
of metal flow through the die with any
contoured aperture (Fig. 1c).
Presses for DE are optimized with
reference to automated flow-line
production of constructional and
structural shapes made of rather lowalloyed Al-Mg-Si alloys (nature of
‘rapidly extruded’ base AD31/6063
and AD31-E/6005, 6463-type alloys
reduces the effect of limitations of DE
deformation conditions).
The use of presses for IE and later
for FAIE is unwarrantably narrow,
mainly for production of simplyshaped high Al-Mg-Mn, Al-Cu-Mg,
Al-Cu-Mg-Mn-Si, Al-Cu-Mg-Fe-Ni-Si
and Al-Zn-Mg-Cu alloy rods, strips,
shapes and tubes (nature of base
AMg5/5056, D16/2024, AK8/2014,
AK4-1/2618 and V95/7075-type alloys manifests itself in an increased
nonuniformity of metal flow and deformation).
To widen fields of IE application, the
IE process and tooling are analysed
in comparison with DE and in view
of merits of FAIE [1, 2]. In addition, it
was taken into account that the trend
in technological use of friction (realized in the following algorithm: DE →
IE → FAIE) can be more effective and
large-scale than the trend in minimization of detrimental friction (DE →
IE → HE), where HE is hydrostatic
extrusion [1, 3].
Analysis of discrepancy
between standard tooling and
features of indirect extrusion
In the case of DE (Fig. 1a), a billet is
extruded by the ram from the stationary container through the stationary
die fixed in the short die block that,
in terms of design and service, is a
very simple variant which is realized
for production of a very wide range of
extruded products.
When ID or FAIE are used, a billet
is extruded through the die fixed at
the face end of the long die holder,
with this operation being carried out
with simultaneous travel of the container and the gag block (Fig. 1b) or
accordingly with leading travel of the
container relative to the short ram
(Fig. 1c). Both variants are more complex in terms of design and service.
After manufacturing of the earliest
presses for
direct extrusion with or
without lubricant (1820,
T. Burr, Great
Britain; 1867,
T.
Amon,
France and
1895,
A.
Dick, Germany) original presses
for indirect
Fig. 1: Kinematics of tooling travels and metal flow under conditions of
direct (a), indirect (b) and friction-assisted indirect extrusion (c): Vr and
extrusion
Vc are speeds of the ram and container respectively with respect to the
were realdie; τc.b is friction stress applied to the billet from the container.
ized (1870,
80
J. Haines and W. Weems, Germany;
1924, R. Genders, Great Britain), as in
this case there was a striving for to
minimize a detrimental effect of friction in the container for deformation
and metal flow and to make lubricants
unnecessary, as they entailed problems concerning ecological safety and
product quality.
However, conversion from DE to
IE was carried out with retaining of
dimension relationships of extrusion
tooling, and not to change classic design of presses, technological potentialities of IE were dramatically reduced and this circumstance became
the main cause of its limited usage at
present.
Up to now, when comparing standard extrusion tooling, one can see that
the tubular die holder, container and
die for IE differ little from the ram
with an orifice for the mandrel, the
container with limited length (Lc / Dc
≤ 4.0) and the flat die respectively for
DE. For this reason, in comparison
with DE the IE technology acquired
the following limitations:
• a significant reduction in the possible cross-section of an extruded
product/products in the round passage of the long die holder diameter
of which is limited by its buckling
strength;
• the necessity to narrow the range of
asymmetrical shapes with elongated
flanges and ribs because of the risk
of appearance of eccentric breaking
load in this tubular die holder;
• the necessity of machining of billets after casting to remove imperfect
surface which forms extrusion surface
freely;
• the necessity of careful cleaning of
the container chamber from the not
strong thin jacket (for the same reason);
• because of absence of shears in billet metal in the container plastic zone
(Fig. 1b), deformation of a cast grain
structure is inadequate to obtain high
mechanical and service life properties
in extruded products.
ALUMINIUM · 5/2008
RESEARCH
As a result, in the 1970s the IE technology was formed as a technology for
production of rods and as ‘an addition’ to DE in the field of extrusion of
difficult-to-deform aluminium, magnesium and copper alloys. Along with
that the following basic advantages of
IE over DE were used extremely insufficiently [1, 3]:
• extrusion force is reduced by 25
to 40% and its step-by-step level approaches the stable one, irrespective
of billet length, due to almost complete elimination of friction and the
thermal effect occurred in the container because of friction;
• a reduction in gradient of metal flow
front (Fig. 1a, 1b), non-uniformity of
deformations in transverse direction
and additional tensile stresses, while
uniform distribution of mechanical
properties through the length of an
extruded product is ensured;
• in the case of IE, there are possibilities to increase output, yield, service
life of the container liner, dimensional
accuracy of extruded products and
quality of their structure and to ensure easy programming process due
to stability of force and rate conditions.
Finally, kinematics-and-force analysis
of the IE technique showed that some
known technical solutions, including
those in the field of FAIE, will promote
complete use and development of the
advantages of IE over DE [1, 2].
Tasks and variants of
development of tooling
functions for indirect extrusion
The concept ‘development of tooling
functions’ introduced by the author
is substantiated by negative situation which was historically arose in
the field of the IE technology, while
quite a number of up-to-date technical solutions with respect to IE, created and published in the USA, the
former USSR, West Europe and Japan,
has been accumulated by now.
In view of all base of knowledge
accumulated in the field of IE and
FAIE, the following supertasks offered
in the present paper can be tackled
due to development of tooling functions for IE:
I. To minimize differences between
IE and DE in terms of range and standard sizes of extruded products due to
widening of active cross-section, an
increase in die holder strength via
structure and the use of special dies;
II. To ensure standard quality of extruded product surface without the
use of machining for ingots due to special dies which are able to trap surface
defects and to initiate extra deformation working of the peripheral layer;
III. To raise grade of extruded products and ensure an improved combination of mechanical properties due
to additional actions on a billet under
extrusion and flowing metal;
Fig. 2: R. Pickens’s concept (Texas Extrusion Corp, USA) with comparison of potentialities
of DE (a), conventional IE (b, d) and Texas IE (c, e)
ALUMINIUM · 5/2008
IV. To increase output of conventional IE by 150-200% due to design
modifications and changes in kinematics of extrusion tooling which
ensure a double volumetric increase
of an initial billet, metal utilization
factor and a reduction in cycle time;
V. To obtain profitability of flow-line
production of hard 2000, 5000, 6000
and 7000 series aluminium alloy extruded products due to a noticeable
increase in a flow out rate under conditions of modified indirect extrusion
(IE+) which is realized with action of
elastic-and-plastic shear and the use
of tooling having extra functions.
Philosophy and historical
background of effective
modification of tooling for IE
Published developments including
author’s ones are the basis of the
following scientific-technical offers
shown below:
To tackle supertask I it is recommended to increase internal diameters of the container and die holder
in accordance with a 40% maximum
reduction in required pressure in
the case of transition from DE to IE
and a possible increase in die holder
strength, if its design is radically modified and it interacts with special dies.
The main purposes are to obtain,
in the case of IE, equality with DE in
terms of circumscribing circle diameter (Dc.c), with a simultaneous increase
in the number of die apertures and a
reduction in power consumption of
the process.
For the first time Texas Extrusion
Corp.’s specialists [4, 5] had almost
solved such problem by developing an industrial variant of the segmented (stacked along the length) die
holder by 1977 (Fig. 1). It was a set
of short hollow blocks installed in a
low-alloy steel tube. When pressure is
transferred to the tooling during extrusion, this structure works in compression, as conditions for occurrence
of critical ‘elastic bending deflection’
which produces stresses on buckling
were eliminated. It was not difficult
to manufacture the short blocks with
any geometry or a passage system.
R. Pickens, chief of this design,
took this stacked multi-passage ©
81
RESEARCH
Fig. 3: Comparison of designs of the dies fixed on the conventional die holder (a) and on
the VILS’ die holders (b): 1 – the solid die holder; 2 – the support pins; 3 – the elastic
ring; 4 – the block; 5 – the shell; I to IV – variants of the stacked die holder incorporated
in the industrial set
die holder as a base variant having the
highest technological capacities.
In 1977 Texas Extrusion Corp.
created also a new design of a 16.5
MN hydraulic press for IE [4, 5]. The
design was in agreement with the new
concept of IE development.
The break-through made by R.
Pickens in the future of IE [4, 5]
is an outstanding phenomenon,
as at that time most researchers
in West Europe, the former USSR
and Japan concentrated mainly on
detailed study of rheological and
deformation advantages of IE over
DE. Unfortunately, their activity only
complemented data obtained by R.
Genders as early as in the 1920s.
However, Texas Extrusion Corp.’s
creative industrial developments were
not practically widely used even in the
USA (it is possible because of Alcoa’s
curbing effect known to specialists).
Technical ideology with respect
to the IE tooling, put forward by R.
Pickens, was developed by the author
and his colleagues in the 1970s to
1980s [1, 7]. Relations Lc/Dc and
Dc.c/Dc (where ‘c’ means container)
attained earlier in developments of
Texas Extrusion Corp. and Kobe Steel
(6.8-7.0 and 0.65-0.7 and 5.6-6.0 and
0.45-0.5 respectively) were improved
by the VILS’ team up to a level of 7.27.5 and 0.73-0.78 respectively, while
standard characteristics for DE were
3.5-4.5 and 0.8 respectively [8-10].
This advance in the IE technology
82
via the DE technology.
2) To tackle supertask II with
respect to development of IE it is
offered to use a special convex die
with certain angle of the cone and
an elastic disc-like ring which form a
‘dead-zone’ field.
Purposes of these developments are
to involve a porous layer of peripheral
metal in intensive radial flow in the
plastic zone and to avoid occurrence
of defects such as scabs and gas blow
holes on extruded products, as well
as emergence of casting defects in the
surface layer of the products.
For the first time the convex
dies (Fig. 4, a) were studied by the
author within the framework of the
master’s thesis in 1965 to 1966 [11,
12] wherein application of the dies
under conditions of the DE, IE and
FAIE processes were compared. It
was found that the dies promoted
formation of the dead zone (1) above
which radial metal flow in direction of
the vector Wr from the container was
developed. In addition, strain degree
in the axial flow zone, which was
usually inadequately worked, was
increased by 15%. In the dead zone (1)
artificially formed in the case of IE and
FAIE, surface defects and impurities
from a billet were accumulated and
then were removed together with the
butt-end. The porous peripheral layer
is achieved due to an improvement in
design and technological capabilities
of the stacked die holder (Fig. 3),
namely: the blocks and the die with
an elastic ring are reliably fixed; local
elements of the shaped die aperture
are approached Dc.c = 0.8 Dc; a toolingand-technological set to the number
of four holders is substantiated (Fig. 3,
see reference numbers I to IV).
VILS Stock Co.’s specialists
developed a procedure of the strength
analysis of such stacked die holder and
the contractor design of variants of its
structure. In the
case of IE and
FAIE, the die
holder offered
new functions:
transfer
of
multichannelly
e x t r u d e d
shapes without
a
noticeable
loss of their
temperature;
avoidance
of
unblocking in
operation and
‘elastic bending
deflection’; universality of the
die holder (Fig.
3, see reference
No I) for base
4: Data on investigations of metal flow through the convex
range of ex- Fig.
die: a – co-ordinated metal flow through the convex die; b – the
truded products theoretical field of slip lines; c – pattern of flow; 1 – ‘dead zone’;
manufactured Wr – vector of intensive radial flow; α - semiangle of the die cone
ALUMINIUM · 5/2008
RESEARCH
Fig. 5: The flat die with the elastic disc spring-like ring for avoidance of the jacket
formation for the IE and FAIE processes: a – schematic representation of the die;
b – character of metal flow through the die with the elastic ring in the case of DI;
1 – location of the elastic ring
of the billet was involved in intensive
radial flow to the centre of the flow
where it was worked and acquired
rather good state.
It should be noted that data on these
effects are absent both in the patent
(1956) for the flat die with projections
(crown) along the contour of the die
aperture [13] and in the book [14]
wherein the theoretical field of slip
lines for direct extrusion through the
convex die is shown (Fig. 4, b).
For the first time data base
incorporating parameters and features
of the DE, IE and FAIE processes
with the use of various convex dies
was obtained. The data were partially
published in [11] and conditions
and technical problems of industrial
application of the convex dies were
analysed.
It should be noted that this type of
the convex dies (Fig. 4, c) compared
with the conventional dies for DE
was submitted in 2004 as “a new
one offered in Poland for the last
decade” [15]. At the same time, this
work [15] corroborated the positive
data published earlier [12, 13]
(unfortunately without references to
them), that stimulates overcoming
of difficulties arose in the course of
industrial try-out of the dies with such
original functions.
For tackling supertask II use can be
also made of the elastic disc-like ring
to cover the space between the die
and the container, and also a special
knife for removal of the butt-end from
the convex die.
The die with the disc spring-like
ring offered by VILS’s specialists for
IE and FAIE [1] (Fig. 5a) in 1988 in
combination with the convex die
acquires the following new functions:
when outside diameter elastically
increases, the disc-like element will
stop formation of the jacket and
will promote isolation of possible
impurities in the artificial dead zone
of the butt-end. For the first time
such elastic element on the die was
studied by the author in 1965 to 1966
(Fig. 5b; reference number 1) [12], i. e.
apparently, prior to the advent of the
elastic dummy-blocks.
VILS Stock Co. developed a
procedure of kinematics-and-force
and strength analysis, as well as design
of the dies belonged to this type.
Thus, tackling supertasks II should
be ensured by additional functions
including development of radial metal
flow and collection of the jacket due
Fig. 6: Design of the containers with control of a temperature gradient along the length
(a) and in four zones (b).
ALUMINIUM · 5/2008
to the use of technological solutions,
new ones for the industry, such as the
convex die with the specific angle of
the cone (Fig. 4) and the elastic disclike element (Fig. 5).
3) To tackle supertask III it is
offered to render conventional tooling
for IE such functions as temperature
control along the length of the working
chamber of the container and control
of deformation action of active
stresses of elastic-and-plastic shear
applied from the container and the
mandrel to the metal under extrusion
[1]. In addition, optimum quenching
conditions for extruded semiproducts
should be ensured.
The main purposes are to intensify
metal deformation in the container
and plastic zone near the die and to
ensure temperature conditions for
IE and quenching, which should be
optimum for formation of mechanical
properties.
In works (1979) [1] the author
and his colleagues offer to equip
the container with a system for
zone temperature control along the
working chamber (Fig. 6a) [1] to
ensure an optimum temperature field
and thermal control over metal flow
to promote its radial constituent.
Recently Germany, Italy, the USA and
other countries have begun using the
containers of similar design in their
industries. As was shown above (Figs
4 and 5), additional effective action on
metal strain in the case of IE can be
obtained due to the use of the convex
dies.
In addition, by the end of the
1960s variants of kinematics-andforce assistance for the IE process
had been offered in the author’s
developments, for example, those
shown in accordance with schemes in
Fig. 7 [1]. It is recommended to use the
short ram (without dummy block) and
the container (movable container, Fig.
7a, or stationary one, Fig. 7b) together.
This ram is mounted on the plunger
of the supporting hydraulic cylinder
arranged to lie along the axis of the
crosshead. In the case of the new IE+
indirect extrusion process, such units
will ensure certain slight shift of a
billet to the side opposite metal flow
through the die. In this process, active
shear and compression stresses ©
83
RESEARCH
applied from the container surface
being in contact with a billet will affect
it. As it is shown in the works [1, 7],
such kinematics-and-force effect on
the metal under extrusion (without
scalping of the jacket) results, in
particularly, in a noticeable flattening
of the flow front, a pronounced
improvement in a structure and in
an increase in properties of extruded
products. If a drive mandrel is used
with its certain advance of metal flow
in the plastic zone, the strain effect
produced will be enhanced [1].
VILS Stock Co developed designs
of devices and conditions for IE+ with
little shear.
To optimize press-quenching
conditions of semiproducts after
IE, it is recommended to support
accordingly a high flow out rate or,
in case of necessity, to use the known
devices for technologically optimum
heating of semiproducts in the zone
of the exit from the die holder [8] or
to use conventional heat treatment of
critical extruded products in vertical
quenching furnaces.
Thus, to tackle supertask III, it is
necessary, at least, to supplement
usual general duty of the container
with functions of a controlled effect
on the billet under extrusion via
temperature zones and active friction
stresses.
4) In the case of transfer from DE
to IE+ having higher extrusion rate,
tackling supertask IV would allow one
to increase output of a press by 2.5 to
3 times due to obtained time saving
per extrusion cycle and a reduction in
material consumption per 1 running
metre of the product length. Thereby,
on condition that supertasks I to III
are tackled, commercial base shall be
laid for the undoubtedly profitable
switch from DE to IE in the essential
field of extrusion production.
For the first time, in the case of
IE, on industrial scale, a variant of
solution of the problem concerning
attainment of maximum volume of the
extrusion tooling chambers for a billet
was realized owing to R. Pickens and
his colleagues (Texas Extrusion Corp.)
[4, 5] with the use of their following
developments (comparison with DE):
• the stacked (segmented) die holder
(Fig. 2) which doubles both cross-section area of a billet and the number of
apertures in the die, with the container length in this case being increased
almost two times (Lc / Dc → 7);
• the hollow gag block (Fig. 8a) where
a part of a billet and the die with the
butt-end are moved at the end of the
IE process, with the butt-end being
served as ‘a permanent technological
butt-end’ during subsequent extrusion cycles;
• a reduction in a temperature of a
billet down to a temperature of the
container and the possibility to minimize extrusion ratio through the die
with the increased number of apertures for IE as a basis for a 2 to 2.6-fold
reduction in time of extrusion of hard
aluminium alloy billets.
According to the data [4], in
comparison with DE, realization of
these technical solutions on the new
16.5 MN press intended for IE allowed
Fig. 7: Schemes of the modified indirect extrusion (IE+) process with the use of active
shear and compression stresses applied from movable (a) or stationary (b) containers:
Pc, Pr, Pd and Vc, Vr, Vd are forces and speeds of the container, short ram and die; Tc.b. and
τc.b. are active force and active friction stress in the container respectively; PΣ is complete
extrusion force; Kv is kinematic coefficient of extrusion
84
one to increase shape output from 400
up to 800 tonnes per month and to save
metal by 12% (94% against 82%).
It should be noted that patented
technical solution concerning the
hollow gag block (Fig. 8a, reference
number 2) for IE (publication in the
USA in 1977) [4, 5) has a previous
analogue in the form of the hollow
spacer (Fig. 8b, reference number 4).
Information about this spacer was
published in the former USSR in
1973 based on the results of the pilot
try-out of the IE and FAIE processes
on a 31.5 MN press [16]. It is a good
example of technical creative work
of like-minded persons of various
countries.
Thus, in this case, the hollow gag
block (locking dummy-block) offers
extra function, namely to hold the
technological butt-end and a part
of a billet for the maximum use of
the length of an initial billet (Fig. 8a).
Along with that, the pusher for this
butt-end after its use during series of
extrusion cycles can travel through the
hollow gag block (Fig. 8b, reference
number 5).
5) Tackling supertask V would
allow one to create profitable flowline production of hard aluminium
alloy shapes due to an economically
advantageous increase in metal flow
rates up to 6 to 7 m/min [8].
Manufacturing of hard aluminium
alloy shapes on production flow lines
with use of the IE+ process offering
higher extrusion rates can be realized
in three variants, namely a variant for
nonheat-treatable 5000 series alloys;
a variant with application of rapid
press-quenching via water spraying
under pressure and a variant with
conventional heat treatment in a
vertical quenching furnace.
Thus, in this case, under conditions
of the IE+ process a joint additional
function with respect to slight relative
shift with creation of conditions for
active elastic-and-plastic shear on
the contact between the container
and a billet is given to the container
and the short ram. As the author
and his colleagues found earlier
[1], in this case, in comparison with
conventional IE an increase in flow
out rates 1.3 and 1.4 times can be
obtained. It should be noted that in
ALUMINIUM · 5/2008
RESEARCH
Fig. 8: Schemes of the hollow gag block (a), the hollow spacer and the pusher (b) for
location of the butt-end with the maximum use of the length of an initial billet:
1 – the crosshead; 2 - the hollow gag block; 3 – the container; 4 - the hollow spacer; 5
- the pusher.
the case of transfer from IE to FAIE+,
the flow out rate shall be increased by
2 to 2.2 times and extrusion acquires
a new function, namely kinematicsand-force control over metal flow and
distribution of strains and mechanical
properties in the extruded products
[1]. The appropriate results of the
investigations were presented at
conferences in Russia, International
Seminar ‘ET’ (USA) and Congress
‘Aluminium 2000’ (Italy).
Conclusion
The shown results of analysis and
technical solutions in the field of
widening of production capabilities
of indirect extrusion on the basis of
development of tooling functions, in
most cases verified experimentally
and under pilot industrial conditions,
allow the following conclusions to be
drawn:
• restrictions historically arose with
respect to application of technologically and economically effective indirect extrusion are not objective and
restrain general development of extremely needed production of structural extruded products;
• at present, there are a number of
technical solutions, for example, with
respect to extrusion tooling, in the
data base; these technical solutions
promote almost complete removal
of shortcomings of indirect extrusion
ALUMINIUM · 5/2008
and open ways to run in the most part
of the range of shapes belonged to the
family of the semiproducts manufactured usually via direct extrusion;
• subsequently, adoption of new
modifications of the high-speed and
controlled friction-assisted indirect
extrusion (FAIE+) process in the industry will result in further improvement in technical and economical indices and appearance of products in
the world market as products which
fall within a range of special class
products with isotropic and functionally-gradient properties, which were
required long ago.
References
1. V.L. Berezhnoy, V.N. Shcherba, A.I.
Baturin. Extrusion with Active Friction
Forces. Moscow, Metallurgia Publishers,
1988, 296 p. (In Russian).
2. J.C. Benedyk. Review and Analysis of
Emerging Extrusion Process. Part II: The
Evolving Role of Friction in Hot Extrusion.
Light Metal Age, 2001, v. 59. No 9/10, p.
6-14.
3. B. Avitzur. Handbook of Metal Forming
Process. Wiley – Interscience, NewYork,
1981, 280 p.
4. L.R. Rakowski. Indirect Press Breakthrough Doubles Extrusion Output. Modern Metals, 1977, v. 33, No 7, p. 55-62.
5. R. Pickens. Indirect Extrusion and the
Texas Press. Light Metal Age, 1978, v. 36.
No 1/2, p. 6-8.
6. R. Genders. The Extrusion of Brass
Rod by the Inverted Process. Engineering,
1924, Sept. No 12, p. 387-390.
7. V.L. Berezhnoy, A.S. Paskhalov. Physical
Simulation of the Extrusion Process Assisted with Active Friction Forces Transferred
to Long Billets. Intensification of Extrusion
Production. Proceedings of 10th All-Union
Conference on Extrusion. Moscow, VILS,
1987, p. 29-35. (In Russian).
8. V.L. Berezhnoy. Technology and Equipment for Automated Flow-Line Production of Extruded Shapes. Review. Ministry
of Metallurgy of the USSR. Centr. Research
Inst. for Non-Ferrous Metals, Economy
and Inform. Science. Issue No 1, Moscow,
1990, 80 p. (In Russian).
9. Hiromasa Hayashi. The Indirect Extrusion of Aluminum Alloys. Light Metal Age,
1975, v. 33. No 2, p. 8-13.
10. T. Noyory et al. The Indirect Extrusion and Equipment for its Realization.
Kobe Seiko Giho, 1981, v. 31, No 1, p. 914.
11. Ya.M. Okhrimenko, V.L. Berezhnoy.
Analysis of the Results and Prospects of
the Extrusion Process with Active Friction
Forces. In: Metal and Alloy Plastic Working. Proceedings. Moscow, VILS, 1971, p.
28-37. (In Russian).
12. Ya.M. Okhrimenko, V.L. Berezhnoy.
Metal Extrusion with Independent Travel
of the Container. Tsvetnye metally, 1967,
No 5, p. 76-79. (In Russian).
13. Switzerland Patent No 312309. An
Extrusion Die. (Schloemann). 29.02. 1956.
14. W. Johnson, H. Kudo. The Mechanics
of Metal Extrusion. Manchester University
Press. (Transl. from English, Moscow, Metallurgia Publishers, 1965, 175 p.).
15. P. Kazanovsky, W. Libura, R. Sliwa.
Effect of Convex Die Geometry on the
Process Parameters during Extrusion.
Proceedings of 8th Int. Al. Extr. Technol.
Seminar, May 18 – 21, 2004, Orlando, Fl.,
USA, vol. II, p. 143-150.
16. Ya.M. Okhrimenko, G.G. Epshtein,
V.L. Berezhnoy et al. Industrial Testing
of Speed Extrusion Assisted with Active
Friction. Tsvetnye metally, 1973, No 6, p.
53-58. (In Russian).
Author
Dr.-Ing. Vadim L. Berezhnoy has a position
as Chief Researcher at All-Russia Institute
of Light Alloys Stock Co. (Moscow, Russia). He has been engaged in scientific and
engineer activity in the field of alloy plastic working for 40 years. Berezhnoy has
developed new techniques, presses and
tooling for speed and controlled frictionassisted indirect extrusion, powder material compaction with active shear, direct
extrusion under isofrictional conditions,
transverse-angular intensive deformation,
etc. He is well-known for his work in the
field of the technology for flow-line production of extruded products.
85
EVENTS
ALUMINIUM China – 28 to 30 May 2008, Guangzhou
Few of us can claim to have
missed the numerous references
to China in the latest aluminium
industry headlines – think of
Chinalco which has bought into
Rio Tinto or of Rusal’s latest bid
to create joint ventures in China.
Leaving all the hypes and speculations aside, China now succeeds
America as both the world’s leading consumer and producer of
aluminium with realistic projections for aluminium production
accounting for over 40 percent of
the world’s total by 2010. It is then
difficult to imagine that only four
years ago this huge economy was
without a dedicated professional
international event to serve its aluminium industry! This all changed
when Reed Exhibitions seized the
opportunity to support the global
aluminium community in exploring new partnership opportunities
and trade potentials in China with
the ALUMINIUM China event.
Now firmly in the driving seat as
Asia’s No. 1 aluminium industry event
with over 12,000 exhibiting and visiting professionals from 90 countries,
ALUMINIUM China will once again
set precedence by bridging the gap between what is the heart of aluminium
processing operations in China with
the wider global community setting
the scene for a new wave of enticing
business partnerships and opportunities. With this 4th edition, ALUMINIUM China 2008 will take the global
aluminium community to the City of
Guangzhou in a move to push back the
boundaries further through integrating the full exhibition experience with
easily accessible factory visits, technical seminars and live demonstrations
of products and equipment.
Guangzhou as a major business
centre is less known compared to
Shanghai in the international arena;
however, its role as the centre of the
major aluminium processing base in
China and the manufacturing hub of
the world demands serious attention.
The wider Guangdong province en-
86
Reed Exhibitions
Countdown has started
Well attended – the No. 1 aluminium event ALUMINIUM China 2007 in Shanghai
circling the city is home to over 350
extrusion, rolling and casting facilities accounting for over one fourth of
the national processing capacity.
With the show located in Guangzhou,
more than 70 top companies from the
Guangdong province featuring top
brands like Asia Aluminium, Kamkiu, Xingfa, Guangya, Xingya, Golden
Aluminium, Haomei etc. will join the
show with a full attendance of their
high level management and technical
professionals. Chinalco, heading up a
long list of leading companies from
around China, has been participating
as a major exhibitor for four years in
the row presenting the group’s combined smelting and processing capabilities represented by its sub groups
all within a 270 sqm stand.
More than 100 exhibitors
from 26 nations
In terms of international participation, the show managed to attract
more than hundred well known exhibitors from 26 nations, with such
industry leaders like Alcoa, Aleris,
Dubal, Novelis, Furukawa-Sky, Siemens VAI, Wagstaff, Fata Hunter,
Granco Clark etc. covering the world
latest technology developments and
innovative products.
Complementing the exhibition this
year will be a series of factory visits
only made possible by the show’s per-
fect location. Dozens of major plants
and facilities are within three hours
drive from the venue making day trips
possible for the first time. On top of
factory tours, the show will present a
dedicated seminar programme which
will feature introduction and analysis
of the latest industry trends and hottest technology focusing on China located within the hall grounds.
As long term supporter of the event,
China Non Ferrous Industry Association along with China’s leading aluminium information and consultancy
provider Antaike will be launching a
newly enhanced conference ‘China
Aluminum Fabrication Forum’ as part
of the ALUMINIUM China exhibition
and conference mix. This conference
will feature topics covering the latest
policies on aluminium fabrication in
China, Chinalco’s strategy on M&A
in the fabrication sector as well as an
survey on the rolling mill section and
much more.
Covering 21,000 sqm and attracting international participants from
over 90 countries around the world
and 30 provinces across China, ALUMINIUM China 2008 will be an industry event not to be missed.
For more information about the
show, log on to www.aluminiumchina.com. Or contact Reed Exhibitions
China via the show service hotline:
+86 10 8515 1373 or via e-mail valu@
reedexpo.com.cn
ALUMINIUM · 5/2008
EVENTS
13 to 16 May 2008, Orlando, USA
ET ‘08
ET ‘08, the 9th International Aluminium Extrusion: Technology Seminar &
Exposition is one of the most important and respected events for extruders providing information and education on technical advances made in
aluminium extrusion in the last few
years. As James Sanderson, Chairman of the ET Seminar Committee,
said: “We have, what many of us on
the committee believe to be, one of
the strongest technical programmes
that ET has ever presented. A world
of ideas covering every aspect of the
aluminium extrusion industry will be
presented by experts from all over the
world at ET ‘08.”
The technical sessions comprise
about 140 presentations related to billet process and extrusion equipment,
extrusion processes and die mechanics from operational as well as experimental viewpoints, management
issues and value-added processes.
Abstracts of the technical papers are
available to view on www.et08.org.
The event includes the ET Expo,
a trade show that gives suppliers the
opportunity to connect with a global
audience of customers and qualified
prospects who are interested in seeing the best and brightest technical
innovations, products and services in
the industry. It is also an information
centre, giving extruders a forum in
which to discuss challenges and find
answers to technical questions. ET ‘08
includes the Extrusion Showcase, an
area that highlights premium examples of semifabricated and finished
products made with aluminium extrusions. ET ‘08 is organized by the Extrusion Technology for Aluminium Profiles Foundation in conjunction with
the Aluminium Extruders Council.
Further information:
ET Foundation
Tel: +1 847 526 2010
[email protected]
www.etfoundation.org
RWTH Seminar, 28. Mai 2008, Aachen
Konstruktions- und Werkstoffleichtbau mit Aluminium
Das aluminium engineering center
aachen (aec), die RWTH International Academy GmbH und der Gesamtverband der Aluminiumindustrie
e. V. (GDA) veranstalten gemeinsam
dieses Fortbildungsseminar. Professoren und Mitarbeiter der Institute
und Lehrstühle der RWTH referieren
über Fortschritte in der Metallkunde,
der modernen Leistungsauslegung
von Kfz-Bauteilen aus Aluminium sowie der Herstellung von Bauteilen in
ur- und umformenden Prozessen, der
Beschichtungstechnologie zur Verbesserung der Verschleißbeständigkeit, dem Fügen zu einem Bauteilverbund sowie der Recyclingverfahren
am Ende der Produktlebensdauer.
Das Seminar richtet sich an Personen mit vorwiegend akademischem
Hintergrund und Vorkenntnissen in
der Anwendung von Aluminium im
Kraftfahrzeugsektor. Die Teilnehmer
erhalten am Ende der Veranstaltung
eine Teilnahmeurkunde. Anmeldeunterlagen sind zu erhalten über:
65th Annual World Magnesium
Conference
Metallurgy Litmash, Tube Russia,
Aluminium/Non-Ferrous
Tel: +49 (0)221 4560 01
www.messe-duesseldorf.de
18 to 20 May 2008, Warsaw, Poland
27 to 30 May 2008, Moscow, Russia
IMA’s annual conference is a distinguished international forum for presenting the latest industry developments, interacting with magnesium
industry leaders and discussing today‘s
section issues. Topics amonst others:
new process technologies, new alloy development, wrought, extrusion,
forging, die casting, machining, joining,
coating, recycling, applications.
Further information:
Intl Magnesium Association (IMA)
Tel: +1 847 526 2010
[email protected]
www.intlmag.org
This international trade fair for metallurgy, machinery, plant technology and
products will kick off in conjunction
with the tool machinery fair Metalloobrabotka, giving a comprehensive overview of innovations for the metal pipe
and metalworking industries. The aluminium/non-ferrous exhibition profile
will comprise raw and primary metal
products; semi-finished and finished
products; plant, machinery and technology for aluminium and non-ferrous
extraction, processing and refinement.
Further information:
Messe Düsseldorf GmbH
ALUMINIUM · 5/2008
RWTH International Academy GmbH
[email protected]
Tel: +49 (0)241 8020 708
China Aluminium Fabrication Forum
27 to 29 May 2008, Guangzhou, China
This conference, organized by Antaike,
will take place on the occasion of the
Aluminium China 2008 trade fair.
Panel topics amongst others are: Policy
on Chinese aluminium fabrication industry, as well as numerous company
presentations, e.g. Sapa’s future plan
on China’s market, Asia Aluminum’s
fabrication business, Development of
Chinese aluminium extrusion industry
(Kam Kiu), Status quo and prospect of
Chinese industrial profil market (Haomei Aluminum), Chinalco’s strat- ©
87
EVENTS
egy on M & A in the fabrication sector.
Further information:
Antaike
Tel: +86 10 6397 0866
[email protected]
www.antaike.com
5. Ranshofener Leichtmetalltage
28. bis 29. Mai 2008, Ranshofen
Die Veranstaltung greift die neuesten
Trends aus der Leichtmetallforschung
und dem Leichtbau auf. Die Ergebnisse universitärer, außeruniversitärer
und industrieller F&E liefern aktuelle
Erkenntnisse für erfolgreiche Leichtmetallanwendungen. In der Session
„Leichtmetalle & Umwelt“ stehen Vorträge und Diskussionen zum Thema
Klimaschutz mit Leichtmetallen im
Vordergrund. Beispiele aus dem Projekt „Austrian Light Weight Structures“
zum Leichtbau und der Prozesstechnik
mit Multimaterial-Bauteilen werden in
der Session „Multimaterial-Leichtbau“
präsentiert. Weitere Themen sind der
Magnesiumeinsatz in der Medizintechnik sowie Entwicklungen und Projekte
in der Luft- und Raumfahrt.
Weitere Infos:
ARC Leichtmetallkompetenzzentrum
Ranshofen GmbH
Tel: +43 7722 83333 0
[email protected]
www.lkr.at
Neue Möglichkeiten für die Aluminiumindustrie dank Nanotechnologie
29. bis 30. Mai 2008, Warth, Schweiz
Der Aluminium-Verband Schweiz lädt
ein zur Generalversammlung 2008
und zum 5. Alu-Kongress unter oben
genannter Thematik, die von hochkarätigen Referenten mit wichtigen
Trends, Entwicklungen und Erfolgsfaktoren hinterfragt und durch Thesen
für eine erfolgreiche Positionierung
der Branche im Zusammenhang mit
neuen Technologien ergänzt wird.
Weitere Infos:
Aluminium-Verband Schweiz
Tel: +44 251 2952
[email protected]
www.alu.ch
Bearbeitungsstufen ab. Dazu gehören
die Teilereinigung, Vorbehandlung,
Komponenten, Anlagen und Zubehör für Beschichtungstechnologien,
Galvano-, Lackier- und Emailtechnik,
Pulverbeschichtung, industrielle Plasma-Oberflächentechnik und die Teiletrockung. Ergänzend werden Mess-,
Prüftechnik und Handhabungstechnik, Automationslösungen für Oberflächenbehandlung und -veredelung,
Recycling, Entsorgung, Umweltschutz
sowie Dienstleistungen gezeigt. Die
Messe wird begleitet von einem Fachforum mit zahlreichen Vorträgen aus
Anwendung, Forschung und Wissenschaft. Das Forum soll potenziellen
Anwendern von Schichttechnologien
zeigen, was mit modernen Verfahren
der Oberflächentechnik alles umgesetzt werden kann.
Weiter Infos:
Messe Stuttgart
Tel: +49 (0)711 2589 0
[email protected]
www.messe-stuttgart.de
26. Aachener WerkzeugmaschinenKolloquium 2008
5. bis 6. Juni 2008, Aachen
Unter dem Titel „Integrative Produk-
tionstechnik für Hochlohnländer“
präsentiert das AWK 2008 in zwei
parallelen Vortragsreihen neueste
technologische Entwicklungen und
Strategien für eine nachhaltige Sicherung der Wettbewerbsfähigkeit
in Hochlohnländern. In den beiden
Vortragsreihen „Technologie und
Produktionssysteme“ sowie „Innovationsmanagement und strategische
Produktplanung“ werden insgesamt 22
Vorträge aus Wissenschaft und Praxis
angeboten.
Weitere Infos:
Fraunhofer IPT
Tel: +49 (0)241 80 27400
[email protected]
www.awk-aachen.de
Proform
10. bis 13. Juni 2008, Dortmund
Proform ist eine Fachmesse für Verfahrensintegration von Stanz-, Dreh- und
Spritzgießtechnik, auf der der Technologieverbund der entsprechenden Produktionstechniken dargestellt wird.
Weitere Infos:
Messe Westfalenhallen Dortmund
Tel: +49 (0)231 1204 521
[email protected]
www.westfalenhallen.de
Fortbildung
Bruchmechanischer Festigkeitsnachweis für Maschinenbauteile,
8. bis 9. Mai 2008, Karlsruhe
VDI Wissensforum, Tel: +49 (0)211 6214 201, [email protected],
www.vdi-wissensforum.de
Reinigen und Vorbehandeln vor der Beschichtung,
13. bis 15. Mai 2008, Ulm
OTTI Ostbayer. Technologie-Transfer-Institut, Tel: +49 (0)941 29688 16,
www.otti.de
Lärmminderung im Maschinen- und Anlagenbau,
20. bis 21. Mai 2008, Ratingen
VDI Wissensforum, Tel: +49 (0)211 6214 201, [email protected],
www.vdi-wissensforum.de
Neue Entwicklungen in der Gießsimulation – eine Einführung,
26. bis 28. Mai 2008, Aachen
DGM Deutsche Gesellschaft für Materialkunde e. V., Tel: +49 (0)69 75306 757,
[email protected], www.dgm.de
O&S
3. bis 5. Juni 2008, Stuttgart
Die internationale Fachmesse für
Oberflächenbeschichtung deckt die
horizontale Wertschöpfungskette aller
88
Pulvermetallurgie, 16. bis 17. Juni 2008, Aachen
DGM Deutsche Gesellschaft für Materialkunde e. V., Tel: +49 (0)69 75306 757,
[email protected], www.dgm.de
ALUMINIUM · 5/2008
NEW BOOKS
Aluminium-Verlag
Lieferverzeichnis 2008
Das aktuelle Aluminium-Lieferverzeichnis 2008 ist im handlicheren
Format (195 x 240 mm) erschienen.
Es ist damit das aktuelle Nachschlagewerk für die Aluminiumbranche
und seine Peripherie – weltweit. Das
Verzeichnis umfasst mehrere tausend
Unternehmen der Aluminium erzeugenden und verarbeitenden Industrie,
der Zulieferindustrie, des Metallhandels und der verschiedenen Dienstleistungsanbieter. Die Unternehmen
stellen hier ihre Produkt- und Angebotsvielfalt von der Erzeugung über
die Ausrüstung bis zur Anwendung
mithilfe der detaillierten Produktkategorien vor. Technische Marktinformationen, besonders umfassende
Händlernachweise und die Adressen
von Prüfinstituten, Gutachtern und
Informationsstellen runden das Verzeichnis ab.
Mit dieser Ausgabe wird der neuer
Bereich „Redaktioneller Beitrag“ eingeführt, beginnend mit einem Übersichtsartikel „Chinas Aluminiumindustrie im Jahre 2007“ von Rudolf P.
Pawlek“. Diese Rubrik wird mit weitere Beiträgen in den nächsten Ausgaben fortgesetzt.
Das Lieferverzeichnis steht im Internet unter www.alu-lieferverzeichnis.de zur kostenlosen Nutzung zur
Verfügung und ermöglicht anhand
einer detaillierten Produktgliederung
mit umfangreichen Suchfunktionen
eine strukturierte und einfache Recherche.
Das Lieferverzeichnis ist in
deutsch / englisch abgefasst, Preis €
16,50 zzgl. Versandkosten, Online-Bestellungen unter www.alu-verlag.de.
Designations and Chemical Composition
Limits for Aluminum Alloys in the Form of Castings and Ingot
The 2008 edition of Designations and
Chemical Composition Limits for Aluminum Alloys in the Form of Castings
and Ingot is now available from the
Aluminum Association. The newly
revised publication, popularly known
as the ‘Pink Sheets’, supersedes the
current 2002 edition.
New in this edition is information
on 21 new alloy designations and
their associated chemical composi-
tion limits. The document has further
been revised to remove a number of
alloys that are no longer in commercial use.
The ‘Pink Sheets’ provide designations and chemical composition limits
for 260 aluminum alloy castings and
ingots registered with The Aluminum
Association and also contains other
useful information, such as former
designations and a list of previously
registered, but currently inactive, alloys.
The document is available for purchase from the Association’s online
bookstore for US$20.00 for members
of The Aluminum Association and
US$40.00 for non-members.
For more information go to www.aluminum.org.
Bolted joint engineering
Dieses englischsprachige Fachbuch
ist eine ausgezeichnete Hilfe bei
der Entscheidung für die richtige
Schraubverbindung in jeder Situation.
Es beschreibt ausführlich das Gestalten und Herstellen von Schraubverbindungen und untersucht Fehlerquellen bei ihren häufigsten Anwendungen. Mit praxisnahen Übungen
zur Berechnung von Schraubverbindungen ist es gerade auch für Studenten der Ingenieurwissenschaften
ALUMINIUM · 5/2008
und Berufsanfänger ein profunder
Einstieg in die Materie, der für einen
differenzierten Umgang mit Schraubverbindungen sensibilisiert. Für Ingenieure ist das Buch ein Basiswerk, das
eine wichtige Rolle in der beruflichen
Weiterentwicklung spielen kann.
Beuth Training, Tomotsugu Sakai,
Bolted joint engineering, 1. Auflage
2008, 270 S., brosch., ISBN 978-3410-16625-2, Preis € 34,90.
89
PAT E N T E
Magnesium Injection Molding
Injection moulding of metallic alloys
is a modern and environment-friendly
technology with universal features, capable of implementing many conventional and novel processing methods
based on semisolid and liquid routes.
After its application to magnesium
and recent commercialization, it is
used to manufacture millions of lightweight, fully-recyclable components
for various markets, including consumer electronics housings, automotive parts, sporting goods, household
devices and office equipment.
Magnesium Injection Molding
takes the mystery out of this technique and covers both the scientific
background and the technological
aspects as they are understood at
present. Fundamentals of magnesium
alloys, semisolid state metallurgy
and injection molding hardware are
accompanied by intricate details of
processing, phase transformations
and properties of final structures
with broad references to die casting
and plastics injection.
Also included are introductory
topics which will allow beginners
to understand the basics of magnesium moulding and gradually work
their way into this fascinating area of
metal processing. For subjects where
no literature data exist, pioneering
research was conducted to provide
scientifically credible explanations.
As a unique blend of theory and industrial practice, this work represents
a single source of interdisciplinary
information at a level accessible to
both the scientists and engineers from
academia and industry. This book is
written for professionals in manufacturing and materials working with
magnesium and its alloys.
Patentblatt März 2008
Aluminium-Wärmeübertrager.
Behr
GmbH & Co., 70469 Stuttgart, DE. (F28F
21/08, OS 101 06 510, AT: 13.02.2001)
Verfahren zum Aufbringen einer Beschichtung auf überlappten Oberflächen
von Bauelementen aus Aluminiumlegierung sowie derart beschichtete überlappte Oberflächen. McDonnell Douglas Corp., Seal Beach, Calif., US. (C22F
1/04, PS 699 35 480, EP 0985737, EP-AT:
25.08.1999)
Hochfeste
Al-Zn-Mg-Cu-Sc-Legierung
für Flugzeug- und Automobil-Gehäuse. Howmet Corporation, Whitehall,
MI 49461-1895, US. (C22C 21/10, EPA
1885898, EP-AT: 24.05.2006)
Gegenstand mit einem Flächenelement
aus Aluminium. Sommer GmbH, 71691
Freiberg, DE. (B41M 1/28, GM 20 2006
014 584, AT: 20.09.2006)
Sechswertiges Chrom-freies Oberflächenbehandlungsmittel für auf Snoder Al-Basis beschichtetes Stahlblech
und oberflächenbehandeltes Stahlblech.
Nippon Steel Corp., Tokio/Tokyo, JP.
(C23C 22/00, PS 601 26 788, EP 1315846,
EP-AT: 06.09.2001)
Verfahren zur Oberflächenbehandlung
von Aluminium und Aluminiumlegierung. GHA Corp., Shiga, JP. (C25D 11/04,
EP 1 207 220, EP-AT: 25.10.2001)
Dünne Bänder oder Bleche aus einer AlFe-Si-Legierung. Novelis, Inc., Toronto,
Ontario, CA. (C22C 1/00, PS 60 2004 005
045, EP 1644545, EP-AT: 19.07.2004)
Randspannungsentlastung von Grobblech aus Aluminium. Alcan Rhenalu,
Paris, FR. (C22F 1/00, PS 603 12 373, EP
1567685, EP-AT: 04.12.2003)
Verfahren und Vorrichtung zur Dosierung von Al3+- oder Fe3+-Kationen zur
Analyse von Spuren von Aluminium und
Eisen in wässrigem Medium. Société
des Eaux de Marseille, 13006 Marseille,
FR. (B01J 20/281, EPA 1884283, EP-AT:
06.07.2007)
90
Aluminium-Bonddrähte mit eingebetteten Kupferfasern. W.C. Heraeus GmbH,
63450 Hanau, DE. (H01R 4/02, OS 10
2006 041 355, AT: 01.09.2006)
Halbleitervorrichtung mit Elektrode aus
Aluminium und feinkörnigem Silizium
und ihr Herstellungsverfahren. Denso
Corp., Kariya, Aichi, JP. (H01L 21/285,
PS 197 09 764, AT: 10.03.1997)
Gegossenes Bauteil aus Leichtmetall.
Audi AG, 85057 Ingolstadt, DE. (F16B
37/12, PS 198 47 478, AT: 15.10.1998)
Tintenstrahlaufzeichnungsblatt, das Aluminium- und Magnesiumsalze enthält.
Nippon Paper Industries Co., Ltd., Tokio/
Tokyo, JP. (B41M 5/00, PS 600 10 955, EP
1036666, EP-AT: 13.03.2000)
Hochfester Aluminiumlegierungsguss
und Verfahren zu dessen Herstellung.
Nippon Light Metal Co. Ltd., Tokio/Tokyo,
JP; Denso Corp., Kariya, Aichi, JP. (C22F
1/043, PS 103 39 705, AT: 28.08.2003)
Anoden auf Basis von Metallen zur Anwendung in Aluminium-Herstellungszellen. Moltech Invent S.A., Luxemburg/
Luxembourg, LU. (C25C 3/12, PS 600 33
434, EP 1244826, EP-AT: 06.12.2000)
Herstellung von Metallen wie Aluminium, Magnesium, Silizium und dergleichen aus Metalloxidverbindungen.
Industrikontakt Ing. O. Ellingsen & Co.,
Floro, NO. (C22B 21/02, PS 696 11 932,
EP 0865509, EP-AT: 23.10.1996)
Frank Czerwinski, Magnesium Injection Molding, 2008, p. 586, illus. 711,
hardcover, ISBN: 978-0-387-72399-0,
price 144,40 euros, publishing house:
Springer science+business media.
Schmelzquarzglas enthaltendes Aluminium. Corning Inc., Corning, N.Y., US:
(C03C 3/06, PS 602 18 736, EP 1456142,
EP-AT: 25.11.2002)
Blech aus Aluminiumlegierung und Herstellungsverfahren dafür. Honda Motor
Co., Ltd., Minato-ku, Tokyo 107-8556, JP;
Nippon Light Metal, Co. Ltd., Shinagawaku,Tokyo 140-0002, JP; Novelis Inc., Toronto, ON M8Z 1J5, CA. (C22C 21/08, EPA
1883715, EP-AT: 25.05.2005)
Schutz von Verbrennungsmotoren aus
Magnesium oder Magnesiumlegierungen vor Korrosion unter Verwendung von Gefrierschutzmittelkonzentraten auf Basis von Amiden. BASF AG,
67063 Ludwigshafen, DE. (C09K 5/20, EP
1 303 574, EP-AT: 13.07.2001)
Verbundplatte. Alcan Technology & Management Ltd., Neuhausen am Rheinfall,
CH. (B32B 9/02, EPA 1787797, EP-AT:
22.11.2005)
Aluminiumlegierung, Gusskörper aus einer Aluminiumlegierung und Verfahren
zur Herstellung eines Gusskörpers aus
einer Aluminiumlegierung. Kabushiki
Kaisha Toyota Chuo Kenkyusho, Aichi, JP;
Toyota Jidosha Kabushiki Kaisha, Toyota,
Aichi, JP. (C22C 21/06, PS 602 20 835, EP
1477577, EP-AT: 30.08.2002)
ALUMINIUM · 5/2008
PAT E N T E
Herstellungsverfahren für aus einer
wärmebeständigen
Aluminiumlegierung geformte Produkte, aus einer wärmebeständigen Aluminiumlegierung geformte Produkte und Formvorrichtung
für aus einer wärmebeständigen Aluminiumlegierung geformte Produkte.
Kabushiki Kaisha Kobe Seiko Sho, Kobeshi,Hyogo 651-8585, JP. (C22F 1/00, EPA
1881084, EP-AT: 14.06.2007)
Aus einer Aluminiumlegierung hergestelltes
Schwellerstrangpressprofil
eines Kraftfahrzeugs. Audi AG, 85057
Ingolstadt, DE. (B62D 25/02, PS 10 2004
002 297, AT: 16.01.2004)
Druckgusserzeugnis aus Aluminiumlegierung. Corus Aluminium Voerde
GmbH, 46562 Voerde, DE; Corus Aluminium Walzprodukte GmbH, 56070
Koblenz, DE. (C22C 21/06, PS 601 26 529,
EP 1138794, EP-AT: 15.03.2001)
Aluminiumlegierung für Motorbauteile.
GM Global Technology Operations, Inc.,
Detroit, Mich., US. (C22C 21/12, OS 10
2007 042 099, AT: 05.09.2007)
Verfahren zur Oberflächenbehandlung
von Aluminium und Aluminiumlegierung. GHA Corp., Shiga, JP. (C25D 11/04,
EP 1 207 220, EP-AT: 25.10.2001)
Verfahren zur Behandlung von feuerfesten Gießformen oder Schalenformen
beim Vollformgießen, insbesondere für
Aluminiumlegierungen. Microcast, Lourdes, FR. (B22C 9/04, PS 602 19 608, EP
1372887, EP-AT: 18.02.2002)
Modifizierte, auf Magnesium basierende
Legierung zur Wasserstoffspeicherung.
Energy Conversion Devices, Inc., Troy,
Mich., US. (H01M 4/46, PS 600 33 317,
EP 1243041, EP-AT: 20.11.2000)
Instrumententafelträgerstruktur. Alcan
Technology & Management Ltd., Neuhausen am Rheinfall, CH. (B62D 25/14, EPA
1717130, EP-AT: 25.04.2005)
Gießbänder zum Gießen von Metallen,
Verfahren zu deren Herstellung und
Verwendung derselben. Alcoa Inc., Pittsburgh, Pa., US. (B22D 11/06, PS 696 21
351, EP 0874703, EP-AT: 11.10.1996)
Aluminiumlegierung. Fagor, S.Coop,
20500 Mondragon (Gipuzkoa), ES; Edertek, S.Coop, 20500 Mondragon (Gipuzkoa), ES. (C22C 21/02, EPA 1882753 und
1882754, EP-AT: 27.07.2006 und EP-AT:
19.07.2007)
Kühlkörper für Halbleiterbauelemente
oder dgl. Geräte sowie Verfahren zu
seiner Herstellung. Alcan Technology &
Management AG, Neuhausen am Rheinfall, CH. (H01L23/467, OS 10 2006 038
980, AT: 21.08.2006)
ALUMINIUM · 5/2008
Stoßstange mit einem Hohlprofil. Alcan
Technology & Management AG, Neuhausen am Rheinfall, CH. (B60R 19/02, GM
20 2007 010 309, AT: 20.07.2007)
Speicherwassererwärmer. Norsk Hydro
Magnesiumgesellschaft mbH, 46240 Bottrop, DE. (H05B 1/02, GM 201 19 271, AT:
28.11.2001)
Fälschungssicheres
Verpackungsmaterial mit einem Sicherheitsmerkmal.
Alcan Technology & Management Ltd.,
Neuhausen am Rheinfall, CH. (B42D
15/00, PS 503 06 763, EP 1527901, EPAT: 28.10.2003)
Verfahren und Ausrüstung zur Verteilung von zwei Fluiden in die und aus
den Kanälen in einer monolithischen
Struktur mit mehreren Kanälen und ihre
Verwendung. Norsk Hydro ASA, Oslo,
NO. (F28D 21/00, PS 60 2004 004 893,
EP 1627198, EP-AT: 22.03.2004)
Autobus mit einem Wagenkasten aus
einem Grundgerippe und einem Dachteil. Alcan Technology & Management
Ltd., Neuhausen am Rheinfall, CH;
Daimler AG, 70327 Stuttgart, DE. (B62D
31/02, PS 503 08 793, EP 1495948, EP-AT:
11.07.2003)
Inerte Cermet-Anode zur Verwendung
in der elektrolytischen Herstellung von
Metallen. Alcoa Inc., Pittsburgh, Pa., US.
(C25C 3/12, PS 600 33 837, EP 1226287,
EP-AT: 27.10.2000)
Stoßstange mit Halterungen. Alcan Technology & Management AG, 8212 Neuhausen am Rheinfall, CH. (B60R 19/24, EPA
1880905, EP-AT: 19.07.2007)
Kühlelement für elektrische oder elektronische Bauelemente und Verfahren
zu dessen Herstellung. Corus Aluminium Profiltechnik GmbH, 88267 Vogt,
DE. (H05K 7/20, OS 100 65 470, AT:
28.12.2000)
Verfahren zur Rückgewinnung von metallischem beschichteten Schrott. Aleris Aluminium Koblenz GmbH, 56070
Koblenz, DE; Corus Aluminium Voerde
GmbH, 46562 Voerde, DE. (C22B 21/00,
EP 1 386 014, EP-AT: 16.04.2002)
Verfahren und Vorrichtung zum LaserVerbinden zweier Bauelemente unter
Verwendung einer laminaren Inertgasströmung koaxial zu einem metallischen
Zusatzdraht. Aleris Aluminium Koblenz
GmbH, 56070 Koblenz, DE. (B23K 26/14,
EPA 1880791, EP-AT: 21.07.2006
Zur Herstellung isolierter Abschnitte für
Fenster und Türrahmen mit thermischer
Barriere geeigneter unisolierter Abschnitt sowie entsprechendes Montageverfahren. Norsk Hydro ASA, 0240 Oslo,
NO. (E06B 3/273, EPA 1884617, EP-AT:
19.07.2007)
Verfahren zum Herstellen eines dekorativen Zierteils. Erbslöh AG, 42553 Velbert, DE. (B29C 45/14, PS 10 2005 032
421, AT: 12.07.2005)
Aluminiumband
für
lithografische
Druckplattenträger. Hydro Aluminium Deutschland GmbH, 51149 Köln,
DE. (B41N 1/08, EPA 1880861, EP-AT:
21.07.2006)
Fassadenkonstruktion in zweischaliger
Bauweise. Norsk Hydro ASA, Oslo,
NO. (F24J 2/04, PS 595 10 812, EP-AT:
30.06.1995)
Profilelement zum Aufbau von Rahmen
und Fassadenkonstruktionen. Norsk Hydro ASA, Oslo, NO. (E06B 3/96, PS 597 09
298, EP 0816623, EP-AT: 19.04.1997)
Verfahren zur Verbesserung der Filtrierbarkeit von Bauxit. Aluminium Pechiney,
Paris, FR. (C01F 7/06, PS 603 13 482, EP
1558525, EP-AT: 21.10.2003)
Fensterkonstruktion,
insbesondere
Hermann
Dachfensterkonstruktion.
Gutmann Werke AG, 91781 Weißenburg,
DE. (E06B 3/30, GM 20 2006 014 581, AT:
20.09.2006)
Hydroxylapatitbeschichtung von Al2O3Keramik. CeramTec AG Innovative Ceramic Engineering, 73207 Plochingen,
DE. (C04B 41/90, OS 100 64 355, AT:
21.12.2000)
Rohrtrenner. Norsk Hydro ASA, 0240
Oslo, NO. (E21B 43/36, EPA 1880082,
EP-AT: 26.04.2006)
Vorrichtung zur Gewinnung von Reinstaluminium. VAW highpural GmbH, 41515
Grevenbroich, DE. (C25C 1/02, GM 299
19 223, AT: 02.11.1999)
©
ALUMINIUM veröffentlicht unter
dieser Rubrik regelmäßig einen Überblick über wichtige, den Werkstoff
Aluminium betreffende Patente. Die
ausführlichen Patentblätter und auch
weiterführende Informationen dazu
stehen der Redaktion nicht zur Verfügung. Interessenten können diese
beziehen oder einsehen bei der
Mitteldeutschen Informations-, Patent-, Online-Service GmbH (mipo),
Julius-Ebeling-Str. 6,
D-06112 Halle an der Saale,
Tel. 0345/29398-0
Fax 0345/29398-40,
www.mipo.de
Die Gesellschaft bietet darüber hinaus
weitere „Patent“-Dienstleistungen an.
91
LITERATURSERVICE
Verbundfolie.
Hydro
Aluminium
Deutschland GmbH, 51149 Köln, DE.
(C08J 5/12, OS 10 2006 042 831, AT:
08.09.2006)
Stoßverbinder zur Verbindung von
Profilen. Hermann Gutmann Werke AG,
91781 Weißenburg, DE. (E04B 2/96, EP 1
580 343, EP-AT: 16.03.2005)
Wärmetauscher und Verfahren zur Herstellung eines Wärmetauschers sowie
stranggepresstes Verbundprofil zur Verwendung in einem solchen Verfahren.
Erbslöh Aluminium GmbH, 42553 Velbert, DE. (F28F 1/02, PS 102 43 726, AT:
20.09.2002)
Kühlkanalabdeckung für einen einstückigen Kolben eines Verbrennungsmotors.
Mahle GmbH, 70376 Stuttgart, DE. (F02F
3/22, EP 1 685 320, EP-AT: 05.10.2004)
Unterteil für einen gebauten Kolben.
Mahle GmbH, 70376 Stuttgart, DE. (F02F
3/00, GM 201 22 470, AT: 05.12.2001
Vorrichtung zur mittigen Anordnung
und lösbaren Festlegung einer Leiste
in einer nach außen offenen Nut. WKW
Erbslöh Automotive GmbH, 42349 Wuppertal, DE. (B62D 25/06, GM 20 2007 016
803, AT: 01.12.2007)
Galvanische Oberflächenbeschichtung
eines Bauteils. Mahle International
GmbH, 70376 Stuttgart, DE. (C25D 5/48,
EPA 1882759, EP-AT: 24.07.2007)
Wärmeübertragereinrichtung.
Mahle
International GmbH, 70376 Stuttgart,
DE. (F28F 21/00, OS 10 2006 040 851,
AT: 31.08.2006)
Rotor mit porösem Düsenkopf zur Spülgasbehandlung von Metallschmelzen.
Pechiney Japon, Tokio/Tokyo, JP; Pe-
chiney Rhenalu, Courbevoie, FR. (C22B
9/05, PS 697 01 428, EP 0819770, EP-AT:
16.07.1997)
Vorrichtung zum galvanischen Beschichten eines Kolbens. Mahle International
GmbH, 70376 Stuttgart, DE. (C25D 17/06,
OS 10 2006 042 049, AT: 05.09.2006)
Gleitschicht, Gleitelement und Verfahren
zu ihrer Herstellung. Mahle International
GmbH, 70376 Stuttgart, DE. (C23C 14/06,
OS 10 2006 043 303, AT: 14.09.2006)
Innere Rohrprüfvorrichtung und Verfahren. Norsk Elektro Optikk AS, Skarer, NO.
(F16L 55/26, PS 603 11 977, EP 1497585,
EP-AT: 04.04.2003)
Verfahren zur Herstellung von Aluminiumhydroxid. Sumitomo Chemical Co.,
Ltd., Tokio/Tokyo, JP. (C01F 7/02, PS 602
17 997, EP 1275617, EP-AT: 09.07.2002)
H. W. Rockenschaub, R. Gschwandtner, A. Holzinger, J. Mikota,
I. Topic
Charakterisierung der Kolbengusslegierung AISi12CuNiMg.
Teil 1: Einfluss der chemischen Zusammensetzung auf
das Gefüge und die mechanischen Eigenschaften bei
Kaltauslagerung
Giesserei-Praxis 1-2/2008, S. 13-25
schichtdicken und Temperaturen. Dies kann zu verschiedenen
Schadensmechanismen und Ausfällen führen. Daher ist bei zukünftigen Leichtbauentwicklungen eine konstruktive Abstimmung aller beteiligten Hersteller zu Beginn einer Entwicklung
unter Anwendung neuer Entwicklungswerkzeuge zwingend erforderlich, um unerwartete Probleme und Kosten zu vermeiden.
10 Bild., 3 Tab., 4 Qu.
Für Gussteile, an die hohe Anforderungen hinsichtlich Verschleißfestigkeit und gute mechanische Eigenschaften bei höheren Temperaturen gestellt werden, verwendet man in der
Regel übereutektische Aluminium-Silizium-Legierungen, wie
z. B. die Kolbengusslegierungen vom Typ AISil7Cu4Mg oder
AISil8CuNiMg, aber auch die quasi-eutektische und genormte
Legierung EN 1706-AC-Al Sil2CuNiMg. Die Kolbengusslegierung AISil2Cu-NiMg zeichnet sich durch hohe Festigkeitseigenschaften und hohe Härte bei gleichzeitig guten Verschleißeigenschaften aus. Die Dehnungen sind für viele Anwendungen nicht
von Relevanz und erreichen kaum Werte über 1%. Die höchsten
mechanischen Eigenschaften werden durch eine gezielte Wärmebehandlung erreicht. Es wurden getrennt gegossene Kokillenguss-Probestäbe und Bauteile aus Varianten der Legierung
AISil2CuNiMg hergestellt und die statischen mechanischen
Eigenschaften ermittelt. In Teil 2 dieser Untersuchung werden
das Eigenschaftsprofil der AlSil2CuNiMg-Legierungsvarianten
in Abhängigkeit der T5-Wärmebehandlungsparameter bzw. der
Einfluss einer Zwischenlagerung auf die erzielbaren statischen
mechanischen Eigenschaften vorgestellt. 21 Bild., 8 Tab., 22
Qu.
ALUMINIUM 5 (2008)
ALUMINIUM 5 (2008)
Werkstoffe, Gusslegierung
W. Knothe, J. Schumacher, M. Streicher, G. Fischer
Wechselwirkungen zwischen Rad und Radnabe –
Entwicklungen und Potenziale bei Nutzfahrzeugen
MP Materials Testing 50 (2008) 1-2, S. 12-19
Durch den Zusammenbau der aus mehreren Einzelkomponenten (Rad, Nabe, Lager, Bremse, Verschraubung etc.) bestehenden Baugruppen können sich unter den komplexen Beanspruchungen die Eigenschaften stark verändern, vor allem
bedingt durch Beeinflussung von Nachbarkomponenten mit
unterschiedlichen Steifigkeiten, Werkstoffen, veränderlichen
Vorspann- und Sitzverhältnissen, unterschiedlichen Lack-
92
Verkehr
M. J. Bono, O. Cervantes, C. M. Akaba, A. V. Hamza, R. J.
Foreman, N. E. Teslich
Bonding Low-density Nanoporous Metal Foams Using
Sputtered Solder
Advanced Engineering Materials 2008, No. 1-2, p. 51-55
A method has been developed for bonding low-density nanoporous metal foam components to a substrate using solder that is
sputtered onto the surfaces. Metal foams have unusual properties that make them excellent choices for many applications,
and as technologies for processing these materials are evolving,
their use in industry is increasing dramatically. Metal foams are
a lightweight material and have advantageous dynamic properties, which make them excellent choices for many structural
applications. They also provide good acoustic damping, low
thermal conductivity, and excellent energy absorption characteristics. Therefore, these materials are commonly used in the
automotive, aerospace, construction, and biomedical industries.
The synthesis of nanoporous metal foams with a cell size of
less then 1 μm is an emerging technology that is expected to
lead to wide-spread application of metal foams in micro-devices, such as sensors and actuators. One of the challenges to
manufacturing components from metal foams is that they can
be difficult to attach to other structures without degrading their
properties. For example, traditional liquid adhesives cannot be
used because they are absorbed into foams. The problem of
bonding or joining can be particularly difficult for small-scale
devices made from nanoporous foam, due to the requirement
for a thin bond layer. The current study addresses this problem
and develops a method of soldering a nanoporous metal foam
to a substrate with a bond thickness of less than 2 μm. 4 illustrations, 17 sources.
ALUMINIUM 5 (2008)
Aluminiumschaum
ALUMINIUM · 5/2008
LITERATURE SERVICE
H. W. Rockenschaub, R. Gschwandtner, A. Holzinger, J. Mikota,
I. Topic
Charakterisierung der Kolbengusslegierung AISi12CuNiMg.
Teil 2: Einfluss einer Zwischenlagerung und statische
mechanische Eigenschaften nach T5-Wärmebehandlung, TEMUntersuchung der Ausscheidungen
Giesserei-Praxis 3/2008, S. 68-78
In Teil 2 dieser Untersuchung wurde das Eigenschaftsprofil
der AISil2CuNiMg-Legierungsvarianten in Abhängigkeit der
T5-Wärmebehandlungs-Parameter bzw. der Einfluss einer
Zwischenlagerung auf die erzielbaren statischen mechanischen
Eigenschaften vorgestellt. Gegenüber den in Empfehlungen der
Legierungshersteller angegebenen Zeitdauern für eine T5-Wärmebehandlung kann eine deutliche Verkürzung und damit Kosteneinsparung erzielt werden, wobei die in der Norm EN 1706
für AC-48000 genannten Mindestwerte für die Oberflächenhärte, 0,2%-Dehngrenze und Zugfestigkeit deutlich übertroffen
werden. 23 Bild, 3 Tab., 13 Qu.
ALUMINIUM 5 (2008)
Werkstoffe, Gusslegierung
F. Lasagni, A. Lasagni, M. Engstler, H. P. Degischer,
F. Mücklich
Nano-characterization of Cast Structures by FIB-Tomography
Advanced Engineering Materials 2008, No. 1-2, p. 62-66
Commonly quantitative microstructural characterization based
on image analysis techniques of micrographs of 2D section uses
stereological rules to produce 3D characteristics. However,
these methods are in general difficult to apply for complex morphologies of irregular 3D extensions and may yield significant
differences in the morphological characterization of 3D objects.
During the last decade, the three dimensional characterization
of materials has gained increasing attention due to the development of new tomographic techniques based on synchrotron
and X-ray tomography methods. These techniques apply 3D
reconstructions of a series of transmitted projections of a sample. X-ray transmissions is non destructive and produces absorption contrast of different phases, cracks and pores. Phase
contrast imaging can be applied to visualize phase boundaries
even in absence of absorption contrast. 4 illustrations, 2 tables,
27 sources.
ALUMINIUM 5 (2008)
Werkstoffe, Gusslegierungen
achieve a better understanding of the deformation behaviour
and damage mechanisms in tensile conditions for discontinuously reinforced MMCs. The different mechanical properties
of the constituents of MMCs (usually a ceramic reinforcement
embedded in the ductile matrix) lead to an inhomogeneous deformation of the matrix. Finite element simulations have been
applied to predict the stress/strain fields in zones adjacent to
the matrix-reinforcement interface. 7 illustrations, 2 tables, 18
sources.
ALUMINIUM 5 (2008)
M.-Ch. Zhao, M. Liu, G.-L. Song, A. Atrens
Influence of Microstructure on Corrosion of As-cast ZE41
Advanced Engineering Materials 2008, No. 1-2, p. 104-111
Among the most common commercial magnesium alloys, those
containing rare earth (RE) elements are highly attractive due
to their good strength and ductility. In particular, some exhibit
high specific strength and good creep resistance at elevated
temperatures. ZE41 is one of the most popular magnesium alloys in the Mg-Zn-RE alloy system and has been widely used in
the as-cast condition. For example, the gear case in the French
Freron super helicopter is manufactured from as-cast ZE41 as
were the wheels of the champion racing car in the years of
1990 and 1991. A significant limitation for the potential use of
magnesium alloys is their susceptibility to corrosion. Corrosion
restricts their potential application. An important issue for magnesium alloys is to understand the factors that influence corrosion and therefore to understand the necessary conditions to
achieve good corrosion resistance. Many intensive fundamental
investigations into the corrosion behaviour of magnesium alloys
have been carried out during the past decade. The microstructure should be an important factor controlling the corrosion
behaviour. However, there is little reported in the literature on
the role of microstructure on the corrosion behaviour of ZE41.
The influence of microstructure on corrosion for as-cast ZE41
is still an open issue. Wide industrial production and engineering application of ZE41 require an understanding of its corrosion behaviour and how the behaviour is influenced by its
microstructure. This research aims to clarify the influence of the
microstructure on the corrosion of as-cast ZE41. The corrosion
behaviour of as-cast ZE41 is also compared with that of pure
Mg and AZ91D, the most popular Mg-Al alloy. 8 illustrations,
1 tables, 49 sources.
ALUMINIUM 5 (2008)
F. A. Lasagni, G. C. Requena, E. A. Soppa
In Situ Measurements of Local Strain in Heterogeneous
Materials
Advanced Engineering Materials 2008, No. 1-2, p. 73-78
Al-Si alloys are the most important aluminium casting alloys
mainly because of the wide semi-solid temperature range
providing high fluidity down to the eutectic temperature. AlSi binary alloys with Si > 7wt.% present a lamellar eutectic
Si dispersed in-between the primary AI dendrites forming a
percolating Si network. Thermal treatments at high temperatures (> 500°C) can be applied in order to modify the lamellar
Si structure into isolated Si-particles, achieving high levels of
ductility at the expense of a lower stiffness. Metal Matrix Composites (MMCs) have been around for a long time, and are being
used for several high performance applications in aerospace,
electronic packaging, automotive and recreational products.
Intensive work has been done during the last years in order to
Werkstoffe, Gusslegierungen
Magnesiumlegierungen
M. S. Dargusch, M.-X. Zhang, S. Palanisamy, A. J. M. Buddery,
D. H. Henry StJohn
Subsurface Deformation After Dry Machining of Grade 2
Titanium
Advanced Engineering Materials 2008, No. 1-2, p. 85-88
Greater manufacturing efficiency, higher precision and design
flexibility for components used in aerospace and medical applications can best be achieved by using high speed computer
numerical control machining. However, titanium and its alloys
are considered difficult materials to machine especially at high
surface speeds. In addition to the limited slip systems due to its
hexagonal crystal structure titanium has a low thermal conductivity and specific heat which causes high localized cutting temperatures at the tool-metal interface. Normally, it is considered
that this rise in local temperature induces softening which ©
Für Schrifttum zum Thema „Aluminium“ ist der Gesamtverband der Aluminiumindustrie e.V. (GDA)
der kompetente Ansprechpartner. Die hier referierten Beiträge repräsentieren lediglich einen Ausschnitt aus dem umfassenden aktuellen Bestand der GDA-Bibliothek.
Die von der Aluminium-Zentrale seit den dreißiger Jahren kontinuierlich aufgebaute Fach-Bibliothek
wird duch den GDA weitergeführt, ausgebaut und auf die neuen Medien umgestellt. Sie steht allen
Interessenten offen.
Ansprechpartner ist Dr. Karsten Hein, E-Mail: [email protected]
ALUMINIUM · 5/2008
93
LITERATURSERVICE
results in a further concentration of shear in this region, and the
low thermal conductivity further aids this process by restricting
the amount of heat conducted out of the shear band. In order to
assist with heat management and facilitate ease of chip removal
and smooth cutting processes it is a common practice when
machining titanium to use significant amounts of lubricant often applied under high pressure. For medical products such as
neuro-surgical components the application of this lubricant can
be a source of surface contamination which may affect the biocompatibility and subsequent acceptability of the end product.
6 illustrations, 24 sources.
ALUMINIUM 5 (2008)
Metalle , Titan
M.-Ch. Zhao, M. Liu, G.-L. Song, A. Atrens
Influence of Homogenization Annealing of AZ91 on
Mechanical Properties and Corrosion Behavior
Advanced Engineering Materials 2008, No. 1-2, p. 93-103
Magnesium alloys are a class of structural materials with increasing industrial interest in automobile service due to their
good strength to weight ratio and low density, although corrosion is an issue. AZ91 is one of the most popular magnesium
alloys, with the nominal composition Mg-9% Al-1% Zn (wt-%).
The microstructure of as-cast AZ91 typically consists of a matrix α-Mg grains and a divorced eutectic distributed along the
α-Mg grain boundaries; the divorced eutectic consists of secondary Mg plus the β phase (the intermetallic Mg17Al12). For
slow cooling the secondary α-Mg can precipitate β phase. For
commercial utilization, the mechanical properties and corrosion behaviour are important and it is well established that the
mechanical properties and the corrosion behaviour of Mg alloys
can be significantly influenced by heat treatment. Prior heat
treatments aimed at developing improved mechanical properties have consisted of a solution heat treatment followed by
an ageing heat treatment; hereafter, named solution heat treatment plus ageing (STA). STA is also designated as the T6 temper
(solution heat treatment plus artificially aged). Recently, it was
reported that a homogenization annealing (HA) heat treatment
improved the machinability of the Mg alloys AZ31B and ZK60.
HA is different from STA. HA only needs reheating up to a
temperature for several hours followed by air cooling rather
than the two heat treatment steps of STA, which has (i) first
a solution heat treatment at a higher temperature followed by
quick cooling and (ii) second an ageing heat treatment at a lower
temperature. As a consequence, HA has potentially a cost lower
than STA. However, the mechanism by which HA changes the
mechanical properties is not known nor is the influence of
microstructure Variation on corrosion behaviour. Furthermore,
HA has not been attempted for AZ91. This research investigates
the influence of HA of AZ91 on mechanical properties and corrosion behaviour. 8 illustrations, 32 sources.
ALUMINIUM 5 (2008)
Magnesiumlegierungen
W.-Y. Li, T. Ma, Y. Zhang, Qu. Xu, J. Li, S. Yang, H. Liao
Microstructure Characterization and Mechanical Properties of
Linear Friction Welded Ti-6Al-4V Alloy
Advanced Engineering Materials 2008, No. 1-2, p. 89-92
Friction welding (FW) is a solid-state process to join materials
together with the help of the frictional heat generated from the
movement of one component relative to another one under a
force. Rotary friction welding (RFW) is the most popular FW
method. Friction stir welding (FSW) and linear friction welding (LFW) are relatively new processes aiming at extending the
current applications of RFW to non-axisymmetric components.
FSW offers an attractive alternative to conventional fusion welding processes for joining light metal, especially, aluminium and
its alloys because of the excellent properties of welds. However,
it is difficult to create sound joint of high temperature material
(such as Ti and its alloys) by FSW because of the erosion of tools.
LFW involves joining of materials through the relative recipro-
94
cating motion of two components under axial force as shown in
Fig. 1. LFW has been used successfully to join a range of materials including steel, intermetallic materials, aluminium, copper,
nickel and titanium alloys with the greatest emphasis on aircraft
engine alloys. One successful application of LFW is the welding
of aircraft engine blades to discs (blisks). LFW is observed to
have four distinct phases, including the initial phase, the transition phase, the equilibrium phase, and the deceleration (or forging) phase. At the beginning, the two components are brought in
contact under a given axial force. During processing, frictional
heat is generated and results in continued plasticization of the
interfacial region between the components and displacement of
plastically deformed material toward the weld edges to form a
flash. Once sufficient plasticization has occurred, a forging force
is applied, to produce a consolidated joint seam with the limited
thermomechanically affected zone (TMAZ) and heat affected
zone (HAZ). Usually, there is an obvious axial shortening for
a sound weld. Although available for more than 10 years since
the design and build of a prototype LFW machine by TW1 of
UK, there are almost no reports on LFW except some pioneer
work. Therefore, a large amount of research work is required to
develop both scientific and practical knowledge of LFW process. 7 illustrations, 2 tables, 9 sources.
ALUMINIUM 5 (2008)
Legierungen, Reibschweißen,
W. Tillmann, E. Vogli
Multilayers Design for the Electromagnetic Sheet Metal
Forming Die
Advanced Engineering Materials 2008, No. 1-2, p. 79-84
Due to the increasing importance of lightweight constructions,
particularly in automotive engineering, forming processes of
low ductile materials such as aluminium and its alloys are becoming important. Therefore besides the optimization of conventional procedures new approaches have been looking for. A
promising approach consists in employing of high-speed forming processes, such as electromagnetic forming (EMF). EMF is
a high dynamic, contact-free forming process, in which metals
with high electrical conductivity, such as aluminium or copper
can be formed in a very short time. In the EMF-process the
physical feature of a temporary magnetic field change is used
to apply pressure on the workpiece to be formed. If this pressure is so large that the yield strength of the workpiece material
is exceeded, plastic deformations take place in the workpiece.
The pressure is transferred without any mechanical contact to
the workpiece. Forming velocities up to 300 m/s are observed.
8 illustrations, 1 table, 23 sources.
ALUMINIUM 5 (2008)
Umformen
M. J. Couper, B. Rinderer, E. D. Sweet, X. Zhang
Further Development of High Extrudability 6xxx Aluminium
Alloys
APT ALUMINIUM, Febr. 2008, p. 34-38
This is the award winning paper presented at the 10th Aluminium Cast House Technology 2007 Conference. Summary and
conclusions: Extrusion plant trials have demonstrated that alloys based on a new alloy design paradigm can provide significant performance improvements compared with conventional alloys. Improved extrudability was reflected in increased
maximum speed limit, reduced break-out pressure and reduced
contact time. In addition, tensile properties of the new 6060
alloy were comparable with those of conventional 6063 alloys
whilst properties of the new 6063 alloy met the 6106 minimum
standards. Validation of the new design principles and successful completion of industrial trials allowed the commercial development of new alloy range with improved combinations of
strength and extrudability. 6 illustrations, 2 tables.
ALUMINIUM 5 (2008)
Strangpressen
ALUMINIUM · 5/2008
International Journal for Industry, Research and Application
How do your products and services come to appear every month in the
list of supply sources, on the internet – www.Alu-web.de – and in the
annual list of supply sources published by ALUMINIUM ?
�
�
�
Please mark the main group relevant to you
❑
Smelting technology
❑
Rolling technology
❑
Extrusion
❑
Foundry
Indicate the sub-group and/or key word
(if necessary, ask us for the list of key words)
_______________________
_______________________
_______________________
_______________________
_______________________
_______________________
Enter your text, not forgetting your on-line address:
Line 1: ............................................................................................................................................
Line 2: ............................................................................................................................................
Line 3: ............................................................................................................................................
Line 4: ............................................................................................................................................
Line 5: ............................................................................................................................................
Line 6: ............................................................................................................................................
(Maximum 35 characters per line, including spaces.
Price per line for each issue EUR 5,50 + VAT – minimum order 10 issues = 1 year.
Logos are calculated according to the lines they occupy: 1 line = 2 mm).
_______________________________________________________________
Place/Date
Company stamp / Signature
�
… and send this form to us by fax or post:
Fax number
+49-511/7304-157
For information
Tel.: -142
Giesel Verlag GmbH, ALUMINIUM
Rehkamp 3, D-30916 Isernhagen
We will gladly send you a quotation!
LIEFERVERZEICHNIS
1
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
Smelting technology
Hüttentechnik
Raw materials
Storage facilities for smelting
Anode production
Anode rodding
Casthouse (foundry)
Casting machines
Current supply
Electrolysis cell (pot)
Potroom
Laboratory
Emptying the cathode shell
Cathode repair shop
Second-hand plant
Aluminium alloys
Storage and transport
1.1 Raw Materials
Rohstoffe
„ Raw Materials
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
Rohstoffe
Lagermöglichkeiten in der Hütte
Anodenherstellung
Anodenschlägerei
Gießerei
Gießmaschinen
Stromversorgung
Elektrolyseofen
Elektrolysehalle
Labor
Ofenwannenentleeren
Kathodenreparaturwerkstatt
Gebrauchtanlagen
Aluminiumlegierungen
Lager und Transport
„ Unloading/Loading equipment
Entlade-/Beladeeinrichtungen
Möller Materials Handling GmbH
Internet: www.moeller-mh.com
see Storage facilities for smelting 1.2
„ Open top and closed
type baking furnaces
Offene und geschlossene Ringöfen
Rohstoffe
ALUMINA AND PET COKE SHIPUNLOADERS
Contact: Andreas Haeuser, [email protected]
TRIMET ALUMINIUM AG
Niederlassung Düsseldorf
Heinrichstr. 155
D-40239 Düsseldorf
Tel.: +49 (0) 211 / 96180-0
Fax: +49 (0) 211 / 96180-60
Internet: www.trimet.de
1.3 Anode production
Anodenherstellung
Outotec GmbH
Automatische Feuerungssysteme
„ Conveying systems bulk materials
Förderanlagen für Schüttgüter
(Hüttenaluminiumherstellung)
Möller Materials Handling GmbH
Internet: www.moeller-mh.com
see Storage facilities for smelting 1.2
96
Outotec GmbH
see Storage facilities for smelting 1.2
Entfernen der Badreste von der Oberfläche der verbrauchten Anoden
RIEDHAMMER GmbH
D-90332 Nürnberg
E-Mail: [email protected]
Internet: www.riedhammer.de
„ Exhaust gas treatment
Abgasbehandlung
ALSTOM Norway AS
Tel. +47 22 12 70 00
Internet: www.environment.power.alstom.com
Outotec GmbH
Phone: +49 (0) 2203 / 9921-0
www.outotec.com
Anodenanschlägerei
„ Removal of bath residues from
the surface of spent anodes
Lagermöglichkeiten
in der Hütte
Möller Materials Handling GmbH
Haderslebener Straße 7
D-25421 Pinneberg
Telefon: 04101 788-0
Telefax: 04101 788-115
E-Mail: [email protected]
Internet: www.moeller-mh.com
Kontakt: Herr Dipl.-Ing. Timo Letz
1.4 Anode rodding
see Storage facilities for smelting 1.2
„ Auto firing systems
1.2 Storage facilities for
smelting
RIEDHAMMER GmbH
D-90332 Nürnberg
E-Mail: [email protected]
Internet: www.riedhammer.de
„ Hydraulic presses for prebaked
anodes / Hydraulische Pressen zur
Herstellung von Anoden
LAEIS GmbH
Am Scheerleck 7, L-6868 Wecker, Luxembourg
Phone: +352 27612 0
Fax: +352 27612 109
E-Mail: [email protected]
Internet: www.laeis-gmbh.com
Contact: Dr. Alfred Kaiser
GLAMA Maschinenbau GmbH
Hornstraße 19
D-45964 Gladbeck
Telefon 02043 / 9738-0
Telefax 02043 / 9738-50
„ Transport of finished anode
elements to the pot room
Transport der fertigen Anodenelemente in Elektrolysehalle
Hovestr. 10 . D-48431 Rheine
Telefon + 49 (0) 59 71 58-0
Fax
+ 49 (0) 59 71 58-209
E-Mail [email protected]
Internet www.windhoff.de
ALUMINIUM · 5/2008
LIEFERVERZEICHNIS
1.5 Casthouse (foundry)
Gießerei
„ Degassing, filtration and
grain refinement
Entgasung, Filtern, Kornfeinung
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
HERTWICH ENGINEERING GmbH
Maschinen und Industrieanlagen
Weinbergerstraße 6, A-5280 Braunau am Inn
Phone +437722/806-0
Fax +437722/806-122
E-Mail: [email protected]
Internet: www.hertwich.com
Drache Umwelttechnik
GmbH
Werner-v.-Siemens-Straße 9/24-26
D 65582 Diez/Lahn
Telefon 06432/607-0
Telefax 06432/607-52
Internet: www.drache-gmbh.de
„ Dross skimming of liquid metal
INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH
Konstantinstraße 1a
D 41238 Mönchengladbach
Telefon +49 (02166) 987990
Telefax +49 (02166) 987996
E-Mail: [email protected]
Internet: www.inotherm-gmbh.de
Abkrätzen des Flüssigmetalls
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
„ Furnace charging with
molten metal
„ Transfer to the casting furnace
Überführung in Gießofen
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
Drache Umwelttechnik
GmbH
Werner-v.-Siemens-Straße 9/24-26
D 65582 Diez/Lahn
Telefon 06432/607-0
Telefax 06432/607-52
Internet: www.drache-gmbh.de
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
„ Transport of liquid metal
to the casthouse
Transport von Flüssigmetall
in Gießereien
Ofenbeschickung mit Flüssigmetall
OTTO JUNKER GmbH
see Extrusion 2
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
SIGNODE® SYSTEM GMBH
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: [email protected]
Internet: www.signode.com
Contact: Mr. Gerard Laks
Stopinc AG
Bösch 83 a
CH-6331 Hünenberg
Tel. +41/41-785 75 00
Fax +41/41-785 75 01
E-Mail: [email protected]
Internet: www.stopinc.ch
„ Melting/holding/casting furnaces
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
MARX GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
Schmelz-/Halte- und Gießöfen
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
„ Treatment of casthouse
off gases
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
Behandlung der Gießereiabgase
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
1.6 Casting machines
Gießmaschinen
„ Bone ash / Knochenasche
IMPERIAL-OEL-IMPORT
Bergstraße 11, D 20095 Hamburg
Tel. 040/338533-0, Fax: 040/338533-85
E-Mail: [email protected]
„ Clay / Tonerde
TRIMET ALUMINIUM AG
Niederlassung Düsseldorf
Heinrichstr. 155
D-40239 Düsseldorf
Tel.: +49 (0) 211 / 96180-0
Fax: +49 (0) 211 / 96180-60
Internet: www.trimet.de
ALUMINIUM · 5/2008
OTTO JUNKER GmbH
see Extrusion 2
Sistem Teknik Ltd. Sti.
DES San. Sit. 102 SOK No: 6/8
Y.Dudullu, TR-34775 Istanbul/Turkey
Tel.: +90 216 420 86 24
Fax: +90 216 420 23 22
E-Mail: [email protected]
Internet: www.sistemteknik.com
„ Pig casting machines
(sow casters)
Masselgießmaschine (Sowcaster)
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
„ Metal treatment in the
holding furnace
Metallbehandlung in Halteöfen
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
see Equipment and accessories 2.11
Outotec GmbH
see Storage facilities for smelting 1.2
97
LIEFERVERZEICHNIS
„ Rolling and extrusion ingot
and T-bars
„ Sawing / Sägen
Elektrolysehalle
Formatgießerei (Walzbarren oder
Pressbolzen oder T-Barren)
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
T.T. Tomorrow Technology S.p.A.
Via dell’Artigianato 18
Due Carrare, Padova 35020, Italy
Telefon +39 049 912 8800
Telefax +39 049 912 8888
E-Mail: [email protected]
Contact: Giovanni Magarotto
„ Anode changing machine
Anodenwechselmaschine
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
„ Heat treatment of extrusion
ingot (homogenisation)
„ Vertical semi-continuous DC
casting / Vertikales Stranggießen
1.9 Potroom
Formatebehandlung (homogenisieren)
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
„ Tapping vehicles
Schöpffahrzeuge
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
„ Crustbreakers / Krustenbrecher
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
„ Dry absorption units for
electrolysis exhaust gases
see Equipment and accessories 2.11
IUT Industriell Ugnsteknik AB
see Extrusion 2
„ Horizontal continuous casting
Horizontales Stranggießen
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
Trockenabsorptionsanlage für
Elektrolyseofenabgase
ALSTOM Norway AS
Tel. +47 22 12 70 00
Internet: www.environment.power.alstom.com
„ Anode transport equipment
Anoden Transporteinrichtungen
GLAMA Maschinenbau GmbH
see Anode rodding 1.4
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
see Billet Heating Furnaces 1.5
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
HF Messtechnik
1.8 Electrolysis cell (pot)
Elektrolyseofen
„ Scales / Waagen
„ HF Measurementtechnology
OPSIS AB
Box 244, S-24402 Furulund, Schweden
Tel. +46 (0) 46-72 25 00, Fax -72 25 01
E-Mail: [email protected]
Internet: www.opsis.se
„ Calcium silicate boards
Calciumsilikatplatten
Promat GmbH – Techn. Wärmedämmung
Scheifenkamp 16, D-40878 Ratingen
Tel. +49 (0) 2102 / 493-0, Fax -493 115
[email protected], www.promat.de
1.15 Storage and transport
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
„ Pot feeding systems
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
Möller Materials Handling GmbH
Internet: www.moeller-mh.com
see Storage facilities for smelting 1.2
HUBTEX Maschinenbau GmbH & Co. KG
Werner-von-Siemens-Str. 8
D-36041 Fulda
Tel. +49 (0) 661 / 83 82-0
Fax +49 (0) 661 / 83 82-120
E-Mail: [email protected]
Internet: www.hubtex.com
98
Beschickungseinrichtungen
für Elektrolysezellen
Lager und Transport
ALUMINIUM · 5/2008
LIEFERVERZEICHNIS
2
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
Extrusion
Strangpressen
Extrusion billet preparation
Extrusion equipment
Section handling
Heat treatment
Measurement and control equipment
Die preparation and care
Second-hand extrusion plant
Consultancy, expert opinion
Surface finishing of sections
Machining of sections
Equipment and accessories
Services
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
Pressbolzenbereitstellung
Strangpresseinrichtungen
Profilhandling
Wärmebehandlung
Mess- und Regeleinrichtungen
Werkzeugbereitstellung und -pflege
Gebrauchte Strangpressanlagen
Beratung, Gutachten
Oberflächenveredlung von Profilen
Profilbearbeitung
Ausrüstungen und Hilfsmittel
Dienstleistungen
„ Billet heating furnaces
Öfen zur Bolzenerwärmung
„ Hot shears / Warmscheren
OTTO JUNKER GmbH
www.otto-junker-group.com
OTTO JUNKER GmbH
Jägerhausstr. 22
D – 52152 Simmerath
Phone +49 2473 601 0
Fax
+49 2473 601 600
E-Mail [email protected]
Contact Mr. Teichert / Heat Treatmant Plants
Dr. Menzler / Extrusion Plants
Mr. Donsbach / Foundry Plants
OTTO JUNKER (UK) LTD.
Kingsbury Road, Curdworth
UK - SUTTON COLDFIELD B76 9EE
Phone +44 1675 470551
Fax
+44 1675 470645
E-Mail [email protected]
Contact Mr. Hall
IUT INDUSTRIELL UGNSTEKNIK AB
Industrivägen 2
SE - 438 92 Härryda
Phone +46 301 508000
Fax
+46 301 30479
E-Mail [email protected]
Contact Mr. Berge
2.1 Extrusion billet
preparation
Pressbolzenbereitstellung
see Extrusion 2
Am großen Teich 16+27
D-58640 Iserlohn
Tel. +49 (0) 2371 / 4346-0
Fax +49 (0) 2371 / 4346-43
E-Mail: [email protected]
Internet: www.ias-gmbh.de
2.2 Extrusion equipment
Strangpresseinrichtungen
Oilgear Towler GmbH
Im Gotthelf 8
D 65795 Hattersheim
Tel. +49 (0) 6145 3770
Fax +49 (0) 6145 30770
E-Mail: [email protected]
Internet: www.oilgear.de
MARX GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
Sistem Teknik Ltd. Sti.
DES San. Sit. 102 SOK No: 6/8
Y.Dudullu, TR-34775 Istanbul/Turkey
Tel.: +90 216 420 86 24
Fax: +90 216 420 23 22
E-Mail: [email protected]
Internet: www.sistemteknik.com
SMS Meer GmbH
Schloemann Extrusion
Ohlerkirchweg 66
D-41069 Mönchengladbach
Tel. +49 (0) 2161 / 3500
Fax +49 (0) 2161 / 3501667
E-Mail: [email protected]
Internet: www.sms-meer.com
„ Billet heating units
Anlagen zur Bolzenerwärmung
OTTO JUNKER GmbH
see Extrusion 2
SIGNODE® SYSTEM GMBH
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: [email protected]
Internet: www.signode.com
Contact: Mr. Gerard Laks
ALUMINIUM · 5/2008
„ Billet transport and
storage equipment
Bolzen Transport- und
Lagereinrichtungen
OTTO JUNKER GmbH
see Extrusion 2
SMS Meer GmbH
see Extrusion equipment 2.2
99
LIEFERVERZEICHNIS
„ Extrusion / Strangpressen
„ Homogenising furnaces
Homogenisieröfen
Profilkühlung
OTTO JUNKER GmbH
see Extrusion 2
„ Section cooling
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
OTTO JUNKER GmbH
see Extrusion 2
see Extrusion 2
„ Press control systems
Pressensteuersysteme
Oilgear Towler GmbH
see Extrusion Equipment 2.2
SMS Meer GmbH
see Extrusion equipment 2.2
„ Temperature measurement
Temperaturmessung
„ Packaging equipment
Verpackungseinrichtungen
H+H HERRMANN + HIEBER GMBH
Fördersysteme für Paletten
und schwere Lasten
Rechbergstraße 46
D-73770 Denkendorf/Stuttgart
Tel. +49 (0) 711 / 9 34 67-0
Fax +49 (0) 711 / 3 46 0911
E-Mail: [email protected]
Internet: www.herrmannhieber.de
Vollert Anlagenbau
GmbH + Co. KG
Stadtseestraße 12
D-74189 Weinsberg
Tel.
+49 (0) 7134 / 52-220
Fax
+49 (0) 7134 / 52-222
E-Mail [email protected]
Internet www.vollert.de
SMS Meer GmbH
see Extrusion equipment 2.2
„ Section saws
Profilsägen
OTTO JUNKER GmbH
see Extrusion 2
SMS Meer GmbH
see Extrusion equipment 2.2
„ Section store equipment
Profil-Lagereinrichtungen
SMS Meer GmbH
see Extrusion equipment 2.2
„ Puller equipment
Ausziehvorrichtungen/Puller
„ Heating and control
equipment for intelligent
billet containers
OTTO JUNKER GmbH
see Extrusion 2
H+H HERRMANN + HIEBER GMBH
Fördersysteme für Paletten
und schwere Lasten
Rechbergstraße 46
D-73770 Denkendorf/Stuttgart
Tel. +49 (0) 711 / 9 34 67-0
Fax +49 (0) 711 / 3 46 0911
E-Mail: [email protected]
Internet: www.herrmannhieber.de
Heizungs- und Kontrollausrüstung
für intelligente Blockaufnehmer
SMS Meer GmbH
see Extrusion equipment 2.2
KASTO Maschinenbau GmbH & Co. KG
Industriestr. 14, D-77855 Achern
Tel.: +49 (0) 7841 61-0 / Fax: +49 (0) 7841 61 300
[email protected] / www.kasto.de
Hersteller von Band- und Kreissägemaschinen
sowie Langgut- und Blechlagersystemen
MARX GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
2.3 Section handling
Profilhandling
SIGNODE® SYSTEM GMBH
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: [email protected]
Internet: www.signode.com
Contact: Mr. Gerard Laks
100
Could not find your „keywords“?
Please ask for our complete
„Supply sources for the
aluminium industry“.
E-Mail: [email protected]
ALUMINIUM · 5/2008
LIEFERVERZEICHNIS
„ Transport equipment for
extruded sections
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
„ Section transport equipment
Profiltransporteinrichtungen
OTTO JUNKER GmbH
see Extrusion 2
Homogenisieröfen
Transporteinrichtungen
für Profilabschnitte
H+H HERRMANN + HIEBER GMBH
Fördersysteme für Paletten
und schwere Lasten
Rechbergstraße 46
D-73770 Denkendorf/Stuttgart
Tel. +49 (0) 711 / 9 34 67-0
Fax +49 (0) 711 / 3 46 0911
E-Mail: [email protected]
Internet: www.herrmannhieber.de
OTTO JUNKER GmbH
see Extrusion 2
SMS Meer GmbH
see Extrusion equipment 2.2
„ Homogenising furnaces
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
see Extrusion 2
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
2.4 Heat treatment
Wärmebehandlung
Nijverheidsweg 3
NL-7071 CH Ulft Netherlands
Tel.: +31 315 641352
Fax: +31 315 641852
E-Mail: [email protected]
Internet: www.unifour.nl
Sales Contact: Paul Overmans
„ Annealing furnaces
Glühöfen
see Billet Heating Furnaces 2.1
see Equipment and accessories 2.11
„ Stackers / Destackers
Stapler / Entstapler
„ Extrusion
2.5 Measurement and
control equipment
Strangpressen
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
see Extrusion 2
OTTO JUNKER GmbH
see Extrusion 2
Mess- und Regeleinrichtungen
„ Extrusion plant control systems
„ Heat treatment furnaces
Presswerkssteuerungen
Wärmebehandlungsöfen
INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH
see Casthouse (foundry) 1.5
SMS Meer GmbH
see Extrusion equipment 2.2
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
see Extrusion 2
SMS Meer GmbH
see Extrusion equipment 2.2
„ Stretching equipment
Reckeinrichtungen
OTTO JUNKER GmbH
see Extrusion 2
see Billet Heating Furnaces 2.1
„ Custom designed heat
processing equipment
Kundenspezifische
Wärmebehandlungsanlagen
SMS Meer GmbH
see Extrusion equipment 2.2
ALUMINIUM · 5/2008
Sistem Teknik Ltd. Sti.
see Billet Heating Furnaces 2.1
„ Hardness measuring
instuments, portable
Härtemessgerät, tragbar
Form+Test Seidner & Co. GmbH
D-88491 Riedlingen
Telefax 07371/9302-98
E-Mail: [email protected]
101
LIEFERVERZEICHNIS
2.6 Die preparation and care
Werkzeugbereitstellung
und -pflege
Castool Tooling Solutions
(North America)
21 State Crown Bvld
Scarborough Ontario Canada MIV 4B1
Tel.: +1 416 297 1521
Fax: +1 416 297 1915
E-Mail: [email protected]
Internet: www.castool.com
Sales Contact: Danny Dann
„ Die heating furnaces
2.7 Second-hand
extrusion plant
Gebr. Strangpressanlagen
Qualiteam International/ExtruPreX
Champs Elyséesweg 17, NL-6213 AA Maastricht
Tel. +31-43-3 25 67 77
Internet: www.extruprex.com
2.10 Machining of sections
Profilbearbeitung
„ Processing of Profiles
Profilbearbeitung
Werkzeuganwärmöfen
IUT Industriell Ugnsteknik AB
see Extrusion 2
MARX GmbH & Co. KG
www.marx-gmbh.de
see Melt operations 4.13
„ Ageing furnace for extrusions
Auslagerungsöfen für
Strangpressprofile
IUT Industriell Ugnsteknik AB
see Extrusion 2
LOI Thermprocess GmbH
Am Lichtbogen 29
D-45141 Essen
Germany
Telefon +49 (0) 201 / 18 91-1
Telefax +49 (0) 201 / 18 91-321
E-Mail: [email protected]
Internet: www.loi-italimpianti.com
Tensai (International) AG
Extal Division
Steinengraben 40
CH-4051 Basel
Telefon +41 (0) 61 284 98 10
Telefax +41 (0) 61 284 98 20
E-Mail: [email protected]
see Billet Heating Furnaces 2.1
2.11 Equipment and
accessories
Ausrüstungen und
Hilfsmittel
„ Inductiv heating equipment
Induktiv beheizte
Erwärmungseinrichtungen
Sistem Teknik Ltd. Sti.
see Billet Heating Furnaces 2.1
Nijverheidsweg 3
NL-7071 CH Ulft Netherlands
Tel.: +31 315 641352
Fax: +31 315 641852
E-Mail: [email protected]
Internet: www.unifour.nl
Sales Contact: Paul Overmans
Am großen Teich 16+27
D-58640 Iserlohn
Tel. +49 (0) 2371 / 4346-0
Fax +49 (0) 2371 / 4346-43
E-Mail: [email protected]
Internet: www.ias-gmbh.de
Nijverheidsweg 3
NL-7071 CH Ulft Netherlands
Tel.: +31 315 641352
Fax: +31 315 641852
E-Mail: [email protected]
Internet: www.unifour.nl
Sales Contact: Paul Overmans
2.12 Services
Dienstleistungen
Haarmann Holding GmbH
see Die preparation and care 2.6
„ Extrusion dies
Strangpresswerkzeuge
Haarmann Holding GmbH
Karmeliterstraße 6
D-52064 Aachen
Telefon: 02 41 / 9 18 - 500
Telefax: 02 41 / 9 18 - 5010
E-Mail: [email protected]
Internet: www.haarmann-gruppe.de
„ Hardening technology
Härtetechnik
Haarmann Holding GmbH
see Die preparation and care 2.6
102
Could not find your „keywords“?
Please ask for our complete
„Supply sources for the
aluminium industry“.
E-Mail:
[email protected]
ALUMINIUM · 5/2008
LIEFERVERZEICHNIS
3
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
Rolling mill technology
Walzwerktechnik
Casting equipment
Rolling bar machining
Rolling bar furnaces
Hot rolling equipment
Strip casting units and accessories
Cold rolling equipment
Thin strip / foil rolling plant
Auxiliary equipment
Adjustment devices
Process technology / Automation technology
Coolant / lubricant preparation
Air extraction systems
Fire extinguishing units
Storage and dispatch
Second-hand rolling equipment
Coil storage systems
Strip Processing Lines
3.0 Rolling mill Technology
Walzwerktechnik
SMS Demag Aktiengesellschaft
Eduard-Schloemann-Straße 4
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-0
Telefax: +49 (0) 211 881-4902
Internet: www.sms-demag.com
E-Mail: [email protected]
Geschäftsbereiche:
Warmflach- und Kaltwalzwerke
Wiesenstraße 30
D-57271 Hilchenbach-Dahlbruch
Telefon: +49 (0) 2733 29-0
Telefax: +49 (0) 2733 29-2852
Bandanlagen
Walderstraße 51/53
D-40724 Hilden
Telefon: +49 (0) 211 881-5100
Telefax: +49 (0) 211 881-5200
Elektrik + Automation
Ivo-Beucker-Straße 43
D-40237 Düsseldorf
Telefon: +49 (0) 211 881-5895
Telefax: +49 (0) 211 881-775895
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
Gießanlagen
Walzbarrenbearbeitung
Walzbarrenvorbereitung
Warmwalzanlagen
Bandgießanlagen und Zubehör
Kaltwalzanlagen
Feinband-/Folienwalzwerke
Nebeneinrichtungen
Adjustageeinrichtungen
Prozesstechnik / Automatisierungstechnik
Kühl-/Schmiermittel-Aufbereitung
Abluftsysteme
Feuerlöschanlagen
Lagerung und Versand
Gebrauchtanlagen
Coil storage systems
Bandprozesslinien
maerz-gautschi
Industrieofenanlagen GmbH
Geschäftsbereich Aluminium
Konstanzer Straße 37
Postfach 170
CH 8274 Tägerwilen
Telefon +41/71/6666666
Telefax +41/71/6666688
E-Mail: [email protected]
Kontakt: Stefan Blum, Tel. +41/71/6666621
„ Slab milling machines
„ Metal filters / Metallfilter
SMS Meer GmbH
see Rolling bar machining 3.2
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
„ Filling level indicators
and controls
Füllstandsanzeiger und -regler
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
Barrenfräsmaschinen
3.3 Rolling bar furnaces
Walzbarrenvorbereitung
„ Homogenising furnaces
Homogenisieröfen
„ Melt purification units
Schmelzereinigungsanlagen
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
3.2 Rolling bar machining
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
Walzbarrenbearbeitung
3.1 Casting equipment
„ Band saws / Bandsägen
Gießanlagen
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
see Extrusion 2
OTTO JUNKER GmbH
see Extrusion 2
„ Melting and holding furnaces
Schmelz- und Warmhalteöfen
see Equipment and accessories 2.11
ALUMINIUM · 5/2008
SMS Meer GmbH
Ohlerkirchweg 66
D-41069 Mönchengladbach
Tel. +49 (0) 2161 / 3500
Fax +49 (0) 2161 / 3501667
E-Mail: [email protected]
Internet: www.sms-meer.com
Do you need more
information?
E-Mail:
[email protected]
103
LIEFERVERZEICHNIS
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
3.4 Hot rolling equipment
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
Warmwalzanlagen/Komplettanlagen
Glühöfen
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
see Extrusion 2
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-1299
E-Mail: [email protected]
Internet: www.siemag.com
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
„ Coil transport systems
Bundtransportsysteme
see Equipment and accessories 2.11
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
schwartz GmbH
see Heat treatment 2.4
„ Drive systems / Antriebe
„ Bar heating furnaces
Barrenanwärmanlagen
EBNER Industrieofenbau Ges.m.b.H.
see Annealing furnaces 3.3
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
„ Hot rolling units /
complete plants
„ Annealing furnaces
EBNER Industrieofenbau Ges.m.b.H.
Ruflinger Str. 111, A-4060 Leonding
Tel. +43 / 732 / 68 68
Fax +43 / 732 / 68 68-1000
Internet: www.ebner.cc
E-Mail: [email protected]
„ Spools / Haspel
Warmwalzanlagen
3.5 Strip casting units
and accessories
Bandgießanlagen und
Zubehör
„ Cores & shells for continuous
casting lines
Cores & shells for continuous
casting lines
Bruno Presezzi SpA
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: [email protected]
Internet: www.brunopresezzi.com
Contact: Franco Gramaglia
„ Revamps, equipments & spare parts
for continuous casting lines
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
„ Rolling mill modernisation
Walzwerksmodernisierung
OTTO JUNKER GmbH
see Extrusion 2
Revamps, equipments & spare parts
for continuous casting lines
Bruno Presezzi SpA
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: [email protected]
Internet: www.brunopresezzi.com
Contact: Franco Gramaglia
„ Roller tracks
Rollengänge
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Do you need more information?
E-Mail: [email protected]
104
„ Twin-roll continuous casting
lines (complete lines)
Twin-roll continuous casting lines
(complete lines)
Bruno Presezzi SpA
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: [email protected]
Internet: www.brunopresezzi.com
Contact: Franco Gramaglia
ALUMINIUM · 5/2008
LIEFERVERZEICHNIS
„ Heating furnaces / Anwärmöfen
3.6 Cold rolling equipment
Kaltwalzanlagen
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
OTTO JUNKER GmbH
IUT Industriell Ugnsteknik AB
see Extrusion 2
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
www.vits.com
Mainzer Landstrasse 16
D-60325 Frankfurt am Main
Tel.: +49 69 97 16 81 48
Fax: +49 69 97 16 82 00
E-Mail: [email protected]
Internet: www.pesmel.com
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-1299
E-Mail: [email protected]
Internet: www.siemag.com
see Cold rolling equipment 3.6
„ Coil transport systems
Bundtransportsysteme
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
Vits Systems GmbH
Winkelsweg 172
D-40764 Langenfeld
Tel.: +49 (0) 2173 / 798-0
Fax: +49 (0) 2173 / 798-244
E-Mail: [email protected], Internet: www.vits.com
SIGNODE® SYSTEM GMBH
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: [email protected]
Internet: www.signode.com
Contact: Mr. Gerard Laks
„ Coil annealing furnaces
Bundglühöfen
„ Cold rolling units / complete plants
Kaltwalzanlagen/Komplettanlagen
Prozessoptimierungssysteme
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
„ Process simulation
„ Drive systems / Antriebe
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
OTTO JUNKER GmbH
see Extrusion 2
„ Process optimisation systems
Prozesssimulation
see Equipment and accessories 2.11
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Do you need
more information?
„ Revamps, equipments & spare parts
E-Mail:
[email protected]
Bruno Presezzi SpA
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: [email protected]
Internet: www.brunopresezzi.com
Contact: Franco Gramaglia
ALUMINIUM · 5/2008
Revamps, equipments & spare parts
105
LIEFERVERZEICHNIS
„ Roll exchange equipment
Walzenwechseleinrichtungen
3.7 Thin strip /
foil rolling plant
Feinband-/Folienwalzwerke
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
SIGNODE® SYSTEM GMBH
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
Windhoff Bahn- und
Anlagentechnik GmbH
see Anode rodding 1.4
Packaging Equipment
Non-Ferrous Specialist Team DSWE
Magnusstr. 18, 46535 Dinslaken/Germany
Telefon: +49 (0) 2064 / 69-210
Telefax: +49 (0) 2064 / 69-489
E-Mail: [email protected]
Internet: www.signode.com
Contact: Mr. Gerard Laks
Vits Systems GmbH
Winkelsweg 172
D-40764 Langenfeld
Tel.: +49 (0) 2173 / 798-0
Fax: +49 (0) 2173 / 798-244
E-Mail: [email protected], Internet: www.vits.com
„ Thin strip / foil rolling mills /
complete plant
Feinband- / Folienwalzwerke /
Komplettanlagen
„ Coil annealing furnaces
Bundglühöfen
„ Rolling mill modernization
OTTO JUNKER GmbH
see Extrusion 2
Walzwerkmodernisierung
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
see Equipment and accessories 2.11
Revamps, equipments & spare parts
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
„ Strip shears
Bandscheren
„ Revamps, equipments & spare parts
schwartz GmbH
see Cold colling equipment 3.6
Bruno Presezzi SpA
Via per Ornago 8
I-20040 Burago Molgora (Mi) – Italy
Tel. +39 039 63502 229
Fax +39 039 6081373
E-Mail: [email protected]
Internet: www.brunopresezzi.com
Contact: Franco Gramaglia
„ Rolling mill modernization
Walzwerkmodernisierung
www.vits.com
see Thin strip / foil rolling plant 3.7
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
„ Heating furnaces
Anwärmöfen
„ Trimming equipment
Besäumeinrichtungen
INOTHERM INDUSTRIEOFENUND WÄRMETECHNIK GMBH
see Casthouse (foundry) 1.5
OTTO JUNKER GmbH
see Extrusion 2
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
106
maerz-gautschi
Industrieofenanlagen GmbH
see Casting equipment 3.1
Do you need
more information?
E-Mail:
[email protected]
ALUMINIUM · 5/2008
LIEFERVERZEICHNIS
3.9 Adjustment devices
Adjustageeinrichtungen
„ Process control technology
Prozessleittechnik
„ Strip flatness measurement
and control equipment
Bandplanheitsmess- und
-regeleinrichtungen
„ Sheet and plate stretchers
Blech- und Plattenstrecker
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
SMS Meer GmbH
see Rolling bar machining 3.2
Unitechnik Cieplik & Poppek AG
D-51674 Wiehl, www.unitechnik.com
„ Cable sheathing presses
„ Strip thickness measurement
and control equipment
Kabelummantelungspressen
SMS Meer GmbH
see Rolling bar machining 3.2
„ Cable undulating machines
Banddickenmess- und
-regeleinrichtungen
ABB Automation Technologies AB
Force Measurement
S-72159 Västeras, Sweden
Phone: +46 21 342000
Fax: +46 21 340005
E-Mail: [email protected]
Internet: www.abb.com/pressductor
Kabelwellmaschinen
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
SMS Meer GmbH
see Rolling bar machining 3.2
ABB Automation Technologies AB
Force Measurement
S-72159 Västeras, Sweden
Phone: +46 21 342000
Fax: +46 21 340005
E-Mail: [email protected]
Internet: www.abb.com/pressductor
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
3.11 Coolant / lubricant
preparation
Kühl-/SchmiermittelAufbereitung
„ Rolling oil recovery and
treatment units
Walzöl-Wiederaufbereitungsanlagen
3.10 Process technology /
Automation technology
Prozesstechnik /
Automatisierungstechnik
4Production AG
Produktionsoptimierende Lösungen
Adenauerstraße 20, D-52146 Würselen
Tel.: +49 (0) 2405 / 4135-0
[email protected], www.4production.de
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Hier könnte Ihr
BezugsquellenEintrag
stehen.
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-1299
E-Mail: [email protected]
Internet: www.siemag.com
ALUMINIUM · 5/2008
Rufen Sie an:
Tel. 0511 / 73 04-148
Beate Schaefer
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
„ Filter for rolling oils and
emulsions
Filter für Walzöle und Emulsionen
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
107
LIEFERVERZEICHNIS
„ Rolling oil rectification units
„ Filtering plants and systems
Walzölrektifikationsanlagen
Filteranlagen und Systeme
3.17 Strip Processing Lines
Bandprozesslinien
„ Strip Processing Lines
Bandprozesslinen
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
Dantherm Filtration GmbH
Industriestr. 9, D-77948 Friesenheim
Tel.: +49 (0) 7821 / 966-0, Fax: - 966-245
E-Mail: [email protected]
Internet: www.danthermfiltration.com
3.14 Storage and dispatch
Lagerung und Versand
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
3.12 Air extraction systems
Abluft-Systeme
„ Exhaust air purification
systems (active)
Mainzer Landstrasse 16
D-60325 Frankfurt am Main
Tel.: +49 69 97 16 81 48
Fax: +49 69 97 16 82 00
E-Mail: [email protected]
Internet: www.pesmel.com
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-1299
E-Mail: [email protected]
Internet: www.siemag.com
Abluft-Reinigungssysteme (aktiv)
BWG Bergwerk- und WalzwerkMaschinenbau GmbH
Mercatorstraße 74 – 78
D-47051 Duisburg
Tel.: +49 (0) 203-9929-0
Fax: +49 (0) 203-9929-400
E-Mail: [email protected]
Internet: www.bwg-online.com
„ Colour Coating Lines
Bandlackierlinien
www.bwg-online.com
see Strip Processing Lines 3.17
„ Strip Annealing Lines
Bandglühlinien
www.bwg-online.com
see Strip Processing Lines 3.17
3.16 Coil storage systems
Bundlagersysteme
Achenbach Buschhütten GmbH
Siegener Str. 152, D-57223 Kreuztal
Tel. +49 (0) 2732/7990, [email protected]
Internet: www.achenbach.de
„ Stretch Levelling Lines
Streckrichtanlagen
SIEMAG GmbH
Obere Industriestraße 8
D-57250 Netphen
Tel.: +49 (0) 2738 / 21-0
Fax: +49 (0) 2738 / 21-1299
E-Mail: [email protected]
Internet: www.siemag.com
www.bwg-online.com
see Strip Processing Lines 3.17
„ Lithographic Sheet Lines
Lithografielinien
SMS Demag Aktiengesellschaft
see Rolling mill Technology 3.0
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
www.bwg-online.com
see Strip Processing Lines 3.17
Could not find your „keywords“?
Please ask for our complete
„Supply sources for the
aluminium industry“.
E-Mail: [email protected]
108
ALUMINIUM · 5/2008
LIEFERVERZEICHNIS
4
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
Foundry
Gießerei
Work protection and ergonomics
Heat-resistant technology
Conveyor and storage technology
Mould and core production
Mould accessories and accessory materials
Foundry equipment
Casting machines and equipment
Handling technology
Construction and design
Measurement technology and materials testing
Metallic charge materials
Finshing of raw castings
Melt operations
Melt preparation
Melt treatment devices
Control and regulation technology
Environment protection and disposal
Dross recovery
Gussteile
4.2 Heat-resistent technology
Feuerfesttechnik
„ Refractories
Feuerfeststoffe
Promat GmbH – Techn. Wärmedämmung
Scheifenkamp 16, D-40878 Ratingen
Tel. +49 (0) 2102 / 493-0, Fax -493 115
[email protected], www.promat.de
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
Arbeitsschutz und Ergonomie
Feuerfesttechnik
Förder- und Lagertechnik
Form- und Kernherstellung
Formzubehör, Hilfsmittel
Gießereianlagen
Gießmaschinen und Gießeinrichtungen
Handhabungstechnik
Konstruktion und Design
Messtechnik und Materialprüfung
Metallische Einsatzstoffe
Rohgussnachbehandlung
Schmelzbetrieb
Schmelzvorbereitung
Schmelzebehandlungseinrichtungen
Steuerungs- und Regelungstechnik
Umweltschutz und Entsorgung
Schlackenrückgewinnung
Cast parts
4.6 Foundry equipment
Gießereianlagen
„ Casting machines
Gießmaschinen
see Equipment and accessories 2.11
see Billet Heating Furnaces 2.1
4.7 Casting machines
and equipment
Gießereimaschinen
und Gießeinrichtungen
4.3 Conveyor and storage
technology
Förder- und Lagertechnik
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
OTTO JUNKER GmbH
see Extrusion 2
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
Molten Metall Level Control
„ Solution annealing furnaces/plant
Lösungsglühöfen/anlagen
4.5 Mold accessories and
accessory materials
Formzubehör, Hilfmittel
ERNST REINHARDT GMBH
Postfach 1880, D-78008 VS-Villingen
Tel. 07721/8441-0, Fax 8441-44
E-Mail: [email protected]
Internet: www.Ernst-Reinhardt.com
„ Fluxes
Flussmittel
Solvay Fluor GmbH
Hans-Böckler-Allee 20
D-30173 Hannover
Telefon +49 (0) 511 / 857-0
Telefax +49 (0) 511 / 857-2146
Internet: www.solvay-fluor.de
ALUMINIUM · 5/2008
„ Heat treatment furnaces
Wärmebehandlungsöfen
see Foundry equipment 4.6
Ostra Hamnen 7
SE-430 91 Hono / Schweden
Tel.: +46 31 764 5520, Fax: +46 31 764 5529
E-Mail: [email protected]
Internet: www.precimeter.com
Sales contact: Jan Strömbeck
„ Mould parting agents
Kokillentrennmittel
Schröder KG
Schmierstofftechnik
Postfach 1170
D-57251
Freudenberg
Tel. 02734/7071
Fax 02734/20784
www.schroeder-schmierstoffe.de
109
LIEFERVERZEICHNIS
„ Melting furnaces
4.8 Handling technology
Schmelzöfen
Handhabungstechnik
Vollert Anlagenbau
GmbH + Co. KG
see Packaging equipment 2.3
4.9 Construction and
Design
Konstruktion und Design
THERMCON OVENS BV
see Extrusion 2
4.11 Metallic charge
materials
ALERIS Recycling (German Works) GmbH
Aluminiumstraße 3
D-41515 Grevenbroich
Telefon +49 (0) 2181/16 45 0
Telefax +49 (0) 2181/16 45 100
E-Mail: [email protected]
Internet: www.aleris-recycling.com
Büttgenbachstraße 14
D-40549 Düsseldorf/Germany
Tel.: +49 (0) 211 / 5 00 91-43
Fax: +49 (0) 211 / 50 13 97
E-Mail: [email protected]
Internet: www.bloomeng.com
Sales Contact: Klaus Rixen
„ Pre alloys / Vorlegierungen
METALLHANDELSGESELLSCHAFT
SCHOOF & HASLACHER MBH & CO. KG
Postfach 600714, D 81207 München
Telefon 089/829133-0
Telefax 089/8201154
E-Mail: [email protected]
Internet: www.metallhandelsgesellschaft.de
„ Recycling / Recycling
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
see Equipment and accessories 2.11
Metallische Einsatzstoffe
Scholz AG
Am Bahnhof
D-73457 Essingen
Tel. +49 (0) 7365-84-0
Fax +49 (0) 7365-1481
E-Mail: [email protected]
Internet: www.scholz-ag.de
„ Aluminium alloys
Aluminiumlegierungen
TRIMET ALUMINIUM AG
Niederlassung Gelsenkirchen
Am Stadthafen 51-65
D-45681 Gelsenkirchen
Tel.: +49 (0) 209 / 94089-0
Fax: +49 (0) 209 / 94089-60
Internet: www.trimet.de
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
TRIMET ALUMINIUM AG
Niederlassung Harzgerode
Aluminiumallee 1
06493 Harzgerode
Tel.: 039484 / 50-0
Fax: 039484 / 50-100
Internet: www.trimet.de
„ Holding furnaces
Warmhalteöfen
4.13 Melt operations
Schmelzbetrieb
METALLHÜTTENWERKE BRUCH GMBH
Postfach 10 06 29
D-44006 Dortmund
Telefon +49 (0) 231 / 8 59 81-121
Telefax +49 (0) 231 / 8 59 81-124
E-Mail: [email protected]
Internet: www.bruch.de
MARX GmbH & Co. KG
Lilienthalstr. 6-18
D-58638 Iserhohn
Tel.: +49 (0) 2371 / 2105-0, Fax: -11
E-Mail: [email protected]
Internet: www.marx-gmbh.de
OTTO JUNKER GmbH
see Extrusion 2
Büttgenbachstraße 14
D-40549 Düsseldorf/Germany
Tel.: +49 (0) 211 / 5 00 91-43
Fax: +49 (0) 211 / 50 13 97
E-Mail: [email protected]
Internet: www.bloomeng.com
Sales Contact: Klaus Rixen
„ Heat treatment furnaces
Wärmebehandlungsanlagen
METALLHANDELSGESELLSCHAFT
SCHOOF & HASLACHER MBH & CO. KG
Postfach 600714, D 81207 München
Telefon 089/829133-0
Telefax 089/8201154
E-Mail: [email protected]
Internet: www.metallhandelsgesellschaft.de
110
see Equipment and accessories 2.11
see Billet Heating Furnaces 2.1
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
ALUMINIUM · 5/2008
LIEFERVERZEICHNIS
„ Heat treatment furnaces
Wärmebehandlungsanlagen
4.16 Control and
regulation technology
„ Flue gas cleaning
Rauchgasreinigung
Steuerungs- und
Regelungstechnik
„ HCL measurements
HCL Messungen
HERTWICH ENGINEERING GmbH
see Casthouse (foundry) 1.5
OPSIS AB
Box 244, S-24402 Furulund, Schweden
Tel. +46 (0) 46-72 25 00, Fax -72 25 01
E-Mail: [email protected]
Internet: www.opsis.se
Dantherm Filtration GmbH
Industriestr. 9, D-77948 Friesenheim
Tel.: +49 (0) 7821 / 966-0, Fax: - 966-245
E-Mail: [email protected]
Internet: www.danthermfiltration.com
4.18 Dross recovery
Schlackenrückgewinnung
see Equipment and accessories 2.11
OTTO JUNKER UK
see Extrusion 2
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
4.17 Environment protection
and disposal
Umweltschutz und
Entsorgung
4.19 Cast parts / Gussteile
4.14 Melt preparation
Schmelzvorbereitung
„ Dust removal / Entstaubung
OTTO JUNKER GmbH
see Extrusion 2
„ Degassing, filtration
Entgasung, Filtration
NEOTECHNIK GmbH
Entstaubungsanlagen
Postfach 110261, D-33662 Bielefeld
Tel. 05205/7503-0, Fax 05205/7503-77
[email protected], www.neotechnik.com
TRIMET ALUMINIUM AG
Niederlassung Harzgerode
Aluminiumallee 1
06493 Harzgerode
Tel.: 039484 / 50-0
Fax: 039484 / 50-100
Internet: www.trimet.de
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
Drache Umwelttechnik
GmbH
Werner-v.-Siemens-Straße 9/24-26
D 65582 Diez/Lahn
Telefon 06432/607-0
Telefax 06432/607-52
Internet: http://www.drache-gmbh.de
Do you need more information?
E-Mail: [email protected]
„ Melt treatment agents
Schmelzebehandlungsmittel
maerz-gautschi
Industrieofenanlagen GmbH
see Casting Equipment 3.1
4.15 Melt treatment devices
Schmelzbehandlungseinrichtungen
OTTO JUNKER GmbH
see Extrusion 2
Metaullics Systems Europe B.V.
Ebweg 14
NL-2991 LT Barendrecht
Tel. +31-180/590890
Fax +31-180/551040
E-Mail: [email protected]
Internet: www.metaullics.com
ALUMINIUM · 5/2008
5
Materials and Recycling
Werkstoffe und Recycling
Alu-web.de
der ALUMINIUMBranchentreff.
Haben Sie schon Ihren
Basiseintrag bestellt?
Nein, dann sofort anrufen:
0511/73 04-142
Stefan Schwichtenberg
„ Granulated aluminium
Aluminiumgranulate
ECKA Granulate Austria GmbH
Bürmooser Landesstraße 19
A-5113 St. Georgen/Salzburg
Telefon +43 6272 2919-12
Telefax +43 6272 8439
Kontakt: Ditmar Klein
E-Mail: [email protected]
111
LIEFERVERZEICHNIS
6
Machining and Application
Bearbeitung und Anwendung
„ Machining of aluminium
„ Joining / Fügen
Aluminiumbearbeitung
KGaA
Haarmann Holding GmbH Henkel
siehe Prozesse für die Oberflächentechnik 6.1
see Die preparation and care 2.6
6.1 Surface treatment
processes
Prozesse für die
Oberflächenbehandlung
„ Pretreatment before coating
Vorbehandlung vor der Beschichtung
siehe Prozesse für die Oberflächentechnik 6.1
Thermische Beschichtung
„ Adhesive bonding / Verkleben
Ausrüstung für Schmiedeund Fließpresstechnik
„ Hydraulic Presses
Hydraulische Pressen
LASCO Umformtechnik GmbH
Hahnweg 139, D-96450 Coburg
Tel. +49 (0) 9561 642-0
Fax +49 (0) 9561 642-333
E-Mail: [email protected]
Internet: www.lasco.com
Henkel KGaA
„ Thermal coating
Henkel KGaA
D-40191 Düsseldorf
Tel. +49 (0) 211 / 797-30 00
Fax +49 (0) 211 / 798-36 36
Internet: www.henkel-technologies.com
6.3 Equipment for forging
and impact extrusion
Berolina Metallspritztechnik
Wesnigk GmbH
Pappelhain 30
D-15378 Hennickendorf
Tel.: +49 (0) 33434 / 46060
Fax: +49 (0) 33434 / 46701
E-Mail: [email protected]
Internet: www.metallspritztechnik.de
Henkel KGaA
siehe Prozesse für die Oberflächentechnik 6.1
8
Literature
Literatur
„ Technikcal literature
Fachliteratur
Taschenbuch des Metallhandels
Fundamentals of Extrusion Technology
Giesel Verlag GmbH
Verlag für Fachmedien
Ein Unternehmen der Klett-Gruppe
Rehkamp 3 · 30916 Isernhagen
Tel. 0511 / 73 04-122 · Fax 0511 / 73 04-157
Internet: www.alu-bookshop.de.
6.2 Semi products
„ Anodising / Anodisation
Henkel KGaA
siehe Prozesse für die Oberflächentechnik 6.1
„ Cleaning / Reinigung
Henkel KGaA
siehe Prozesse für die Oberflächentechnik 6.1
Halbzeuge
„ Wires / Drähte
Fachzeitschriften
DRAHTWERK ELISENTAL
W. Erdmann GmbH & Co.
Werdohler Str. 40, D-58809 Neuenrade
Postfach 12 60, D-58804 Neuenrade
Tel. +49(0)2392/697-0, Fax 49(0)2392/62044
E-Mail: [email protected]
Internet: www.elisental.de
Could not find your „keywords“?
Please ask for our complete
„Supply sources for the
aluminium industry“.
E-Mail:
[email protected]
112
„ Technical journals
Giesel Verlag GmbH
Ein Unternehmen der Klett-Gruppe
Rehkamp 3 · 30916 Isernhagen
Tel. 0511 / 73 04-122 · Fax 0511 / 73 04-157
ALUMINIUM · 5/2008
IMPRESSUM / IMPRINT
International
ALUMINIUM
Journal
84. Jahrgang 1.1.2008
Redaktion / Editorial office
Dipl.-Vw. Volker Karow
Chefredakteur, Editor in Chief
Franz-Meyers-Str. 16, 53340 Meckenheim
Tel: +49(0)2225 8359 643
Fax: +49(0)2225 18458
E-Mail: [email protected]
Dipl.-Ing. Rudolf P. Pawlek
Fax: +41 274 555 926
Hüttenindustrie und Recycling
Dipl.-Ing. Bernhard Rieth
Walzwerkstechnik und Bandverarbeitung
Verlag / Publishing house
Giesel Verlag GmbH, Verlag für Fachmedien, Unternehmen der Klett-Gruppe, Postfach 120158, 30907 Isernhagen; Rehkamp
3, 30916 Isernhagen, Tel: 0511/7304-0, Fax:
0511/7304-157. E-mail: [email protected]
Internet: www.alu-web.de.
Postbank/postal cheque account Hannover, BLZ/routing code: 25010030; Kto.Nr./ account no. 90898-306, Bankkonto/
bank account Commerzbank AG, BLZ/
routing code: 25040066, Kto.-Nr./account
no. 1500222
Geschäftsleitung / General Manager
Georg Dörner
Tel: 05 11/73 04-166
E-Mail: [email protected]
Objektleitung / General Manager
Material Publications
Stefan Schwichtenberg
Tel: 05 11/ 73 04-142
E-Mail: [email protected]
Anzeigendisposition / Advertising
layout
Beate Schaefer
Tel: 05 11/ 73 04-148
E-Mail: [email protected]
Vertriebsleitung / General Manager
Distribution Department
Jutta Illhardt
Tel: 05 11/ 73 04-126
E-Mail: [email protected]
Abonnenten-Service / Reader service
Kirsten Voß
Tel: 05 11/ 73 04-122
E-Mail: [email protected]
Herstellung & Druck / Printing house
BWH GmbH, Beckstr. 10
D-30457 Hannover
Jahresbezugspreis
EUR 285,- (Inland inkl. 7% Mehrwertsteuer und Versandkosten). Europa EUR
289,- inkl. Versandkosten. Übersee US$
375,- inkl. Normalpost; Luftpost zuzügl.
US$ 82,-.
Preise für Studenten auf Anfrage. ALUMINIUM erscheint zehnmal pro Jahr. Kündigungen jeweils sechs Wochen zum Ende
der Bezugszeit.
Subscription rates
EUR 285.00 p.a. (domestic incl. V.A.T.) plus
postage. Europe EUR 289.00 incl. surface
mail. Outside Europe US$ 375.00 incl. surface mail, air mail plus US$ 82.00.
ALUMINIUM is published monthly (10
ALUMINIUM ·5/2008
issues a year). Cancellations six weeks
prior to the end of a year.
Anzeigenpreise / Advertisement rates
Preisliste Nr. 48 vom 1.1.2008.
Price list No. 48 from 1.1.2008.
Die Zeitschrift und alle in ihr enthaltenen
Beiträge und Abbildungen sind urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des
Verlages unzulässig und strafbar. Das gilt
insbesondere für Vervielfältigungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Bearbeitung in elektronischen Systemen. Der Verlag übernimmt
keine Gewähr für die Richtigkeit der in
diesem Heft mitgeteilten Informationen
und haftet nicht für abgeleitete Folgen.
Haftung bei Leistungsminderung durch
höhere Gewalt oder andere vom Verlag
nicht verschuldete Umstände (z. B. Streik)
ist ausgeschlossen.
This journal and all contributions contained therein are protected by copyright.
Any utilization outside the strict limits of
copyright legislation without the express
consent of the publisher ist prohibited
and actionable at law. This applies in
particular to reproduction, translations,
microfilming and storage or processing in
electronic systems. The publisher offers
no guarantee that the information in this
volume is accurate and accepts no liability
for consequences deriving therefrom. No
liability whatsoever is accepted for perfomance lag caused by force majeure or by
circumstances beyond the publisher’s control (e.g. industrial action).
ISSN: 0002-6689
© Giesel Verlag GmbH
Verlagsrepräsentanz / Representatives
Nielsen-Gebiet 1 (Schleswig-Holstein,
Hamburg, Bremen, Niedersachsen ohne
Osnabrück):
Giesel Verlag GmbH
Tel: 05 11/73 04-142,
Fax: 05 11/73 04-157
E-Mail: [email protected]
www.giesel-verlag.de
Nielsen-Gebiet 2 (Nordrhein-Westfalen,
Raum Osnabrück):
Medienbüro Jürgen Wickenhöfer
Minkelsches Feld 39, 46499 Hamminkeln
Tel: 0 28 52 / 9 4180
Fax: 0 28 52 / 9 4181
E-Mail: [email protected]
www.jwmedien.de
Nielsen-Gebiet 3a (Hessen, Saarland,
Rheinland-Pfalz):
multilexa GmbH, publisher services
Unterm Hungerrain 23, 63853 Mömlingen
Tel: 0 60 22/35 14
Fax: 0 60 22/3 80 80
E-Mail: [email protected]
www.multilexa.de
Nielsen-Gebiet 3 b (Baden-Württemberg):
G. Fahr, Verlags- und Pressebüro e. K.
Marktplatz 10, 72654 Neckartenzlingen
Tel: 0 71 27/30 84
Fax: 07127/2 14 78
E-Mail: [email protected]
Nielsen-Gebiet 4 (Bayern):
G. Fahr, Verlags- und Pressebüro
Marktplatz 10, 72654 Neckartenzlingen
Tel: 0 71 72/30 84
Fax: 07172/2 14 78
E-Mail: [email protected]
Nielsen-Gebiet 5, 6 + 7 (Berlin, Mecklenburg-Vorpommern, Brandenburg,
Sachsen-Anhalt Sachsen, Thüringen):
multilexa GmbH, publisher services
Unterm Hungerrain 23, 63853 Mömlingen
Tel: 0 60 22/35 14
Fax: 0 60 22/3 80 80
E-Mail: [email protected]
www.multilexa.de
Netherlands, Belgium, Luxembourg
BSW International Marketing
Bent S. Wissing
Oestbanegade 11
DK-2100 Kopenhagen
Tel: +45(0)35 385255
E-Mail: [email protected]
Switzerland
JORDI PUBLIPRESS
Postfach 154 · CH-3427 Utzenstorf
Tel. +41 (0)32 666 30 90,
Fax +41 (0)32 666 30 99
E-Mail: [email protected]
www.jordipublipress.ch
Austria
Verlagsbüro Forstner
Buchbergstraße 15/1, A-1140 Wien
Tel: +43(0)1 9 79 71 89
Fax: +43(0)1 9 79 1329
E-Mail: [email protected]
Italy
MEDIAPOINT & COMMUNICATIONS
SRL
Corte Lambruschini – Corso Buenos
Aires, 8
Vo piano – Interno 7, I-16129 Genova
Tel: +39(0)10 5 70 49 48,
Fax: +39(0)10 5 53 00 88
E-Mail: [email protected]
www.mediapointsrl.it
USA, Canada, Africa, U.A.E. etc.
John Travis
PO Box 42194
UK – London SW8 4YR
Großbritannien
Tel: +44 (0)7799001442
Fax:+44 (0)1344291072
E-Mail: [email protected]
United Kingdom
John Travis
PO Box 42194
UK – London SW8 4YR
Großbritannien
Tel: +44 (0)7799001442
Fax:+44 (0)1344291072
E-Mail: [email protected]
Scandinavia and Denmark
BSW International Marketing
Bent S. Wissing
Oestbanegade 11
DK-2100 Kopenhagen
Tel: +45(0)35 385255
Fax: +45 (0)35 385220
E-Mail: [email protected]
France
DEF & Communication
Axelle Chrismann
48 boulevard Jean Jaurès
F-92110 Clichy
Tel: +33 (0)1 47 30 71 80,
Fax: +33 (0)1 47 30 01 89
E-Mail: [email protected]
Der ALUMINIUM-Branchentreff des
Giesel Verlags: www.alu-web.de
113
VORSCHAU / PREVIEW
IM NÄCHSTEN HEFT
IN THE NEXT ISSUE
Special: Aluminiumguss
Special: Aluminium casting
Technologien, Anlagen, Gießöfen, Formenbau.
Beiträge unter anderem:
• Trimet baut eine der modernsten Aluminiumdruckgießereien auf
• Konjunkturbericht zur deutschen Gießereibranche
• Inhouse-Recycling von Aluspänen
Technologies, plants, casting furnaces, mould making.
Subjects covered include:
• Trimet sets up state-of-the-art aluminium
die casting plant
• China’s aluminium casting industry for automotive
applications
• In-house recycling of aluminium chips
Wirtschaft
• Jahresüberblick über weltweite Bauxit- und Oxidprojekte
Economics
Markt und Technik
Markets and technology
• Danieli Fröhling nimmt AluminiumWalzwerksbau ins Visier
• Danieli Fröhling has its sights on aluminium
rolling mill construction
Research
Research
• Langzeitbeanspruchung unter erhöhter
Temperatur von Fahrwerkskomponenten aus
einer AlMg-Legierung
• B4C-Al and B4C-TiB2-Al composites reactively
bonded with AlMgB14 formed in situ
• Review of global bauxite and alumina projects
Erscheinungstermin: 2. Juni 2008
Anzeigenschluss:
16. Mai 2008
Redaktionsschluss: 15. Mai 2008
Date of publication: 2 June 2008
Advertisement deadline: 16 May 2008
Editorial deadline: 15 May 2008
Abonnement-Bestellung
Subscription-Order
Ja, wir möchten die Zeitschrift ALUMINIUM ab sofort
zum Jahresbezugspreis von EUR 285,- inkl. Mehrwertsteuer (Ausland EUR 289,-) und Versandkosten abonnieren.
Das Magazin erscheint zehn Mal pro Jahr.
Das Abonnement kann mit einer sechswöchigen Frist
zum Bezugsjahresende gekündigt werden.
Yes, we want to subscribe ALUMINIUM. The rate is
EUR 289.00 per year incl. postage. Outside Europe
US$ 375.00 incl. surface mail, air mail plus US$ 82.00
The magazine is published ten times a year.
Cancellations six weeks prior to the end of a
subscription year.
Name / name
Firma / company
Anschrift / address
Umsatzsteuer-Ident.-Nr. / VAT Reg.-No.
Datum / date
Unterschrift/Signature
Fax: +49 (0) 511 73 04 157
114
ALUMINIUM · 5/2008
"#* !&"!$'
"#*$%#)&+#(*'
')"#%!'#"""# &&'"'%*+&
B3;4050;4,!(7,8&!""!$'468,(5+468,8,(+,89
(8,(778,*0(:05.0:9*64-68:A(=,,2),-68,:/,7805:,+0:065*64,96;:
B'0:/% %(9?6;897,*0(309:16;85(3?6;*(58,(+ #"*'
05*3,(83(5.;(.,-864,>7,8:9()6;::/,);8505.099;,905:/,05+;9:8?
B56=3,+., *' &'"!$'-864
65=(8+99;)9*80),89*(5*(88?6;:
-;33:,>:8,9,(8*/05:/,5,=3;8*/0<,
"$,#"$%
'&!#%+#('#('+#(%&(&%$'#"&'%'*+#%#%+%&
+#( &#&)"($'#
&
=, =6;3+ 302,
:6 9;)9*80), :6 % %
3;4050;4,!(7,8 3;4050;4
8*/0<, 9:8(0./: (=(? -68 :/, 7,806+
97,*0@,+ ),36= % % (77,(89 >
(?,(8=,=033),56:0@,+)?,4(03(99665
(9:/,*;88,5:,!(7,8,+0:06509(<(03()3,65305,-68
+6=536(+05.
647(5?
+%&(&%$'#"
!69:*6+,*0:?
05 ,84(5? %" 05 ;867, %" 6<,89,(9%#
$/,9;)9*807:065-,,09:6),7(0+)?*8,+0:*(8+
+%&(&%$'#"
05,84(5?%"
05;867,%"
6<,89,(9%#
4,80*(5>78,99
;86(9:,8*(8+
;4),8
,7(8:4,5:
(8+/63+,8
++8,99
&(30+;5:03
$/,-,,09:6),+,)0:,+-8646;8(**6;5:653?76990)3,=0:/05
,84(5?
6;5:8?
(52
+%&(&%$'#"
05,84(5?%"
05;867,%"
6<,89,(9%#
&#
089:5(4,3(9:5(4,
$,3,7/65,
(>
(52*6+,
**6;5:56
4(03-68:/,56:0-0*(:065
$/,-,,=033),8,40::,+658,*,07:6-:/,05<60*,
&$5;4),8
% $ !
#%&
%$""
)
(((% *'$&$% (:,
#0.5,+
Mehr integrierte
Leistungen für Sie
Schloemann Strangpressen.
Mit der Integration der Schloemann Strangpressen in
die SMS Meer erhalten Sie nun alle Leistungen rund
um die modernste Strangpresstechnolgie aus einer
Hand. Erwärmung, Presse, Auslauf – Die intensivierte
interdisziplinäre Zusammenarbeit unserer Teams mit
kürzeren Wegen beschleunigt die Planungs-, Liefer-
und Inbetriebnahmezeiten. Innovationen fließen früher
in unsere Verfahrenstechnologien und Anlagenlösungen
ein. Das alles sichert Ihnen einen schnelleren Return on
Invest: für Ihre Neuanlagen und Ihre Modernisierungen.
MEETING your EXPECTATIONS
SMS MEER GMBH
Postfach 10 06 45
41006 Mönchengladbach
Telefon: +49 (0) 2161 350-0
Telefax: +49 (0) 2161 350-1859
E-Mail: [email protected]
Internet: www.sms-meer.com

Documentos relacionados