Synthesis of photosensitive micro/nanocapsules for application in

Transcrição

Synthesis of photosensitive micro/nanocapsules for application in
Synthesis of photosensitive micro/nanocapsules for application in
textile substrate modified by a biomaterial
Silva, R.K.(1,2), Nascimento, J.H.O.(2), Ladchumananandasivam, R.(1) Silva, K.K.O.S.(2)
+55 84 99818-2142, [email protected]
(1)
Federal University of Rio Grande do Norte, Pos Graduate Program in Mechanical
Engineering, Center of Technology, Natal –RN, Brazil
(2)
Textile Engineering Department, Federal University of Rio Grande do Norte, Natal, Brazil
1. Introdução
Atualmente, os processos de modificação superficial de fibras têxteis é visto como o mais eficiente
caminho para os modernos tratamentos [6]. Dentre os polímeros naturais existentes, a quitosana (QTS)
contém um elevado potencial de aplicações industriais, e modificação superficial de fibras têxteis [3, 6,
7]. Dispõe de uma alta quantidade de carga positivas em pH ácido por conter grupos acetamida sendo
altamente vantajosos na condução de reações de modificação e adsorção podendo, assim, atuar como um
biopoliélitrolito [5] [9]. Diversos materiais como: proteínas, polissacáridos aniônicos, ácidos nucléicos e
etc, apresentam carga negativas, podendo ligar-se fortemente com a quitosana. [5]. A fibra regenerada de
soja que tem origem proteica possui cargas negativas em sua superfície, podendo, dessa forma interagir
com a QTS [1].
O fotocromismo é uma abordagem de interesse atual devido sua aplicabilidade comercial. Esse
interesse tem sido crescente devidos as diversas aplicações [2]. Hoje em dia os substratos têxteis são
obrigados a oferecerem propriedades e funcionalidades ativas os chamados têxteis inteligentes. Os
materiais microencápsulados assumem grandes responsabilidades no desenvolvimento destes produtos no
setor têxtil [4, 11]. As fibras inteligentes apresentam comportamentos que as definem devido a
modificação superficial com micro/nanocápsulas em seu interior [8,10]. Diversos meios e materiais
ambientalmente corretos estão sendo estudados e testados com eficiência na modificação superficial de
fibras têxteis, com objetivo de lhes proporcionar características e funções específicas [4]. A QTS é,
portanto, um exemplo desses materiais que possuem uma grande versatilidade e por isso tem sido alvo
constante de pesquisas inovadoras.
2. Experimental
2.1 Reagents
The chemotherapy used was provided by the company Selachii with Ind.. Imp E Exp. Ltda
(Fortaleza), with GD 70, 64%. Used (A) of sodium hydroxide in microbead (PQuimios), (B) hydrogen
peroxide (Vetec), (C) stabilizer (Roglyr CN), (D) detergent / wetting agent (Colloclarin AMC), (E)
sequestrant (Securon 540), (MCF) micro / nanocapsules (Photopia AQ-INK BUE).
2.2 Equipamentos
(BM) Banho Maria (Q215M2); (ALT) ALT-B TOUCH 35 da Mathis; (R) Rama (Mathis LTEB); Agitador magnético EEQ-9008 (Edutec); Medidor de pH NI PHM (nova instrumants).
2.3 Experimental procedure
The soybean tissue (TS) was targeted with reagents (A) (solution 36 Bé), (B), (C), (D) and (E). If
made use of (BM) for 60 min. temp. 90 ° C. In sequence, the TS has been functionalized in (AL) at
concentrations of 1, 3 and 5% (v / v) in QT solution of 1: 100g / mL. Soon after the samples were paints
MCF via exhaust process, the pH of the solution was adjusted between 4.5-5, and accomplished the temp.
70 ° C for 40min. Soon after the samples were crosslinked in the (R) temp. 130 ° C for 2 min. Below
impregnated samples, image 1.
(a)
(b)
(c)
(d)
Image 1. soybean tissue sample after the impregnation (a) without QT, (b) 1% QT, (c) 3% QT (d) and
3. 5%Results
with
QT. and Discussion
The analyzes of the spectrophotometer (ES) sample without QT exibil a value K / S = 0.0786 at a
wavelength of 610.15 cm-1. Already with 1% QT observed a value of K / S = 0,700 in the same length,
image 2(a). The Particle Size (TP) and zeta potential (PZ) MCF demonstrated average values of 1.5446
micrometres ψ = -19.10 mV showing a good static stability of the capsules as well as the average TP
micrometric limits. In SEM a good layout of the impregnated MCF was observed in the TS surface. The
readings made after the washing fastness test showed a value of K / S for the sample of 1% QT 0.664 at a
wavelength of 610.15 cm-1. The greatest decrease in the K / S compared to control sample (QT 1%) was
seen in the sample of the 5 th rinse cycle, image 2 (b). Amounting to 0.305 in the same length. The
presence of hydroxyl groups (-OH) and carboxyl (-COH) on the substrate bind to the QT amines leaving
them with positive charge (NH3 +), providing the connection of MCF (negative charge) on the TS [5]. In
SEM realized the adsorption of MCF on the surface of the TS in which to see the effectiveness of the
fixing of MCF in TS proving chelation property of QT [5,12], image 3.
(a)
(b)
Image 2. (a) The best result of the sample (1% QT) and (b) the best result sample (1 QT%) after 5
wash cycles.
(a)
(b)
Image 3. soybean tissue without MCF (a) and with MCF (b).
4. Conclusions
In conclusion to the QT efficiency in surface modification of textile materials, with the MCF offers a
new dynamic in the production of smart textiles adding value to the final product.
Referências
[1]. ALVES, G .; RUTHSCHILLING, E. conventional Clothing: Implementation and marketing of ecotextiles. P. 6, 2008.
[two]. ALDIB, M .; CHRISTIE, R. M. Textile applications of photochromic dyes. Part 4: Application of
commercial photochromic dyes to polyester fabric by the solvent-based dyeing method. Coloration
Technology, vol. 129, no. 2, p. 131-143, 2013.
[3] Bede, M. P. Production and characterization of magnetic nanoparticles-polymer for biomedical use.
Rio de Janeiro.
[4]. CEYLAN, Ö. et al. The effect of water immersion on the thermal degradation of cotton fibers.
Cellulose, p. 1603-1612, 2013.
[5]. CRAVEIRO, A. A. CRAVEIRO, A. C, QUEIROZ, D.C. Chitosan: the future Afibra. 2. ed. Fortaleza
Ceara: Padetec 2004.
[6]. Enescu, D. Use of chitosan in surface modification of textile materials. Romanian Biotechnological
Letters, Vol. 13, no. 6, p. 4037-4048, 2008.
[7]. KHOR, E .; LIM, L. Y. Implantable applications of chitin and chitosan. Biomaterials, vol. 24, no. 13,
p. 2339-2349, 2003.
[8]. Liyan Z, S. L. K. Biopolymeric delivery system for controlled release of polyphenolic antioxidants.
Europear Polymer Journal, Vol. 43, 2007. [5]. SA, C. S. Development of a thermosensitive textile
material with micro / nanocapsules imobiliadas in regenerated fibers, Christmas, Federal University of
Rio Grande do Norte, 2015.
[9]. Liyan Z, S. L. K. Biopolymeric delivery system for controlled release of polyphenolic antioxidants.
Europear Polymer Journal, Vol. 43, 2007.
[10]. MAHMOODI, N. M. et al. Dye removal from textile colored wastewater using chitosan in binary
systems. Desalination, vol. 267, no. 1, p. 64-72, 2011.
[11]. SANCHEZ, J. C. Smart Textiles. v. 82, 2006.
[12]. SA, C. S. Development of a thermosensitive textile material with micro / nanocapsules imobiliadas
in regenerated fibers, Christmas, Federal University of Rio Grande do Norte, 2015.

Documentos relacionados