en-metalwork-formulas-and-tables-metal

Transcrição

en-metalwork-formulas-and-tables-metal
Textbook for Vocational Training − Formulas and Tables Metal
Table of Contents
Textbook for Vocational Training − Formulas and Tables Metal..................................................................1
Preface...................................................................................................................................................1
1. Mathematics.......................................................................................................................................1
1.1. Mathematical symbols...............................................................................................................2
1.2. Greek alphabet..........................................................................................................................3
1.3. Rounding off numbers...............................................................................................................4
1.4. Basic arithmetical operations....................................................................................................5
1.5. Calculation of plane faces.........................................................................................................8
1.6. Calculation of bodies...............................................................................................................11
1.7. Preferred numbers..................................................................................................................13
2. Physics, mechanics..........................................................................................................................14
2.1. Physico−technical quantities...................................................................................................14
2.2. Quantities and their admissible units......................................................................................15
2.3. Transformation of forces.........................................................................................................22
2.4. Translation and rotation..........................................................................................................26
2.5. Friction coefficients.................................................................................................................27
2.6. Mass moments of inertia.........................................................................................................27
2.7. Stress and strain.....................................................................................................................27
2.8. Deformation in the case of bending stress..............................................................................30
2.9. Areal moments of inertia, moments of resistance...................................................................31
2.10. Moduli of elasticity.................................................................................................................33
2.11. Admissible strains (reference values)...................................................................................34
3. Technical drawing.............................................................................................................................34
3.1. Types of drawing.....................................................................................................................34
3.2. Sizes of drawings....................................................................................................................36
3.3. Subdivision of the sheet..........................................................................................................36
3.4. Lines........................................................................................................................................36
3.5. Lettering..................................................................................................................................38
3.6. Scales.....................................................................................................................................39
3.7. Rectangular project ion...........................................................................................................40
3.8. Figuring...................................................................................................................................42
3.9. Working and material characteristics......................................................................................48
3.10. Sectional view.......................................................................................................................49
3.11. Partial and interrupted representation...................................................................................52
3.12. Representation of thread.......................................................................................................53
3.13. Simplified representation of holes and counterbores............................................................54
3.14. Simplified representation of disconnectable connections.....................................................55
4. Metal materials.................................................................................................................................58
4.1. Characteristics........................................................................................................................58
4.2. Subdivision..............................................................................................................................58
4.3. Properties and use of important metals..................................................................................59
4.4. Ferrous materials....................................................................................................................65
4.5. Alloys of non−ferrous metals...................................................................................................75
4.6. Hard metals.............................................................................................................................79
5. Plastics.............................................................................................................................................80
6. Semi−finished products of steel........................................................................................................81
6.1. Bars, strips, sheets..................................................................................................................81
6.2. Standard sections...................................................................................................................85
6.3. Steel pipes for water and gas lines.........................................................................................91
7. Semi−finished products of aluminium and aluminium alloys............................................................92
7.1. Square bars.............................................................................................................................92
7.2. Hexagon bars..........................................................................................................................92
7.3. Round bars..............................................................................................................................93
8. Semi−finished products of copper and copper alloys.......................................................................94
8.1. Square bars.............................................................................................................................94
8.2. Hexagon bars..........................................................................................................................95
8.3. Round bars..............................................................................................................................96
9. Semi−finished products of hard metal..............................................................................................97
9.1. Blanks of sintered metal carbide.............................................................................................98
9.2. Cutting ceramics.....................................................................................................................98
i
Table of Contents
Textbook for Vocational Training − Formulas and Tables Metal
10. Semi−finished products of rigid polyvinyl chloride..........................................................................98
10.1. Thin sheets of rigid PVC.......................................................................................................98
10.2. Panels of rigid PVC, standard types.....................................................................................99
11. Semi−finished products of moulded laminate...............................................................................100
11.1. Laminated paper sheets......................................................................................................100
11.2. Laminated fabric sheets......................................................................................................100
12. Plates and sheets of different materials........................................................................................100
13. Wire of different materials.............................................................................................................101
13.1. Steel wire............................................................................................................................101
13.2. Copper or brass wire...........................................................................................................102
14. Types and functions......................................................................................................................103
15. Connecting elements....................................................................................................................103
15.1. Bolts....................................................................................................................................103
15.2. Screws................................................................................................................................106
15.3. Nuts.....................................................................................................................................107
15.4. Washers..............................................................................................................................108
15.5. Securing devices for screws...............................................................................................108
15.6. Pins.....................................................................................................................................109
15.7. Keys....................................................................................................................................110
15.8. Springs................................................................................................................................112
15.9. Rivets..................................................................................................................................115
16. Load−carrying elements...............................................................................................................116
16.1. Elastic springs.....................................................................................................................116
16.2. Bearings..............................................................................................................................117
17. Transmission elements.................................................................................................................123
17.1. Shafts..................................................................................................................................123
17.2. Toothed gears.....................................................................................................................129
18. Subdivision of test procedures......................................................................................................133
18.1. Non−dimensional testing.....................................................................................................133
18.2. Dimensional testing.............................................................................................................135
19. Fitting systems..............................................................................................................................145
19.1. Types of fits.........................................................................................................................145
19.2. Systems of fits, basic hole, basic shaft...............................................................................146
19.3. Examples of fits...................................................................................................................148
20. Scribing.........................................................................................................................................152
20.1. Types of scribing.................................................................................................................152
20.2. Notes on scribing................................................................................................................155
21. Fundamental forming by casting...................................................................................................157
21.1. Shrinkage measures...........................................................................................................157
21.2. Machining allowances for castings......................................................................................158
22. Forming.........................................................................................................................................159
22.1. Mechanical bevelling...........................................................................................................159
22.2. Bending...............................................................................................................................160
22.3. Forging................................................................................................................................161
23. Separating....................................................................................................................................162
23.1. Chiseling.............................................................................................................................162
23.2. Shearing..............................................................................................................................166
23.3. Sawing................................................................................................................................168
23.4. Filing....................................................................................................................................170
23.5. Flame cutting.......................................................................................................................171
23.6. Drilling.................................................................................................................................172
23.7. Countersinking....................................................................................................................175
23.8. Reaming..............................................................................................................................179
23.9. Thread cutting.....................................................................................................................180
23.10. Turning..............................................................................................................................183
23.11. Milling................................................................................................................................188
23.12. Planing, slotting.................................................................................................................192
23.13. Broaching..........................................................................................................................196
23.14. Grinding.............................................................................................................................196
ii
Table of Contents
Textbook for Vocational Training − Formulas and Tables Metal
23.15. General data on cutting.....................................................................................................200
24. Joining..........................................................................................................................................203
24.1. Screw joints.........................................................................................................................203
24.2. Welded joints.......................................................................................................................210
24.3. Riveted joints.......................................................................................................................215
24.4. Soldered joints....................................................................................................................221
25. Changing of material properties....................................................................................................224
25.1. Annealing of steel................................................................................................................224
25.2. Hardening of steel...............................................................................................................226
25.3. Tempering and hardening with subsequent drawing of steel..............................................230
iii
iv
Textbook for Vocational Training − Formulas and Tables Metal
CRYSTAL
Lehr− und Lernmittel,
Informationen Beratung
Educational Aids
Literature, Consulting
Moyens didactiques,
Informations, Service−conseil
Material didáctico,
Informaciones, Asesoría
Feedback: IBE e.V.
90−34−0101/2
Deutsche Gesellschaft für
Technische Zusammenarbeit (GTZ) GmbH
Institut für berufliche Entwicklung e.V.
Berlin
Original title:
“Formeln und Tabellen − Metall”
Authors: Ingo Womer
Horst Thulke
Second edition © IBE
Institut für berufliche Entwicklung e.V.
Parkstraße 23
13187 Berlin
Order No.: 90−34−0101/2
Preface
This book of tables concentrates on the fields of the metal−working industry and the metal trade. The book is
intended as a proper reference book, both for trainees and as an aid to practical work by craftsmen. Important
mathematical, physical and technical fundamentals and essential specific technical concepts, work tables,
work rules, etc., are given in the clear and concise manner characteristic of a book of tables.
This book has been elaborated on the basis of advanced knowledge and findings contained in the vocational
training.
The subject−matter has been suitably compiled in main sections.
1. Mathematics
1
1.1. Mathematical symbols
Symbol
...
Explanation
to
e.g.: k = 1, 2, ..., n
=
equal to
identically equal to
e.g.: f(x)
0. The function f has the value
of zero at any point.
?
not equal to, unequal
not identically equal to
~
proportional, similar
?
approximate, almost equal, about
(The last figure is determined by means of
the rounding rule. For rounding off, see
Section 1.3.)
corresponds to
<
smaller than
>
greater than
?
smaller than or equal to, equal at most
?
greater than or equal to, equal at least
small as against of another order
great as against of magnitude
+
plus
−
minus
.,x
times
−,/,:
by, divided, by, to
%
percent, of a hundred (10−2)
‰
per mille, of a thousand (10−3)
||
parallel
not parallel
‘‘
parallel in the same direction
‘?
parallel in the opposite direction
at right angles to, perpendicular on
triangle
E
congruent
angle
2
line AB
arc AB
z
amount of z
arc z
arc z
n!
factorial n
n above p binominal coefficient
?
sum
?
product
square root; nth root of
?
Pi of this circle, ? = 3.14159...
f(x)
f of x
value of the function f at point x
?
infinite
loga
logarithm to base a
lg
logarithm to base ten
lg x = log10x
lb
logarithm to base two
lb x = log2x
ln
natural logarithm
ln x = logex
sin
sine
trigonometric
cos
cosine
functions
tan
tangent
or
cot
cotangent
functions of angles
arc sin
inverse sine
arc functions,
arc cos
arc cosine
inverse functions of
arc tan
arc inverse tangent
the trigonometric
arc cot
arc inverse cotangent
functions
1.2. Greek alphabet
Letter capital
small Designation Representation in roman type
A
?
Alpha
A, a
B
?
Beta
B, b
?
?
Gamma
G, g
?
?
Delta
D, d
E
?
Epsilon
E, e
Z
?
Zeta
Z, z
H
?
Eta
E, e
3
?
?
Theta
Th, th
I
?
Jota
I, i
K
?
Kappa
K, k
?
?
Lambda
L, l
M
?
My
M, m
N
?
Ny
N, n
?
?
Xi
X, x
O
?
Omikron
O, o
?
?
Pi
P, p
P
?
Rho
R(h), r(h)
?
?
Sigma
S, s
T
?
Tau
T, t
Y
?
Ypsilon
Y, y
?
?
Phi
Ph, ph
X
?
Chi
Ch, ch
?
?
Psi
Ps, ps
?
?
Omega
O, o
In technology, letters of the Greek Alphabet are frequently used as symbols of physical quantities; e.g. ?, ?, ?
for angle quantities; ? for efficiency; ? as the unit symbol for electrical resistance. (See Section 2.1.).
1.3. Rounding off numbers
When rounding off numbers, one or more figures at the end of a number are substituted by zeros. The figure
immediately to the left is either retained (rounding down) or increased by 1 (rounding up).
Rounding
off
Rule
Example
Rounding
down
The last figure to be given is retained when followed by a 0, 1, 2, 3 or 4
3.01234
? 3.0123
? 3.012
? 3.01
? 3.0 ? 3
Rounding up
The number to be indicated is increased by 1 when followed by a 6, 7, 8 or 9.
4.6789
? 4.679
? 4.68
? 4.7 ? 5
Rounding off
5
If the last figure to be given is followed by at least one number which differs
from 0 after a 5, the last figure is increased by 1.
If the last figure to be given is followed by a 5 which is known to have been
obtained by rounding off,
5.153 ?
5.2
4
rounding down is done if the 5 was rounded up and
7.4149
? 7.415
? 7.41
rounding up is done if the 5 was founded down.
? 8.4752
? 8.475
? 8.48
Rule of even number
If the last number to be indicated is followed by a 5 and then by zeros only,
rounding down is done if this number is even and
0.1250
? 0.12
rounding up is done if this number is odd.
0.3750
? 0.38
1.4. Basic arithmetical operations
1.4.1. Designations
Designation
Definition
Example
Addition
Summand plus summand
a+b=c
add
equals sum
4+3=7
Subtraction
Minuend minus subtrahend
c−b=a
subtract
equals difference
7−3=4
(inversion of addition)
c − b = c + (−b)
Multiplication Factor times factor
a·b=c
multiply
equals product
4 · 3 = 12
Division
Dividend divided by divisor
c: b = a (b ? 0)
divide
equals quotient
12: 3 = 4
(Inversion of multiplication)
1.4.2. Basic arithmetical operations with zero and one (b ? 0)
Designation
Operation
Addition and subtraction
a + 0 = a;
a − 0 = a; 0 − a = −a
Multiplication and division
a · 0 = 0; a · 1 = a;
a: 0 (not explained);
a: 1 = a; 0: a = 0
5
1.4.3. Laws of addition and multiplication
Addition
Multiplication
Commutation laws
a+b=b+a
a·b=b·a
13 + 3 = 3 + 13
13 · 3 = 3 · 13
Association laws
a + (b + c) = (a + b) + c
a · (b · c) = (a · b) · c
3 + (5 + 2) = (3 + 5) + 2
3 · (5 · 2) = (3 · 5) · 2
3+7=8+2
3 · 10 = 15 · 2
Distribution law
a · (b + c) = ab + ac
3 · (5 + 2) = 3 · 5 + 3 · 2
3 · 7 = 15 + 6
1.4.4. Arithmetic with expressions in brackets (a, b, c, d arbitrary numbers)
Operation
Rule
Addition
a + (b + c) = a + b + c;
a + (b − c) = a + b − c
Subtraction
a − (b + c) = a − b − c;
a − (b − c) = a − b + c
Multiplication a(b + c) = ab + ac; a(b − c) = ab − ac
(a + b)(c + d) = ac + ad + bc + bd;
(a + b)(c − d) = ac − ad + bc − bd
(a − b)(c + d) = ac + ad − bc − bd;
(a − b)(c − d) = ac − ad − bc + bd
Binomial formulae
(a ± b)2 = a2 ± 2ab + b2;
(a + b) (a − b) = a2 − b2
Division
1.4.5. Arithmetic with powers, roots, logarithms
Powers with integral exponents
Definition
Base with raised exponent equals power:
6
an = c (a ? 0)
In the case of natural exponents, raising to a power can be explained as the repeated multiplication of the
same factors:
Laws
(m, n integral; a · b ? 0; a, b arbitrarily real)
1
0
a = a; a = 1; (a ? 0);
(a ? 0)
am · an = am+n; am · bm = (ab)m
m n
m·n
; (a ) = a
Roots
(Extraction of a root, 1st inversion of raising to a power)
Definition
The nth root from radicand b is equal to that non−negative value a which results in b when raised to the power
n:
(b ? 0; n natural)
(n index of root; b radicand; a value of root)
Laws
(m, n natural; a ? 0; b > 0)
(n natural);
(n natural)
(not explained)
;
;
Logarithms
(Taking the logarithm of a number; 2nd inversion of raising to a power)
Definition
7
The logarithm of b to base a is the number c which must be used for raising to a power in order to obtain b:
c = loga b (a, b positive; a ? 1); a logab = b
(b inverse logarithm; a base; c logarithm)
Laws
(equal bases; b, b1, b2 > 0; a > 0; a ? 1; n arbitrarily real)
loga 1 ? 0 (a ? 1; positive)
log1 a not explained
loga (b1 · b2 = loga b1 + loga b2;
;
loga bn = n · loga b
;
1.5. Calculation of plane faces
Surface area A, circumference of face u
u=a+b+c
General triangle
Equilateral triangle
Altitude theorem: h2 = p ·
Euclidean theorem: a2 =
b2 = q · c
Pythagoras theorem; a2 +
= c2
Right−angled triangle
8
A = a2
u = 4a
Square
A=a·b
u = 2a + 2b
Rectangle
A=g·h
u = 2g + 2a
Parallelogram
u=a+b+c+d
Trapezoid
9
u = 2? · r = ? · d
Circle
Circular ring
u = b + 2r
Sector of a circle (circular sector)
Ellipse
10
1.6. Calculation of bodies
Volume of body V; surface of body A0
V = a3
A0 = 6a2
Cube
V=a·b·c
A0 = 2 · (ab + ac + bc)
Cuboid
Pyramid
11
Cylinder
V = ? · h · (R2 − r2)
Hollow cylinder
A0 = ? · r · (r + s)
Cone
12
A0 = 4? · r2 = ? · d2
Sphere
1.7. Preferred numbers
Basic series
Basic series
R5
R 10
R 20
R 40
R5
R 10
R 20
R
40
1.00
1.00
1.00
1.00
4.00
4.00
4.00
4.00
1.06
1.12
4.25
1.12
4.50
1.18
1.25
1.25
4.75
1.25
5.00
5.00
1.32
1.40
1.60
1.60
1.40
1.60
5.60
6.30
6.30
6.30
2.00
1.80
2.00
7.10
2.24
2.36
2.50
2.50
2.50
2.50
2.65
2.80
2.80
3.00
3.15
3.15
3.15
3.35
3.55
3.55
3.75
13
7.10
7.50
8.00
8.00
2.12
2.24
6.30
6.70
1.90
2.00
5.60
6.00
1.70
1.80
5.00
5.30
1.50
1.60
4.50
8.00
8.50
9.00
9.00
9.50
2. Physics, mechanics
2.1. Physico−technical quantities
Physico−technical quantities (known as quantities) are measurable characteristics of objects, processes or
conditions. With regard to quality, they are clearly defined and can be quantitatively determined (measured).
Example:
Numerical value
× unit
=
quantity
3.500
· mm
=1
2.1.1. Units of physico−technical quantities
Type of unit
Explanation
Example
Basic units of SI
Basic units are defined units which are chosen independently of
one another and form the basis of the international system of units
(Système International d’Unités, abbreviated “SI” in all languages)
Metre for length
Kilogramme for
weight
Second for time;
Ampère for
current intensity;
Kelvin for
temperature;
Mol for amount of
substance;
Candela for
luminous intensity
Derived SI units
Derived SI units are all units formed as a power product with the
numerical factor 1 from the basic of the SI
1 N = 1m · kg · s−2
1 Pa = 1N · m−2
Supplementary SI
units
The supplementary SI units should be used like basic units of the
SI if physical circumstances require it
Radian for plane
angle;
Steradian for solid
angle;
Units extraneous
to SI
Units extraneous to SI do not belong to the SI and are units whose
relation to the SI units contains a numerical factor which differs
from one.
Units extraneous
to the SI
These are admissible units which are extraneous to the SI:
− SI units with SI prefixes
1 mm = 10−3 m
− Generally accepted units;
1 min = 60 s
− Units valid in special fields
1 ha = 104 m2
hectare for land
and real estate
− Valid units for relative quantities
1 % = 1 · 10−2
2.1.2. SI prefixes
SI prefixes are used for forming decimal multiples and parts of SI units and units extraneous to the SI (if not
expressly omitted).
(See Section 1.4.5.)
14
Examples: 1 mm = 10−3 m
1 MN = 106 N
Prefix Prefix sign
Meaning
Tera
T
1,000,000,000,000
(1012)
Giga
G
1,000,000,000
(109)
Mega
M
1,000,000
(106)
Kilo
k
1,000
(103)
Hecto
h
100
(102)
Deca
da
10
(101)
Deci
d
0.1
(10−1)
Centi
c
0.01
(10−2)
Milli
m
0.001
(10−3)
Micro
?
0.000 001
(10−6)
Nano
n
0.000 000 001
(10−9)
Pico
p
0.000 000 000 001
(10−12)
2.2. Quantities and their admissible units
2.2.1. Space and time
Type of quantity
Equation of quantity
Designation of unit
(Symbol of unit)
Length l
h height
b width
r radius
d diameter
s path
Basic unit of SI
Metre m
Other customary units
Centimetre cm
1 cm = 10−2 m
Millimetre mm
1 mm = 10−3 m
Micrometre
1 ?m = 10−6 m
Area A
A = l2
SI unit
Square metre m2
1 m2 = 1 m · 1 m
Other customary units
Square centimetre cm2
1 cm2 = 10−2 m · 10−2 m
100,000 cm2 = 1 m2
Square millimetre
1 mm2 = 10−3 m · 10−3 m
1,000,000 mm2 = 1 m2
10,000 mm2 = 1 cm2
Volume V
V = l3
SI unit
Cubic metre m3
1 m3 = 1 m · 1 m · 1 m
Other customary units
Cubic millimetre mm3
15
1 mm3 = 10−3 m · 10−3 m · 10−3 m
1,000,000,000 mm3 = 1 m3
Millilitre ml
1 ml = 10−9 m3
1 ml = 1 mm3
Litre l
1 l = 10−3 m3
1 l = 1,000 ml
Hectolitre hl
1 hl = 10−1 m3
1 hl = 100 l
Plane angle
SI unit
Radian rad
Other customary units without SI prefixes
Degree °
1° = 60’ = 3600”
Minute ‘
60’ = 1°
Second “
60” = 1’
Solid angle ?
SI unit
Steradian sr
Time t
Base unit of the SI
Second s
Other customary units without SI prefixes
Minute min
1 min = 60 s
Hour h
1 h = 60 min = 3600 s
Day d
1 d = 24 h = 86,400 s
Frequency f
SI unit
Hertz Hz
1 Hz = 1/s = 1 s−1
Other customary units
Kilohertz kHz
1 kHz = 103 Hz
Megahertz MHz
1 MHz = 106 Hz
Speed n
Other customary units without SI prefixes
Revolutions per second
1/s = 1 s−1
Revolutions per minute
1/min = 1 min−1
(Frequency of revolutions)
Velocity v
Cutting speed
v=?·d·n
SI unit
Metre per second m/s
Other customary units
Kilometre per hour km/h
1 km/h = 0.2778 m/s
Metre per minute m/min
1 m/min = 1.667 · 10−2 m/s
16
Acceleration a
SI unit
Metre per square second m/s2
Angular velocity
SI unit
Radian per second rad/s
Other customary units
Degree per second °/s
? = 2? · n
Angular acceleration
Volumetric rate of flow
SI unit
Radian per square second rad/s2
Other customary units
Degree per square second °/s2
(volume flow, volume throughput)
Weight m
SI unit
Cubic metre per second m3/s
Other customary units
Cubic metre per hour m3/h
Litre per minute l/min
Basic unit of the SI
Kilogramme kg
Other customary units
Gramme g 1 g = 10−3 kg
Milligramme mg
1 mg = 10−3 g = 10−6 kg
2.2.2. Mechanics
Type of quantity
Equation of quantity
Designation of unit
Symbol of unit
Megagramme Mg
1 Mg = 106 g = 103 kg
Decitonne dt 1 dt = 102 kg
Tonne t 1 t = 103 kg
Megatonne Mt 1 Mt = 109 kg
Density ?
SI unit
Kilogramme per cubic metre kg/m3
Other customary units
Kilogramme per cubic decimetre kg/dm3
1 kg/dm3 = 103 kg/m3
Gramme per cubic centimetre g/cm3
1 g/cm3 = 103 kg/m3
Force F
Mechanical F = m · a
Weight force
F=m·g
Electrical
F=E·Q
SI unit
Newton N 1 N = 1 m · kg · 3−2
Other customary units
Kilonewton kN 1 kN = 103 N
Meganewton MN 1 MN = 106 N
Moment of force M
(turning moment, bending moment)
M=F·l
SI unit
Newton metre Nm
1 Nm = 1 m2 · kg · s−2
Other customary units
Newton centimetre Ncm
1 Ncm = 10−2 Nm
Kilonewton metre kNm
1 kNm = 103 Nm
17
Pressure
Mechanical stress
Work W, A
Mechanical work
W=F·s
Electrical work
W=I·U·t
Energy W, E
Potential energy
W=m·g·h
Kinetic energy
SI unit
Pascal Pa
1 Pa = 1 N/m2 = 1 m−1 · kg · s−2
Other customary units
Kilopascal kPa 1 kPa = 103 Pa
Megapascal MPa 1 MPa = 106 Pa
Bar bar 1 bar = 105 Pa
Millibar mbar 1 mbar = 102 Pa
Kilobar kbar 1 kbar = 108 Pa
SI unit
Joule J
Watt second Ws
1J=1W·s=1N·m
Other customary units
Kilojoule kJ 1 kJ = 103 J
Megajoule MJ 1 MJ = 106 J
Gigajoule GJ 1 GJ = 109 J
Terajoule TJ 1 TJ = 1012 J
Watt hour Wh
1 Wh = 3,6 · 103 Ws
Kilowatt hour kWh
1 kWh = 3,6 · 106 Ws
Megawatt hour MWh
1 MWh = 3,6 · 109 Ws
Heat quantity W, R
Q = m · c · ?T
Power P
Mechanical power
Electrical power
SI unit
Watt W
1 W = 1 J/s
Other customary units
Milliwatt mW 1 mW = 10−3 W
Kilowatt kW 1 kW = 103 W
Megawatt MW 1 MW = 106 W
Heat output
Mass moment of inertia I
Mass flow
(mass throughput)
SI unit
Kilogramme square metre kgm2
SI unit
Kilogramme per second kg/s
1 kg/s = 1 kg · s−1
Other customary units
Kilogramme per hour kg/h
1 kg/h = 0,2778 · 10−3 kg/s
2.2.3. Electricity and magnetism
Type of quantity
Equation of quantity
Designation of unit
Symbol of unit
Current intensity I
Basic unit of the SI
Ampère A
Other customary units
Milliampère mA
1 mA = 10−3 A
18
Kiloampère kA
1 kA = 103 A
Quantity of electricity Q
(electric charge)
Q=I·t
SI unit
Coulomb C
1C=1s·A
Other customary units
Millicoulomb mC 1 mC = 10−3 C
Kilocoulomb kC 1 kC = 103 C
Ampère hour Ah
1 Ah = 3600 C = 3,6 kC
Electric power P
SI unit
Watt W
1 W = 1 J/s
Other customary units
Milliwatt mW 1 mW = 10−3 W
Kilowatt kw 1 kw = 103 W
Megawatt MW 1 MW = 106 W
Active power
P = I · U · cos ?
Reactive power
Q = I · U · sin ?
Apparent power
S=I·U
Voltage U
SI unit
Volt V 1 V = 1 W/A
Other customary units
Millivolt mV 1 mV = 10−3 V
Kilovolt kV 1 kV = 103 V
Megavolt MV 1 MV = 106 V
Electric field strength
E
SI unit
Volt per metre V/m
1 V/m · 1m · kg · s−3 · A−1
Other customary units
Kilovolt per metre kV/m
1 kV/m = 103 V/m
Volt per centimetre V/cm
1 V/cm = 102 V/m
Electric capacity C
SI unit
Farad F 1 F = 1 C/V
Other customary units
Picofarad pF 1 pF = 10−12 F
Nanofarad nF 1 nF = 10−9 F
Microfarad ?F 1 ?F = 10−6 F
Electric resistance R
SI unit
Ohm ? 1 ? = 1 V/A
Other customary units
Milliohm m? 1 m? = 10−3 ?
Kiloohm k? 1 k? = 103 ?
Megaohm M? 1 M? = 106 ?
Specific electric resistance
SI unit
Ohmmeter ?m
Type of electric conductor G
SI unit
Siemens S 1 S = 1/?
Other customary units
Millisiemens mS 1 mS = 10−3 S
Kilosiemens kS 1 kS = 103 S
19
Electric conductivity
SI unit
Siemens per metre S/m
1 S/m = 1/(? · m)
Magnetic flux ?
?=B·A
SI unit
Weber Wb
1 Wb = 1 V · s
Magnetic induction B
SI unit
Tesla T 1 T = 1 Wb/m2
Magnetic field strength H
SI unit
Ampère per metre A/m
1 A/m = 1 m−1 · A
Other customary units
Ampère per millimetre A/mm
1 A/mm = 103 A/m
Ampère per centimetre
1 A/cm = 102 A/m
Inductance H
SI unit
Henry H 1 H = 1 Wb/A
Other customary units
Picohenry pH 1 pH = 10−12 H
Nanohenry nH 1 nH = 10−9 H
Millihenry mH 1 mH = 10−3 H
Magnetic permeability ?
SI unit
Henry per metre H/m
1 H/m = 1 m
Field constant ?0
?0 = 12.566 · 10−7 H/m
2.2.4. Heat
Type of quantity
Equation of quantity
Designation of unit
Symbol of unit
Temperature T
(thermodynamic)
Celsius temperature Ñ
Ñ = T − 273,15
Basic unit of the SI
Kelvin K
Indication of temperature differential in Kelvin
Other customary unit
Degree Celsius °C
Heat quantity Q
SI unit
Joule J 1 J = 1 W · s
Calorific capacity C
SI unit
Joule per Kelvin J/K
2.2.5. Physical chemistry
Type of quantity
Equation of quantity
Designation of unit
Symbol of unit
Amount of substance n
Basic unit of the SI
Mol mol
Other customary units
20
Micromol ?mol
1 ?mol = 10−6 mol
Millimol mmol
1 mmol = 10−3 mol
Kilomol kmol
1 kmol = 103 mol
Molar mass MM
SI unit
Kilogram per mol kg/mol
1 kg/mol = 1 kg · mol−1
Other customary units
Gramme per mol g/mol
1 g/mol = 10−3 kg/mol
Gramme per kilomol g/mol
1 g/kmol = 10−6 kg/mol
Molar volume Vm
SI unit
Cubic metre per mol m3/mol
Other customary units
Cubic metre per kilomol m3/kmol
1 m3/kmol = 10−3 m3/mol
Litre per mol l/mol
1 l/mol = 10−3 m3/mol
Molal concentration
(molarity)
SI unit
Mol per cubic metre mol/m3
Other customary units
Kilomol per cubic metre kmol/m3
1 kmol/m3 = 103 mol/m3
Mol per litre mol/l
1 mol/l = 103 mol/m3
2.2.6. Optical radiation
Type of quantity
Equation of quantity
Designation of unit
Symbol of unit
Luminous intensity IV
Basic unit of the SI
Candela cd
Other customary units
Millicandela mcd
1 mcd = 10−3 cd
Kilocandela kcd
1 kcd = 103 cd
Luminance LV
SI unit
Candela per square metre cd/m2
Other customary units
Candela per square centimetre cd/cm2
1 cd/cm2 = 104 cd/m2
Luminous flux
SI unit
Lumen lm 1 lm = 1 cd · sr
Other customary units
Millilumen mlm
1 mlm = 10−3 lm
Kilolumen klm
1 klm = 103 lm
Illumination EV
SI unit
Lux lx 1 lx = 1 lm/m2
Other customary units
Millilux mlx 1 mlx = 10−3 lx
21
Kilolux klx 1 klx = 103 lx
Light quantity Q
Q = ?v l t
SI unit
Lumen second lms
1 lms = 1 s · cd · sr
2.3. Transformation of forces
Designation
Equilibrium
Parallelogram of forces
F has the same effect as F1 and
F1 · l1 = F2 · l2
Lever (theorem of moments)
FH = FG. sin ?
FN = FG. cos ?
FH · l = FG · h
FN · l = FG · g
FH = force at the slope
FN = normal force
FG = weight
22
Inclined plane
F1,2 forces at the faces
FE driving−in force
Two−sided wedge−shape
ME driving−in moment
FSp interior force in the core
FH force at the lever (e.g. hand forc
FE driving−in force
l vertical distance from the axis of t
r2 flank radius
p pitch
23
Thread with vertical flanks
F1 = F2
s1 = s2
F1 · S1 = F2 · S2
Fixed pulley
s1 = 2 · s2
Loose pulley
24
Shaft with pulleys
s1 = n · s2
n Number of carrying cables
Pulley block
Fu1 = Fu2; Vu1 = Vu2
;
Fu Peripheral force
Vu Peripheral velocity
Belt drive
25
A piston area
p pressure in the medium
Hydraulic systems
2.4. Translation and rotation
Translation
Rotation
Uniform movement
Velocity
v = constant
Angular velocity
? = constant; n = constant
Peripheral velocity
vu = ? · r = 2 · ? · r · n
Uniformly accelerated movement
Acceleration
a = constant
Angular acceleration
? = constant
Angle
Path
Free fall
Tangential acceleration
at = ? · r
Radial acceleration
(g = 9.81 m/s2)
Total acceleration
Force
F=m·a
Work
W=F·s
Power
Turning moment
M=F·r=Ñ·?
W=M·?
26
Kinetic energy
2.5. Friction coefficients
Material combinations
Static friction ?0
d1)
Sliding friction
?
l2)
d1)
l2)
Steel on steel
0.15 ... 0.33
0.1
0.15
0.01 ...
0.05
Steel on bronze
−
−
0.18
0.07
Steel on grey iron
0.2
0.1
0.18
0.01
Leather belt on grey iron
−
0.22
−
0.2 ...
0.7
Leather packing on metal
0.6
0.2
0.2
0.12
Brake lining on steel
−
−
0.55
0.4
1) dry, 2) lubricated
2.6. Mass moments of inertia
Body
Equation
I = axis of rotation
Cylinder
I = axis of rotation
Hollow cylinder
2.7. Stress and strain
Stress for
27
Strain
1 bar axis
Tension
1 bar axis
Pressure
Unit pressure − plane areas of contact
28
A=d·l
− curved areas of contact (intensity of bearing pressure)
Mb bending moment
Ja axial areal moment of intertia
Y distance from the neutral layer
Wa axial moment of resistance
1 line of cut, 2 pressure, 3 tension, 4
neutral layer
Bending
Mt torsional moment
Jp polar areal moment of inertia
? distance from the centre of the
cross−sectional area
Wp polar moment of resistance
29
1 line of cut
Torsion (distortion)
1 plane of shear
Shear
Hooke’s law
?=E·?
? = elastic strain
E = modulus of elasticity
l1 = length before loading
l2 = length after loading
Deformation in the case of tensile stress
2.8. Deformation in the case of bending stress
Stress
30
Bearing reactions
Bending moment (max.)
Deflection
2.9. Areal moments of inertia, moments of resistance
Figure
31
Axial areal moment of resistance
Moment of resistance
Figure
Polar areal moment of resistance
Moment of resistance
32
2.10. Moduli of elasticity
Material
Modulus of elasticity in GPa
Material
Modulus of elasticity in GPa
Al alloys
65...75
Red brass
90
33
Lead
Copper
15...18
Silver
70...80
125
Steel
200...220
Grey iron
75...105
Cast steel
210
Brass
80...100
Tungsten
350...400
Nickel
200...220
Zinc
110...130
2.11. Admissible strains (reference values)
Material
Load condition
Admissible load in MPa when stressed for
Pressure Tension Thrust
General structural steel
Cast iron
Nickel steel
Wrought steel
Cast steel
Special steels
Spring steel
Shear deformation
I
70
70
60
70
II
50
50
40
50
III
−
40
30
40
I
90
30
30
−
II
55
13
18
−
III
−
18
15
−
I
−
75
75
80
II
65
60
60
60
III
−
45
45
45
I
90
90
75
90
II
60
60
50
60
III
−
30
25
30
I
120
90
72
95
II
75
50
45
55
III
−
40
35
47
I
180
180
120
180
II
150
150
100
150
III
100
100
65
100
Tool steel
I dead; II increasing; III varying
3. Technical drawing
3.1. Types of drawing
Type
Content
Example
34
Total drawing
Assembly, machine,
building, plant ready
for operation
Installation plan for turning lathes
Assembly drawing
Several assembled
parts (often in the
sequence of
assembly)
used for mounting the assemblies
Detail drawing
Single part with data
on manufacture
Erlenmeyer flask; the letters show that it can be manufactured in different sizes
35
3.2. Sizes of drawings
Size
Dimensions in mm
Size
Dimensions in mm
A0
1189 × 841
A3
420 × 297
A1
341 × 594
A4
297 × 210
A2
594 × 420
A5
210 × 148
3.3. Subdivision of the sheet
A3, broadside
A4, upright
A5, broa
1 protective margin, 2 parts list, 3 space for text, 4 stitching margin, 5 drawing area
3.4. Lines
3.4.1. Groups of lines
Group of lines
1.2
Group of lines
0.5
36
Broad solid line
Narrow solid line
Dashed line
Broad dot−dash line
Narrow dot−dash line
Freehand drawn line
Dash−dot−dot−line
The group of lines with the bradest lines which are practical with regard to size, type and purpose of the
drawing should be used on a drawing. The breadths of lines specified for the individual types of lines within a
group should be observed as far as possible.
The different breadths of lines within a group of lines facilitate reading of the drawing.
3.4.2. Types of lines
Type of line
Use
1 broad solid line
(e.g. 0.5 mm)
visible edges of bodies characteristic lines of internal threads
2 narrow solid line
(e.g. 0.2 mm)
dimension lines, hatchings
3 dashed line
(e.g. 0.3 mm)
hidden edges of bodies
4 narrow dot−dash line
(e.g. 0.2 mm)
centre lines, pitch circles
of toothed gears break lines
5 freehand drawn line
(e.g. 0.2 mm)
Example
37
3.5. Lettering
For lettering technical drawings, standardized vertical medium−spaced lettering is being used increasingly.
3.5.1. Main dimensions of vertical medium−spaced lettering
Height of letters
h 2.5
Breadth of letters
s
3.5
5.0 7.0 10.0 14.0 20.0
0.25 0.35 0.5 0.7 1.0
1.4
2.0
3.5.2. Vertical medium−spaced lettering
38
3.6. Scales
Scaling up
50:1
10n:1
−
5:1
10:1
20:1
−
−
2:1
Natural size
Scaling down
39
1:1
1:2
−
−
1:20
1:10
1:5
1:200
1:100
1:50
1:(2×10n)
1:10n
1:(5×10n)
Diagram for selected scales
I Picture size
II Natural size
3.7. Rectangular project ion
40
Perspective representation
1 Front view
2 Left−hand view
3 Right−hand view
4 Top plan view
5 Bottom view
6 Rear−side view
Arrangement of the views
front views, top−plan views and lateral views are most frequently shown.
41
3.8. Figuring
3.8.1. Basic principles
Depending on its purpose, the drawing contains the figuring corresponding to the final state valid for the
workpiece. The following are used for figuring: dimension lines, reference lines, arrowheads, dimension
figures. The following aspects in particular are decisive for figuring:
− The drawing should contain all dimensions required for the manufacturing of the workpiece
− Dimensions indicate the final condition of the workpiece
− Each dimension occurs only once
− Dimensions should be entered according to function and manufacture
− Function dimensions are tolerated
− Dimensions must be capable to being checked by workshop test equipment
− Dimensions resulting from manufacture are not entered
− Dimensions which are checked particularly well by the customer should be marked
− Figuring is done in millimetres, otherwiese the units should be entered after the dimension
figure
3.8.2. Elements of figuring
Elements of figuring
M1 dimension figure
M2 dimension line
M3 arrowhead
M4 reference line
The dimension figures must be able to be read from below or from the right.
42
Arrangement of dimension figures and arrowheads
Figuring between
− two body edges
− two reference lines
− reference line and body edge
3.8.3. Special symbols
Diameter symbol
43
Symbol for circular cross
sections entered before the
dimension figure
Square symbol
Diagonal cross
Symbol for square cross
sections, entered before the
dimension figure.
The diagonal cross marks
quadrilateral plane areas
Radius symbol R
44
Symbol for roundings, entered
before the dimension figure
Sphere symbol, sphere
In the case of spherical shapes
the word sphere must be
entered ahead of the diameter
symbol
3.8.4. Notes on figuring
Dimensional reference system
Axis − area
Area − area
Two areas at right angles to each other are decisive for
function
Dimensional reference system
45
for symmetrical parts supported on one surface
Axis − axis
for parts with which bores are principally decisive for function, no bearing surfaces existing (castings)
Shoulders and bores
To be dimensioned starting from the reference surfaces
46
Symmetrical parts
to be dimensioned starting from the bearing surface and axis of symmetry
3.8.5. Indication of tolerances
Dimension without tolerances
Degree of accuracy
Admissible tolerance in mm
with nominal range of
dimensions in mm
>6...30
> 30...100
>
100...300
Fine
± 0.1
± 0.15
± 0.2
Medium
± 0.2
± 0.3
± 0.5
Rough
± 0.5
± 0.8
± 1.2
±1
± 1.5
±2
Very rough
Dimensions with tolerances
External dimension
47
Internal dimension
Spacing dimension
Angular dimension
3.9. Working and material characteristics
3.9.1. Surface characteristics
Symbol Explanation
Manufacturing process
Optional manufacturing process
casting, pressing, milling
Separation specified
turning, filing, grinding
Operating process excluding separation
forging, rolling
48
Example of figuring
3.9.2. Surface roughness
Medium roughness Rz in
mm
160, 80
Function
Manufacturing process
External surfaces which are not stressed
chill casting
40
resting bearing surfaces
precision pressing,
milling
20
resting connecting and sliding surfaces (low
speed)
finish drilling, finish
milling
10
sliding surfaces (medium speed)
precision grinding
3.9.3. Material characteristics
Material
Sectioning
Material
Metal (steel, cast steel, grey iron, copper)
Wood
Non−metal (felt, fibre, rubber, leather, plastic)
Sintered metal
Electric windings
Brickwork
Transparent and translucent matter (glass, celluloid)
Plain concrete
Liquids
Earth
3.10. Sectional view
Use
49
Representation
Sectioning
Full section
The internal shape of the
workpiece should be
visible over the whole
cross section
1 Drawing plane
2 Section plane
Half section
The internal and external
shapes of the workpiece
should be visible over
the whole cross section;
for symmetrical
workpieces only;
the lower or the right half
of the workpiece should
be shown in section
50
Part section
The internal shape of a
limited part of the
work−piece should be
visible; limitation of the
part section by a
freehand drawn solid line
or by a solid zigzag line
51
3.11. Partial and interrupted representation
Type
Examples
Partial representation
− with limitation by a narrow
solid zigzag line
− with limitation by a narrow
freehand drawn solid line
52
Partial representation
− Without limiting line (with
cut surfaces)
Interrupted representation
− With limitation by two
parallel narrow solid zigzag
lines
− with limitation by two
narrow freehand drawn
solid lines
− without limiting lines (with
cut surfaces)
3.12. Representation of thread
Type of thread
External thread
1 Thread symbol line
53
Representation
Internal thread
1 Thread symbol line
3.13. Simplified representation of holes and counterbores
Type
Representation
Round through hole
(hole diameter is
indicated)
Tapped through
hole (thread symbol
and numerical
value are indicated)
Round blind hole
and threaded blind
hole (Dimensional
data are
supplemented by
the cylindrical depth
of the hole and the
effective length of
thread,
respectively)
Holes with
tolerances
(Tolerances to be
indicated after the
dimension)
54
Counterbores;
conical or
cylindrical
(Diameter and
angle of cone or
diameter and depth
to be indicated after
the dimension)
3.14. Simplified representation of disconnectable connections
3.14.1. Connecting elements
Connecting element
Screw with hexagon
head and trunnion,
thread not up to the
head
Cross−slotted screw
with fillister head
Screw with cylinder
head and transverse
slot
Screw with
countersunk fillister
head and transverse
slot
55
Representation simplified
symbol
Plain pin
Taper pin
Hexagon nut
Washer
Spring washer
3.14.2. Screw joints
Type of joint
Representation simplified
symbol
Screw joint with hexagon−head screw,
washer and nut
56
Screw joint with cheese−head screw
Screw joint with countersunk screw
57
4. Metal materials
4.1. Characteristics
Characteristics of metals
Crystalline structure;
Metallic lustre;
Strength, formability (chipless),
Work−hardenability (highly temperature−dependent);
Good electric and thermal conductivity;
Decomposition in acids with the generation of salts;
Cations in aqueous metallic salt solutions;
Solid (crystalline) state at room temperature and normal pressures (with the exception of mercury)
4.2. Subdivision
Aspect
Subdivision (examples)
General
ferrous materials
pure iron
steel (alloyed or unalloyed)
cast iron
non−ferrous
materials
According to density
light metals
(? < 5 g/cm3)
aluminium
magnesium (or the corresponding alloys)
heavy metals
(? > 5 g/cm3)
iron
copper
gold
Aspect
Subdivision (examples)
58
according to melting point
low melting
(ts 900°C)
lithium
tin
lead
high−melting
(ts 900...2000°C)
silver
copper
iron
very high−melting
(ts 2000 °C)
molybdenum
tantalum
tungsten
according to production
melt−metallurgical
(reguline metals
electrolytic
power−metallurgical sintered
metals, heavy base metals
except iron
according to colour
ferrous metals
iron and its alloys
non−ferrous metals
lead
zinc
nickel
according to chemical
properties
precious metals
gold
silver
platinum
base metals
aluminium
iron
4.3. Properties and use of important metals
Metal
Aluminium
Symbol
Density in
103 kg/m3
Melting point
in °C
Al
2.7
660
General (technological) properties
Whitish; a protective oxide film is formed on fresh
shoulders of cut which increases its resistance to
wear; relatively resistant to acids; lyes attack Al
seriously; formed by drawing, spinning, pressure
deep−drawing, deep−drawing, forging, rolling; can
be welded, soldered or glued; metal−removing
processes possible under certain circumstances
(“lubrication”)
Use
Winding or cable wire, condenser foil in electrical
engineering; foil for food packing; alumino−thermic
welding; with the addition of alloys in aircraft and
vehicle construction.
Antimony
Sb
6.68
630
General (technological) properties
Silver white, bright, very brittle, easily pulverizable;
increases the hardness of alloys; toxic, resistant to
hydrochloric acid and diluted sulphuric acid
Use
Only as alloying metal for babbitt bearings, hard
lead, batteries, die cast products
Cadmium
Cd
8.64
General (technological) properties
59
320.9
Bright, white; easily soluble in nitric acid, vapours
and soluble salts are toxic; soft, well formed by
hammering, rolling, drawing
Use
For cadmium−plating; for the production of
low−melting alloys, fusible hard solder, batteries,
bearing metals
Chromium
Cr
7.19
1903
General (technological) properties
Silver white; very toxic, resistant to nitric acid, not
resistant to diluted sulphuric acid; very hard and
brittle
Use
Alloying metal for iron materials (cutting metals and
heavy−duty engineering components); coating metal
for surface protection
Cobalt
Co
8.83
1495
General (technological) properties
Steel grey, bright; soluble in diluted oxidizing acids;
great toughness and hardness, forgeable, magnetic
Use
Almost exclusively as alloying metal for hard metals
and tool steels; radioactive isotope for material
testing
Copper
Cu
8.93
1083
General (technological) properties
Light red; soluble in oxidizing acids, soluble copper
compounds are toxic; best electrical conductivity
apart from silver, very soft, but tough and very
ductile, properly formable without chip,
metal−removal forming difficult (lubricant); can be
brazed, soldered and welded
Use
Wiring material in electrical engineering; material for
boilers, heating tubes, cooling coils in the chemical
industry; for galvanic cells; alloyed with zinc (brass),
alloyed with tin (bronze)
Gold
Au
19.28
1063
General (technological) properties
Yellow−red, bright, polishable, precious metal,
extremely resistant to chemicals, not resistant to
halogens, calcium cyanide and aqua regia only; soft,
greatest ductility of all metals, very well formed by
60
rolling, drawing, forging, hammering
Use
Alloyed with Ag, Cu, Pt, Pb and Ni for jewellery,
dental material, precision−mechanical and optical
parts, electrical contacts, spinnerets
Iron
Fe
7.87
1536
General (technological) properties
Bluish−white, polishable, easily magnetized; not
resistant to humidity or water (formation of rust),
soluble in diluted acids; high strength, corrosion
resistance and resistance to scale by the addition of
alloying metals
Use
Wide field of application as steel, cast steel or cast
iron when adding alloying elements (e.g. carbon, Cr,
Ni, Wo, Mo)
Lead
Pb
11.34
327.4
General (technological) properties
Bluish−white fracture of silvery gloss,
fine−grain; very toxic,
resistant to sulphuric acid and hydrofluoric acid; very
soft easily cast, very well formed by rolling,
hammering, pressing; cannot be drawn.
Use
Coating metal in tank construction (chemical
industry); pipes and packing rings; lead paints, such
as white lead, red lead; radiation protection in
medicine; alloying metal for bearing materials; lead
cable
Magnesium
Mg
1.74
650
General (technological) properties
Silver white, bright; thin, dull−white oxide layer in the
atmosphere, burns with a dazzling white flame (t 500
°C), soluble in diluted acids, resistant to lyes;
castable only with difficulty, easily worked when hot,
well suited for forming by metal removal, (danger of
chip ignition!).
Use
Used in pyrotechnics; alloying element, especially
together with Al and Zn for vehicle construction and
mechanical engineering.
Manganese
Mn
7.21
General (technological) properties
61
1244
Silver white, steel−grey if containing carbon; easily
soluble in diluted acids, has a deoxidizing effect in
steel and casting melts; very hard, brittle
Use
Exclusively as alloying element and deoxidant of
steel; manganese steel for rails; all types of
heavy−duty components
Mercury
Hg
13.55
38.87
General (technological) properties
Silver−white bright precious metal; liquid at room
temperature, high surface tension, vapours and
soluble compounds highly toxic; insoluble in diluted
sulphuric and hydrochloric acid
Use
In thermometers, gas pressure gauges, electric
switches, high−vacuum pumps, mercury−vapour
rectifiers, mercury−vapour lamps; for moulds in the
production of precision components
Molybdenum Mo
10.2
2625
General (technological) properties
Silver white; very resistant, very ductile, very strong,
easily formed by embossing, hammering, rolling,
drawing
Use
Worked into sheets, tubes, bars and wires for
electron tubes and incandescent lamps; important
alloying element of steel; alloys with other
high−melting metals (Wo, Ta, Ti)
Nickel
Ni
8.9
1455
General (technological) properties
bright white; resistant to water, air, alkalis, diluted
acids (except nitric acid); polishable, tough,
ferromagnetic, easily formed by rolling, forging,
drawing, weldable
Use
Carrier of oxide cathodes in radio valves; alloying
element of steel (Cr, Ni steel); surface protection by
nickel−plating
Platinum
Pt
21.45
1733
General (technological) properties
Grey−white, bright precious metal; high solubility for
hydrogen, resistant to oxygen and acids; very
ductile, easily formed by hammering, rolling, drawing
62
Use
For the manufacture of laboratory equipment, wires,
electrodes, galvanic cells, contacts in weak−current
engineering, catalyst in the chemical industry
Silicon
Si
2.33
1412
General (technological) properties
Semi−metal; dark grey, bright or brown powder
(depending on surface condition); easily soluble in
lyes; very brittle, easily pulverizable
Use
Deoxidant; alloying element for steel (steels of high
silicon content with high resistance to acids), for
aluminium and copper alloys
Silver
Ag
10.5
960.8
General (technological) properties
White lustre, polishable, precious metal; easily
soluble in diluted nitric acid; very soft; the most
ductile metal apart from gold, easily formed by
hammering, forging, rolling, drawing; very good
conductor of heat and electric current
Use
Important mirror metal; for silver−plating and
cladding; alloys for chemical equipment and surgical
instruments
Tantalum
Ta
16.67
2990
General (technological) properties
Grey, bright; soluble in a mixture of concentrated
nitric and hydrofluoric acid; very hard, extremely
ductile, can be drawn to thin threads
Use
Chemical apparatuses, tantalum rectifiers and
capacitors, surgical auxiliary devices; alloying
element for stainless steels and special steels;
tantalum carbide for hard metal
Tin
Sn
7.29
231.9
General (technological) properties
Silver white, bright; resistant to diluted organic acids;
low hardness, high ductility, can be rolled, can be
drawn to wire at 100 °C; “tin cry” when bending a tin
bar
Use
Coating metal; alloying element together with Pb and
63
Cu; important tin alloys; tin solders, tin bearing
metals
Titanium
Ti
4.5
1690
General (technological) properties
Silver white, similar to steel; resistant to the
atmosphere, soluble in hydrofluoric acid, very
corrosion−resistant; hard and brittle, forgeable only
with red heat, cold rollable, high strength but low
weight
Use
Material for chemical plants; in the form of alloys with
Al, Cr and V it is an important construction material
for rocket and jet propulsion systems; alloying
element for steel; titanium carbide for hard metal
Tungsten
W
19.3
3380
General (technological) properties
White, metallic lustre; soluble in a mixture of
concentrated nitric and hydrofluoric acid; ductile by
hammering, can be drawn to wires
Use
Alloying element for special steels; for the production
of electric−lamp filaments, incandescent lamps and
electron tubes; for hevy−duty electrical contacts
Vanadium
V
5.98
1730
General (technological) properties
Bluish grey, bright, resistant to the atmosphere,
soluble in oxidizing acids; very hard, can be
hammered and rolled in its purest state
Use
Filter for X−rays; alloying element for tool steels
(increases hardness and stability)
Zinc
Zn
7.14
419.4
General (technological) properties
Bluish−white, very bright; surface oxidation in humid
atmosphere, soluble in aqueous hydrochloric acid
(soldering fluid); brittle at room temperature, can be
formed without chips at high temperatures (90...200
°C), pulverizable, easily cast, soldered and welded
Use
Sheets, strips, foils; extruded cups for dry elements;
for galvanizing; for zinc paints; alloying element
(brass, nickel silver)
64
4.4. Ferrous materials
4.4.1. Terms
Term
Explanation
Steel
ferrous materials melted
from pig iron, scrap and
stabilizer for steel
carbon content 0.05 −
2.06 % can be worked
cold or hot
Unalloyed steel
The iron admixtures do
not exceed the following
maximum values:
0.8 % Mn
0.5 % Si
0.25 % Cu
0.1 % Al or Ti
0.1 % P and S together
Alloy steel
The iron admixtures
exceed the maximum
values of the unalloyed
steel, or other
components (alloying
elements) are added in
order to achieve certain
properties
Low−alloy steel
alloying elements
<5%
High−alloy steel
alloying elements
>5%
Ordinary
Maximum values of
detrimental iron
admixtures P and S
together ? 0.1 %,
ensurance of
mechanical properties
such as tensile strength,
yield point, strain at
failure
High−grade steel
High degree of purity
from non−metallic iron
admixtures, P and S <
0.04 % each, suitable
for heat treatment
processes
Stainless steel
High uniformity of
properties and very
good surface condition.
P and S ? 0.040 % each
65
Cast steel
tough, forgeable, strong
steel for highly stressed
castings, cast into
moulds
Grey cast−iron
Ferrous material from
pig iron, cast iron scrap
and scrap with the
following general
composition which is
cast into moulds:
C = 2.8 − 3.5 %
Si ? 3.8 %
Mn ? 1.2 %
P ? 1.0 %
S ? 0.15 %
not forgeable, great
rigidity and damping
property
Malleable cast−iron
Material melted from
white pig iron which
becomes forgeable by
heat treatment
(tempering) at 950 −
1000 °C, duration of
treatment approx. 4 − 6
days.
Chilled cast−iron
hard and wear−resistant
cast iron with the
following, general
composition:
C = 2.06 − 3 %
Si = 0.4 − 1.2 %
Mn = 0.8 − 1.3 %
White cast iron
The casting is very hard
throughout
Chilled cast iron
The casting is very hard
on the surface only
4.4.2. Steel
Elements of symbols
Steel type or steel production
Symbol
Meaning
C
unalloyed high−grade and stainless steel
St
unalloyed structural steel
W
unalloyed tool steel (w at the end of the symbol)
X
high−alloy steel
E
electric steel
M
open−hearth steel
66
T
Thomas steel
W
steel produced in a special process (W at the beginning of the symbol)
1
Grade 1, type of melting according to the producer’s own judgement (exception: St 38 S is
produced according to the Thomas process)
2
Grade 2, type of melting either according to the open−hearth process, the Ld process or
the improved Bessemer process
3
Grade 3, Ld process or open−hearth process; the steels are to be cast as non−ageing
structural steels, especially killed (e.g. using Al)
u
Cast unkilled, gas formation during casting results in voids in the material
hb
Cast semi−killed
b
Cast killed, gas formation is prevented by the addition of metals (e.g. aluminium)
Heat treatment condition
Symbol Meaning
Symbol Meaning
U
Untreated
S
stress−relief annealed
G
Soft annealed
V
hardened and tempered
N
Normalized
K+V
Cold drawn and hardened and tempered
VÖ
Oil treated
K+G
Cold drawn and soft−annealed
VL
Tempered in air
A
Tempered
AS
Quenched
H+A
Hardened and blown
Alloying component of low−alloy steels
Factor Alloying element
4
Al, Cr, Co, Cu, Mn, Ni, Si, W
10
Be, Mo, Nb, Ta, Ti, V
100
C, Ce, N, P, S
Scope of guarantee in the case of cast steel
Symbol Meaning
.1
Yield point
.2
Yield point and transverse bending test
.3
Yield point and notched−bar impact strength
.5
Yield point, notched−bar impact strength and transverse bending test
.9
Magnetic induction
Examples of designation
Unalloyed structural steel:
Examples:
St 38 u − 2
MSt 42 − 3
67
Meaning:
St
38
u−
2
General structural steel
Minimum tensile strength 380 Mpa
unkilled
Grade 2
M
St
42 −
3
Open−hearth Steel
structural steel
minimum tensile strength 420 MPa
Grade 3
Unalloyed high−grade steel or stainless steel
Examples:
C 45 V 90
C 115 W 1
Meaning:
C 45
V
90
Unalloyed high−grade steel or stainless steel; 0.45 % hardened and tempered
C
minimum tensile strength
900 MPa
C 115
W
1
Unalloyed high−grade steel 1.15 % C
tool steel
Grade 1
Low−alloy steel
Examples:
13 Cr Mo 4.4
M 37 Mn Si 5 V
High−alloy steel
Examples:
X 97 W Mo 3.3
X 125 W V 12.4
68
Cast steel
Examples:
GS − 40.2
GS − 22 Cr Mo 5.4
GS − X 10 Cr 13
Meaning:
Properties and use of steel brands
General structural steels
Unalloyed steels of high toughness, marked yield point and guaranteed minimum tensile strength; frequently
used in mechanical engineering and steel construction
Steel brand of grade
1
2
3
St 33
St 34 St 34
u−2
Tensile
strength in
MPa
St
34−3
Yield point in MPa
at a thickness in
mm of
Strain at
failure in %
?
20
20 to
40
40 to
100
(l0 = 5d0)
? 330
−
−
−
22
340...420
220
210
200
30
380...470
240
230
220
25
St 34
hb−2
St 34
b−2
St 38
69
Rolling and forging
temperature in °C
1200...900
St 38
u−2
St
385
St
38−3
St 38
hb−2
St 38
b−2
St 42 St 42
u−2
St
42−3
420...520
260
250
240
23
−
500...620
300
290
280
19
St
52−3
520...620
360
350
340
22
600...720
340
330
320
14
700...850
370
360
350
10
1150...850
St 42
hb−2
St 42
b−2
St 50−2
(...)
1100...850
Case−hardening steels
Unalloyed and alloyed structural steels in which the external zone is enriched with carbon after forming
(possibly at the same time with nitrogen) and subsequently hardened
Steel
brand
Tensile strength
(case−hardened in
the core) in MPa
Hardness
(normalized)
(HB30)
Heat treatment
Examples of
use
Normalizing
in °C
Hardening
in °C
Tempering
in °C
C 10
420...550
140
890...920
890...920
150...180
Wearing parts of
small
dimensions:
pressed parts
and punched
parts, rollers,
levers
15 Cr 3
600...900
202
870...900
870...900
150...180
Bolts, spindles,
measuring tools
16 Mn
Cr 5
800...1100
229
850...880
850...880
170...210
Camshafts,
toothed gears,
worms, pressing
dies for artificial
resin
15 Cr
N 16
900...1200
−
−
840...870
170...210
Toothed gears,
shafts, axles
readjusting
screws
20 Mo
Cr 5
800...1100
229
850...880
870...900
180...280
Shafts, axles,
toothed gears,
Pressing dies
for artificial resin
70
18 Cr
Mn Ti
5
950...1200
245
850...880
870...900
170...210
Toothed gears,
shafts, axles
Quenched and subsequently tempered steels
Unalloyed and alloyed structural steels, whose toughness, tensile strength and yield point can be adapted to
the purpose of use by hardening (800 − 900 C) and subsequent tempering (530 − 670 °C)
Steel
brand
Hardened and tempered Tensile
strength in MPa at a diameter in
mm of
Minimum
yield point
Soft
annealed
hardness
Examples of use
16...40
40...100
100...160
in MPa
in HB
C 60
750...900
700...850
−
450
229
Small parts of high tensile
strength: gear parts, shafts,
lock components
30 Mn
5
800...950
700...850
−
450
217
Low−stressed components:
shafts, bolts, nuts, screws
37 Mn
Si 5
900...1100
800...950
700...850
450
229
Crankshafts, gear wheels,
bolts, Cardan shafts
34 Cr 4
900...1100
800...950
700...850
450
197
Medium−stressed
components; gear
components
50 Cr
V4
1100...1300
900...1100
800...950
550
235
High−stressed
components; pinions,
connecting rods
30 Cr
1250...1450 1100...1300 950...1150
700
248
High−stressed components
of larger cross−sections
Steels resistant to pressurized hydrogen
heat−treatable steels whose resistance to pressurized hydrogen at operating temperature is ensured by the
addition of Cr, Mo, W, or V
Steel brand
Tensile strength in MPa
Resistance to
pressurized hydrogen
Pü in MPa
t in °C
Examples of use
10 Cr Mo 9.10
450...600
32.5
400
Petroleum refining
16 Cr Mo 9.3
550...650
32.5
375
Welded high−pressure
hollow bodies
24 Cr Mo 9
650...800
32.5
350
Regenerators, furnace
shells
17 Cr Mo W 11
650...800
32.5
480
High−pressure pipes,
shaped parts
Unalloyed tool steels
High−purity steels with uniform hardening behaviour;
mainly used for cold working tools (high surface quality and tough core)
Grade
71
Steel
brand
Hardening in
water
in ° C
temperature in
oil
in ° C
Examples of use
1
2
3
C 100 W
1
760 to
790 to
C 110 W
1
790
820
C 70 W 2
780 to
800 to
C 90 W 2
810
830
C 60 W 3
780 to
800 to
C 75 W 3
810
830
−
780 to
Milling cutters, reamers, cutting dies,
thread cutting tools, cutting dies
Clamping screws and adjusting screws,
embossing dies, milling cutters
Hot dies, hot rolling, vice jaws and
machine jaws
810
Steels for special
purposes
C 55 WS
800 to 830
−
C 85 WS
780 to 810
790 to 820
Hand saws, mill saws and circular
saws, anvils, axes
Alloyed cold working steels
Tool steels for chipless or metal−removing shaping of materials, mainly when cold (room temperature)
Steel brand (example)
Application group
125 Cr 1, 130 Cr 2, 140 Cr 2
Files
90 Mn V 8, 105 W Cr 6, 115 Cr V 3, 100 Cr 6
Thread cutting tools
37 W Cr V 7, 80 Cr V 3, X 90 Cr Mo V 18, 80 W Cr V 8
Mechanical cutting
blades
100 Cr 6, 110 Mo V5, 120 WV 4, 115 Cr V3, 115 W 8
Metal saws
35 W Cr V7, 45 Cr Si V6, 105 Mn Cr 4, 55 W Cr V7
Dies, punchers
140 Cr 2, 142 W Cr V 13, X 210 Cr 12
Drawing tools
90 Mn V8, 100 Cr 6, 145 Cr V 6, 105 Mn Cr 4
Measuring tools
Hot working steels
Tool steels for chipless or metal−removing forming of materials, mainly when hot (> 300 °C); the working
surfaces are subject to great heat and frequent temperature change.
Steel brand
Hardness when
soft−annealed
HB
Hardening
temperature
in °C
Hardening
medium
28 Cr Mo
11.28
225
1030...1060
oil
Extruding and
spinning tools for
heavy and light
metals
37 Cr Mo WV
20.15
225
980...1050
oil
Extruding and hot
upsetting tools
1000...1050
air
820...850
oil
40 Ni Cr Mo
15
265
Examples of use
Hot pressing dies for
light metals and Cu
72
alloys
45 Cr Mo V
6.7
225
850...870
air
930...970
oil
Die casting tools for
light metals
High−speed steels
High−alloy tool steels with a high wear resistance and special suitability for metal−removing tools for high
cutting speeds at great thermal stress (? 600 °C)
Steel brand
High−speed steel
class
Hardening
temperature
in °C
Tempering
temperature
in °C
Examples of use
ABC III
1190...1210
530...550
Spiral drills, milling
cutters, reamers (for
materials up to ?B = 850
MPa)
B 18
1230...1260
550...570
tools of difficult shape
which are sensitive to
grinding
X 82 W Mo
6.5
DM 05
1190...1230
540...560
high−quality spiral drills
and milling cutters
X 125 WV
12.4
EV 4
1210...1240
550...570
smoothing tools for
automatic operation
X 133 W Co
12.5
EV 4 Co
1120...1250
560...580
tools for difficult roughing
operations
X 79 W Co
18.5
E 18 Co 5
1250...1280
560...580
turning tools, planing
tools and slotting tools
X 97 W Mo
3.3
X 74 WV
18.1
Corrosion and acid−resistant steels
High−alloy steels with a chromium content ? 12 %, highly resistant to atmospheric attack, and to numerous
organic and inorganic acids, lyes and salt solutions
Steel brand
Tensile
strength
in MPa
Maximum hardness
HB
X 10 Cr 13
600...750
210
Valves, pipes, turbine blades
X 20 Cr No 13
750...900
260
Steam turbine blades, moulds for die casting
X 12 Cr Mo S
17
650...850
235
fittings, screws (easily machinable)
X 35 Cr Mo 17
800...950
275
shafts, spindles, valves, high−temperature
resistant parts
X 90 Cr Mo V
18
? 900
260
cutlery, antifriction bearings
700...900
210
springs, sheets, high−strength strips
X 12 Cr Ni
17.7
Examples of use
Heat and scale−resistant steels
High−alloy steels which form protective layers at temperatures above 600 °C and for this reason have an
increased resistance to scale in air, fuel gases and other chemical substances
73
Steel brand
Tensile
strength
in MPa
Hardness
HB
Usable in air up
to °C
Examples of use
X 10 Cr Al 7
450...600
140...185
800
X 10 Cr Al 24
500...650
170...215
1200
X 8 Cr Ni Ti
18,10
500...750
130...190
800
for higher mechanical stress;
X 15 Cr Ni Si
25,20
600...750
145...190
1200
see above
for moderate mechanical stress,
annealing and hardening boxes,
pipes
Unalloyed cast steel
Steel cast into metal or non−metal moulds (free of graphite and ledeburite) with guaranteed mechanical
properties at temperatures from 10 − 250 °C; no particular specifications
Grade
Tensile strength
in MPa
Yield point
in MPa
Strain at failure
in % (l0 = 5d0)
GS − 40
400
−
20
GS − 40.5
400
200
25
GS − 45
450
−
17
GS − 45.3
450
230
22
GS − 50.2
500
260
20
GS − 60.1
600
320
15
Corrosion and acid−resistant cast steel
Cast steel with a Cr content of ? 12 %, highly resistant to atmospheric influences, to numerous organic and
inorganic acids, lyes and salt solutions; high resistance to corrosion and strength owing to the addition of Ni,
No, Ti and Nb
Grade
Examples of use
GS − X 10 Cr 13
Turbine blades, valves for hydraulic presses, cracking plants
GS − X 60 Cr 29
Components for the food and chemical industries
GS − X 120 Cr Mo 29.2
Highly corrosion−resistant castings for the chemical industry
GS − X 12 Cr Ni 18.9
Pumps, valves in the chemical industry (heat−treatment required after
welding)
High−temperature resistant cast steel
Cast steel with favourable strength values (in particular a relatively high yield point), usable in the temperature
range of 250 − 540 °C
Grade
Tensile strength
in MPa
Yield point in MPa at
temperatures in °C of
20
Strain at failure in %
(l0 = 5d0)
200 300 350 400
GS − C 25
450...600
250 220 170 150 130
22
GS − 22 Mo 4
450...600
250 240 210 190 170
22
74
GS − 22 Cr Mo 5.4
530...700
300 290 280 260 240
20
GS − 20 Mo V 8.4
600...800
340 350 320 310 290
15
4.4.3. Cast iron
Elements of symbols
Symbol
Meaning
GGL
Cast iron with lamellar graphite
GGG
Cast iron with spheroidal graphite
−X
High−alloy cast iron
GH
White cast iron
GHK
Chilled cast iron
GT
Malleable cast iron (white or black)
GTW
White malleable cast iron)
) previous
GTS
Black malleable cast iron)
) symbols
GTP
Pearlitic malleable cast iron)
)
Properties and use of the cast iron grades
Grade
q
Tensile strength
(min.)
in MPa
Hardness (max.)
HB
Examples of use
GGL − 00
−
−
GGL − 25
250
245
Castings for mechanical engineering
GGG − 40
400
190
Couplings, housings, crankshafts, toothed
gears
GGG − 50
500
240
GH − 200
−
300
GH − 300
−
? 300
GHK − 400
−
−
GT − 35
350
190
Spanners, keys, levers,
GT − 35E
350
220
Clamps differential casings rear axle
housings, gear−boxes, pressure levers
GT − 40E
400
220
GT − 45
450
200
GT − 65
650
250
Bench, gearing, columns
Upper dies, lower dies, balls for mills
4.5. Alloys of non−ferrous metals
4.5.1. Terms
Term
75
Explanation
Wrought
alloy
Alloy which is to be further formed without chips after casting into ingot moulds, pig or ingot
slab moulds (e.g. to pressed parts, bars, sections, sheets or strips)
Cast alloy
Alloy which, in most cases, is cast into moulds (by sand casting, pressure casting or die
casting) and, as a rule, is finished by metal removal only
4.5.2. Elements of symbols
Symbol
Meaning
Symbol
Meaning
G
sand casting
Kb
cable
metal
GD
pressure casting
L
soldering
metal
GK
die casting
Lg
bearing
metal
GZ
centrifugal casting
R
pipe metal
4.5.3. Properties and use of grades of alloys
Material
Grade
Tensile
strength
(min.)
in MPa
Hardness
HB
Technological
properties Use
Aluminium wrought alloys
Al Mg alloys
AlMg1
100...160
30...50
Corrosion−resistant and
sea−waterproof, not
hardenable linings in
shipbuilding and vehicle
construction;
foodstuffs industry
AlMg5
240...320
55...80
Al Mg Si alloys
AlMgSi1
200...320
60...95
Hardenable when cold
or hot at 140−160 °C in
12 − 4 hours, resistant
to chemicals; Structural
parts in shipbuilding and
vehicle construction,
construction
engineering, foodstuffs
industry
Al Cu Mg alloys
AlCuMg1
370...400
90...100
Hardenable when cold,
susceptible to corrosion;
mechanically
highly−stressed parts in
vehicle construction,
aircraft manufacture and
mechanical engineering
AlCuMg2
390...440
105...110
−
−
−
Aluminium casting alloys
G − Al Si Cu Ni alloys
Hardenable when hot
(at 185 °C in 15 hours),
good strength
76
properties;
pistons of combustion
engines
G − Al − Si alloys
G−AlSi12
−
−
Very easily castable,
hardenable when hot or
cold by a small addition
of Mg;
complicated thin−walled
castings (resistant to
chemicals, resistant to
great mechanical
stress)
Lead casting alloys (bearing metals)
Babbitt 5
LgPbSn5
−
22
Can be soldered on
alloys
(Cu−Zn−Sn−basis),
steel, cast steel;
Bearings of general
mechanical engineering
(P stat ? 25 MPa)
Babbitt 10 free of copper
LgPbSn10
−
23
Loadable and
solderable as above;
bearings coming into
contact with media
containing ammonia
Babbitt 80
LgSn80
−
28
Optimum solderability
and castability, loadable
up to P stat ? 30 MPa
Babbitt 80 containing
cadmium
LgSn80Cd
−
35
Optimum solderability
and castability; bearings
for diesel engines
CuZn40Pb2
CuZn40
CuZn39Pb
370...680
90...170
Very easily formed by
metal removal, slightly
chipless forming when
cold; screws, rotating
parts; formable when
hot or cold; Hot
castings, screws,
rotating parts
CuZn37
300...550
70...160
Main alloy for cold
forming
CuZn37Pb1
300...550
70...160
Screws, pipes, radiator
strips
CuZn30
280...530
70...155
Very easily formable
when cold pipes,
sleeves
CuZn20
270...500
65...150
Pipes, sleeves, netting
wires, wiring parts
CuZn29Al
370...650
75...170
Corrosion resistant,
anti−fatigue; leaf
springs and spiral
Copper wrought alloys
Brass (Cu−Zn)
Special brass
77
springs
(Cu−Zn−...)
CuZn21Al2
330...350
80...95
Sea−waterproof;
condenser tubes,
machine parts
Tin bronze
CuSn2
260...370
55...100
Formable, slightly
chipless;
(Cu−Sn)
CuSn8
400...700
90...200
springs, screws
Multi−component tin
bronze
CuSn4
Zn4Pb4
320
70
Membranes, heat
exchanger tubes,
Bourdon tubes for
pressure gauges
CuSn6Zn6
400...750
100...215
Nickel brass
CuNi12
Zn30Pb
500...600
150...175
(Cu−Ni−Zn)
CuNi18
520...620
155...180
CuAl5
320...450
75...125
Acid−resistant,
equipment for the
chemical industry
Cast tin bronze (Cu−Sn)
G−CuSn10
−
−
Good sliding properties,
resistant to alkalis, heat
resistant up to 180 °C
Cast multi−component
G−CuSn
10Zn5
−
−
Tenacious,
wear−resistant, average
sliding properties
tin bronze and
G−CuSn6
−
−
Heat resistant up to 200
°C, high wear
resistance
red brass
Zn7Pb4
(Cu−Sn−Zn...)
G−CuZn33
Pb2
−
−
Fittings, housings,
construction parts
Cast multi−component
aluminium bronze
(Cu−Al−...)
G−CuAl10
Fe3Mn2
−
−
High corrosion
resistance and wear
resistance
Cast multi−component
aluminium bronze
(Cu−Al−...)
G−CuAl9
Ni4Fe4Mu2
−
−
Bearings for highest
requirements on sliding
properties and surface
pressures (composite
casting with protective
steel skin)
G−CuPb22Sn5
−
−
Good sliding and
antifrictional properties;
Bearings with maximum
surface pressures and
low running speeds
Medical and precision
instruments,
table−plates
Zn19Pb
Aluminium bronze
(Cu−Al)
Copper casting alloys
Zinc casting alloys
78
G−ZnAl4
250
70
Components with high
requirements on
dimensional stability
G−ZnAl6
180
80
Castings which are
difficult to cast
GK−Zn
220
80
LSn25
−
−
Solder for flame
soldering
LSn30
−
−
surfacer soldering
LSn50
−
−
general soldering
purposes
LSn60
−
−
Tin−plating of wire in
electrical engineering
Al6Cu1
Tin alloys
Soft solders (Sn − Pb − b)
4.6. Hard metals
4.6.1. Term
Hard metals contain tungsten, titanium and vanadium carbide and cobalt, nickel and molybdenum as binding
agents; they are presintered (pressing with subsequent heat treatment), worked to shape and then finally
sintered (at 1500 − 1900° C); used as cutting tools and for drawing tools, wire drawing dies and mining tools;
cutting tips are brazed on basic bodies of low−alloy steel.
4.6.2. Properties and use of hard metals
Properties
Grade
Density
in g/cm3
Hardness
HRC
HS 01
6.1 − 6.4
91.5 − 93.0
HS 02
9.9 − 10.2
91.5 − 93.0
HS 10
11.1 − 11.4
90.8 − 92.3
HS 20
11.2 − 11.5
90.0 − 91.5
HS 30
13.2 − 13.5
89.3 − 90.8
HS 40
13.1 − 13.4
88.6 − 90.1
HS 50
12.8 − 13.1
87.8 − 89.3
HU 10
12.6 − 12.9
90.8 − 92.7
HU 30
12.8 − 13.1
90.0 − 91.5
HU 40
13.6 − 13.4
87.5 − 89.0
HG 01
14.9 − 15.2
91.5 − 93.0
HG 10
14.6 − 14.9
90.5 − 92.0
HG 15
14.9 − 15.2
90.5 − 91.5
79
Identification colour
Cutting conditions, properties of the
hard metal
blue
increasing cutting speed
feed possible
?‘
?‘
yellow
red
HG 20
14.6 − 14.9
89.0 − 90.5
HZ 10
15.6 − 15.9
91.5 − 93.0
HZ 20
14.9 − 15.2
90.5 − 90.0
increasing resistance to
HZ 30
14.3 − 14.7
88.5 − 90.0
wear toughness
HZ 40
13.8 − 14.2
87.0 − 88.5
Use
Grade
Type of
forming
HS 01
HS 02
metal−removing
Chip formation or
application
long chips
Examples
Smoothing, finish−machining of steel and cast steel; high
cutting speed
HS 10
HS 20
HS 30
Roughing, smoothing of steel, cast steel, malleable cast
iron, manganese hard casting; medium to low cutting
speed
HS 40
HS 50
Roughing of steel and cast steel with casting (forging)
crust; low cutting speed
HU 10
HU 30
long or short chips
HU 40
HG 01
Roughing, smoothing of steel, cast steel, grey iron,
malleable cast iron, hard castings (hardness = 5000 MPa),
copper alloys
Roughing, smoothing of free cutting steel
short chips
HG 10
HG 20
HG 30
HG 40
Turning, fine hole drilling of grey iron, chilled cast iron,
Al−Si alloys, plastics
Roughing, smoothing of grey iron, non−ferrous alloys,
plastics, glass, porcelain, stones (turning, planing, milling)
wood, laminated wood
HG 15 chippless
wearing parts
Guide bushes, sand blasting nozzle sets, centres,
measuring gauges, liners
HZ 10
to
HZ 40
forming technology
Drawing tools for wire (especially wet−drawing of
non−ferrous metals)
5. Plastics
Survey of some important plastics
Designation
Examples of use
Modified natural products
Vulcanized fibre
Electrical engineering, luggage, automobile and machine−building industries
Cellulose acetate
Photographic industry (safety films), packing, clothing and varnish industries
Polycondensation products (thermosetting plastics)
Phenolic resins
Electrical engineering, optical industry, machine and vehicle construction,
medical instruments, domestic appliances
Urea resins
(aminoplastics)
Electrical engineering, foodstuffs, varnish and toy industry, commodities)
80
Polymerization products (thermoplastics)
Polyvinyl chloride (PVC)
soft PVC
Almost all branches of industry, chemical industry, building and packing
industries
rigid PVC
Almost all branches of industry, chemical and consumer goods industry,
electrical engineering
Polyethylene (PE)
Chemical industry, packing industry, toys, unbreakable commodities
Polyamide (PA)
Clothing industry, high−strength technical parts, unbreakable commodities,
Polymethacrylate
Vehicle and aircraft construction, measuring and drawing instruments, dress
jewellery
Polystyrene (PS)
Weak−current engineering, toys, fashion goods
Polyacrylonitrile (PAN)
High−strength weather, light and chemical−resistant fabrics
Polyaddition products
Polyurethane
Wear−resistant technical parts and commodities, e.g. varnish, cast resins, elastic
rubber materials, foamed plastics, adhesives, compression moulding material
Poly−utilization products
Unsaturated polyester
resins (PU)
For casting purposes and adhesion with fillers for moulded bodies
Epoxy resins (EP)
Casting resins, adhesive resins and resin binders (casting together with fillers)
6. Semi−finished products of steel
6.1. Bars, strips, sheets
6.1.1. Square bar steel
Designation
a lateral length
A cross−sectional area
m weight
81
Weight of square bar steel in kilogrammes per metre
a
in mm
A
in mm2
m
in kg
a
in mm
A
in mm2
m
in
kg
5
25
0.196
32
1024
8.04
6
36
0.283
36
1296
10.2
7
49
0.385
38
1444
11.2
8
64
0.502
40
1600
12.6
9
81
0.636
45
2025
15.9
10
100
0.785
50
2500
19.6
11
121
0.95
56
3136
24.6
12
144
1.13
60
3600
28.3
13
169
1.33
65
4225
33.2
14
196
1.54
70
4900
38.5
15
225
1.77
75
5625
44.2
16
256
2.01
80
6400
50.3
17
289
2.27
85
7225
56.7
18
324
2.54
90
8100
63.6
20
400
3.14
95
8025
70.9
22
484
3.80
100
10000
78.5
24
576
4.52
110
12100
95.0
25
625
4.91
120
14400
113
26
676
5.30
130
16900
133
28
784
6.15
140
19600
154
30
900
7.06
150
22500
177
6.1.2. Hexagon bar steel
Designations
SW width across flats
A cross−sectional area
82
m weight
Weight of hexagon bar steel in kilogrammes per metre
SW
in mm
A
in mm2
m
in kg
SW
in mm
A
in mm2
m
in
kg
8
55.4
0.435
21
382
3.00
9
70.2
0.551
22
419
3.29
10
86.6
0.680
24
499
3.92
11
105
0.823
26
585
4.59
12
125
0.979
27
631
4.96
13
146
1.15
28
679
5.33
14
170
1.33
30
779
6.12
15
195
1.53
32
887
6.96
16
222
1.74
36
1122
8.81
17
249
1.96
41
1466
11.5
18
281
2.20
46
1833
14.4
19
313
2.45
50
2164
17.0
6.1.3. Round bar steel
Designations
d diameter
A cross−sectional area
m weight
Weight of round bar steel in kilogrammes per metre
d
in mm
A
in mm2
m
in kg
d
in mm
A
in mm2
m
in
kg
5
19.63
0.154
38
1134
8.90
6
28.27
0.222
40
1257
9.87
6.5
33.18
0.260
42
1385
10.9
83
7
38.48
0.302
45
1590
12.5
8
50.24
0.395
48
1810
14.2
9
63.59
0.499
50
1964
15.4
10
78.54
0.617
53
2206
17.3
11
95.03
0.746
56
2463
19.3
12
113.1
0.888
60
2817
22.2
13
132.7
1.04
63
3117
24.5
14
153.9
1.21
65
3318
26.1
15
176.7
1.39
70
3848
30.2
16
201.1
1.58
75
4418
34.7
17
227.0
1.78
80
5027
39.5
18
254.5
2.0
85
5675
44.6
19
283.5
2.23
90
6362
49.9
20
314.2
2.47
95
7088
55.6
21
346.4
2.72
100
7854
61.7
22
380.1
2.98
105
8659
68.0
24
452.4
3.55
110
9503
74.6
25
490.9
3.85
120
11310
88.8
26
530.9
4.17
125
12270
96.3
28
615.8
4.83
130
13270
104
30
706.9
5.55
140
15390
121
32
804.2
6.31
150
17670
139
34
907.9
7.13
160
20110
158
36
1018
7.99
170
22700
178
6.1.4. Strip steel, flat steel, universal mill products and sheet steel
Designations
b width
s thickness
m weight
84
Weight of strip steel, flat steel, universal mill products and sheet steel in kilogrammes per metre
b
in mm
s in mm
0.75
1
2
3
4
5
6
7
8
9
10
m in kg
4
0.024
0.031 0.063 0.094 0.126 0.157 0.188 0.251 0.314 0.377 0.471
5
0.030
0.039 0.079 0.118 0.157 0.196 0.235 0.314 0.393 0.471 0.588
6
0.036
0.047 0.094 0.141 0.188 0.236 0.283 0.377 0.471 0.565 0.707
7
0.039
0.055 0.110 0.165 0.220 0.275 0.330 0.440 0.550 0.660 0.825
8
0.046
0.063 0.126 0.188 0.251 0.314 0.377 0.502 0.628 0.754 0.942
10
0.059
0.079 0.157 0.236 0.314 0.393 0.471 0.628 0.785 0.942 1.178
12
0.065
0.094 0.188 0.283 0.377 0.471 0.565 0.754 0.942 1.130 1.230
16
0.094
0.126 0.251 0.377 0.502 0.628 0.754 1.005 1.260 1.510 1.880
20
0.118
0.157 0.314 0.471 0.628 0.785 0.942 1.256 1.570 1.880 2.360
25
0.147
0.196 0.393 0.589 0.785 0.981 1.178 1.570 1.960 2.360 2.940
30
0.177
0.236 0.471 0.707 0.942 1.178 1.413 1.884 2.360 2.830 3.530
35
0.207
0.257 0.550 0.824 1.099 1.374 1.649 2.198 2.750 3.300 4.120
40
0.236
0.314 0.628 0.942 1.256 1.570 1.884 2.512 3.140 3.770 4.710
45
0.266
0.353 0.707 1.060 1.410 1.770 2.120 2.830 3.530 4.240 5.300
50
0.294
0.393 0.785 1.178 1.570 1.962 2.355 3.140 3.930 4.710 5.890
60
0.354
0.471 0.942 1.415 1.884 2.355 2.826 3.768 4.710 5.650 7.070
70
0.412
0.549 1.099 1.649 2.198 2.748 3.297 4.396 5.500 6.590 8.240
80
0.471
0.628 1.256 1.884 2.512 3.140 3.768 5.024 6.280 7.540 9.420
90
0.530
0.706 1.413 2.119 2.826 3.532 4.239 5.652 7.070 8.480 10.60
100
0.589
0.785 1.570 2.355 3.140 3.925 4.710 6.280 7.850 9.420 11.80
150
0.883
1.177 2.355 3.532 4.710 5.887 7.065 9.420 11.80 14.10 17.70
200
1.178
1.570 3.140 4.710 6.280 7.850 9.420 12.56 15.70 18.90 23.60
300
1.767
2.355 4.710 7.065 9.420 11.78 14.13 18.84 23.55 28.30 35.30
400
2.355
3.140 6.280 9.420 12.56 15.70 18.83 25.10 31.40 37.70 47.10
500
2.945
3.925 7.850 11.78 15.70 19.63 23.55 31.40 39.25 47.10 58.90
750
4.417
5.888 11.78 17.67 23.55 29.44 35.33 47.10 58.88 70.60 88.30
1000
5.887
7.850 15.70 23.55 31.40 39.25 47.10 62.80 78.50 94.20 118.0
6.2. Standard sections
6.2.1. − steel, equal−sided
85
Designations
b widths of legs
s thickness of legs
r radii of curvature of the legs
A cross−sectional area
m weight
Weight of angle steel in kilogrammes per metre
(a × b × s)
r
in mm
A
in cm2
m
in
kg
20 × 20 × 4
3.5
1.45
1.14
25 × 25 × 5
3.5
2.26
1.77
30 × 30 × 5
5
2.78
2.18
40 × 40 × 4
6
3.08
2.42
40 × 40 × 6
6
4.48
3.52
50 × 50 × 5
7
4.80
3.77
60 × 60 × 6
8
6.91
5.42
60 × 60 × 10
10
11.1
8.68
80 × 80 × 8
10
12.3
9.66
80 × 80 × 12
10
17.9
14.1
100 × 100 × 10
12
19.2
15.1
100 × 100 × 16
12
29.6
23.2
120 × 120 × 11
13
25.4
19.9
120 × 120 × 17
13
38.1
29.9
160 × 160 × 15
17
46.1
36.2
160 × 160 × 19
17
57.5
45.1
200 × 200 × 16
18
61.8
48.5
200 × 200 × 20
18
76.4
59.5
86
6.2.2. steel, unequal−sided
Designations
a width of the short leg
b width of the long leg
r radii of curvature
A cross−sectional area
m weight
Weight of angle steel in kilogrammes per metre
(a × b × s)
r
in mm
A
in cm2
m
in
kg
20 × 30 × 4
3.5
1.85
1.45
20 × 40 × 4
3.5
2.25
1.77
30 × 45 × 5
4.5
3.53
2.77
30 × 60 × 5
6.0
4.29
3.37
40 × 50 × 4
4.0
3.46
2.71
40 × 80 × 6
7.0
6.89
5.41
50 × 65 × 5
6.5
5.54
4.35
65 × 80 × 8
8
11.0
8.66
50 × 100 × 10
9.0
14.1
11.1
65 × 130 × 10
11
18.6
14.6
80 × 120 × 8
11
15.5
12.2
80 × 160 × 12
13
27.5
21.6
100 × 150 × 10
13
24.2
19.0
100 × 150 × 12
13
28.7
22.6
100 × 200 × 10
15
29.2
23.0
100 × 200 × 16
15
45.7
35.9
87
6.2.3. T−steel
Designations
h height of section
b width of base
s thickness of web at a spacing
r1, r2, r3 radii
A cross−sectional area
m weight
Weight of T−steel in kilogrammes per metre
(b = h)
mm
(s = t)
mm
A
in cm2
m
in kg
(b = h)
mm
(s = t)
mm
A
in cm2
m
in
kg
20
3
1.12
0.88
50
6
5.66
4.44
25
3.5
1.64
1.29
60
7
7.94
6.23
30
4
2.26
1.77
70
8
10.6
8.32
35
4.5
2.97
2.33
80
9
13.6
10.7
40
5
3.77
2.96
100
11
20.9
16.4
6.2.4. bar and shaped steel
88
Designations
h height of section
b width of flange
s thickness of web
t thickness of flange at a spacing
r, r1 radii
A cross−sectional area
m weight
Weight of
−steel in kilogrammes per metre
− dimensions
h
mm
b
mm
s
mm
t
mm
r
mm
r1
mm
A
in cm2
m
in
kg
80
42
3.9
5.9
3.9
2.3
7.58
5.95
100
50
4.5
6.8
4.5
2.7
10.6
8.32
120
58
5.1
7.7
5.1
3.1
14.2
11.2
140
66
5.7
8.6
5.7
3.4
18.3
14.4
160
74
6.3
9.5
6.3
3.8
22.8
17.9
180
82
6.9
10.4
6.9
4.1
27.9
21.9
200
90
7.5
11.3
7.5
4.5
33.5
26.3
220
98
8.1
12.2
8.1
4.9
39.6
31.1
240
106
8.7
13.1
8.7
5.2
46.1
36.2
260
113
9.4
14.1
9.4
5.6
53.4
41.9
280
119
10.1
15.2
10.1
6.1
61.1
48.0
300
125
10.8
16.2
10.8
6.5
69.1
54.2
320
131
11.5
17.3
11.5
6.9
77.8
61.1
340
137
12.2
18.8
12.2
7.3
86.8
68.1
360
143
13.0
19.5
13.0
7.8
97.1
76.2
380
149
13.7
20.5
13.7
8.2
107
84.0
89
400
155
14.4
21.6
14.4
8.6
118
92.6
425
163
15.3
23.0
15.3
9.2
132
104
475
178
17.1
25.6
17.1
10.3
163
128
500
185
18.0
27.0
18.0
10.8
180
141
550
200
19.0
30.0
19.0
11.9
213
167
600
215
21.6
32.4
21.6
13.0
354
199
6.2.5. −bar and −shaped steel
Designations
h height of section
b width of flange
s thickness of web
t average thickness of flange
r1 inside radius, r2 radius of curvature
A cross−sectional area
m weight
Weight of
−bar and
−shaped steel in kilogrammes per metre
− dimensions
h
mm
b
mm
s
mm
r1t
mm
r2
mm
A
in cm2
m
in
kg
30
33
5
7
3.5
5.44
4.27
40
35
5
7
3.5
6.21
4.87
50
38
5
7
3.5
7.12
5.59
80
45
6
8
4
11.0
8.64
100
50
6
8.5
4.5
13.5
10.6
120
55
7
9
4.5
17.0
13.4
160
65
7.5
10.5
5.5
24.0
18.8
200
75
8.5
11.5
6
32.2
25.3
90
240
85
9.5
13
6.5
42.3
33.2
320
100
14
17.5
8.75
75.8
59.5
400
110
14
18
9
91.5
71.8
6.3. Steel pipes for water and gas lines
Designations
D outside diameter
s wall thickness
m weight
Weight of steel pipes for water and gas lines in kilogrammes per metre
D
in mm
s in mm
1
1.5
2
2.5
3
3.5
4
−
−
m in kg
91
15
0.345
0.499 0.641 0.771 0.888
16
0.370
0.536 0.690 0.832 0.962 1.08 1.16
18
0.419
0.610 0.789 0.956
1.11
1.25 1.38
20
0.469
0.684 0.888
1.08
1.26
1.42 1.58
22
0.518
0.758 0.962
1.20
1.41
25
0.592
0.869
1.13
1.39
1.63
1.86 2.07
28
0.666
0.980
1.28
1.57
1.85
2.11 2.37
30
0.715
1.05
1.38
1.70
2.00
2.29 2.56
32
0.764
1.13
1.48
1.82
2.15
2.46 2.76
35
0.838
1.24
1.63
2.00
2.37
2.72 3.06
38
−
1.35
1.78
2.19
2.59
2.98 3.35
40
0.962
1.42
1.87
2.31
2.74
42
1.01
−
1.97
2.44
2.89
3.32 3.75
45
1.09
1.61
2.12
2.62
3.11
3.58 4.04
50
1.21
1.79
2.37
2.93
3.48
−
−
−
1.77
−
4.54
7. Semi−finished products of aluminium and aluminium alloys
7.1. Square bars
Designations
a lateral length
A cross−sectional area
m weight
Weight of square bars in kilogrammes per metre
a
in mm
A
in cm2
m
in kg
a
in mm
A
in cm2
m
in kg
4
0.16
0.043
11
1.21
0.327
5
0.25
0.068
12
1.44
0.389
6
0.36
0.972
14
1.96
0.529
7
0.49
0.132
15
2.25
0.608
8
0.64
0.173
16
2.56
0.691
9
0.81
0.219
17
2.89
0.780
10
1.00
0.270
18
3.24
0.875
19
3.61
0.975
30
9.00
2.43
20
4.00
1.08
32
10.24
2.76
22
4.84
1.31
36
12.96
3.50
24
4.76
1.56
41
16.81
4.54
26
6.76
1.28
46
21.16
5.71
27
7.29
1.97
50
25.00
6.75
28
7.84
2.12
7.2. Hexagon bars
92
Designations
SW width across flats
A cross−sectional area
m weight
Weight of hexagon bars in kilogrammes per metre
SW
in mm
A
in cm2
m
in kg
SW
in mm
A
in cm2
m
in kg
4
0.14
0.037
19
3.13
0.844
5
0.22
0.059
22
4.19
1.13
6
0.31
0.084
24
4.99
1.35
7
0.42
0.115
27
6.31
1.70
8
0.55
0.150
30
7.79
2.10
9
0.70
0.189
32
8.87
2.39
10
0.87
0.234
36
11.22
3.03
11
1.05
0.283
41
14.56
3.93
12
1.25
0.337
46
18.33
4.95
14
1.70
0.459
50
21.65
5.85
17
2.50
0.676
7.3. Round bars
Designations
93
d diameter
A cross−sectional area
m weight
Weight of round bars in kilogrammes per metre
d
in mm
A
in cm2
m
in kg
d
in mm
A
in cm2
m
in kg
2
0.031
0.008
18
2.55
0.687
2.5
0.049
0.013
19
2.84
0.766
3
0.071
0.019
20
3.14
0.848
3.5
0.096
0.026
21
3.46
0.935
4
0.126
0.034
22
3.80
1.03
5
0.196
0.053
24
4.52
1.22
5.5
0.238
0.064
25
4.91
1.33
6
0.283
0.076
26
5.13
1.43
6.5
0.332
0.090
27
5.73
1.55
7
0.385
0.104
28
6.15
1.66
7.5
0.442
0.119
29
6.61
1.78
8
0.503
0.136
30
7.07
1.91
8.5
0.586
0.153
32
8.04
2.17
9
0.636
0.172
33
8.55
2.31
9.5
0.701
0.191
34
9.08
2.45
10
0.785
0.212
35
9.62
2.60
12
1.13
0.305
38
11.34
3.06
13
1.33
0.358
40
12.57
3.39
14
1.54
0.416
42
13.85
3.7
15
1.77
0.477
45
15.90
4.2
16
2.01
0.543
48
18.1
4.8
17
2.27
0.613
50
19.6
5.3
8. Semi−finished products of copper and copper alloys
8.1. Square bars
94
Designations
a lateral length
A cross−sectional area
m weight
Weight of square bars in kilogrammes per metre
a
in mm
A
in mm2
m
in kg
a
in mm
A
in mm2
m
in kg
4
16
0.135
10
100
0.850
4.5
20.3
0.171
11
121
1.03
5
25
0.211
12
144
1.22
5.5
30.3
0.256
14
196
1.66
6
36
0.304
15
225
1.91
7
49
0.417
16
256
2.17
8
64
0.541
18
324
2.75
9
81
0.688
20
400
3.40
22
484
4.11
35
1230
10.45
24
576
4.90
36
1296
11.02
25
625
5.31
41
1681
14.30
26
676
5.75
46
2116
17.99
27
729
6.20
50
2500
21.25
30
900
7.65
55
3025
25.71
32
1024
8.70
60
3600
30.60
8.2. Hexagon bars
95
Designations
SW width across flats
A cross−sectional area
m weight
Weight of hexagon bars in kilogrammes per metre
SW
in mm
A
in mm2
m
in kg
SW
in mm
A
in mm2
m
in
kg
3
7.79
0.066
11
105
0.89
3.2
8.87
0.076
12
125
1.06
3.5
10.6
0.090
14
170
1.44
4
13.9
0.118
15
195
1.65
4.5
17.5
0.149
16
222
1.88
5
21.7
0.184
17
250
2.13
5.5
26.2
0.223
19
313
2.66
6
31.2
0.265
22
419
3.56
7
42.4
0.360
24
498
4.24
8
45.4
0.471
27
631
5.37
9
70.2
0.596
30
779
6.62
10
88.6
0.736
32
887
7.50
8.3. Round bars
96
Designations
d diameter
A cross−sectional area
m weight
Weight of round bars in kilogrammes per metre
d
in mm
A
in cm2
m
in kg
d
in mm
A
in cm2
m
in kg
2
3.14
0.028
16
201
1.79
2.5
4.91
0.044
17
227
2.02
3
7.07
0.063
18
254
2.27
3.5
9.62
0.086
20
314
2.80
4
12.6
0.112
22
380
3.38
4.5
15.9
0.142
24
452
4.03
5
19.6
0.175
25
491
4.40
5.5
23.7
0.211
26
531
4.73
6
28.3
0.252
28
616
5.48
7
38.5
0.343
30
707
6.29
8
50.3
0.447
32
804
7.16
9
63.6
0.566
33
855
7.61
10
78.5
0.699
34
908
8.08
11
95.0
0.846
35
962
8.56
12
113
1.01
36
1017
9.06
13
133
1.18
40
1256
11.2
14
154
1.37
42
1385
13.1
15
177
1.57
45
1590
14.2
9. Semi−finished products of hard metal
97
9.1. Blanks of sintered metal carbide
Nominal size
in mm
above
Tolerance
in mm
up to
Nominal size
in mm
above
up to
Tolerance
in mm
4
0.3
45
50
1.6
4
6
0.4
50
55
1.8
6
8
0.5
55
60
2
8
10
0.6
60
70
2.4
10
13
0.7
70
80
2.8
13
16
0.8
80
90
3.2
16
20
0.9
90
100
3.6
20
25
1
100
110
4
25
30
1.1
110
125
4.4
30
35
1.2
125
140
5
35
40
1.3
140
155
5.6
40
45
1.4
155
170
6
9.2. Cutting ceramics
Cutting material
Kawenit HC 20−M
Form as supplied
Radius in mm
KA (KSQ 128)
0.5;
Clearance
angle ?
−
1.2; 2
EV 10 HC 20−M
KA (KSQ 168)
1.2; 2
Kawenit HC 20−M
KB (KSR 128)
0.5;
−
1.2; 2
−
EV 10 HC 20−M
KB (KSR 168)
1.2; 2
Kawenit HC 20−M
KA (KSQ 128)
1.2
5°
Kawenit HC 20−M
KB (KSR 128)
1.2
5°
10. Semi−finished products of rigid polyvinyl chloride
10.1. Thin sheets of rigid PVC
Mechanical characteristics
Uncoloured
Quality
Tensile strength in MPa
longitudinally
Coloured
Quality
1
2
1
2
50
45
47
42
98
Elongation at break
transversely
50
40
42
37
longitudinally
2.5
1.0
1.5
1.0
transversely
1.0
0.5
0.5
0.3
Dimensions
Thickness
in mm
Width
in mm
Max. interruptions per reel
max. Weight
in kg
0.04
1000
2
30
0.05
1000
2
30
0.06
1000
2
30
0.08
1000
2
30
0.10
1000
2
30
0.15
1000
2
30
10.2. Panels of rigid PVC, standard types
Mechanical characteristics
Types
H
HS HA HL
Tensile strength in MPa
45
55
55
45
Strain at failure in %
15
10
10
10
Dimensional stability in °C
70
70
70
70
Dimensions
Thickness in mm
Width
in mm
Length
in mm
1.0
1.5
2.0
2.5 3.0
800
1500
4.0
5.0
6.0
8.0
800
1400
10.0 12.0 15.0
750
1400
18.0 20.0
700
1400
1.0
20.0
1000
2000
25.0 30.0
800
1800
Weight
Thickness
in mm
Weight per m2
in kg
Thickness
in mm
Weight per m2
in kg
Thickness
in mm
Weight per m2
in kg
1.0
1.5
4.0
6.0
12.0
18.0
1.5
2.3
5.0
7.5
15.0
22.5
2.0
3.0
6.0
9.0
20.0
30.0
2.5
3.8
8.0
12.0
25.0
37.5
3.0
4.5
10.0
15.0
30.0
45.0
99
11. Semi−finished products of moulded laminate
11.1. Laminated paper sheets
Dimensions in mm
Width × length
Thickness
Type HP 2061
Dimensions in mm
Width × length
Thickness
Type HP 2061.9
1050 × 1950
0.2...60
720 × 950
950 × 1500
1...30
950 × 1200
970 × 970
0.3...60
1000 × 1200
970 × 1590
2...60
1000 × 1750
1050 × 1750
1...50
1050 × 1200
8...150
Type HP 2061.5
0.1...1
Type HP 2065.5
470 × 2500
3...25
1050 × 1050
720 × 1000
0.2...2
Type HP 2062.8
550 × 1050
970 × 2500
11.2. Laminated fabric sheets
Dimensions in mm
Width × length
Thickness
Type HGw 2081
Dimensions in mm
Width × length
Thickness
Type Hgw 2082
970 × 970
20...40
970 × 970
1.5...40
970 × 1590
20...150
970 × 1590
1.5...150
1030 × 1030
20...150
1030 × 1080
1...25
1030 × 1080
30...150
1020 × 1050
1...30
Type Hgw 2082
950 × 1200
Type Hgw 2082.5
1...150
1000 × 1000
720 × 1000
0.5...7
1030 × 1030
1...100
1020 × 1050
1...30
Type Hgw 2083
550 × 1050
0.5...10
12. Plates and sheets of different materials
Weight per m2 in kg in the case of
Thickness
in mm
Grey
Mild steel,
Copper, Brass Bronze Zinc
Lead
Aluminium
Synthetic
100
iron
cast steel
resin
1
7.25
7.85
8.9
8.5
8.6
7.2.
11.37
2.7
1.5
2
14.50
15.50
17.8
17.0
17.3
14.4
22.74
5.4
3.0
3
21.75
23.55
26.7
25.5
25.8
21.6
34.11
8.1
4.5
4
29.00
31.40
35.6
34.0
34.4
28.8
45.48
10.8
6.0
5
36.25
39.25
44.5
42.5
43.0
36.0
56.85
13.5
7.5
6
43.50
47.10
53.4
51.0
51.6
43.2
68.22
16.2
9.0
7
50.75
54.95
62.3
59.5
60.2
50.4
79.59
18.9
10.5
8
58.00
62.80
71.2
68.0
68.8
57.6
90.96
21.6
12.0
9
65.20
70.65
80.1
76.5
77.4
64.8 102.33
24.3
13.5
10
72.50
78.50
89.0
85.0
86.0
72.0 113.70
27.0
15.0
13. Wire of different materials
13.1. Steel wire
Diameter
in mm
Weight per km
in kg
Diameter
in mm
Weight per km
in kg
0.10
0.0617
1.3
10.4
0.12
0.0888
1.4
12.1
0.14
0.121
1.6
15.8
0.16
0.158
1.8
20.0
0.18
0.200
2.0
24.7
0.2
0.247
2.2
29.8
0.22
0.298
2.5
38.5
0.24
0.355
2.8
48.3
0.26
0.417
3.1
59.2
0.28
0.483
3.4
71.3
0.31
0.592
3.8
89.0
0.34
0.713
4.2
109.0
0.37
0.844
4.6
130.0
0.4
0.986
5.0
154.0
0.45
1.25
5.5
178.0
0.5
1.54
6.0
222.0
0.55
1.87
6.5
260.0
0.6
2.22
7.0
302.0
0.7
3.02
8.8
477.0
101
0.8
3.95
9.4
545.0
0.9
4.99
10.0
617.0
1.0
6.17
1.1
7.46
1.2
8.88
13.2. Copper or brass wire
Diameter Weight per km Diameter
in mm
in kg
in mm
copper brass
Weight per km
in kg
copper
brass
0.1
0.070
−
1.1.
18.458
8.078
0.12
0.101
−
1.2
10.066
9.613
0.15
0.157
−
1.3
11.810
11.282
0.18
0.226
−
1.4
13.697
13.085
0.2
0.280
0.267
1.5
15.727
15.020
0.22
0.338
0.323
1.6
17.898
17.090
0.25
0.437
0.417
1.7
20.201
19.293
0.28
0.548
0.523
1.8
22.650
21.630
0.3
0.629
0.601
1.9
25.231
24.100
0.32
0.716
0.684
2
27.963
26.704
0.35
0.856
0.818
2.1
30.830
29.441
0.38
1.009
0.964
2.2
33.828
32.311
0.4
1.118
1.068
2.3
36.979
35.315
0.45
1.415
1.352
2.4
40.264
38.453
0.5
1.747
1.667
2.5
43.690
41.724
0.55
2.114
2.019
3
62.914
60.083
0.6
2.615
2.403
3.5
85.626
81.780
0.65
2.953
2.821
4
111.838 106.821
0.7
3.425
3.271
4.5
141.546 155.186
0.75
3.932
3.775
5
174.731 166.951
0.8
4.474
4.273
5.5
211.446 201.946
0.85
5.051
4.832
6
251.638 240.323
0.9
5.662
6.024
7
342.508 527.117
1
6.990
6.676
8
447.358 427.257
102
14. Types and functions
Type
Function
Examples
Connecting
elements
disconnectable and permanent connection
of structural members
bolts, screws, nuts washers, locking
screws, pins, springs, keys, rivets
Supporting
elements
supporting of structural members, reception axles, sliding, antifriction bearings,
of forces
frames, elastic springs
Transmitting
elements
transmission, distribution, conversion of
mechanical energy
shafts, couplings, toothed gearings, belt
drives, trains of sprockets, crank
mechanisms, worm gears, hydraulic
gearings
Working elements
Performance of the necessary working
motions (rotating or straight−line
reciprocating)
tools
Driving elements
Provision of the required energy by energy
conversion
electric motor, combustion engine
Control elements
Control of energy and mass flow
hand crank, hand wheel, switch
15. Connecting elements
15.1. Bolts
15.1.1. Bolts with heads
Representation
Designation example
with split−pin hole
103
without split−pin hole
15.1.2. Bolts without heads
Representation
Designation example
with split−pin holes
104
without split−pin holes
15.1.3. Bolts with threaded journals
Representation
105
Designation example
15.2. Screws
Figure
Designation
Dimensions
Figure
Designa
Dimensi
Hexagon head screw
Hexagon
head screw
for steel
structure
M 10 − M 30
30 − 175, m
Hexagon
head scre
M3 − M4
14 − 220
mg
Hexagon
head screw
thread
almost up to
the head
M 5 − M 24
15 − 80, g
Hexagon
head scre
with journ
M6 − M4
12 − 220
mg
Hexagon
head screw
with fine
screw thread
M12 x 1.5 to
M24 x 2
30 − 220, m,
mg
Hexagon
dowel bo
M10 − M
30 − 200
mg
Countersunk screws, oval−head countersunk screws, oval−head screws
Countersunk
screw with
cross slot
M1 − M10
2 − 70, m
Oval−hea
screw wit
large hea
M1 − M3
2 − 18, m
106
Oval−head
countersunk
screw with
cross slot
M1 − M10
2 − 60, m
O
s
s
M
1
Other types of screws
Designation
Dimensions
Fillister head screw with cross slot
Shape A, B, C; M1−M10; 2 − 70, m
Square−head bolt with shoulder
M5 − M16; 10 − 100, m
Knurled screw, high
M2 − M10; 4 − 40, m
Fillister head sheet metal screw with cross slot
d1 2.2 − 6.3; 9.5 − 50, m
Wing screw
M6 − M12; 22 − 65, m
Threaded pin with cross slot and point
M1 − M12; 2 − 45, m
Stud bolt
threaded end approx. 1d; M3 − M48; 16 − 220, m
15.3. Nuts
Figure
Designation
Dimensions
Figure
D
D
Hexagon nuts
Hexagon nut
M1.6 − M150
× 2, m
107
H
f
M
m
Hexagon nut
M5 − M42, g
Hexagon
pipe nut
Whitwort
pipe thre
R 1/8” − R
mg
Square nut
with shoulder
M8 − M24, m
Knurled n
high
M3 − M1
Other types of nuts
15.4. Washers
Figure
Designation
Washers for fillister head screws and bolts
Hole diameter 1.1. − 81, m
Bolt diameter 1.1. − 80
Fillister head screws M1 − M42
Washers
Hole diameter
5,8 − 52, g
15.5. Securing devices for screws
Figure
Designation Figure
108
Spring
washers
a) bent open
b) smooth 2
− 48, m
Locking
plates with
tangs
d 3.2 − 50,
m
15.6. Pins
15.6.1. Cylindrical pins
15.6.2. Taper pins
109
Taper 1:50
Dimensions in mm
d1
h10
1
1.5
r
1
1.6
l
8 −160
2 2.5 3 4 5 6
3
6
8
10
10
15.6.3. Notched pins
Figure
Designation
Dimensions in mm
d
l
Cylindrical notched pins
0.8 − 16; 1.2
4 − 125
Taper notched pins
1.5 − 16
4 − 125
Edged adjusting pins
1.5 − 16
6 − 125
Round−headed notched nails
2−8
1.4; 1.6
3 − 36
15.7. Keys
15.7.1. Sunk keys, drive−fitted keys
110
A sunk key, B drive−fitted key; 1: 100 inclination
b width of key, bN width of keyway, d shaft diameter, h height of key, l length of key, t1 depth of shaft groove, t2
depth of hub groove
Designation example
Dimensions in mm
b
2
3
4
5
6
8
10
12
16
20
h
2
3
4
5
6
7
8
8
10
12
l from
6
6
8
10
14
18
22
28
45
56
to
20
28
38
45
56
70
90
100 180 220
d from
5
7
10
14
18
24
30
36
48
65
to
7
10
14
18
24
30
36
42
55
75
t1
0.6 0.7 1.1 1.6 2.1 2.6
3
3
4.5
5.5
t2
1.1 2.0 2.5
4.5
4.5
5.0
6
15.7.2. Gib−head keys
111
3
3.5
4
b Width of key, bn width of keyway, d shaft diameter, k height of key, h1 height of gib, length of key, t depth of
shaft groove, t2 depth of hub groove 1 fitted in
Designation example
Dimensions in mm
b
4
5
6
8
10
12
14
16
18
20
h
4
5
6
7
8
8
9
9
11
12
l from
14
14
14
18
22
28
36
45
50
56
to
36
45
56
70
90
110 140 180 200 220
d above
10
14
18
24
30
36
42
48
55
65
to
14
18
24
30
36
42
48
55
65
75
t1
2.5
3
3.5
4
4.5
4.5
5
5
5.5
6
t2
1.1 1.6 2.1 2.6
3
3
3.5
4.5
5
5.5
15.8. Springs
15.8.1. Disk springs
112
Designation example
Version
Use
A
the whole torque is transmitted the
B
position of the driving element is retained
Dimensions in mm
b
h9
h
d1
l
2
2.5
3
4
2.6 3.7 3.7 3.7
7
10
10
10
5
6.5
5
6.5
7.5
13
16
13
16
19
6.8 9.7 9.7 9.7 12.6 15.7 12.6 15.7 18.6
d2A
7
10
above 5 to 7
10
14
B above 7
10
14
to 14
8
24
15.8.2. Feather keys
Version
113
Round−ended
Straight−ended
without
holding
screw
Shape B
Shape A
with
holding
screw
Shape D
Shape C
with two
holding
screws
and
forcing
screws
Shape F
Shape E
Designation example
Dimensions in mm
b
h9
2
3
4
5
6
8
10
12
16
20
114
h
f3
2
3
4
5
7
8
8
10
12
l1
from
6
6
8
10 14 18
22
28
45
56
to
25 36 45 56 70 90 110 140 180 220
above
5
7
10 14 18 24
30
36
48
65
to
7
10 14 18 24 30
36
42
55
75
d1
6
15.9. Rivets
Figure
115
Designation
Dimensions in
mm
d
l
Rivets with buttonheads
1−9
2−60
Rivets with buttonheads for steel
structures
10 −
30
16 −
200
Countersunk−head rivets
1−9
2−60
Countersunk−head rivets
10 −
30
20 −
150
Belt rivets
3−5
16. Load−carrying elements
16.1. Elastic springs
Figure
Designation, version
Wire diameter
Coils
Spring steel
grade
0.1 − 0.45
5.5 − 18.5
A, B, C
0.5 − 16
5.5 − 17.5
A, B, C
0.1 − 0.45
6 − 60
C
0.5 − 60
10 − 60
A, B
Compression springs
View
Symbol
Tension springs
View
Symbol
116
Designation example
16.2. Bearings
16.2.1. Types of bearings
Classification aspect
Direction of force
application
Friction
Design
Use of materials
Designation
Explanation
Radial or thrust bearing (journal
bearing)
the bearing forces act transversely to
the bearing axis
Axial or side bearing (step bearing)
the bearing forces act in the direction of
the bearing axis
Radial−axial bearing (journal and
step bearing)
the bearing forces act transversely to
and in the direction of the bearing axis
Sliding bearing
sliding friction becomes effective
Antifriction bearing
rolling friction becomes effective
unsplit sliding bearings
consist of bearing casing and bearing
bush
split sliding bearings
consist of bearing casing and bearing
shells
solid bearings
made of one bearing metal throughout
composite bearings
made of steel backing shells to which
bearing metal is applied
16.2.2. Sliding bearings
Shells
Shells without collars
Solid
117
Composite
for solid and com
bearings
1 sliding layer, 2 supporting body, 3 marking
Shells with a collar
Solid
Composite with butting face
Composite without buttin
1 sliding layer, 2 supporting body, 3 undercut shape B, 4 marking
Dimensions in mm
d1
40,
45,
50,
56,
63,
70,
80,
90,
100,
110, 125, 140, 160, 180, 200, 220, 250
l
20 − 250
Bushes
118
Bushes without collars
Type
Material
Solid
steel, grey cast iron, non−ferrous metal sinter metal moulded material
Composite Sliding layer of non−ferrous metal, supporting body of steel
Designation example
Dimensions in mm
d1
4,
8,
10, 14, 16, 18, 20, 22, 25,
28,
36, 40, 45, 50, 55, 63, 70, 80, 90, 100
l
119
3 − 100
32,
Bushes with steel collars, cast iron, material other than metal
Dimensions
in mm
d1
20 − 100
l1
10 − 100
16.2.3. Antifriction bearings
Types of antifriction bearing
Group
Designation
Axial grooved ball bearings, acting on one side, single−row
Symbol
51 100−51
168
Axial bearing
51 200 − 51
252
51 305 − 51
330
51 405 − 51
440
120
Axial grooved ball bearings, acting on two sides
52 202 − 52
220
52 305 − 52
314
52 408 − 52
420
Radial grooved ball bearings without loading slots, single−row
60 − 60/500
Radial bearings
607 − 609
623 − 626
627, 629
634, 635
6200 − 6244
6300 − 6330
Self−aligning ball bearings, double−row
1200 − 1222
1204k −
1222k
1300 − 1318
1340k −
1318k
Cylindrical roller bearings with outside restraining flanges
121
Nu 1005 − NU
1020
NU 204 − NU
264
NU 304 − NU
348
NJ 204 − NO
264
NJ 304 − NJ
348
Needle bearings with needles in cages
NA 4900 − NA
4928
Bearing symbols
1 Bearing symbol
2 Year of manufacture
3 Distinguishing mark
4 Material
5 Country of manufacture
Designation example
Bore characteristic
(d = 44 × 5 = 220)
122
Bore diameter in mm
Bore characteristic
Example
3−9
Bore diameter in mm
609
10
00
62 00
12
01
62 01
15
02
62 02
17
03
62 03
20 − 480
1/5 bore diameter
62 44
(d = 44 × 5
= 220)
22, 28, 32
Bore diameter in mm
> 480
Separated by diagonal stroke from the symbol of the 60/500 bearing
series
17. Transmission elements
17.1. Shafts
17.1.1. Types of shafts
Classification
aspect
Longitudinal
section
Mobility
123
Designation
Function Explanation
Straight shafts
simple transmission of rotary motions
Crankshafts
conversion of rotary motions into straight−line motions
and vice versa
Rigid shafts, articulated shafts
like straight shafts compensation of parallel
displacement or angular displacement between the
central axes of two shafts
Cross section
Flexible shafts
drive of mechanical tools which must be freely
handled, multiple deflection of rotary motion
(tachometer)
Solid shafts
in gears not requiring lightweight construction
Hollow shafts
light−weight gears, spindles on machine tools for
passing material or tie bars
Profile shafts
Transmission of the torque with longitudinal
displacement (sliding gears, cardan shaft)
124
17.1.2. Diameters of shafts (axle diameters)
Preferred dimensions, selection series
Ra5
Ra10
Ra20
R40
10
10
10
10
Ra5
Ra10
Ra20
R40
32
32
32
10.5
11
34
11
36
11.5
12
12
12
38
40
40
40
13
14
16
16
14
45
16
50
50
20
18
20
55
60
60
60
25
25
22
25
70
80
80
100
100
28
100
90
110
120
125
90
95
200
200
105
110
80
85
30
100
70
75
26
28
63
65
24
25
55
60
21
22
50
52
19
20
45
48
17
18
40
42
15
16
36
200
210
220
220
240
125
125
125
250
250
250
130
140
260
140
280
150
160
160
160
160
280
300
320
320
170
180
250
180
320
340
360
190
360
380
17.1.3. Cylindrical shaft ends (axle ends)
Designation according to application of
force
Designation according to shape
Explanation
easy to
manufacture and
install
Pivot (radial application of force)
End journal
frequently split
bearing shells
required,
time−consuming
installation
Neck collar journal
unfavourable,
lubricating
conditions, since
there is slow
sliding speed at
the pivot point
Pivot journal (axial application of force)
Solid pivot journal
126
Pivot journal
improved
lubricating
conditions 1 oil
duct
Ring pivot
changes in
angles of axles
and shafts have
not influence on
bearing
conditions
Ball journal
17.1.4. Shaft packings
Designation
Explanation
only suitable for grease
lubrication (simple packing); oil
passes unhindered
Felt ring
127
prevents oil leakage; contact
force is increased by spring
washer (gear shafts)
1 inner ring, 2 spring washer, 3
casing, 4 gasket
Radial packing
prevents oil leakage and
penetration of dust (crankshafts)
1 space to be sealed
Radial packing with dust−proof lip
turned−in grooves relieve
pressure stepwise to approx. 0
(pistons, centrifugal compressors)
1 pressure side, 2 pressure drop
Sealing grooves
oil is centrifuged by centrifugal
force and prevented from leaking
128
Oil−thrower ring
17.2. Toothed gears
17.2.1. Quantities at the toothed gear
1 pitch circle
2 outside circle
t tooth pitch
(T = m · ?)
m module
d0 pitch circle diameter
dk outside circle diameter
z number of teeth
m
in mm
t
in mm
m
in mm
t
in mm
m
in mm
t
in mm
0.3
0.942
2.75
8.639
9
28.274
0.4
1.257
3
9.425
10
31.416
0.5
1.571
3.25
10.210 11
34.558
0.6
1.885
3.5
10.996 12
37.699
0.7
2.199
3.75
11.781 13
40.841
129
0.8
2.513
4
12.566 14
43.982
0.9
2.827
4.5
14.137 15
47.124
1
3.142
5
15.708 16
50.265
1.25
3.927
5.5
17.279 18
56.449
1.5
4.712
6
18.850 20
62.832
1.75
5.488
6.5
20.420 22
69.115
2
6.283
7
21.991 24
75.398
2.25
7.069
8
25.133 27
84.823
2.5
7.854
17.2.2. Types of toothed wheel gearings
Representation complete
simplified
sym
Spur gears on parallel axes
− Outside gears
1 spur gears, 2 helical gears
− Inside gears
− Spur gear with rack
130
1 straight teeth. 2 herringbone teeth
Helical gears
cylindrical crossed helical gears, crossing angle ? 90°
Worm gear
cylindrical worm
Bevel wheel train
Shaft angle ?A = 90°
131
17.2.3. Transmission ratios
Transmission ratio
Series i
R 10
1
1.25
R 20
1
R 40
1
R 10
1.60
R 20
1.60
R 40
1.60 1.70 1.80 1.90 2.00 2.12 2.24 2.36
R 10
2.50
R 20
2.50
R 40
2.50 2.65 2.80 3.00 3.15 3.35 3.55 3.75
1.12
1.25
1.40
1.06 1.12 1.18 1.25 1.32 1.40 1.50
2.00
1.80
2.00
2.24
3.15
2.80
3.15
3.55
132
R 10
4.00
5.00
R 20
4.00
R 40
4.00 4.25 4.50 4.75 5.00 5.30 5.60 6.00
R 10
6.30
R 20
6.30
R 40
6.30 6.70 7.10 7.50 8.00 8.50 9.00 9.50
4.50
5.00
5.60
8.00
7.10
8.00
9.00
18. Subdivision of test procedures
Term
Explanation
Testing
Comparison of workpieces in the respective stage of manufacture with the technical
specifications for dimensions, form, surface condition, hardness and strength
Non−dimensional
testing
Comparison without auxiliary means, e.g. visual inspection, resonance test
Dimensional testing
Comparison with technical auxiliaries (testing tools); the workpiece is not changed
during testing
Measuring
Test procedure for determining the dimensions of lengths or angles
Gauging
Testing whether dimensions vary from the required measures only by a permissible
quantity (observance of the specified tolerance band),e.g. limit gauging, form
gauging.
18.1. Non−dimensional testing
18.1.1. Spark testing
Test
The test specimen and the reference bar (steel grade known) must be pressed gently onto a medium grained,
hard grinding wheel (dia. = 250 mm; n = 1400 r.p.m)
Appearance of sparks
Carbon steel with
0.1 % C
133
0.4 % C
1.1 % C
1 few spear−shaped lines, bright
yellow
2 bunch of spears denser than in 1. bright
yellow
3 bunch, thicker than in
2, ramified, bright yellow
Alloyed tool steels with
1.5 % Si
2.0 % Mn
13 % Cr
2.0 % W
figure
figure
bright part shorter and brighter
tan in 3, yellowish−white
form as with 1−3, ray
brighter, bright yellow
ray short, fine,
ramified, orange
ray long, interrupted
dark red lines
18.1.2. Bending test
Type of test
specimen
Test
Explanation
Double folding
test
The test specimen gives an
indication of the toughness of the
plate; cracks must not occur at the
outer bend radius
Specimen for
reverse bend
test
Number of bends up to rupture from
centre position to a right angle and
back indicate the toughness of the
plate under bending stress
134
Specimen for
strength test
Notch the specimen, clamp into vice and bend to
and for until it ruptures
Case−hardened:
fine grained barrier layer and fibrous
core;
hardened steel:
fine grained point of rupture of
velvet−like appearance;
unhardened steel:
coarse fibrous point of rupture;
workpiece cracked:
old point of rupture dark, new point
of rupture light
18.1.3. Other material tests
Type of test
specimen
Test
Explanation
Resonance
test
Strike rods; plates, hollow bodies,
screwed and riveted joints with a
light hammer
Cracks and loose joints are recognizable by a
clinking sound; Structural steel: simple metal sound;
Tool steel: pure, continuous metal sound
Oil test
Dip the workpiece into thin fluid oil
(100 − 180 °C); then clean and
dust with talc powder
Cracks on the surface are recognizable by
dark−coloured spots (oil is absorbed by the powder)
Magnetic
powder testing
Place the workpiece into a
magnetic field and suspend with
fine iron dust
Cracks or slag inclusions below the surface change
the magnetic field; chips collect here in larger
numbers
18.2. Dimensional testing
18.2.1. Measuring lengths
Steel ruler (1 mm)
Measuring range: 150 mm; 300 − 500 mm
Measuring accuracy: ± 0.5 mm
135
Vernier caliper (0.1 mm)
1 fixed arm, 2 movable arm, 3 rule with main division, 4 vernier
Measuring range: 120 mm · 2000 mm
Measuring accuracy: ± 50 ?m
Used for external dimensions
internal dimensions
depth dimensions
External micrometer (0.01 mm)
136
1 anvil, 2 measuring spindle, 3 clamping device, 4 1 mm reading, 5 graduated drum, 6 ratchet
stop, 7 1/2 mm reading, 8 bow
Measuring range: 0 − 25 mm; 25 − 50 mm; 50 − 75 mm; up to 475 − 500 mm
Measuring accuracy: ±5 ?m
18.2.2. Measuring angles
Goniometer with pointer (1°)
When using a goniometer with pointer, the angle is measured on one side of the measuring leg and read on
the other side.
1 Measuring the angle on the workpiece, 2 reading the measured angle on the scale
Measuring range: 0 − 180°
Measuring accuracy: ± 0.5°
If the workpiece with the angle to be measured is placed on the right of the measuring leg, the measuring
value corresponds to the indicated value, measuring value = 79
137
If the workpiece with the angle to be measured is on the left of the measuring leg, the indicated value does not
correspond to the measuring value. The measuring value must be calculated by subtraction. 180° − 103°,
measuring value = 77°
Universal bevel protractor (5’)
Main division and vernier of a universal bevel protractor 1 the main division is subdivided into 4 ranges of 90°
each, one graduation mark corresponding to 1°, 2 the vernier is subdivided in two directions of 60’ each, one
graduation mark corresponding to 5’
138
Measuring range: 0 − 180°
Measuring accuracy: ±5’
Reading of the measuring value on the universal bevel protractor
a − measuring value 46°35’
b − measuring value 3°30’
When reading the measuring value, starting from zero, the full degrees at the zero stroke of the vernier are
read on the main division, and the minutes are read in the same direction at the graduation mark of the vernier
which coincides with a graduation mark on the main division.
139
18.2.3. Limit gauging
Limit gauge
Includes the maximum and minimum dimension; tolerances and dimensional variations are marked
• Limit gauge plug two test cylinders or plugs; cylinder diameter of the go end = minimum diameter, cylinder
diameter of the not−go end = maximum diameter
• Limit snap gauge two test gaps; width of gap of the go end = maximum diameter, width of gap of the not−go
end = minimum diameter;
Not−go end is marked red
140
• Use of limit gauges
Workpiece dimension between maximum and
minimum dimension
Workpiece dimension greater than maximum
dimension reworking
Workpiece dimen
dimension reject
Feeler gauge
Dimensional testing of narrow distances, e.g. when adjusting valves or set screws; in steps of 0.1 mm or 0.05
mm
Sheet−iron gauge
The widening at the end of the slot receives the burr of the sheet; steps according to commercial sheet
thicknesses
141
Hole gauge
Rapid determination of the diameter of twist drills or wires
Block gauges
Prismatic steel pieces, hardened throughout, with polished gauging surfaces; plane and faces which are
parallel to each other embody a particular length; any dimensions can be achieved by joining the
corresponding gauge blocks
142
18.2.4. Form gauging
Hairline gauge
Conically ground measuring faces the measuring edge is somewhat rounded;
Test patterns:
Uniformly fine light gap the measuring face is plane.
Light gap is wider in the centre the measuring face is hollow.
Light gap is wider at the sides the measuring face is convex.
Light gap is irregular the measuring face is wavy
Squares
Design as solid steel squares (30°, 45°, 60°. 90°, 120°), try squares, bevelled edge steel squares
143
Drill grinding gauge
Angle gauge for the drill bit
Roundness gauge
Measuring of internal and external roundnesses; measuring individually or joined to sets
Screw−pitch gauge
Measuring external or internal threads
144
19. Fitting systems
19.1. Types of fits
Clearance fit
Sg maximum clearance,
Sk minimum clearance
The minimum size of the hole is greater than the maximum size of the shaft. After assembly, there is
clearance; it is possible to move the shaft in the bore.
Transition fit
Sg maximum clearance,
Ug maximum allowance for fit
The tolerance zones are superposed.
After assembly, clearance or compression is possible.
Interference fit
145
Ug maximum fit,
Ub minimum allowance for fit
The maximum size of the hole is smaller than the minimum size of the shaft.
After assembly there is compression. Shaft and hole are securely connected to each other.
19.2. Systems of fits, basic hole, basic shaft
In the system of fits, 21 tolerance zones are marked by letters of the alphabet. Capital letters are used for
marking the hole and small letters for marking the shaft.
Basic hole system
In the basic hole system a standard hole with uniform diameter is used.
Use: General mechanical engineering, tool manufacture
146
1 clearance fit,
2 transition fit,
3 interference fit,
4 clearance is increased,
5 fit becomes tighter,
6 nominal size,
7 clearance,
8 allowance for fit
The shafts a − g are below the 0−line. They are therefore smaller than the nominal size, thus having
clearance. The shafts h − n are below or above the 0−line. They are samller or greater than the nominal size,
thus having either clearance or allowance for fit. The shafts p − z are above the 0−line. They are greater than
the nominal size, thus having allowance for fit.
Basic shaft system
In the basic shaft system a standard shaft with uniform diameter is used.
Use: Office machines, textile machines, construction and agricultural machinery, lifting appliances and
conveying plants.
147
1 clearance fits,
2 transition fits,
3 interference fits,
4 clearance is increased,
5 fit becomes tighter,
6 nominal size,
7 clearance,
8 allowance for fit
Holes A−G are above the 0−line. They are therefore greater than the nominal size, thus having clearance.
The holes H−N are above and below the 0−line. They are greater or smaller than the nominal size, thus
having either clearance or allowance for fit. The holes P − Z are below the 0−line. They are smaller than the
nominal size, thus having allowance for fit.
19.3. Examples of fits
Example: dia. 30H11
148
Example: dia. 10r6
Nominal dimensional variations for holes (preferred series)
Range of nominal
dimensions mm
D11
F9
F8
H12
H11
H10
H8
H7
J7
J6
K7
K6
N7
Nominal dimensions in ?m
over 1
to 3
+ 80
+ 20
+ 32
+7
+ 21
+7
+ 90
+0
+ 60
0
+ 40
0
+
14
0
+9
0
+3
−6
+3
−4
−
−
−
−
−4
−
13
over 3
to 6
+
105
+ 30
+ 40
+ 10
+ 28
+ 10
+
120
0
+ 75
0
+ 48
0
+
18
0
+
12
0
+5
−7
+4
−4
−
−
−
−
−4
−
16
over 6
to 10
+
130
+ 40
+ 49
+ 13
+ 35
+ 13
+
150
0
+ 90
0
+ 58
0
+
22
0
+
15
0
+8
−7
+5
−4
+5
−
10
+2
−7
−4
−
19
over 10
to 14
+
160
+ 50
+ 59
+ 16
+ 43
+ 16
+
180
0
+
110
0
+ 70
0
+
27
0
+
18
0
+
10
−8
+6
−5
+6
−
12
+2
−9
−5
−
23
+
195
+ 65
+ 72
+ 20
+ 53
+ 20
+
210
0
+
130
0
+ 84
0
+
33
0
+
21
0
+
12
−9
+8
−5
+6
−
15
+2
−
11
−7
−
28
+
240
+ 80
+ 87
+ 25
+ 64
+ 25
+
250
0
+
160
0
+
100
0
+
39
0
+
25
0
+
14
+
11
+ 10
−6
+7
−
18
+3
−
13
−0
−
33
+
290
+
100
+
104
+ 30
+ 76
+ 30
+
300
+0
+
190
0
+
120
0
+
46
0
+
30
0
+
18
−
12
+ 13
−6
+9
−
21
+4
−
15
−9
−
39
+
340
+
120
+
123
+ 36
+ 90
+ 36
+
350
0
+
220
0
+
140
0
+
54
0
+
35
0
+
22
−
13
+ 16
6
+
10
−
25
+4
−
18
−
10
−
45
over 14
to 18
over 18
to 24
over 24
to 30
over 30
to 40
over 40
to 50
over 50
to 65
over 65
to 80
over 80
to 100
over 100
to 120
149
over 120
to 140
over 140
to 160
+
395
+
145
+
143
+ 43
+
106
+ 43
+
400
0
+
250
0
+
160
0
+
63
0
+
40
0
+
26
−
14
+ 18
7
+
12
−
28
+4
−
21
−
12
−
52
+
460
+
170
+
165
+ 50
+
122
+ 50
+
460
0
+
290
0
+
185
0
+
72
0
+
46
0
+
30
−
16
+ 22
−7
+
13
−
33
+5
−
24
−
14
−
60
+
510
+
186
+
137
+
520
+
320
+
210
+
81
+
52
+
36
+ 25
+
16
+5
−
14
+
190
+ 56
+ 56
0
0
0
0
0
−
16
7
−
36
−
27
−
66
+
570
+
202
+
151
+
570
+
360
+
230
+
89
+
57
+
39
+ 29
+
17
+7
−
18
+
210
+ 62
+ 62
0
0
0
0
0
−
18
7
−
40
−
29
−
73
+
630
+
223
+
165
+
630
+
400
+
250
+
97
+
63
+
43
+ 33
+
18
+8
−
17
+
230
+ 68
+ 68
0
0
0
0
0
−
20
−7
−
45
−
32
−
80
H8
H7
H6
J6
K6
N6
over 160
to 180
over 180
to 200
over 200
to 225
over 225
to 250
over 250
to 280
over 280
to 315
over 315
to 355
over 355
to 400
over 400
to 450
over 450
to 500
Nominal dimensionsal variations for shafts (some preferred series)
Range of nominal
dimensions mm
D11
D9
E8
F9
F7
H12
H11
Nominal dimensions in mm
over 1
to 3
− 20
− 80
− 20
− 45
− 14
− 28
7
− 32
−7
− 16
0
− 90
0
− 60
0
−
14
0
−9
0
−7
+6
−1
−
−
+
13
+6
over 3
to 6
− 30
−
105
− 30
− 60
− 20
− 38
− 10
− 40
− 10
− 22
0
−
120
0
− 75
0
−
18
0
−
12
0
−8
+7
−1
−
−
+
16
+8
over 6
to 10
− 40
−
130
− 40
− 76
− 25
− 47
− 13
− 49
− 13
− 28
0
−
150
0
− 90
0
−
22
0
−
15
0
−9
+7
−2
+
10
+1
+
19
+
10
over 10
to 14
− 50
−
160
− 50
− 93
− 32
− 59
− 16
− 59
− 16
− 34
0
−
180
0
−
110
0
−
27
0
−
18
0
−
11
+8
−3
+
12
+1
+
23
+
150
12
over 14
to 18
over 18
to 24
− 65
−
195
− 65
−
117
− 40
− 73
− 20
− 72
− 20
− 41
0
−
210
0
−
130
0
−
33
0
−
21
0
−
13
+9
−4
+
15
+2
+
28
+
15
− 80
−
240
− 80
−
142
− 50
− 89
− 25
− 87
− 25
− 50
0
−
250
0
−
160
0
−
39
0
−
25
0
−
16
+
11
−5
+
18
+2
+
33
+
17
−
100
−
290
−
100
−
174
− 60
−
106
− 30
−
104
− 30
− 60
0
−
300
0
−
190
0
−
46
0
−
30
0
−
19
+
12
−7
+
21
+2
+
39
+
20
−
120
−
340
−
120
−
207
− 72
−
123
− 36
−
123
− 36
− 71
0
−
350
0
−
220
0
−
54
0
−
35
0
−
22
+
13
−9
+
25
+3
+
45
+
23
−
145
−
395
−
145
−
245
− 85
−
148
− 43
−
143
− 43
− 83
0
−
400
0
−
250
0
−
63
0
−
40
0
−
25
+
14
−
11
+
28
+3
+
52
+
27
−
170
−
460
−
170
−
285
−
100
−
172
− 50
−
165
− 50
− 96
0
−
460
0
−
290
0
−
72
0
−
46
0
−
29
+
16
−
13
+
33
+4
+
60
+
31
−
190
−
510
−
190
−
320
−
110
−
191
− 56
−
186
− 56
−
108
0
−
520
0
−
320
0
−
81
0
−
52
0
−
32
+
16
−
16
+
36
+4
+
66
+
34
over 24
to 30
over 30
to 40
over 40
to 50
over 50
to 65
over 65
to 80
over 80
to 100
over 100
to 120
over 120
to 140
over 140
to 160
over 160
to 180
over 180
to 200
over 200
to 225
over 225
to 250
over 250
to 280
over 280
to 315
151
over 315
to 355
−
210
−
570
−
210
−
350
−
125
−
214
− 62
−
202
− 62
−
119
0
−
570
0
−
360
0
−
89
0
−
57
0
−
36
+
18
−
18
+
40
+4
+
73
+
37
−
230
−
630
−
230
−
385
−
135
−
232
− 68
−
223
− 68
−
131
0
−
630
0
−
400
0
−
97
0
−
63
0
−
40
+
20
−
20
+
45
+5
+
80
+
40
over 355
to 400
over 400
to 450
over 450
to 500
20. Scribing
20.1. Types of scribing
Scribing according to reference edge
The reference edge is a well−prepared edge of the workpiece to which all dimensions are referred.
Scribing according to the reference line
152
The reference line is a scribed line on the workpiece to which all dimensions are referred.
Scribing according to reference surface
The reference surface is a plane surface of the workpiece to which all dimensions are referred.
153
Scribing with scribing block
Scribing with scratch gauge
Scribing according to template
154
20.2. Notes on scribing
The material used for the scriber is important
Scriber
Workpiece
Steel (hardened)
rough or rough machined
Brass
finish−machined
Graphite
notch−sensitive, (surface−refined, light metal, plastic)
Guiding the scriber
155
Making punch marks
Set the centre punch exactly on the scribed line straight scribed line − large distance between the punch
marks curbed scribed line − short distance between the punch marks
Scribing of spacings with the compass
156
Do not punch until the last markings of the spacings coincide.
21. Fundamental forming by casting
21.1. Shrinkage measures
Shrinkage measure
in %
Material
1.0 − 1.5
aluminium cast alloys (AlMg)
1.0 − 1.2
aluminium cast alloys (AlSi)
1.5
lead−bronze, lead−tin−bronze (CuPb)
0
nodular cast iron (GGG), ferritic annealed
0.3
nodular cast iron (GGG), ferritic−pearlitic annealed
0.8 − 1.0
nodular cast iron (GGG), in the cast state or pearlitic annealed
1.0
cast iron with laminated graphite (GGL)
1.85
cast copper
1.6 − 2.2
special brass (CuZn), aluminium bronze, multi−component aluminium bronze
2.0 − 2.5
cast steel, high−alloy (CrNi−, Mn cast steel)
2.0
cast steel, unalloyed, low−alloy
0.5 − 1.5
malleable cast iron, pearlitic (GTP)
0 − 1.0
blackhaert malleable cast iron (GTS)
1.0 − 2.0
whiteheart malleable cast iron (GTW)
1.5
tin−bronze (CuSn), red brass (CuSnZn), cast brass
157
21.2. Machining allowances for castings
21.2.1. Cast steel, allowances for external surfaces
Nominal
size
in mm
Maximum
size of the
casting (1,
b, h or dia.)
Allowances per surface in mm
hand moulded
machine moulded
over
to
bottom side top bottom side top
−
160
4
4
6
3
4
6
160
250
5
5
7
4
4
7
250
400
6
6
8
5
5
8
400
630
7
7
9
6
6
9
630
1000
8
8
10
7
7
10
21.2.2. Cast steel, allowances for holes and openings
Nominal
sizes
in mm
Allowances per surface in mm
Lengths of the holes and
openings in mm
Max. inside
diameter or
max. internal
dimension
over
−
250 400
630
1000 1600
to
250 400 630 1000 1600 2000
over
to
80
160
7
9
−
−
−
−
160
250
8
10
12
14
16
−
250
400
9
11
13
15
17
19
400
630
10
12
14
16
18
20
630
1000
11
13
15
17
19
21
21.2.3. Grey cast iron and malleable cast iron, allowances
Nominal
sizes
in mm
Allowances per surface in mm
hand moulded
machine
moulded
158
over
to
bottom side
top
bottom side
top
40
2
3
2
2
40
100
2
3
2
3
100
160
3
4
3
4
160
250
3
5
3
4
250
400
4
6
3
5
400
630
5
7
4
6
630
1000
6
9
5
7
21.2.4. Light metal cast alloys, allowances
Nominal
sizes
in mm
Allowances per surface in mm
hand moulded
machine
moulded
over
to
bottom side
top
bottom side
top
chill casting
−
100
2
2
1.5
1.5
1.5
100
160
2.5
2.5
2
2
1.5
160
250
2.5
2.5
2
2.5
2
250
400
3
3
2.5
3
2.5
400
630
3.5
3.5
3
3.5
3
630
1000
4.5
3.5
3.5
4
3.5
22. Forming
22.1. Mechanical bevelling
Bend radius
in mm
Minimum length of leg in mm
for plate thickness in mm of
1
159
1.5 2.5
4
6
10 16
1
4
−
−
−
−
−
−
1.2
4
6
−
−
−
−
−
1.6
4
6
−
−
−
−
−
2
6
6
−
−
−
−
−
2.5
6
6
8
−
−
−
−
3
6
8
10
−
−
−
−
4
8
8
10
12
−
−
−
5
8
8
10
14
−
−
−
6
8
10
12
14 18
−
−
8
10
12
14
16 22
−
−
10
12
14
16
18 22 32
−
20
22
25
25
28 32 40 60
40
−
−
45
50 55 60 80
50
−
−
−
60 60 80 90
22.2. Bending
22.2.1. Bend radii
Bend radius r in mm
1.0;
1.2;
1.6;
2.0;
2.5;
3.0;
4.0;
5.0;
6.0;
8.0;
10.0;
12.0;
16.0;
20.0;
25.0;
28.0;
32.0;
36.0;
40.0;
45.0;
50.0;
63.0;
80.0; 100.0; 110.0; 125.0; 140.0; 160.0;
180.0; 200.0;
In the roundness, the thickness is reduced by about 20 %.
22.2.2. Radius of the neutral layer
Figure
Calculation
1. r > 5s
neutral layer is in the centre of the
workpiece
1 neutral layer
R radius of the neutral layer
r bend radius
s thickness of the workpiece
2. r < 5s
neutral layer is shifted to the inside of the
bending point
22.2.3. Extended length
Figure
Calculation (rule of thumb)
160
r > 5s
L = l1 + l2 + l3
22.2.4. Instruction for bending
− Before bending carry out a bending test with the material used; one lot of material may exhibit different
behaviour to another.
− Before bending, always determine the extended length.
− The bending edge should not be in the direction of rolling; if this is unavoidable, larger bend radii should be
used.
− Do not scribe the bending points with a steel scriber.
− Place the seams of welded pipes into the neutral layer.
22.3. Forging
22.3.1. Forging temperatures
Material
Average forging temperatures
Structural steel
700 − 1200 °C
Tool steel
850 − 1000 °C
High−speed steel
1000 − 1200 °C
Aluminium
500 °C
Al−Cu−Mg−alloys 440 °C
Al−Mg−alloys
400 °C
Al−Mg−Si−alloys
450 °C
Copper
850 °C
Brass
750 °C
Mg alloys
380 °C
22.3.2. Annealing colours
Forging colour
161
Forging temperature
in °C
Remarks
Bluish black
250 − 300
Bluish grey
350 − 425
Red (in the dark)
450 − 525
Dark red
550 − 700
Dark cherry−red
700 − 780
Cherry−red
780 − 825
Bright cherry−red
825 − 850
danger of rupture
slight forming operations
forging and hardening of tool
steels
Bright red
875
structural steels
Yellowish red
950
Orange
1000
Yellow
1200
White
1300
forge welding
White with over sparks
1400
steel burns
alloyed steels
22.3.3. Temper colours
Temper colour
Temperature in °C
Example of use
Pale yellow
200
Measuring tools
Light yellow
220
tools (drills)
Dark yellow
240
thread taps, cutting tools,
milling cutters
Yellowish brown
250
centre punches
Brownish red
260
cutting and shearing tools,
hammers
Purple
270
chisels
Violet
290
springs
Cyaneous
300
wood−working tools, springs
Light blue
310
metal saws
Greyish blue
320
files
Grey
330
dies, riveting tools
The temper colours are reference values for the temperatures indicated since they depend on the material
and the rate of heating.
23. Separating
23.1. Chiseling
162
23.1.1. Design and types of chisels
1 cutting edge
2 head
3 shank
? = 30 − 70°
Chisels are made of unalloyed tool steel with a carbon content of 0.9 %; cutting edge forged, hardened,
ground and tempered; Weight of hammer: weight of chisel = 2: 1
Types of chisels
Flat chisel
Cross−cut chisel
23.1.2. Working techniques for chiseling
Separating with the chisel
163
Gouge
Slotting bit
Separating c
Chiseling off a sheet strip
Cutting out a bend
Cutting out a corner roundness
164
Cutting out straps
Cutting with the chisel
Chiseling a groove
Chiseling a surface
165
23.2. Shearing
23.2.1. Types and use of shears
Types of shears
Use
for short cuts;
suitable workpiece
thicknesses:
steel 0.5 − 1;
brass 0.8;
copper 1.2 − 2.5;
zinc 1.6;
1 shear blade
2 limit of lift
Hand plate shears
for curved cuts;
for thickness of
workpiece,
see above
Punching shears
for long straight cuts;
for thickness of
workpiece, see above
Through shears
for plates, panels, bends
1 upper shear blade
2 lower shear blade
Plate shears
166
for steel plate up to
about 6 mm thick;
cutting−wedge angle
? = 75 − 85°;
cutting gap angle:
b = 0.05 s for soft
materials
b = 0.1 s for hard
materials
1 hand lever,
2 lever locking device,
3 frame, 4 hold−down,
5 shear blade
Hand lever shears
23.2.2. Shearing strength of materials
Material
Shearing strength in MPa
Aluminium
soft
hard
Lead
70 − 90
130 − 160
20 − 30
Bronze
soft
220 − 400
hard
400 − 600
Artificial
resin
25 − 30
Copper
soft
180 − 220
hard
250 − 300
Brass
soft
220 − 300
hard
350 − 400
Zinc
167
120 − 200
Tin
30 − 40
23.3. Sawing
23.3.1. Hand sawing
Design of the hand hacksaw
1 handle,
2 clamp dog.
3 saw frame,
4 wing nut for clamping
? clearance angle
? cutting−wedge angle
? rake angle
Saw pitches for hand saw blades
Designation
Number of
teeth on a
length of 25
mm
Shape
Use
Coarse
14 − 16
Soft steel, aluminium,
copper, plastic, moulded
material
Medium
22
Medium hard steel, hard
light metals, brass;
sectional steel, sections,
thick−walled pipes
Fine
32
Hard materials,
Thin−walled pipes, weak
sections
Instructions for sawing
− Clamp the saw blade so that the teeth point in the direction of sawing.
168
− Assist the start of sawing by notching the rear edge of the workpiece with a triangular file.
− Select the correct number of strokes (50 − 60 double strokes per minute)
− Utilize the full length of the saw blades.
− Relieve the saw of load in the return stroke.
− Do not saw pipes straight through; turn them during sawing.
23.3.2. Mechanical sawing
Cutting speed when using a curcular saw
Material
Structural
Strength in MPa
?B
Cutting speed in m/min
steel
340 − 420
26 − 28
over
420 − 550
24 − 26
over
500 − 600
22 − 24
over
600 − 700
18 − 20
over
700 − 850
14 − 16
750 − 800
14 − 16
over
800 − 850
12 − 15
over
900 − 950
10 − 14
over
950 − 1050
9 − 12
over
1050 −1200
8 − 10
400 − 500
18 − 20
over
500 − 600
14 − 16
over
600
8 − 10
Alloyed steel
Cast steel
Aluminium
300 − 500
Bronze
80 − 120
Grey cast iron
over
150 − 220
14 − 18
220 − 300
12 − 15
Copper
100 − 200
Zinc
150 − 300
Brass
Cutting speed when using a band saw
Material
Strength in MPa
?B
Cutting speed in m/min
Copper
100 − 200
Brass light metal
400 − 1200
Steel
over 600
600 − 800
169
30 − 40
20 − 30
800 − 1200
over 1200
15 − 20
10 − 15
Laminated plastic
300 − 900
23.4. Filing
23.4.1. Design of files
1 handle
2 tang
3 nominal length
4 workpiece
5 chip space
6 chips
Files are made of carbon steel (0.9 − 1.5 % C) or alloyed steel (Mn, Si, Cu); cutting wedges are cut or milled.
23.4.2. Designation of files
Cut no.
Designation
Number of cuts
on a file length
of 10 mm at a
nominal length
in mm of
100
200
375
0
rough file
10
7.1
5
1
bastard file
14
10
7.1
2
rough−finishing file
22.4
16
11.2
3
smooth−cut file
31.5 22.4
16
170
4
fine smooth−cut file
45
31.5
−
5
finest smooth−cut file
63
45
−
23.4.3. File cross−sections
Cross−section
Designation
Cut no.
Nominal length in mm
knife−edge file
2−5
100 − 250
round file
0−5
100 − 450
half−round file
0−5
100 − 450
cant file
1−5
80 − 200
crossing file
1−5
80 − 200
flat file
0−5
100 − 450
square file
1−5
100 − 450
triangular file
1−5
100 − 450
23.4.4. Instructions for filing
− Carefully lay the files next to each other, as otherwise the hardened teeth can break out.
− Clamp the workpiece as short as possible.
− Do not file hardened workpieces.
− Degrease the workpieces for filing.
− Check that the file handle fits tightly on the tang
− Clean greased files with a brass plate at right angles to the direction of cut
− Hold the file correctly
23.5. Flame cutting
23.5.1. Cuttable materials
Material
cuttable up to
(alloying elements)
Chrome steel
1.5 % Cr
Carbon steel
?2%C
171
Preheating temperature
cold cuttable
Manganese steel
13 % Mn + 1.3 % C
Nickel steel
34 % Ni + 0.5 % Cu
Silicon steel
4 % Si + 0.2 % C
Coppered steel
0.7 % Cu
Titanium
−
Titanium alloys
−
Tungsten steel
10 % W + 55 % Cr + 0.2 % Ni + 0.8 % C
Chrome steel
1.5 − 10 % Cr
Carbon steel
2 − 2.5 % C
Tungsten steel
10 − 17 % W
hot cuttable
above 200 °C
23.5.2. Reference values for oxyacetylene cutting
Plate thickness
in mm
Cutting speed
in mm/min
Nozzle elevation
in mm
Nozzle sizes in mm
Cutting nozzle
Heating nozzle
3 − 25
3 − 10
600 − 360
2−3
3 − 10
15 − 25
380 − 240
2−4
10 − 25
30 − 50
280 − 170
3−5
25 − 50
60 − 80
20 − 140
3−5
50 − 80
100 − 120
165 − 125
4−6
80 − 120
140 − 180
145 − 115
4−8
120 − 180
200 − 240
130 − 108
6 − 10
180 − 240
300
100 − 115
8 − 12
240 − 300
25 − 80
80 − 180
180 − 300
Plate thickness in
mm
Oxygen pressure
in MPa
consumption in
l/m
Acetylene
consumption in l/m
Hydrogen
consumption
in l/m
3 − 10
0.15
36 − 79
3.5 − 10
17 − 48
15 − 25
0.25
92 − 208
15 − 31
61 − 125
30 − 50
0.35
208 − 530
30 − 64
119 − 255
60 − 80
0.5
525 − 975
59 − 96
236 − 386
100 − 120
0.65
1310 − 1630
89 − 126
353 − 507
140 − 180
0.75
1640 − 2640
115 − 156
460 − 626
200 − 240
0.85
2590 − 3700
144 − 183
575 − 732
300
0.9 − 1.0
5000 − 4350
212 − 184
850 − 735
23.6. Drilling
172
23.6.1. Types of drills
Type of drill (selection)
Use
Twist drills
suitable for most holes; special drills for specific work include deep−hole twist
drills or pin hole drills
Multi−cut stepped drills
mainly for countersinking; drilling and countersinking are carried out in one
operation
Single−lip drills (simple
D−bit)
for deep boring (there must already be low depth bores)
Centre drills
for centering workpieces (the tool is a drill and countersink at the same time)
23.6.2. Design of twist drills
Design
1 shank, 2 margin, 3 helical groove, 4 main cutting edge, 5 chisel edge, d = 0.3 − 100 mm
Designation of angles
173
? clearance angle,
? cutting−wedge angle,
? rake angle,
? complementary angle of the chisel edge angle,
? point angle
23.6.3. Point angles of twist drills
Workpiece material
Point angle in
°
Workpiece material
Point angle in
°
Hard rubber
40
Electron
130
Marble, slate
60
Copper, lead, brass
140
Compression moulding material, thermosetting
plastic
90
Al alloy strong, tough
steel
150
Steel, cast steel
118
thin sheets
160
23.6.4. Speed and feed for drilling
Material
Drill diameter in mm (high−speed steel)
1
3
5
8
10
12,5
15
20
25
30
40
50
Speed in 1/min
Feed in mm/revolution
174
St34, St42
C15
St60, C45
7100
manual
4500
manual
Mn and CrNi
alloyed steels (?B =
700 − 850 MPa)
Grey cast
3000
manual
4500
2800 1800 1400
925
700
600
450
350
300
280
224
0,05
0,2
0,22
0,3
0,35
0,3
0,8
0,4
0,4
0,5
1800 1400
900
710
400
380
355
280
224
180
180
0,04
0,08
0,1
0,2
0,2
0,25
0,28
0,3
0,36
0,4
0,4
1800 1400
900
700
600
400
355
280
224
180
140
0,04
0,08
0,18
0,2
0,22
0,3
0,3
0,3
0,33
0,4
1800 1400
900
710
500
400
355
224
180
140
120
0,2
0,2
0,1
iron Malleable cast
iron
manual
0,05
0,22
0,2
0,3
0,35
0,4
0,5
0,56
Brass
11200
4500 3550 2240 1800 1000
900
800
560
400
400
350
manual
0,05
0,3
0,3
0,4
0,4
0,5
0,56
11200
4500 3550 2200 1800 1400 1200
900
700
560
450
355
manual
0,04
0,2
0,3
0,3
0,4
0,4
Aluminium
14000
7100 5600 3550 2800 2000 1800 1400 1000
900
710
560
alloys
manual
0,05
0,4
0,45
0,5
Magnesium
14000
9000 7100 5600 4500 3500 2800 2240 1800 1400 1120
900
alloys
manual
0,09
Copper
Compression
moulding materials
and fabric reinforced
laminates
5600
manual
0,11
0,11
0,08
0,1
0,1
0,2
0,1
0,2
0,2
0,22
0,3
0,25
0,25
0,28
0,28
0,3
0,32
0,4
0,5
0,6
0,6
0,7
0,7
0,8
0,9
2240 1400 1120
900
750
550
450
380
280
224
180
0,03
0,14
0,15
0,2
0,2
0,25
0,26
0,28
0,28
0,06
0,3
0,22
0,12
The speeds indicated here are maximum values; the feed applies to the next greater hole diameter in each
case. The maximum possible speed should be adjusted for diameters from 1−3 mm. When using the
indicated values, maximum conditions must be provided; if this cannot be achieved, the corresponding
reductions should be made and the next lower speed selected. Casting, forging and rolling crusts are taken
into account by adjusting to the next lower speed.
23.6.5. Instructions for drilling
− Use the correct ground surface of the drill.
− Hold the drill tightly and check for unbalance.
− Clamp the workpiece, but do not deform it.
− Predrill holes with a large diameter with a smaller drill
− Always use a taper drift for loosening drills with a taper−shank.
− Ensure cooling when drilling holes (drilling fluid, compressed air, air); use short drills for short drill holes.
23.7. Countersinking
175
23.7.1. Types of countersinks
Countersink
Flat countersink
Spiral countersink
176
Head countersink
Form countersink
Combined drill and countersink
Figure Figure Figure Figure Figure
23.7.2. Instructions for countersinking
− Clamp the workpiece and tool tightly.
− Lubricate the pilot pin of the head countersinks and the countersinking tool with pilot.
− If chatter marks occur, adjust to the next lower speed.
177
− When countersinking thin workpieces, “particularly observe the hole: countersink ratio.
− When operating with pin−guided countersinks, make the pilot hole with a diameter which is only 0.2 mm
greater; so not bore until it is necessary.
23.7.3. Cutting speed and feed for countersinking
Material of workpiece
Type of countersink
Cutting speed
in m/min for
tools of
WS
SS
Red brass
Z
12 − 15
25 −
30
Brass
S
16 − 18
35 −
40
Aluminium
Z
6−8
8−
12
Grey cast iron
S
6 − 10
12 −
18
Steel
Z
6−8
8−
12
Cast steel
S
8 − 10
10 −
20
Malleable cast iron
Hard bronze
S spiral countersink
WS tool steel
Z countersinking tools with pilots
SS high−speed steel
Explanation to the figure on page 206
Rake angle ? = 0°
Clearance angle ? = 5 − 8°
Cutting angle ? = 90°
Cutting−wedge angle ?
The surface quality and dimensional accuracy are improved by reaming (reamed holes as bearings, for the
reception of fitting pins, etc.).
Type of
countersink
10 − 15
Speed in mm/revolution for drill
diameters in mm
16 − 25
26 − 40
41 − 60
WS
SS
WS
SS
WS
SS
WS
SS
Z
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
Z
0.2
0.2
0.2
0.2
0.2
0.2
0.2
0.2
S
0.2
0.25
0.25
0.3
0.3
0.4
0.4
0.5
S
0.2
0.25
0.25
0.3
0.3
0.4
0.4
0.5
Z
0.1
0.1
0.1
0.15 0.15
0.2
0.15
0.2
S
178
0.1
to
0.15
0.15
to
0.25
0.15 0.25 0.25 0.35 0.35 0.45
to
to
to
to
to
to
0.25 0.35 0.35 0.4 0.45 0.5
23.8. Reaming
23.8.1. Design of reamers
1 Cutting direction,
2 margin,
3 square,
4 shank,
5 chamfer
23.8.2. Cutting speed and feed for reaming
Material of workpiece
Reamer of tool steel
high−speed steel
V in m/min
s in mm/rev.
V in m/min
s in
mm/rev.
Bronze, soft
6−8
0.8 − 1.5
10 − 12
0.8 − 1.5
Bronze, hard
5−6
0.6 − 1
8 − 10
0.6 − 1
Cast brass
20 − 25
0.8 − 2
25 − 30
1 − 2.5
Basis brass
8 − 12
0.4 − 1.2
12 − 17
1 − 2.5
up to 500 MPa
4−5
0.3 − 0.8
5−6
0.3 − 0.8
500 − 750 MPa
3−4
0.3 − 0.8
4−5
0.3 − 0.8
120 − 180 MPa
4−5
0.5 − 3
6
0.5 − 3
180 − 300 MPa
3−4
0.5 − 3
5−6
0.5 − 3
Steel
Grey cast iron
179
Malleable cast
iron
soft
4−5
0.5 − 3
6
0.5 − 3
hard
3−4
0.5 − 1
5−6
0.5 − 3
soft
3−4
0.5 − 1
5−6
0.5 − 1
rigid
3
0.5 − 0.8
5
0.5 − 0.8
Cast steel
V cutting speed, s feed
23.8.3. Instructions for reaming
− The hole made by other processes must be about 0.1 − 0.2 mm smaller than the reamed final size.
− Chatter marks (marks on the surface of the hole) can be avoided if reamers with an unequal number of
cutting edges are used.
− Choose a relatively low cutting speed and a great feed.
− Holes with a groove should be reamed with twisted reamers only.
− Never turn reamers opposite to the cutting direction (cutting edges break out).
− Keep the reamer only in its protective sheathing.
23.9. Thread cutting
23.9.1. Thread profiles
Metric ISO thread
Whitworth
pipe thread
Acme thread
Knuckle
thread
Saw−tooth thread
Flat thread
23.9.2. Thread cutting tools
Thread cutting tools
Explanation
for internal thread
180
two−piece or three−piece with different
diameters and different lengths of bevel
lead; three−piece serial tap (entering tap,
plug tap and third tap)
1 threaded part, 2 shank,
3 designation of thread,
4 chip grooves, 5 bevel lead
Serial tap
Tap wrenches
− Single−hole tap wrenches
− Adjustable tap wrench
used for clamping the taps
for external threads
can be used manually and mechanically;
slotted threading dies can be adjusted
and readjusted.
Threading dies
mainly used for thread diameters of 12
mm
1 bolt die,
2 holder
Thread die stock
23.9.3. Diameters of screw taps and punches for tapping−size holes
Thread
M 1.7
181
Drill diameter in mm
Punch diameter in mm
1.3
1.35
M 2.6
2.1
2.2
M3
2.5
2.56
M4
3.3
3.3
M5
4.2
4.2
M6
5
5
M8
6.7
6.75
M 10
8.4
8.5
M 12
10
−
M 16
13.75
−
M 20
17.25
−
M 24
20.75
−
M 30
26
−
M 36
31.5
−
23.9.4. Cutting speed for cutting threads
Worked material
Cutting speed in m/min for
tool steel
High−speed
steel
− up to 700 MPa
3−7
9 − 15
− over 700 MPa
2−3
5−8
Cast steel
2−3
5−7
2
5−6
− hard
3−5
8 − 12
− soft
6−8
12 − 16
− 700 − 900 MPa
1−2
5−7
Aluminium alloys
12 − 20
20 − 30
Bronze
6 − 12
13 − 25
Magnesium
15 − 20
25 − 30
Unalloyed steel
Malleable cast iron
Grey cast iron
Alloyed steel
23.9.5. Instructions for cutting threads
Cutting internal threads
− Ensure proper starting of the thread tap by previous countersinking (approx. 60°, at least by one height of
pitch) of the tapping−size hole.
− Apply the thread tap vertically to the tapping−size hole.
182
− Use coolants and refrigerants in accordance with the material.
− To remove the chips and feed the lubricant, turn the thread tap back in the direction of cutting for a short
time, then forward again.
− When cutting threads in blind holes avoid contact between the thread tap and the bottom of the drilled hole.
Cutting external threads
− Chamfer the bolt end by about 60°.
− When starting the cut, place the threading die or the thread die−stock horizontally onto the bolt end.
− Start cutting the thread with a slight pressure in the direction of the bolt, then continue cutting without
pressure.
− Use appropriate coolants and lubricants.
− To remove the chips and feed the lubricant, turn the thread cutting tool from time to time in the opposite
direction to cutting for a short period.
23.10. Turning
23.10.1. Operating process for turning
Operating process
Explanation
Turning cutting motion (1); the tool is fed in the radial
direction (3) by cutting depth a; feed in axial direction (2);
circular cylindrical faces are formed
Longitudinal turning
Turning cutting motion (1); the tool is fed in the axial
direction (3) by cutting depth a; feed in radial direction
(2); plane faces are formed
Facing
183
Turning cutting motion (1); cutting width a corresponds to
the width of the turning tool; feed in radial direction; plane
and cylindrical faces are formed (Use: recessing annular
grooves, cutting−off workpieces)
Recess turning
23.10.2. Designation of turning tools
Example
Explanation
Turning tools are mainly standardized (nationally and internationally). The
designation “left−hand” turning tool aplies when the primary cutting edge
is on the left; similarly, in the “right−hand” turning tool, the primari cutting
edge is on the right. The nose must face towards the viewer and the top
face must point upward.
1 primary cutting edge,
2 secondary cutting edge
Left−hand turning tool
23.10.3. Types of turning tools
Type
Explanation
Type
for longitudinal turning,
possibly facing, mainly
for turning external
diameters
straight turning tool
Explanation
used like the straight
turning tool; advantage:
can be used for facing
without resetting
bent turning tool
184
for working internal faces
(holes)
for working internal plane
surfaces
internal corner turning
tool
internal turning tool
for finish−machining
external surfaces
pointed turning tool
for turning workpieces
cylindrically along the
outside or recessing wide
grooves
Broad turning tool
for universal use
(longitudinal turning,
facing, corner turning); in
particular for turning
collars, shoulders
offset side−cutting
turning tool
Cut−off turning tool
cutting grooves in
hollow bodies, holes
internal recessing turning
185
for cutting grooves,
cutting off workpieces
(with of tool = width of
groove = infeed)
simple tool for making
threads, suitable for
internal and external
threads
tool
Single−point threading
tool
23.10.4. Tool angles for turning
Turning tools of high−speed steel
Material
Angles
in °
Aluminium alloy
Cast iron
Material
?
?
12
14 Bronze
8
Angles
in °
?
0 Red brass
Fabric reinforced
Pure aluminium
?
8
0
8
0
12
30
laminate
12
14 St 34−70
8
14
Hard rubber
12
10 St 85
8
10
8
10
8
10
8
10
White cast iron
8
0 Cast steel
Copper
8
18 − 500 MPa
− 500 to 700 MPa
Alloyed steel
Malleable cast iron
− 700 to 850 MPa
8
14
− 850 to 1000 MPa
8
10
−1000 to 1800 MPa
8
6 Tool steel
8
6
Magnesium alloy
8
6 Zinc alloy
12
10
Turning tools with hard metal
Material
Strength in
MPa or
hardness
Rough−machining
hard metal grade
Angles in °
?
?
?
Finish−machining
hard metal
grade
Angles in
°
?
?
?
−
4
Structural
steel
? 500
HS20, HS40
6 10
−5
−−
6
HS01, HS10
6
12
Cast iron
? 200 HB
HG20
6
−6
HG20,
6
6
186
0−
6
−
4
> 200 HB
HG10
6 0−
4
−6
HG01, HG10
6
4
−
4
White cast
iron
−
HG10
6 0
−6
HG10
6
0
−
4
Copper
−
HG20
8 10
−
12
−4
HG20
8
15
−
4
Alloyed
steels
700 − 850
HS20, HS40
6 6−
8
−5
−−
6
HS01, HS10
6
8
−
4
850 − 1000
HS20, HS40
6 6
−6
−−
8
HS01, HS10
6
6
−
4
1000 − 1400
HS20, HS30
6 0−
4
−8
HS01, HS10
6
4
−
4
Pure
aluminium
−
HG20
8 20
−4
HG20
8
25
−
4
Cast steel
500 − 700
HS20, HS40
6 2−
4
−6
HS01, HS10
6
6
−
4
Tool steel
1500 − 1800
HS20
6 0
−6
HS01, HS10
6
2
−
4
23.10.5. Cutting speed and feed for turning
Material to be
machined
Cutting speed in m/min for
High−speed steel
Hard metal
Rough−machining Finish−machining Rough−machining Finish−machining
St 33, St 34, C 10, CK
10
26
40
130
180
C 15, C 20, St 50, St 52,
St 55
23
35
115
160
C 35, C 45, St 60, CK 45
20
30
100
140
C 45, C 55, C 60, St 70
17
25
90
120
Alloyed steels, tool steel
10
15
30
45
Grey cast iron
20
30
75
110
Malleable cast iron
15
22
50
75
White cast iron
10
15
20
40
Copper
50
75
250
350
Red brass
50
75
250
350
Brass
34
50
170
240
Bronze
26
40
130
180
187
Aluminium
200
300
1000
1500
Aluminium alloys
400
600
1500
2000
Aluminium alloys, hard
100
200
200
500
Aluminium−silicon−alloys
75
150
200
300
Magnesium alloys
200
400
1000
2000
Fabric reinforced
laminate
50
150
100
200
Artificial resins
100
300
200
400
The values for the cutting speed apply to feeds of 0.5 to 2 mm per revolution (rough−machining) and 0.1 − 0.5
mm per revolution (finish−machining).
23.11. Milling
23.11.1. Operating process for milling
Operating process
Explanation
Milling opposite to the direction of rotation. The chip is cut
at the thinnest point; the tool slides on the workpiece
(bright, wavy surface)
Up−cut milling
1 cutting speed, 2 feed motion
Milling in the direction of rotation. The chip is cut at the
thickest point and then torn off (dull, rough surface); high
labour productivity owing to high cutting speed and feeds
Down−cut milling
23.11.2. Types of milling cutters
188
Cylindrical cutter
End−milling cutters
End face mill
Side and face milling cutter
Angular mill
189
End mill cutter for T−grooves
End mill cutter for grooves and oblong holes
Tooth milling cutter
Equal−angle cutter
190
23.11.3. Cutting speed and feed for milling
Material
Milling
depth in
mm
Cutting speed in m/min for
Cylindrical
cutters
End
face
mills
End mill
cutters
Side and face
milling cutters
Form
cutters
St 50,
1
24 − 30
22 − 26
20 − 24
18 − 24
18 − 22
C 35
5
22 − 28
18 − 24
18 − 22
16 − 20
16 − 20
8
18 − 22
14 − 18
14 − 18
12 − 16
12 − 16
St 70
1
20 − 22
18 − 20
18 − 20
18 − 20
−
C 60
5
16 − 20
14 − 18
16 − 18
14 − 18
14 − 18
8
14 − 16
12 − 14
14 − 16
12 − 14
13 − 14
1
24 − 28
24 − 26
20 − 24
18 − 20
18 − 20
5
20 − 24
20 − 24
16 − 20
14 − 18
14 − 18
8
16 − 20
18 − 20
12 − 16
10 − 14
10 − 14
0.18 − 0.22
0.18 −
0.2
0.05 −
0.08
0.06
0.04
20 Mn Cr 5
Feed in mm/ revolution
Cast steel
1
18 − 22
20 − 24
20 − 22
18 − 22
18 − 22
GS 45
5
14 − 18
14 − 22
16 − 20
14 − 18
14 − 16
8
10 − 14
12 − 14
14 − 16
10 − 14
10 − 14
Grey cast
1
18 − 22
20 − 22
20 − 22
18 − 22
16 − 20
iron
5
14 − 18
16 − 20
16 − 20
14 − 20
14 − 18
GG 18
8
10 − 14
14 − 16
14 − 16
10 − 14
10 − 14
0.2
0.18
0.06
0.08
0.05
1
45 − 60
45 − 55
45 − 55
45 − 60
45 − 60
5
30 − 50
40 − 50
30 − 50
30 − 50
25 − 40
8
25 − 35
30 − 40
24 − 30
25 − 30
20 − 25
0.20
0.22
0.05
0.10
0.05
Feed in mm/ revolution
Copper
Feed in mm/revolution
Brass
1
45 − 60
50 − 60
50 − 60
45 − 60
45 − 60
MS 72
5
30 − 50
35 − 55
35 − 55
30 − 50
30 − 60
8
25 − 35
30 − 35
30 − 35
25 − 35
25 − 30
0.20
0.20
0.05
0.07
0.04
Feed in mm/revolution
Bronze
1
45 − 55
45 − 55
50 − 60
45 − 55
40 − 45
G Cu Sn 14
5
30 − 45
35 − 50
35 − 55
30 − 45
40 − 45
8
20 − 30
30 − 35
30 − 35
20 − 30
20 − 25
0.14
0.18
0.04
0.06
0.03
350 − 400
300 − 350
250 − 300
Feed in mm/revolution
Pure aluminium
191
1
300 − 350
350 −
400
5
250 − 300
300 −
350
300 − 350
250 − 300
200 − 250
8
200 − 250
250 −
300
250 − 300
250 − 300
150 − 200
0.16
0.18
0.05
0.07
0.04
1
400 − 450
400 −
450
400 − 450
400 − 450
400 − 450
5
300 − 400
300 −
400
300 − 400
300 − 400
300 − 450
8
250 − 300
250 −
300
250 − 300
250 − 300
250 − 300
0.10
0.14
0.04
0.07
0.03
1
350 − 400
400 −
450
275 − 325
350 − 400
350 − 400
5
280 − 350
300 −
400
250 − 300
280 − 350
280 − 350
8
240 − 280
250 −
300
200 − 250
240 − 280
240 − 280
0.05
0.06
0.03
0.06
0.03
1
45 − 60
50 − 60
45 − 55
45 − 55
45 − 55
5
30 − 50
35 − 55
30 − 50
30 − 50
30 − 50
8
25 − 35
30 − 35
25 − 30
25 − 30
25 − 30
0.16
0.18
0.05
0.1
0.04
Feed in mm/revolution
Magnesium alloys
Feed in mm/revolution
Special aluminium
alloys
Feed in mm/revolution
Artificial resin, Kraft
paper, moulded material
Feed in mm/revolution
23.12. Planing, slotting
23.12.1. Operating process for planing and slotting
Operating process
Explanation
Cutting motion (1) by workpiece, feed
motion (2) by tool; machining of long,
narrow parts (e.g. guideways)
Horizontal planing
192
Cutting motion (1) by tool, feed motion
(2) by workpiece; machining of individual
parts, smaller workpieces
Horizontal slotting
Cutting motion (1) by tool, feed motion
(2) by workpiece; finishing of openings
and grooves when the hole already
exists
Vertical slotting
23.12.2. Types of planing tools
Straight and bent planing tool
193
Side plane
Machining vertical surfaces and
sharp−edged shoulders
Cutting plane
Production of U−shaped grooves with
low requirements made on the surface
quality
Grooving plane
Production of T−shaped grooves with low
requirements made on the surface
quality
194
Angle plane
Making acute−angled corners, sharp
shoulders and dovetail grooves
23.12.3. Cutting speed and feed for planing and slotting (high−speed tool steel)
Material
Characteristics
Cutting speed per
double stroke in mm
in m/min when planing with feed
0.16 0.20 0.25 0.32 0.40 0.50 0.63 0.80 1.0 1.2 1.6 2.0
St 38. St42
?60
42
39
36
34
32
30
27
25
24
22
21
19
C 15, C 22
?120
33
31
29
27
25
23
22
20
19
18
17
16
St50, C35
?60
32
30
27
26
24
22
21
19
18
17
16
14
?120
26
23
22
20
19
18
16
14
13
12
12
11
?60
24
23
21
20
19
17
16
15
14
13
12
11
?120
20
19
18
16
15
14
13
13
12
11
10
9
?60
21
19
18
17
16
15
14
13
12
11
10
9
?120
16
15
14
13
12
11
10
10
9
9
8
7
Cast steel
?60
33
31
28
26
24
23
21
19
18
17
16
15
GS−38
?120
27
25
23
21
20
18
17
16
15
14
13
12
Cast steel
?60
26
24
22
21
19
18
17
15
14
13
12
11
GS−45
?120
21
20
18
17
15
14
13
12
12
11
10
9
Cast steel
?60
20
19
18
16
15
14
13
12
11
10
9
8
GS−52
?120
17
15
14
13
12
11
11
10
9
8
8
7
Grey cast
?60
44
40
36
32
28
25
22
20
18
16
15
13
iron GG−12
?120
36
32
29
26
23
21
18
16
15
13
12
11
GG−18
?60
30
27
24
22
20
18
16
14
13
11
10
9
GG−22
?120
25
23
20
18
16
15
13
12
11
10
9
8
St60, C45
St70, C60
GG−14
?60 and ?120 are service lives of 60 minutes and 120 minutes, resp. Planing at ?60
corresponds to slotting at ?30; planing at ?120 corresponds to slotting at ?60.
195
23.13. Broaching
23.13.1. Broaching tools
Internal broach
1 shank, 2 roughing teeth, 3 finishing teeth, 4 burnishing part, 5 end piece
The design of the broaching tools depends
− on the workpiece (material, broaching length, space cross−section).
− on the machine used.
The tool (internal or external broach) is drawn or pressed through or over the workpiece horizontally or
vertically.
23.13.2. Cutting speed for broaching
Material
Cutting speed in m/min
Internal broaching
External broaching
Al alloys
10 − 14
10 − 16
Cast iron
6−8
8−10
1
1
Brass
8−10
8−12
Steel, medium
4−8
6−10
tough
2−4
4−6
Malleable cast iron
4−8
8−10
White cast iron
23.14. Grinding
23.14.1. Operating process for grinding
Operating process
Cylindrical grinding
Explanation
Cylindrical grinding is used for rotationally symmetrical internal
and external surfaces;
1 cutting motion, 2 feed motion. 3 in−feed movement, 4
movement of the workpiece
196
Longitudinal grinding
Plunge−cut grinding
Flat grinding
Flat grinding is used to grind plane surfaces, e.g.: internal and
external guides, sliding and running surfaces, sealing surfaces,
cutting edges of tools, toothed gears
1 cutting speed, 2 feed motion, 3 in−feed movement
Peripheral grinding
197
Abrasive−belt grinding
Face grinding
Abrasive cutting−off
Abrasive cutting−off is used for the rapid separation of hard
materials (bar steels, ceramics, glass, rock).
23.14.2. Characteristics of grinding tools
Grain sizes for abrasives
Symbol
Grain size
below ?m
Symbol
up to ?m
Grain size
below ?m
up to ?m
Screened grains
315
3150
2500
40
400
315
250
2500
2000
32
315
250
200
2000
1600
25
250
200
160
1600
1250
20
200
160
125
1250
1000
16
160
125
100
1000
800
12
125
100
80
800
630
10
100
80
63
630
500
8
80
63
50
500
400
6
63
50
Powdery graind for abrasives
F40
40
28
F10
10
7
F28
28
20
F7
7
5
F20
20
14
F5
5
3.5
F14
14
10
23.14.3. Maximum circumferential velocity for grinding
Material
Maximum circumferential velocity in m/s for
External
grinding
Internal
grinding
Flat grinding
Tool grinding
Abrasive
cutting−off
198
Grey cast iron
25
25
20
−
45 − 80
Hard metal
8
8
8
22 (manual)
−
12 (mechanical)
−
Non−ferrous
metals
35
20
25
−
45 − 80
Steel
30
25
25
25
45 − 80
Light metal
35
20
25
−
−
23.14.4. Feed and cutting depth for cylindrical grinding
Material
Lateral feed
Cutting depth in mm
Rough−machining Finish−machining
Steel
2/3 − 3/4B
0.02 − 0.05
0.008 − 0.01
Grey cast iron
3/4 − 4/5B
0.08 − 0.15
0.02 − 0.05
Finish−grinding
1/4 − 1/3B
0.002 − 0.008
B width of grinding wheel
23.14.5. Reference values for the grinding of tools
Tool
Grinding operation
Abrasive
Grain
size
Hardness
Manual grinding
NK
40
medium
Mechanical grinding
EK
40
soft
Manual grinding
NK
32
medium
Mechanical grinding
EK
32
soft
Manual pointing
NK
32
medium
Mechanical pointing
EK
40
soft
Face grinding
SK
20
soft
Regrinding
SK
32 − 10
soft
− large
manual grinding
NK
50, 40
medium
− small
Manual grinding
NK
40, 32
medium
Mechanical grinding
NK
40
medium
Manual pregrinding
SK
40
soft
Manual finish−grinding
SK
20
soft
Steps manually ground in the
face of the tool
SK
10
medium
Shank material, manual
NK
63, 80
medium
Twist drill
− large
− small
− with hard metal
Turning and planing tools of WS, SS,
HSS
− with hard metal
199
mechanical
NK
63, 80
soft
EK
32
soft
EK
32
soft
Pregrinding
SK
32
soft
Finish−grinding
SK
20
soft
Band saw blades
EK
32
medium
Saw blades of metal circular saws
EK
40,32
soft
Gauges and devices
EK
32,20
soft
Milling cutters of WS, SS, HSS
− with hard metal
EK special fused alumina, NK standard
corundum, SK silicon carbide
Ceramic is used as a binding agent
23.14.6. Instructions for grinding
− Use soft abrasives for hard materials and hard abrasives for soft materials.
− Check the parameters of the abrasives (maximum circumferential velocity, binding agent, grade) before
installing them in the machine.
− When mounting the grinding wheels, take care that compensating shims (of cardboard or leather) are
placed on both sides.
− With grinding wheels, use only the faces for grinding,
− When grinding, use an eye protection device or safety goggles.
− Allow rotating grinding wheels to come to rest; do not brake them manually.
23.15. General data on cutting
23.15.1. Angles, surfaces and cutting edges of tools
Angle, surface, cutting edge
Explanation
Cutting−wedge angle ?. Depends
on the material of the wedge of
the cutting edge and of the
workpiece. Large cutting−wedge
angle for solid materials and poor
heat conductors.
Clearance angle ?. Ensures
cutting effect, large clearance
angle − good cut but reduced
strength of the wedge of the
cutting edge and poorer heat
removal.
200
Rake angle ?. Depends on the
work−piece and the process;
influences chip formation
Exceptions:
? = 0° form cutters
? < 0° cut file tooth
Cutting angle ?. Indicates the
position of the true rake in
relation to the shoulder of the cut
formed.
True rake (1). Together with the
back rake this forms the wedge
of the cutting edge. The chip
flows over the true rake formed.
Top rake (2). The side of the
wedge of the cutting edge facing
the true rake of the workpiece. It
is frequently worked in grinding.
Side rake (3). The side of the
wedge of the cutting edge which
is limited by the secondary
cutting edge and the side rake.
Secondary cutting edge (4). Does
not face the direction of feed.
Primary cutting edge (5). Edge
between the true rake and the
top rake. It points to the feed
direction and is the decisive
component in stock removal.
23.15.2. Materials of cutting edges
Material of cutting
edges
Explanation
Tool steels
unalloyed or alloyed (Cr, W, Mo); high−temperature resistant up to 300 °C
High−speed steels
alloyed (Cr, W, Mo, V, Co) as SS or HSS; sometimes only soldered on or welded on
as a tip; high−temperature resistant up to 600 °C
Hard metals
cast or sintered metallic carbides with additions of Co, Ni, Nb, Ta; soldered on or
clamped on as a tip; high−temperature resistant up to 1000 °C
Cutting ceramics
Clamped on as reversible tips, suitable for high cutting speeds, sensitive to impact; do
not cool!
Diamond
extremely hard, expensive, for microfinishing only; high−temperature resistant up to
800 °C.
201
23.15.3. Cutting velocity, speed, diameter
Diameter in mm
Cutting velocity in m/min (V = d . ? . n)
6
10
14
20
30
40
50
60
80
100
150
200
at speed in 1/min
2
640
1600 2200 3200 4800 6400 8000 9600 12700 15900 23900 31800
4
480
800
1100 1600 2400 3200 4000 4800
6400
8000
12000 15900
6
320
530
750
1060 1600 2100 2650 3180
4240
5300
8000
10600
8
240
400
560
800
1200 1600 2000 2390
3180
3980
6000
8000
10
190
320
450
640
950
1300 1600 1910
2550
3180
4800
6400
12
160
265
370
530
800
1100 1320 1590
2130
2660
4000
5300
14
135
230
320
450
680
900
1140 1370
1820
2280
3410
4600
16
120
200
280
400
600
800
1000 1190
1590
1990
2980
4000
18
106
180
250
350
530
710
880
1060
1420
1770
2660
3440
20
96
160
225
320
480
640
800
960
1270
1590
2390
3180
24
79
130
190
265
400
530
660
800
1060
1330
1990
2660
28
68
115
160
228
350
450
570
680
910
1140
1710
2280
32
60
100
140
200
300
400
500
600
800
1000
1490
2000
36
53
88
125
175
280
355
440
530
710
890
1330
1770
40
48
79
112
160
240
320
400
480
640
800
1200
1590
45
42
71
100
140
210
285
350
420
570
710
1060
1410
50
38
64
89
127
190
255
320
380
510
640
950
1270
55
34
58
81
115
180
230
290
350
460
580
870
1160
60
32
53
74
106
160
210
265
320
420
530
800
1060
65
30
49
70
98
145
195
245
290
390
490
740
980
70
27
46
64
91
135
180
230
270
360
450
680
910
75
26
42
60
85
128
170
210
260
340
430
640
850
80
24
40
56
80
120
160
200
240
320
400
600
800
90
21
35
50
71
105
140
177
215
285
355
530
710
100
19
32
45
64
96
125
159
190
255
320
480
640
115
17
28
39
55
84
110
139
165
220
275
415
550
125
15
25
36
51
76
100
127
155
200
255
380
510
140
14
23
32
45
69
91
113
137
180
228
340
460
150
13
21
30
42
64
86
106
125
170
215
320
425
160
12
20
28
40
60
80
100
120
160
200
300
400
180
10.5
17
25
35
53
71
88
105
140
175
265
355
200
9.6
16
22
32
48
64
80
96
125
160
240
320
202
24. Joining
24.1. Screw joints
24.1.1. Designation of threads
Type of thread
Symbol
Metric ISO coarse screw thread
M
Metric thread
Dimension
Example
nominal thread diameter in mm
M 12
nominal thread diameter in mm × pitch in mm
M 80 × 6
Metric ISO fine screw thread
Whitworth thread
−
nominal thread diameter in inches
2”
Whitworth fine thread
W
nominal thread diameter in inches × pitch in
inches
W 99 ×
1/4”
Whitworth pipe thread
R
thread diameter = nominal width of pipe in inches
R 3/4”
Acme thread
Tr
nominal thread diameter in mm × pitch in mm
Tr 48 × 8
Knuckle thread
Rd
nominal thread diameter in mm × pitch in inches
Rd 40 ×
1/6”
Saw−tooth thread
S
nominal thread diameter in mm × pitch in mm
S 70 × 10
Electric thread
E
nominal thread diameter in mm
E 27
24.1.2. Dimensions of threads
Metric ISO coarse screw thread
1 nut, 2 bolt
Dimensions in mm
P
d2 = D2
d3
D1
0.25
0.07
0.201
0.158
0.169
0.046 0.041
0.02
0.3
0.08
0.248
0.202
0.213
0.049 0.043
0.032
203
h3
H1
Cross−sect ion of tap in mm2
d=D
0.4
0.1
0.335
0.277
0.292
0.061 0.054
0.06
0.5
0.125
0.419
0.347
0.365
0.077 0.068
0.095
0.6
0.15
0.503
0.416
0.438
0.092 0.081
0.136
0.8
0.2
0.67
0.555
0.583
0.123 0.108
0.242
1
0.25
0.838
0.693
0.729
0.153 0.135
0.377
1.2
0.25
1.038
0.893
0.929
0.153 0.135
0.626
1.6
0.35
1.373
1.171
1.221
0.215 0.189
0.08
2
0.4
1.740
1.509
1.57
0.245 0.217
1.79
2.5
0.45
2.208
1.948
2.03
0.276 0.244
2.98
3
0.5
2.675
2.387
2.459
0.307 0.271
4.47
4
0.7
3.545
3.141
3.242
0.429 0.379
7.75
5
0.8
4.480
4.019
4.134
0.491 0.433
12.7
6
1.
5.350
4.773
4.917
0.613 0.541
17.9
8
1.25
7.188
6.466
6.647
0.767 0.677
32.8
10
1.5
9.026
8.160
8.376
0.920 0.812
52.3
12
1.75
10.863
9.853
10.106 1.074 0.947
76.2
16
2
14.701
13.546 13.835 1.227 1.083
144
20
2.5
18.376
16.933 17.294 1.534 1.353
255
24
3
22.051
20.319 20.752 1.840 1.624
324
30
3.5
27.727
25.706 26.211 2.147 1.894
519
36
4
33.402
31.093 31.670 2.454 2.165
759
42
4.5
39.077
36.479 37.129 2.760 2.436
1045
48
5
44.752
41.866 42.587 3.067 2.706
1377
56
5.5
52.428
49.252 50.046 3.374 2.977
1905
64
6
60.103
56.639 57.505 3.681 3.248
2520
Metric ISO fine screw thread
Dimensions in mm
d=D
P
d2 = D2
d3
D1
1
0.2
0.870
0.755
0.783
1.470
1.355
1.383
1.6
h3
H1
0.123 0.108
Cross−section of tap in mm2
0.448
1.44
2
0.25
1.838
1.693
1.729
0.153 0.135
2.25
2.5
0.35
2.273
2.071
2.121
0.215 0.189
3.37
4
0.5
3.675
3.387
3.459
0.307 0.271
9.01
6
5.675
5.387
5.459
22.8
10
9.675
9.387
9.459
69.2
16
15.675
15.387
15.459
186
204
6
5.513
5.080
5.188
10
9.513
9.080
9.188
64.8
16
15.513
15.080
15.188
179
24
23.513
23.080
23.188
418
9.350
8.773
8.917
16
15.350
14.773
14.917
171
24
23.350
22.773
22.917
407
42
41.350
40.773
40.917
1306
64
63.350
62.773
62.917
3095
10
0.75
1
0.460 0.406
0.613 0.541
20.3
60.4
10
1.25
9.188
8.466
8.646
0.767 0.677
56.3
16
1.5
15.026
14.160
14.376
0.812 0.920
157
24
23.026
22.160
22.376
386
42
41.026
40.160
40.376
1267
64
63.026
62.160
62.376
3035
100
99.026
98.160
98.376
7568
22.701
21.546
21.835
42
40.701
39.546
39.835
1228
64
62.701
61.546
61.835
2975
100
98.701
97.546
97.835
7473
160
158.701 157.546 157.835
19494
24
42
2
38.319
38.742
64
62.051
60.319
60.742
2858
100
98.051
96.319
96.742
7286
160
158.051 156.319 156.742
19192
250
248.051 246.319 246.742
47652
37.093
37.670
64
61.402
59.093
59.670
2743
100
97.402
95.093
95.670
7102
160
157.402 155.093 155.670
18892
250
247.402 245.093 245.670
47179
400
397.402 395.093 395.670
122615
6
96.103
92.639
93.505
2.165 2.454
1153
39.402
100
4
1.624 1.840
365
40.051
42
3
1.083 1.227
3.248 3.681
1081
6740
160
156.103 152.639 153.505
18299
250
236.103 242.639 243.505
46240
400
396.103 292.639 293.505
121081
600
596.103 592.639 593.505
275848
205
Whitworth pipe thread
cylindrical internal and external thread
1 internal thread, 2 external thread
Nominal width = thread
diameter in inches
Dimensions in mm
d=D
d2 = D2
d1 = D1
P
Number of courses of
thread per inch
t1
R 1/8
9.728
9.147
8.566
0.907
28
0.125
R 1/4
13.157
12.301
11.445
1.337
19
0.856
R 3/8
16.662
15.806
14.950
R 1/2
20.955
19.753
18.631
1.814
14
1.162
R 3/4
26.441
25.279
24.117
R1
33.249
31.770
30.291
2.309
11
1.479
R 1 1/4
41.910
40.431
38.952
R 1 1/2
47.803
46.324
44.845
R2
59.614
58.135
56.656
R 2 1/2
75.184
73.705
72.226
R3
87.884
86,405
84.926
206
Acme thread, single−start thread
Bolt (2):
minor diameter d1 = d − 2t1
Flank diameter d2 = d − 0.5p
Nut (1):
external diameter
b = d + 2a
minor diameter
D1 = d2 + 2b
t11 = 02.5 P + a
Dimensions in mm
Nominal thread diameter of the bolt
fine
medium
coarse
P
10 − 20
−
−
2
22 − 62
10 − 12
−
65 − 110
14 − 20
−
b
T1
1.25 0.75 0.25
0.5
1
3
1.75 1.25 0.25
0.5
1.5
−
4
2.25 1.75 0.25
0.5
2
22 − 28
−
5
2.75
2
0.25 0.75 2.25
115 − 175
30 − 36
−
6
3.25
2.5
0.25 0.75 2.75
−
38 − 44
−
7
3.75
3
0.25 0.75 3.25
180 − 240
46 − 52
22 − 28
8
4.25
3.5
0.25 0.75 3.75
−
55 − 62
−
9
4.75
4
0.25 0.75 4.25
−
65 − 82
30 − 38
4.5
0.25 0.75 4.75
207
t1
10 5.25
t2
a
250 − 400
85 − 110
40 − 52
12 6.25
5.5
0.25 0.75 5.75
−
115 − 145
55 − 62
14
7.5
6
0.5
1.5
6.5
−
150 − 175
65 − 82
16
8.5
7
0.5
1.5
7.5
420 − 500
180 − 200
85 − 98
18
9.5
8
0.5
1.5
8.5
−
210 − 230
100 − 110
20 10.5
9
0.5
1.5
9.5
−
240 − 260
115 − 130
22 11.5
10
0.5
1.5
10.5
520 − 640
270 − 290
135 − 155
24 12.5
11
0.5
1.5
11.5
−
300
−
26 13.5
12
0.5
1.5
12.5
−
−
160 − 180
28 14.5
13
0.5
1.5
13.5
−
−
185 − 200
32 16.5
15
0.5
1.5
15.5
−
−
210 − 240
36 18.5
17
0.5
1.5
17.5
−
−
250 − 280
40 20.5
19
0.5
1.5
19.5
−
−
290 − 340
44 22.5
21
0.5
1.5
21.5
−
−
360 − 400
48 24.5
23
0.5
1.5
23.5
Multiple threads are provided with the corresponding multiple pitch with the thread profile belonging to the
single−start thread.
Knuckle thread
1 nut, 2 bolt
r = 0.23851 P
R1 = 0.22105 P
= diameter
Dimensions in mm
Nominal diameter
of thread d
Number of courses of
thread per inch
Pitch
Depth of
thread t1
Bearing
depth t2
Roundings of
nuts R
8 − 12
10
2.54
1.270
0.212
0.650
14 − 38
8
3.17
1.588
0.265
0.813
208
40 − 100
6
4.2
2.117
0.353
1.084
105 − 200
4
6.3
3.175
0.530
1.625
Dimensions of the nut in mm
Thread diameter D
Minor diameter D1
Thread diameter D
Minor diameter D1
8.245
5.714
44.423
40.190
9.254
6.714
48.423
44.190
10.254
7.714
52.423
48.190
11.254
8.714
55.423
51.190
12.254
9.714
60.423
56.190
14.318
11.142
95.423
91.190
16.318
13.142
100.423
96.190
32.318
29.142
110.635
104.285
36.318
33.142
120.635
114.285
40.423
36.190
200.635
194.285
Dimensions of the bolt in mm
Thread diameter d
Minor diameter d1
Cross−section of tap A in mm
Flank diameter d2
8
5.460
0.234
6.730
9
6.460
0.328
7.730
10
7.460
0.437
8.730
11
8.460
0.562
9.730
12
9.460
0.703
10.730
14
10.825
0.920
12.412
16
12.825
1.292
14.412
32
28.825
6.526
30.412
36
32.825
8.463
34.412
40
35.767
10.05
37.883
44
39.767
12.42
42.883
48
43.767
15.05
45.883
52
47.767
17.92
49.883
55
50.767
20.24
52.883
60
55.767
24.43
57.883
95
90.767
64.71
92.883
100
95.767
72.03
97.883
110
103.650
84.38
106.825
120
113.650
101.45
116.825
200
193.650
294.5
196.825
209
24.1.3. Characteristics of screw joints
Thread
Hexagon cap screw,
hexagon nut
Fillister−head
screw
Washer
P mm
dB mm
Aq mm2
k mm
sw mm
m mm
D mm
k mm
d mm
M2
0.4
1.6
1.79
−
4
1.6
3.5
1.4
2.2
M 2.5
0.45
2.05
2.98
−
5
2
4.5
1.7
2.7
M3
0.5
2.5
4.47
−
5.5
2.4
5
2
3.2
M4
0.7
3.3
7.75
−
7
3.2
7
2.8
4.3
M5
0.8
4.2
12.7
3.5
8
4
8.5
3.5
5.3
M6
1
5
17.9
4
10
5
10
4
6.4
M8
1.25
6.75
32.8
5.5
14
6
12.5
5
8.4
M 10
1.5
8.5
52.3
7
17
8
15
6
10.5
M 12
1.75
10.25
76.2
8
19
9.5
−
−
13
M 16
2
14
144
10
24
13
−
−
17
M 20
2.5
17.5
225
13
30
16
−
−
21
M 24
3
21
324
15
36
18
−
−
25
M 30
3.5
26.5
519
19
46
22
−
−
31
M 36
4
32
759
23
55
28
−
−
37
M 42
4.5
37.5
1045
26
65
32
−
−
43
P pitch, dB drill diameter for core hole, Aq cross−section of tap, k height of screw head, sw
width across flats, m height of nut head, D head diameter, d hole diameter of the washer
24.2. Welded joints
24.2.1. Types of welds in fusion welding
Type of weld
Welding process
G
E
SG (CO2)
> 0.5
<3
< 10
−
2−5
6 − 25
3−8
3 − 20
4 − 20
V−weld with capping pass
−
5 − 20
4 − 20
Square−edge weld
−
> 10
> 20
Double−V weld
−
12 − 40
20 − 40
Y−weld
−
−
10 − 20
Y−weld with capping pass
−
5 − 20
10 − 20
Double−Y−weld
−
−
20 − 60
U−weld
−
> 12
> 30
Plain butt weld, welded on one side
Plain butt weld, welded on both sides
V−weld
210
U−weld with capping pass
−
> 12
> 30
Double U weld
−
> 30
> 50
Double bevel butt weld
−
12 − 40
>15
Single bevel butt weld
−
3 − 20
3 − 20
Single bevel butt weld, welded on both sides
−
3 − 20
3 − 20
Single−J butt weld
−
> 15
> 20
Double−3 butt weld
−
> 30
> 40
Fillet weld
>1
>1
>1
Double fillet weld
>2
>2
>2
Edge joint weld
>2
>2
>2
Flange weld
>4
>4
>4
Edge groove weld
>3
>4
>4
Corner weld
>1
>2
>2
G oxyacetylene welding, E electric welding, SG(CO2) inert−gas arc welding
24.2.2. Symbols for fusion welding
Weld
Designation
Section (graphic)
View (symbolic)
Symbol
But
weld
211
General
S
Plain butt
weld
||
V−weld
V
Double
V−weld
X
Y−weld
Y
Fillet
weld
Fillet weld
Double fillet
weld
Corner weld
Edge joint
weld
|||
Edge groove
weld
212
24.2.3. Fusion welding processes
Process
Symbol
Process
Symbol
Oxyacetylene welding
G
Gas−shielded arc welding
SG
Electric arc welding
E
Submerged−arc welding
UP
TIG welding
TIG
Firecracker welding
US
MIG welding
MIG
Electroslag welding
ES
Process
Use
Positions
Plate and wall thicknesses
G
Steel and non−ferrous metals
all positions
small thickness
E
preferably steel
all positions
greater thickness
WIG
aluminium and alloys
all positions
small thickness
TIG
high−alloy steel
all positions
thickness > 4 mm
SG
unalloyed and low Mn−alloy steel
all positions
all thicknesses
US
steel
horizontal
small thickness
UP
preferably steel
horizontal
great thickness
ES
steel
upward
thickness > 12 mm
24.2.4. Resistance spot welding of unalloyed steels
Dimensions in mm
Individual
plate
thickness
Electrode Electrode
diameter
tip
(min.)
diameter
(max.)
Spot
diameter
(min.)
Electrode
force in
kN
Weld
current
in kA
Overlapping
Min. spot
spacing with
regard to
Spot
shear
strength
in kN/
spot
shunt strength
213
0.4
8
4
3.2
1
5
8
9
6
1
0.6
10
5
3.8
1.5
7
10
12
8
2
0.8
10
6
4.4
2
8
11
15
9
3
1.0
13
6
5.0
2.5
9
13
18
10
4
1.2
13
8
5.5
3.0
10
14
20
11
5.25
1.4
13
8
6.0
3.5
11
15
23
12
6.5
1.6
13
8
6.4
4.0
12
16
26
13
8
1.8
16
8
6.7
4.5
13
17
28
13
9.7
2.0
16
8
7.0
5.0
14
18
30
14
11.5
2.2
16
10
7.4
5.5
15
18
32
15
13
2.4
16
10
7.7
6.0
16
19
34
15
15
2.6
16
10
8.0
6.5
17
20
36
16
17
2.8
20
10
8.3
7.0
18
21
38
17
19
3.0
20
10
8.6
7.5
19
22
40
17
21
3.2
20
10
8.9
8.0
20
22
42
18
23
24.2.5. Symbols for pressure welding
Weld Designation
Symbol
View (symbolic)
Section
(graphic)
single−row
double−row
staggered
continuous
interrupted
214
projection in the top plate
projection in the bottom
plate
mash weld
burr weld
reinforced weld
24.3. Riveted joints
24.3.1. Arrangements of rivets
Designation
215
Figure
Single−row overlapping
Double−row staggered overlapping
Triple−row overlapping
216
Single−row butt riveted joint
Single−row double butt riveted joint
217
double−row double butt riveted joint
24.3.2. Dimensions of rivets
218
Shape A
Shape B
219
Shape of Dimensions in mm
rivet
A
d1
10
12
16
20
24
30
d2
18
22
28
36
43
53
d3± 0.2
11
13
17
21
25
31
k
7
9.5 11.5
14
17
21
R1
9.5
11
14.5
18.5
22
27
d2
16
19
25
32
40
48
d3 ± 0.2
11
13
17
21
25
31
k
6.5
7.5
10
13
16
19
8
9.5
13
16.5
R1
B
? + 5°
75°
60°
t
2.3
3.3
5.9
9.1
R2
27
41
85
124.5
w
1
20.5 24.5
45°
11.3 13.9
91
114
2
24.3.3. Grips of rivets
Shape A
d1
10 12 16
20
1
B
24
30
10 12 16 20 24 30
max. grip in mm
16
10
20
6
14
24
9
8
17 16 15
32
17 15 13
22 22 20
40
22 22 18
16
28 28 28 26
50
32 30 26
22
36 36 34
60
40 38 34
30
26
80
58 52
48
44
38
60 60 60 60
100
72 68
66
62
58
78 78
125
88
86
82
78
98
44 42 42
160
116 112 108
200
132
Shape A
d1
1
10 12 16
20
B
24
30
10 12 16 20 24 30
max. grip in mm
16
10
20
14 13
220
24
6
17 16
32
13 10
22 22 20
40
19 17 13
28 28 28 26
50
26 24 20
16
60
34 32 28
24
18
80
50 48 46
42
36
30
60 60 60 60
60
56
52
48
78 78
125
76
74
72
98
160
104 100
96
100
36 36 34 32
200
44 42 42
126
Grips of rivets in steel structures
Shape A
d1
10
12
16 20
1
B
24
30
10 12 16
20
24
30
max. grip in mm
20
7
15
24
12
10
32
18
17
40
24 24. 20 18
50
34
18 17
15
24 22 22
32 30 30
28
32
28 24
20
40 38 38
36
34
60
40
36 32
28
46 46
44
44
80
56
54 50
46
42
62 62
64
64
64
100
74
72 70
66
62
78 78
80
82
82
125
86
82
100 100 104
150
108 104
120 122
24.4. Soldered joints
24.4.1. Use of soldering processes
Soldering
process
(selection)
Use
Brazing
? > 450
°C
Soldering
? < 450
°C
Metal
Glass
cermics
Workpieces
Soldering
with
soldering iron
−
+
+
+
smaller surfaces and
thicknesses
Torch
brazing
Torch brazing Grease
model
+
+
+
o
larger surfaces and
thicknesses
soldering
−
+
+
−
Salt bath brazing
−
+
+
o
Bath brazing
221
large number of
pieces (mass
production)
Furnace
soldering
Electric
brazing
Dip brazing
+
+
+
−
Ultrasonic soldering
−
+
+
−
Oil bath soldering
−
+
+
−
Chamber furnace
soldering
−
+
+
+
Controlled −
atmosphere furnace
brazing
+
−
+
+
Induction brazing
+
+
+
+
parts accessible only
Resistance soldering
+
+
+
−
with difficulty
Arc brazing
+
−
+
−
Hot−gas brazing
−
+
+
o
Reaction brazing
−
+
+
−
mass production
+ soldering or brazing possible without difficulty; 0 brazing possible in principle; − soldering or
brazing impossible
24.4.2. Soft solders
Symbol
Alloying
components in
% of
Melting range in
°C (approx.)
Sn±0.5
Pb
LSn 8
8
rest
LSn 25
25
LSn 30
30
249
LSn 33
33
242
LSn 40
40
223
LSn 50
50
200
LSn 60
60
185
LSn 90
90
219
solidus liquidus
270
305
183
257
24.4.3. Brazing solders on the basis of copper
Symbol
Melting range in °C
(approx.)
Operating Temperature
in °C
Use
solidus
liquidus
LMs 60
890
900
900
steel, malleable cast iron, copper and
copper alloys, nickel and nickel alloys
LCu
1070
1080
1070
copper
LCuP8
710
730
710
copper, brass
222
24.4.4. Brazing solders for aluminium and aluminium alloys
Symbol
Melting range in °C
(approx.)
solidus
Operating Temperature in
°C
Use
liquidus
LAlSi12
575
590
590
gap brazing with
LZnAl30
450
515
520
attached or inserted brazing
solders
LZnSnCd25
165
300
−
especially suitable for pure
aluminium
LSnZn40
200
310
to
350
−
LZnCd40
265
330
to
350
LCdZn20
265
270
to
280
280
LCdZn30
265
300
to
310
310
aluminium alloys can be tinned
without restriction
Tinning temperature in
°C
LZnSnCd25 220 − 230
LSnZn40
260
LZnCd40
300
24.4.5. Brazing solders on the basis of silver
Symbol
Operating
temperature in °C
Material to be brazed
Use
LAg 12
830
iron, steel, copper,
copper alloys
large−scale brazing of medium−thick and
thick parts
LAg12Cd7
800
copper and copper alloys small−scale brazing of thick parts;
medium−thick and thin parts without flux
LAg20Cd15 750
iron, steel, copper
small−scale brazing of thin, cladded plates
LAg25
copper alloys
thin plates, wires, pipes; large−scale
brazing of thick and medium thick parts
LAg25Cd14 730
copper and copper alloys small−scale brazing of thick and thin parts
LAg27
steel, hard metal
840
large−scale and small−scale brazing of
thick and thin parts
LAg30Cd12 700
copper and copper alloys small−scale brazing of medium−thick and
thin plates, wires, pipes (mass production)
LAg49
stainless steels
690
LAg50Cd10 670
223
small−scale and large−scale brazing
copper and copper
alloys, silver and silver
alloys
brazing of thin parts (e.g. contact
networks), knife handles
24.4.6. Fluxes for soldering and welding metallic materials
Symbol
Used for
Heavy
metal
Light
metal
Brazing Soldering
Oxyacetylene
welding
Explanation
SHG 1
+
−
+
−
+
over 550 °C
SHG 2
+
−
+
−
+
750 °C
SHG 3
+
−
+
−
+
1000 °C
SW1
+
−
−
+
−
remove residues, corrosion
hazard
SW2
+
−
−
+
−
corrosive under certain
conditions
AW3
+
−
−
+
−
residues remain on the
soldering point
LH1
−
+
+
−
−
remove residues
LH2
−
+
+
−
−
residues are retained
LW1
−
+
−
+
−
reacts with aluminium
LW2
−
+
−
+
−
200 − 350 °C
LG1
−
+
−
−
+
remove residues
LG2
−
+
−
−
+
Al alloys up to 2 % Mg
LG3
−
+
−
−
+
Al, Al alloys above 2 % Mg
LG4
−
+
−
−
+
residues are retained
+ suitable, − unsuitable
25. Changing of material properties
25.1. Annealing of steel
25.1.1. Annealing process
224
Long annealing times and high annealing temperatures result in macrostructures and should be avoided.
T Temperature, TG annealing temperature, t time,
1 heating, 2 maintaining the annealing temperature, 3 cooling
Stress−free annealing 450 − 650 °C
Compensating of stresses after cold forming or after non−uniform cooling in heat treatment, hot forming or
joining.
Recrystallization annealing 650 − 750 °C
Removal of the disturbed structure after cold forming.
Soft annealing. Several hours at 710° C, several times for a short period at 723 °C.
Removal of hard spots in the structure after forging or casting; formation of a homogeneous soft structure for
subsequent metal cutting.
Normalizing 723 − 950 °C (depending on the C content)
Removal of the macrostructure after hot forming, casting or welding; increase in strength and toughness
25.1.2. Annealing temperatures and annealing colours
225
Temperature in °C
Colour
1400
1300
white
1200
chrome yellow
1100
orange
1000
bright red
900
cherry−red
800
cherry−red (beginning)
700
dark red
600
dark red (beginning)
C content
1 Normalizing,
2 recrystallization annealing,
3 soft annealing,
4 stress−free annealing
25.2. Hardening of steel
25.2.1. Hardening process
226
Heating of the steel (carbon content 0.4 − 1.5 %); rearrangement of the carbon particles; quenching (in water
or oil) results in a new, stressed structure; the workpieces become hard and brittle
T temperature, Tu transformation temperature (740 − 890 °C), t time 1 heating, 2 maintaining
the transformation temperature, 3 quenching
Normal hardening
Hardening effect throughout the workpiece (thin−walled workpieces)
Surface hardening
Hardening effect on the surface only; surface−hardened workpieces with a tough core
25.2.2. Quenchants
Quenchant
Cooling rate (with reference to still air)
Acidified water
35
Effect
very abrupt
Use
steel
0.5 − 0.9 %
Salty water
32
abrupt
Water (20 °C)
30
vigorous
Milk of lime
24
less vigorous
C−content
steel
0.9 − 1.5 %
Water (40 C)
22
almost mild
C content
Petroleum
20
almost mild
Oil
14
mild
steel
Compressed air
4
very mild
alloyed
Still air
1
very mild
25.2.3. Quenching process
Shape of
workpiece
227
Right
Wrong
Short parts
Long parts
(cutting punches,
centering pins,
(draw punches)
Parts with holes
and openings
Hollow dies 1
gas space
228
Unequal parts
Flat parts
Deep dies 1
Spray
229
Chisels,
centre−punches,
piercers (quench
only the cutting
edge)
25.2.4. Faults in hardening
Faults in
hardening
Possible causes
Temperature Temperature Quenchant Quenching
too low
too high
too abrupt
time too
short
too soft
+
Faulty
dipping
+
non−uniformly
hard
Drawing
temperature
too high
+
+
too hard
+
brittle
+
Workpiece
distorted
or ruptured
Insufficient Heating
motion
too
rapid
+
+
+
+
25.3. Tempering and hardening with subsequent drawing of steel
25.3.1. Tempering and hardening process
Tempering
Heating to Ta and quick cooling. Reduction in the hardness by quenching (glass hardness, brittleness).
Adjustment of different hardness degrees, e.g. for tools
230
+
Ta drawing temperature (depends on the hardness required)
1 hardening, 2 tempering
Hardening with subsequent drawing
Heating to Tv and cooling in still air, almost complete removal of hardness, increase in strength and toughness
owing to uniform, close−grained structure, for highly stressed workpieces
TV hardening temperature
1 hardening, 2 hardening with subsequent drawing
25.3.2. Drawing temperatures and temper colours
Temperature in °C
400
Colour
Use
grey
380
360
greyish−blue
340
320
light blue
300
cyaneous
centre−punch
280
violet
tools for wood−working
260
brownish−red
milling cutters, reamers, hammers
240
dark yellow
turning tools and planer tools
220
light yellow
twist drills, measuring tools, scribers
200
yellowy−white
180
231
232

Documentos relacionados