1974_10_kothpecc__10th_congress_v_compressed

Transcrição

1974_10_kothpecc__10th_congress_v_compressed
Tpyjiw
X MEïKflYHAPOflHOrO
KOHrPECCA nOMBOBEJÏOB
TRANSACTIONS
OF THE lOth INTERNATIONAL
CONGRESS OF SOIL SCIENCE
V
INTERNATIONAL
PRO 1
IJlbCTBO 'HAYKA.
SOIL MUSEUM
-iï
MewayHapoflHUH KoHrpecc IToiBOBeflOB
•th
International Congress of Soil Science
-me Congres International de la Science du Sol
•er
Internationaler Bodenkundlicher Kongress
Tpydbi e 11 moMax
Transactions in 11 volumes
SCIENTIFIC
AND TECHNICAL PROGRESS
AND RATIONAL USE
OF LAND RESOURCES
VOLUME V
Commission IV and Commission V
PUBLISHING HOUSE «NAUKA»
Moscow
197'.
HAYHHO-TEXHHHECKHÖ IIPOrPECC
H PAIJHOHAJIbHOE
HCnOJIb30BAHHE 3EMEJIbffi>IX
PECyPCOB
TOM V
KOMUCCUH
IV
U KOMUCCUH
e
H3flATEJIbCTBO «HAyKA»
MocK ea
1974
V
OTBeTCTBeHHHii pe,aaKTop: Ü.H.P030B
PeflaKHHOHHan m o e r a n :
C.A.IUyBajiOB,
H.H.KapMaHOB
Editor-in-chief: N.N.Rozov
E d i t o r i a l board: S.A.Shuvalov,
I.I.Karmanov
•A
4Q3Q4 - 0402
042(01) - 74
g^,
©HüCTHiyt n0«0B9Ae»H« •
arpoxHUHH, 1974 r.
COIEPIAHHE
CTp.
H.H.F030B, C.A.UlyEanoB, H.H.KapjjaHOB. EoHBTBpoBKa ÜOTB B
reorpa$HH noiBeHHOro imoflopoflBH
$.P.ruóöoHC, JlK.K.$.M.Xaanc. ToJUiaHACKiiH a BBKTopaaHCKafi
noaxoau K ouemce 3e«iejii>
n.lDTe$aHOBHi, M.fcopax. Pa3paÖ0TKa aoBoro Meioaa ÖOHBTBPOBKH nOHB B BeHrpHH
P.$paHKapT, K.Cac. 3BaqeHne noiBeHmtx xapaKTepacTBK, a c nojii>3yeMHx jyifl oueHKB settejib BO BjiaiHHX TponaiecKax
ocinacTflx
R.lm,
M.BypT, H.BoflKyJiecKy, M.MyHTHHy. SKOMeTpaa, KaK
OCHOBa ÖOHBTBpOBKB CejII,CK0X03HHCTBeHHHX 3eMaHI>
H.JIaóepoT, E.KpoHeBan, D.JlyHKejiiroji, X.roaneK. K Bonpocy
oó oueHKe CBOHCTB ÜOHB Ha ocHOBe aaHHux BsyqeHBH n o i BenHoro npo$BJiH,KaK neTo.ua onpejj&neHBH noiBeHHo-raiacca$BKaioioHHHx npasHaKOB
A.*.MaKKeH3H, A.H.MaacoH. Koppejumaa Me*ny CBOHCTB3MB
noHBeHiioro npafajia c ypozattHOCTLS KopMOBHx KyjiBTyp Ha
TOTHpex naxoTHHx noA30Jiax B BOCTOIHOB KaHane
Jöt.$.Kopnacc. CacTeiia «aHHHX o 3eMejii.HHx pecypoax, O T Be^aïimaH TpeóoBaHaau njiaHapoBaaafl 3etuienojii>30BaHafl . .
Ji.JU.BapTeajia. iloiBeHnaa cteMica a njnanapoBaHae oxpami OKpyzasineH cpejtu
D.JlE.B.Jla$$a. IloTpeóHOCTt B aaHHHx o noiBax npa ocymecTBJieHan KpyriHHX npoeKTOB c noTeHnaajüno CHJIBHUM B03fleüCTBaeM Ha OKpyxa»nörH> cpe,ny
M.Jl.JIeBaH, X.TpaiwiaeB, M.KaseBCKaa, CKpicraHOB. y i e i
3eMejii>HHx pecypcoB. Kapra 3eMejn>HHX SOH Bojirapaa . . . .
n.U.KBHr, A.M.AXCTOH. McnojiB30BaHae noiBeuHoa cteMKa, n o jiesnx onuTOB a xaiunecKax aHaaaaoB AHH BUHBJieHBH p a a o HOB C HBAOCTaTKOM MBKp03JleMeHT0B
13
19
26
34
40
46
54
61
67
74
76
36
5
CTp.
B.BojiBpaó. Ocoóue npoöJieMH npaBMBHoro acnojii>30BaHBH IIOIB B
rycTonaoe^eHHHx a BucoKOHHAycTpaajibHHx paiiOHax
K.C.KajiLHHOB. HpapoflHaH PHTMHHHOOTL B acnajii>30BaHBe noiB . .
r.CHaBTHH. OT no3HaHBH miOflopoflHH HOIBH K npoH3BO«CTBy p a c -
TeHHft Óe3 no^BH
JI.BepcMa, K.A.PHKÓOCT. Hcnojii>30BaHHe OTpaóoTaBmax BOA TepManLHHX aneKTpocTaHuafl AHH yBejmieHBH npoB3BOHCTBa n p o flyKTOB OHTaHUH B BOJIOKHa
n.^epHH. 0 B3aaM0CBfl3H npoóaeM no nepepaöOTKe roponcraix O T XOAOB H ax J9cnojn>30BaHH£ B ixejiax yjiymema
IIOHB B coimaJiHCTBqecKOM cejitCKOM xo3HficTBe rjIP
A.P.CBOóofla, O.Jls.IIeTepooH. CpaBHOHBe $HKcanaa yrjieKHCJioro
ra3a pacTeHHHMH a e r o BuaejieHHH n p i csaraHaa acKonaeHoro
TonjiHBa
HMEHHOtt yKA3ATEIB
95
102
107
113
122
129
138
*0
e
C O N T E N T S
Soil valuation and geography of soil fertility
N.N.Rozov, S.A.Shuvalov and I.I.Karmanov
13
Butch and Victorian approaches to land-appraisal
P.H.Gibbons and J.C.F.M.Haans
19
Elaboration of a new method of soil appraisal in Hungary
P.Stefanovits and M.Forizs
26
Significance of soil characteristics used for soil appraisal
in humid tropical regions
B.Frankart and C.Sys
34
Ecometry as a basis for farmland judging
D.Teaci, M.Burt, N.Voiculescu and U.Munteanu
40
Appraisal of soil properties on the basis of a soil profile
investigation as a method for determining soil-classificational features
I.Lieberoth, E.Gronewitz, P.Dunkelgod and H.Gondek
46
Correlation of soil profile properties with forage productivity on four cultivated podzols in Eastern Canada
A.F.MacKensie and A.N.Manson
54
A strafified land data system to fit land use planning needs
J.F.Corliss
61
Soil surveys and environmental planning
Ii.J.Bartelli
gp
Soils information requirements for large projects with potentially major environmental impact
P.J.B.Duffy
^
Land resources inventory. A land zone map of Bulgaria
M.L.DewantChr.Trashllev,li.Yulevski and S.Krastanov
76
Use of soil survey, field experiments and chemical analyses
for defining areas of micronutrient deficiency
86
P.U.King, A.M.Alston
Specific problems of proper utilization of soils In densely populated and highly industrialized regions
B.Wohlrab
Natural rhythm and soil utilization
K.S.Kal'yanov
From the cognition of soil fertility to land production
without soil
G.S.Davtlan
The use of waste heat from thermal power stations for
increased prodcution of food and fiber
L.Boersma and K.A.Rykbost
Uu the Interrelation between the problems of processing
urban wastes and their utilization for the improvement
of soils involved in the socialist agriculture of the
SDH
P.Czerney
Carbon dioxide fixation by vegetation as compared to
carbon dioxide emission by fossil fuel combustion
A.H.Swoboda and ?.J.Peterson
Index of authors
$5
102
1
°7
113
122
129
138
TABLE DBS HATIERES
N.H.Rozov, S.A.Chouvalov, I. I.Karmanov. Evaluation des sols
et la géographie de leur fertilité
P.Gibbons,J.Haans. Approcbes Hollandaise et Victorienne de
1'appreciation des terres
P.Stefanovits, M.PÓrizs. Hise au point d'une nouvelle methode d'evaluation des sols en Hongrie
R.Frankart, C.Sys. Signification des caractéristiques pédologiques utilisées pour 1*evaluation des terres en regions tropicales humides
D.Teaci, H.Burt, N.Voiculescu, H.Hunteanu. Econometrie en
tant que base d'evaluation des terres agricoles
I.Lieberoth, E.Gronewitz, P.Dunkelgod.H.Gondek. Appreciation
des propriétés des sols sur la base des résultats de
1'étude du profil de sol en tant que methode de definition des indices de classification des sols
A.MacKensie, A.Hanson. Correlation des propriétés du profil
de sol avec la productivité des cultures fouragères
sur lee quatre terrains podzoliques de labour au Canada Est
J.Corliss. Syotème des données stratifiées sur les ressources
de terre utilise dans la planification de 1' exploitation
des sols
L.Bartelli. Levée de sol et la planification de la protection
de 1' environnement
F.Duffy. Collecte des données sur Ie sol pour la realisation
de grands projets éventuellement capables d'exercer une
forte influence sur 1'environnement
M.Dewan, Chr.Trashliev,H.YolevBki,S.Erastanov. Inventaire des
ressources de terre. La carte des zones pédologiques de
Bulgarie
P.King,A.Alston. Utilisation de la levée de sol, des essais
aux champs et des analyses chimiques pour determiner
les regions caractérisées par 1'insuffisance des oligoéléments
13
19
26
34
40
46
54
61
67
74
76
86
9
B.Wohlrab. Problèmee specifiques d'une bonne utilisation du
sol dans des regions hautement industrialisees a population dense
K.S.Kaliyanov. Rythme naturel et exploitation du sol
G.S.Davtian. De la connaissance de la fertllité des sols
vers la culture des plantea sans sol
L.Boersaa, K.Rykbost. Utilisation des eaux résiduaires des
thennocentrales en Tue d'augmenter la production alimentaire et celle de fibres
F.Czerney. Sur la correlation des problèmee concernant la
transformation des dechets urbains et leur utilisation
en vue d'améliorer les sols dans 1'agriculture socialist e de la RDA
A.Swoboda, F.Peterson. Comparaison entre la fixation du gaz
carbonique par les plantes et son emission lore de la
combustion du fuel fossile
IHDEX DES AUTEURS
10
95
102
107
11?
122
129
138
I N H A L T S V E R Z E I C H H I S
Seita
N.N.Rozow, S.A.Schuwalow, I.I.Karaanow. Bodenbonitierung und
Geographic der Bodenfruchtbarkeit
15
F.R.Gibbons, J.C.F.H.Haans. Niederlandische und Viktorianische
Elnstellungen zur Bodenabachatzung
19
P.Stefanovits, M.Fórizs. KIn neuea Terfahren zur Bodenbewertung
In Hungara.
26
R.Frankart, C.Sya. Die Badeutung der Bodeneigenachaften für
die Landachatzung In den bnaiden Tropen
$'*
D.Teaci, H.Burt, N.Voiculescu, H.Huntaanu. ökoaetrie als Baais
der landwirtacnaftlichen Bodenbonitierung
4°
I.Lieberoth, E.Cronewitz, P.Dunkelgod, H.Gondek. Zur Bewertung
der Bodeneigenschaften auf der Basis von Bodenprofildaten - ein aethodiacher Beitrag zur Auawertung bodenklassifikatorischer Merkmale
46
A.F.llacKenzie, A.N.Hanson. Korrelation zwiaehen den Bodenprofildaten und der Ertragsfahigkeit von Futterkulturen auf
vier podsoligen Ackerboden in Ostkanada
54
J.F.Corliss. Das den Forderungen der Bodennutzungsplanung
entsprechende System der Aagaben uber
die Landresaourcen
61
L.J.Bartelli. Bodenaufnahme und Umweltplanung
67
F.J.B.Duffy. Anforderungen an die Bodendaten bei der Realisierung grösserer Bauvorhaben mit potentiell starker
Auswirkung auf die Unmelt
74
t H.L.Dewan, Chr.Traschliew, H. Iolewski^s.Kriatanow. Inventur
der Landressouroen. Rstyonierungskarte Bulgarians
76
F.H.King, A.H.Alston. Die Verwendung der Bodenaufnahme, der
Feldversuohsergebnisse sowie der chemischen Analysen11
Salts
angaben fur die Pestlegung der Geblete nit mangelndem
Gehalt an Itikronahrstoff en
86
B.Wohlrab. Besondere Probleme dee Bodennutzungaschutzes in
dicht besiedelten and hochinduatrialisierten Regionen.. 95
K.S.Kaljanow. Die natürliche Rhytnmik und Bodennutzung
.102
G.S.Dawtlan. Vom Kenntnis über Bodenfruchtbarkeit zur Produzierung der Fflanzen ohne Boden
.107
L.Boersaa( K.A.Rykbost. Die Verwendung der thermischen Kraftwerkabfalle fur die Erhöhung der Ernteertrage
P.Czerney. über die Verflechtung abfallwirtsehaftlicher und
bodenkundlich-pflanzenbaulicher Probleme in der DDR
aus der Sicht sozialistischer Landeskultur
.113
122
A.K.Swoboda, F.J.Peterson. Der Vergleich der COp-Aufnatune
durch Fflanzen alt der COp-Auaacheidung bei der Verbrennung natürlicher Brennatof f e
129
AUTOREHIHDEX
138
u
EOHHTHPOBKA IKNB H rEOITAMH IKNBEHHOrO IUKfflOPOflHfl
H.H.P030B, C.A.UiyBasoB, H.H.KapuaHOB
noiBeama HBCTHTÏÏ HU. B.B.floKyiaeBa, CCCP
I.
MOTOAHKa ÖOHHTHpOBRH EO<IB, OCHOBaHHaH Ha OflHOBpeueHHOU H C -
no^B30BaHHn cpesHHX saHHux o CBOitciBax noiB H ciaTHCTHiecHH oópaöoTaHHHX uaiepHa^iOB no ypoxaBHOCTH cejiBCHoxo3HacTBeHHux nyaBiyp, ÖHJia
npejyioxeHa B.B.AoRy^aeBuii H B saJiLHeMraeu noaBepraacB 3HaqnTeJiiHouy
yTO<JHeHHK).
2 . Bo uHornx paöoiax COBOTCKHX H 3apy6exHux noiBOBeflOB ÓHJIO nona3aHo, MTO TecHan KoppeanniiH iiexay CBOüCTBaiiH no^B H ypoxaitHOCTBD
coxpaHHOTCH TOJIBKO B npeaenax onpeaejieHiaix reHeTHiecRHX PHBOB H
rpynn noiB.
(.fl.Tai. Dumitru Teoci ) .
Tan, 3a»HOH«ocTH, yoiaHOBaieHHHe iiexay ypoxaüHOOTM) H ryuyoHocTBn
noiB B QeHTpaJiBHux npoBHHHHHX iepH03eitHoa aoBH^He nepeHocHMü aa Ï K paüHy. CBH3B ryuyoa « ypoxattHocrH B pnay OOITCHHX iepH03euoB c y n e c i BeiiHo HHafl, leii y .ccuiOHneBaïHX iepH03euoB. To xe cauoe HaömoaaeTCH
B pfl»ax cyrJiHHHcrax H cyneciaHiix iepH03euoB. CiaooryuycHpoBaHHue
iepH03eim KpHiia coaepxai ryuyca o noBepxHOciH CTOJIBRO x e , CKOJIBKO
cBewio-KauiTaHOBue noHBHKa3axoiaHa, HO pa32iH<iHH no njioflopoamo uexsy
BHiui orpoMHu. B cepux JIOCHHX novBax npa SBÏIXBBHH C 3ana«a Ha BOCTOK
ryuycHOCTB Hapaciaei, a ypoxaBHOCTB CHHxaeiCH.
TaRHU oopa30u, KoppeiHTHBHue CBHSH uestsy CBOHCTsauH nonB H HX
nJioflopojiHeM B Rasa on aRonoro-reHeTHiecKOU pnay noiB HMHBnayaJiBHu
H AOJIXHU ycTaHaBJiHBaiBCH H H3yqaiBCH OTAOJIBHO. OIO O^BHB TecHO CBH-
3HBaei npoöJieuu ÖOHHTHPOBKH noqB, SKOJiorimecKOM KaaccH$HKanHH HOIB
H arponoqBeiiHoro paBoHHpoBaHHH.
5.
TpeÓOBaHHH pa3jm»JHHX cejIBCKQX03HacTBeHHHX K y i B i y p ,
B03SeJIHBa-
euux B OJIHOU H TOM xe arpono^BSHHOu paüoHe, K noiBau a R sKoaoriraecKOM cpeae, Haxosnmea cBoe BiipaxeHse B pexHuax noiBooopa30BaHHH,
Macro oqeHB pa3Jinqiin.
noaiouy ciporaH KoppejranHH uexay CBoaciBauH noiB H ypoxa8HOCTBx>
CejIBCK0X03HaCTBeHHbIX KyjiBTyp UOXei ÖUTB HaflaeHa TOJIBKO npH COÖJIK)13
xeHHH aByx ycjioBHfl, a iweHHO: npH paocuoTpeHHH noiB Kaxaoro reHeinlecKOro pnaa oiaejiBHO H npn HaxosaeHHH CBH3efl c KaïflOit SKOJiorHiecKOfl rpynnofl cejiBCKOxoSHacTBeHHtoc KyaBiyp. BoHHinpoBowHue manu l e p H036UHoro pnaa nora PyccKoH paBHHHti, noJiyieHHue win nmaHHHH, Kyicypyau H caxapHott CBOKJIH, paajraiHn.
't. ïpoxan cejiBCK0X03Hi!cTBeHHux KyjiBiyp BecBiia OHJIBHO aaBHCHi OT
ypoBHfl arpoiexHHKH, conptnteHHOi! c OÖIUHU ypoBHeu HHTBHCHBHOCTH seiiJiejs,enun. 3 i a 3;IBHCHUOCTB onpeflcjraeicH KOJttreecTBOU BHOCHMHX yaoöpeHHH, ooömofleHHeu oniHiiaflBHHX opoKOB arpoiexHiroecKHX paöoi ( I T O CBHsaHO c oÓecneieHHOdB» cejiLCKoxo3HücTBeHHnMH icanuraaiui), cieneHtn
HSsecTKOBaHHH nncjihoc noqB H T . 4 .
ücuiHafl óoHHTupoBKa no^B, pacicpuBanmafl arpoHouniecKoe 3HaieHne HX
B 3eujieaejiHH, aomua HMBTB, m« npaBHao, ipn ÖOHHTHPOBOIHUX nwajin MR HH3Koro,cpeaHero u BucoKoró ypoBHen arpoiexHHKH. OnHi
ÖOHHTHpOBO«IHHX paÖOT B paflOHaX HHTeHCHBHOrO 3eMJI8aejIHH (OKpeCTHOOTH
MOCKBH) noKasuBaei, w o cyneciaHne aepHOBo-noH3oiiHCTiiie no^Bu no nepBoit nmaJte HUODT HHSKHS öoHHTem H 3HaiHieaBH0 yciynacT cyrjinHHcTMi,
a no TpeTteü uiKaJie, npn BHCOKOU ypoBHe arpoiexHHKH, npuöJiraacToa K
HHU. TaKHM odpasou, nonpaBOiHtie K03$$HHHeHiii Ha uexaHiweoKHH cociaB
MS
pa3HHX ÖOHHTHpOBOIHHX HIKaJI HH6DT paSHue 3HaieHHH. EoHHinpoBRa
noiB B ycaoBHHX HHT6HCHBH0P0 opomaeuoro 3eujieaejinH (y3öeKnciaH) n o Ka3UBaex, ITO npH HHSKOM ypoBHe arpoiexHHKH jiernne noiBii sHaiHieJiBHO yciynaDT cyraHHHCiini, a npn BHCOKOM - aaae npeBOCxoflHi HX. TaKHu
oöpa30u, npn öoHHTHpoBKe noqB » a nocipoeHHH mKaji HeooxogiDiO CTporo
yiHTUBaiB ypoBHH arpoiexHHKH H HHieHCHBHOciB 3eiuieaejiHH.
5. M3Jioi£eHHue yioiHeHHH, flonojiHH»inne aoKyiaeBCKyn ueioaHKy ÖOHHTHpoBKH noqB, ÖUJIH yiieHu npn pa3paÖ0TKe HeioSHwecKHx yKaaaHHtt no
öoHMiiponKe noiB B Kojixo3ax H coBX03ax PC$CP. 3TO no3Bcuinjio opraHH<iecKn c o i e i a i B ciainciHiecKH odpadoiaHHtie uaiepHaaH no cBoflciBait
noiB H no ypojcaflHOciH ceaBCKOxo3HH0TBeHHux KyjiBiyp npn nocipoeHHH
ÖOHHTHPOBOIHHX BKajI.
OCHOBHUUH uaiepnajiaHH, Ha KOToptuc CIPOHICH ÖOHHTHpoBKa noiB
PC$CP, HBJIfflOTCH MHOrOaeiHHe SaHHHe no X03HHCIB6HHOH ypOJtaÜHOCTH B
Kojixo3ax H coBxo3ax H MaiepHaan noiBeHHoro odcJieaoBaHHH HX l e p p n i o pnit (npoBOAHuoro npoeKimai HHCiniyioii "Pocrnnpo3üii"), BupaseHHue B ;•
npoueHTHou oooTHOineHHH luioatafleti OCHOBHUX rpynn noqB Ha nauHHX.
*
TOJIBKO M H BiicoKoro ypoBHH arpoiexHHKH HcnoJiB3yDTCfl iiaiepnajiH o n u t HUX ciaHUHtt H copioHcnBiiaie^BHiix yiaciKOB. MeiosHKH COHHTHPOBKH
no^B, pa3paöoiaHHHe H npHHHiue B w y r n x COBSHHX pecnyöJiHKax CCCP,
ÖJIH3KH K OnHCaHHOtt.
14
H3Jiox8HHaH npaKTHqeoKan nociaHOBRa paöoi npn COHHTHPOBRB noiB
omipaeTCfl Ha eanHciBO cncTeuaTHK0 H HoiieHRJiaiypu noiB, npxHHiux B
cHcieue HHHHciepcTBa cejiBCRoro xo3HHciBa ana nowBeHHux cteuoK,
eSHHCTBO OOUHaJIHCTOTeCKHX
$opM ceJIBCR0X03HBCTBeHH0r0
np0H3B0ACTBa
H eaimy» cHCieuy rocyaapciBeHHoro cejiBCHOxoBHflciBeHHoro yweia H
OTaraorai.
6 . Paöoiu no npoBeaeHHx HaaacipoBoro yqeia seuejih B CCCP, SBJIBqaomero öoHHTHpoBRy no^B H aHOHOiomecHy» oneHRy 3eue;ii, He 3aR0HieHU, HO yse HiienniHecfl "aTepnajiH no3BojiHDT cyaHTB o HOROTOPUX OÖIUHX
3aR0H0iiepH0CTHX B reorpa$HH noiBeHHoro mroaopoaHH.
B Haoionmeu KpaiROii cooömeHHK uu uoateu ociaHOBHTBCH TOJIBKO Ha
oömea xapaKTepHCTHKe B3iieHeHHH iraoaopoaM B raaBHux 30HaJii>Hux ( u e pnAHOHaJiBBUx) H (JiaunaJiLHux (inpoTKux) pnaax noiB, nepeceRaonuix i e p PHTOPHD CCCP.
Bce OBOHRH aaDTCH no cpeaaett MHorojieiHeB ypoiatfHociH sepHOBHX
KyjiBiyp (Ó83 RyRypysu), B03fleiuBaeMux Ha cyrjiHHMCTHx 30HajiBHux noqBax npn pa3Hux ypoBHHX arpoiexHHKH, HO de3 opouieHiin.
7. B HacTOHnee Bpeiui npeacTaBjmeTCH BO3UOZBUU RpaiKO paccuotpeiB
ipn uepjwHOHanBHux p H f l a noiB (raöji. I ) c TOIHH 3peHiw pacnpeaeaeHiiH
nJioaoposHH H ero iraueHeHHH B 3aBHCHuocTH OT ypoBHea arpoTexHHRH, a
HUGHHO: npHOaJITHHCRO-yKpaHHCRHH, CpeaHe-PyccHHfl H CnÖHpcRo-Ka3axCTaHCRHfl.
TaöJiHua I
CpaBHHieJiBHaH oueHKa wioaopoaM (öoHHTHpoBHa) HeRoiopux
noiB CCCP no yposaflHOCTH 3epH0Bux nyjiBiyp^B öajuiax
EIOIBH
npHÖaJITHHCROyxpaHHCKHB p n a
Ha cyrjiHHHax
I
flepHOBO-noa30JincTbie 23
Cepue necHue
27
J3umeaoqeHHue lepHO32
80101
36
TunHiHue i e p H 0 3 e u u
OÖUKHOBeHHUe «iepHO-
3euu
iOiHue lepHoseiiu
TeiiHo-RamTaHOBue
nou»
ciaHCKHa pna
I
n lil
16
27 41
18
32 48
45
I
n
18 34
23 41
52
59
90
90
27 45
80
32 50*) 82
20
36
53
-
-
-
34
27
52
48
86
80
27 45
23 39
75
66
18
16
32
27
41
34
25
43
73
20
50
14
20
27
M
32
I
73
77
CHÖHpcR0-Ka3ax-
Cl
95
95
n
1,11,1 - ypOBHH HHieHCHBHOCTH
x
CpejHe-PyccKHa PHS
36IUieaeJIHH.
' 3 a 50 ÖaJiJiOB npHHHia yposaBHOCTB 22 n / r a .
15
flZH npHÖaJUHHCKO-yKpaHHCKOrO
liepHflHOHaJIBHOrO
pHSa np« HH3K0M
ypoBHe HHTeHCHBHOCTH 3ek^efl6JiHH HaHöojiee HH3Kan ouenKa y AepHOsonoasojiHCTba noiB (23 öajuia). THIIHMHUH iepH03eu raieei 36 óajuioB "
TeuHo-KaiTaHOBan noiBa - 25 öaJiaoB. TaKHM oöpa30ii,ecjiH npeaciaBHTB
pea öaJiJioBHx oqeHOK rpa$HiecKH, TO noayiHTCH uunyKJiaH.noiTH cHiuieTpHqHaH,KpHBafl. up» B03pacTaHHH ypoBHH HHTeHCHBHOCTH seiuieaeJiHH 0 6 Bepnoe iuieqo STOH KPHBOH BunpniuineTCH sa c i e i npHueHSHHH yaoÖpeHHfl
H HX BUC0K0H 3$$6KTHBH0CTH
npH ÖJttaronpHHTHUX KJIHMaTHWeCKHX
yCJIOBHHX.
flepHOBO-no«30JiHCTHe H cepne necHue noiBti nonyiaBi oneHKH B 95 ÖaaJIOB H HaMMHaBT npeBoexoAHTB MnsMHue qepHoaeuu (90 ÓajuioB) npn TOU
ze BUCOKOM ypoBHe arpoiexHHKH. l t a o e
HJIBMO KPHBOH rarae
HecicojiBKO
BunpHJüiHeTCH, HO yueHBmeHHe yBJiasHeHHH H BUCOKHH ypoBeHB HHieHCHBHOCTH 3emie.ae.nHH odycaoBUHBaióT naaenHe ypoaaüHOCTH OT THnniHiix
qepH036M0B (90 6aJHi0B)K TeBHo-KaiBTaHOBHii no<iBaii (73 Öajiaa).
B CpeaHe-PyccKoii uepnaHOHaJiBHOH paay noiB coxpaHHDTCH B npHHunne
OnHCaHHUe BUme 3aK0H0UepH0CTH,
HO T0JIBK0 BCe ÖOHHTHpOBOTOie
0U6HKH
CHHraBTCH Ha 4-10 ÖaJiaoB y Biine.no'ieHHHX H innnqHux qepH03eiioB H Ha
5-23 GaJina y «epHOBO-no»30JiHCTHX H TeMHO-KannaHOBbix noqB no cpaBHeHHB C upHGaJITHHCKO-yKpaHHCKHlI pflflOU.
Bce TPH KpHBbie uepHAHOHaJiBHoro xosa ypoaaüHocTH (npn pa3Hnx ypOBHHX HHT6HCHBH0CTH 3eiUieaeJIHH)
OCTaBTCH BunyKIUMH C HaHÓOflBieH
Ö8JIJI0-
BOH OUÜHKOR y THIIHIHHX <iepH03euOB. CeBepHoe imeio KPHBOÜ, npn BUCO-
KOU yposHe HHTeHCHBHOCTH, nojioroe, BXHoe - öojiee Kpyioe; öaJuioBan
oueHKa y TeuHO-KamTaHOBta noiB cocTaBjmei JIHBB 50 öajuioB. Bce STH
OCOÖeHHOCTH
CBH38HH C ÜOCTeneHHNU
HapaCTaHHeil KOHTHHeHTaJIBHOCTH
H
3acyuuiHB0CTH KJiHuaia.
B CHóHpcKo-Ka3axcTaHCKou uepHBHOHaMBHoii pHsy noiB iiecTO THIIHIHHX
tiepH03euoB sauHuanT Buqe^oqeHHue qepH03eiui. BoHHTHpoBoiHtie oueHKH
ene öonee CHHIKIBTCH. npn Bcex ypoBHBX HHTeHCHBHOCTH 3eiuieaejiHH a e p HOBo-nofl30JHCTue noiBii H ocoöeHHOTeuHo-KamiaHOBHe noiBH 0Ka3UBaDiCH
3HaMHTejiBHo iieHee iuioaopoAHHUH, i e u BtimejioyenHbie qepH03euu. Ha s r e
3TO cBH3aHo c oöiuea ycToJftHBOfl aacynuiHBOCTBB, Ha ceBepe - c coKpaneHHeu BereTauHOHHoro nepnoaa H aJiHieJiBBUM npouep3aHHeu noiB.
ÏBenHMeHHe KOJiniecTBa yaoöpeioja BH30B6T uaKCHi*aJiBHoe yBejiH^eiuie
ypozan Ha jiecocTenHux iepH03euHux H cepux necHux noiBax, HÜCKOJIBKO
iieHBine - Ha aepHOBo-noasojwcTux, a q i o nacaeTCH oöiraoBeHHux BSHHX ^
MepH03eilOB H
OCOÖeHHO
TeUHO-KaETaHOBUX
COKHX S03 yaOÖpeHHH 3B6CB HeB6JIHKa,
nOIB, TO 3$$eKTHBH0CTB Bbl- *
BCJieRCTBHe
cyxociH,
H BOXBT
npoHBjiHTBCH nHniB B pejKHe BaaaHbie roan, noaoóHue 1972 r . POJIB oporaeHHH 3aecB etne HeflOCiaToqHO H3yieHa, HO BC^eaciBHe ÖOJiee KopoiKoro
16
BereiamioHHOro nepnoaa, iiefljieHHoro BeceHHero nporpeBaHHH noiB H
paHHHX oceHHHx 3aMopo3KOB yporaH 3epH0BHX Ha opoinaeiiux noiBax dyayi
3HaTOTejiBHO HHxe, «en B paHee paccuoTpeHHux 3ana«H0u H ueHTpajiMou
pnsax.
8 . CpaBHeHHe ipex uepHAHOHaJiBHux pnaoB no noiBeHHUii 30Hau B iimpoTHou HanpaB^eHHH noKa3UBaei, «TO ypoxafiHOCT* 3epH0Bux yiieHBiaeiCH o 3ana#a Ha BOCTOK npa Bcex i p e x ypoBHax arpoiexHHKH. IIpn STOM
ÖOJiee BUOOKHÖ ypoBBHB arpoiexHHKH, a Taicse H opomeHHe He crjiaxHBaB T , a aaite yBeiH^HBaBT 3TH pa3JiniHH. B STOM npoHBaaeiCH arposicojior n i e c n o e 3HaqeHHe KOMimeKoa $auJiajiBHHX npn3HanoB B noiBeHHOu noKpoBe, 0BH3aHHHx c HapacTaHneM KOHMHeHTajiBHOciH MHMaia, y'BeaaqeHH6M 3HUHea oxjiasfleHHOoiH, yiieHBmeHHeM KOMnecTBa OCEWKOB H yBejitmeaiieu cyxocTH B03«yxa.
Pe8BM6
KoppejiHUHH uessy cBotfcTBaMH noiB u ypoxaaHOMBB flOJiKHa H3yiaTBc s OTaejiiHO B Kaaaou SKOJioro-reHeTHqecKou pnay noqB H OTaeaiHO AJIH
pa3HHX CejIBCK0X03H3CTBeHHHX
KyJIBTyp. ÜOJIHafl ÖOHHMpOBKa HOIB flOJIÏHa
HH6TB TPH SoHHTHpoBOMHbK innam AJifl pa3JnmHHX ypoBHefl arpoiexHHKH.
Pa3jmiHe ypoBHeö arpoiexHHKH nopasHouy BJMHeT Ha ypoaaa CSJIBCKOxo3HacTB8HHHX tcyjiBiyp B pa3Hux SKonoro-reHeraqecKiix pnaax noqs.
Summary
The correlation between properties of soil and its productivity
must be studied separately in every ecological genetic order of
soils and for every agricultural crop. A comprehensive soil capabi
lity system should contain three rating scales for various levels
of soil management.
The different levels of soil management influence in no similar
way the yields of agricultural crops in various ecological-genetic
orders of soils.
Résumé
La correlation entre les propriétée des sols et Ie rendement
."' doit être étudié separément dans chaque série écologico-génétique
•* des sols et separément pour les différentes cultures agricoles. La
classification complete des sols suivant leur qualité doit avoir
trols echelles d'estimation des sols pour les niveaux différents
d'agrothechnique. La difference entre les niveaux d'agrotechnique
influence d'une maniere différente sur les rendements des cultures
agricoles dans les diverces séries écologico-génétiques des sols.
17
Zusanmenfassung
Die Correlation zwischen den Bodeneigenschaften und den Ernteertragen soil in jeder okologisoh-genetisohen Bodenreihe sowie fur
verschiedene landwirtschaftliche Kuituren einzeln untersucht werden. Eine vollstandige Bodenbonitierung soil drei Bonitierungsskalen fur untersohiedliche agrotechnische Niveaus enthalten. Verachiadene agrotechnische Niveaus beeinflussen unterschiedlioh die Ernteertrage von landwirtschaftlichen Kulturen in verschiedenen okologisoh-genetisohen Bodenreihen.
is
DUTCH AND VICTORIAN APPROACHES TO LAND-APPRAISAL
P.R. Gibbons and J.C.F.M. Haans
. Soil Conservation Authority of Victoria.Australia
Netherlands Soil Survey Institute
a. Important Features in a System of Land-Appraisal:
These are determined by the purpose of the appraisal and by the
concepts about the nature and use of land.
Purpose: To appraise land is to estimate its worth. Worth,
however, has meaning only in relation to the use and user. Moreover,
the land may be used in a number of different ways. Consequently,
the purpose in land-appraisal is to know how to use it (if at all)
so that its worth is the greatest - to know the most worthwhile
system of land use, that is, kind of production, modifications to
attain it, or any chosen kind of production, and management
practices to maintain it. Worthwhileness depends on feasibility
(available resources) and desirability (need for product, and other
ways of obtaining it), so that socio-economic data must be interwoven with the physical data. The former change more quickly, so it
should be brought in to the appraisal only at a late stage.
Concepts: I. Concept of Conservation: Conservation is the
husbanding of resources so that they may continue to provide our
present and future needs. Its essence is to prevent the impairment
of the ability of the resource to produce whatever is likely to be
required from it.
Because of our increasingly diverse requirements from the land,
^ an appraisal should not allow an unwitting impairment in its capability for any foreseable use. Accordingly, the appraisal must embrace a
range of uses; also, because, to prevent deterioration, a knowledge
of hazards is required, and thi3 can be obtained from an understanding of the processes in the ecosystem, the appraisal must
provide information about the processes.
2. Concept of Classification: The aim in classification
includes predicting information about objects regarding their use,
so that the value of a system depends on its predictive ability and
19
on the relevance of the predictions to the proposed use. For general
purpose systems, the predictive ability depends on the covariance of
attributes; consequently, data on many features must be known to
test that covariance. For special-purpose systems, the important
thing is for the attributes on which the classification is based to
be the relevant ones. They are indentified from the relationships
between attributes and a measure of the use. Consequently, a knowledge of the input-output relationships for each kind of production
is requied.
3, Concept of the Integrated Approach: This is the interrelating of a number of environmental features and considering this for
various land-use-systems. The two basic reasons for the approach,
each with its corresponding application are:the productivity of the land may be determined by many
features; consequently all must be considered;
features interact in their effect on processes and
productivities, and differ in importance according to
circumstances; consequently, the interactions, processes
and input-output relationships must be known before each
feature can be properly emphasised.
Important Features: From the above, these include:1. the use of data on a number of environmental features
features and their relationships;
2. the consideration of various kinds of land-use;
3. a knowledge of input-output relationships for each
kind of production, (to allow the various capabilities
to become known);
4. a knowledge of processes, (to allow the hazards and
capabilities to become known);
5. the use of socio-economic data, (to allow the relative
worthwhileness of land-use systems to become known).
b. A Dutch Approach to Land-Appraisals
This is the standars 1:50,000 soil-survey, plus suitabilityratings, published by the Netherlands Soil Survey Institute.
Land-Parameters considered: Some thirty attributes of the soil
are determined, seven of them at all sites, the rest on samples from
some sites. The soil-classificatory system (de Bakker and Schelling,
1966) is general-purpose in intent, and is based on a number of
.,
model concepts (e.g. podsols) each embracing many attributes. It is 4
a useful system because the attributes covary closely in the soils
embraced by each model concept, with a correspondingly high
predictive ability. A combination of soil attributes is used to
characterise the ground-water-table (van Heesen, 1970). Geological
20
and topographical attributes are determined so that the chief
features of the parent material of the main layers of soil profiles
can be known, plus any required information about external drainage.
Climate and vegetation are not considered.
The various features are interrelated, not in the mapping
units, which are areas of soil classes at lower categorical levels,
and which have been comprehensively co-ordinated for the whole
country, but in their arrangement on the map, drawing attention to
their landscape - relationships.
Linking the Features and Use of the Land: In this strong point
of the Dutch approach, the significance of the soil for various
kinds of use is assessed in two ways. One is the deductive, empirical method where in the productivity (at various inputs) of mappingunits is deduced from yield-data, with the aid of relatively
sophisticated techniques such as the "range-orde" method of de Smet
(1961). The limitation here is that one is relying on the relevant
attributes being constant in all areas of the same mapping unit,
which may not be so, but it does allow the information required for'
the inductive method to be obtained.
The other way is the inductive method, with four stages. The
first is the identifying of the various site-conditions (e.g. pH
value, bearing-capacity) which control the productivity; the
next stage is the assessing of the levels of each site-condition
which, together, will result in the required Level of productivity;
the third is the assessing, from the features of the soil, of the
actual level of the site-conditions, and the last stage is the
determining of the disparity between actual and ideal - identifying
the kind and degree of limitations to be removed. A close inspection of the process reveals that not all the basic conditions for
the process have yet been met at all places, viz: establishing the
3 terms for expressing the productivity in various kinds of production, the site-conditions and the features; expressing them
quantitatively; and determining the relationships between these
three parameters, so as to identify the required levels of each.
Nevertheless, the combination of deductive and inductive methods
has proved useful, especially in the form of limitations to a chosen
type of land-use.
Other Features: in the Dutch approach, apart from the everpresent danger of high water-table and flooding, there is little
emphasis on hazards, although, with changing systems of management,
21
this aspect is now being reconsidered - for example, bearing
capacity of the soil. Socio-economic factors constrain the purpose
and scope of the appraisal, but are not included in it.
c. A Victorian Approach to Land-Appraisal:
This is published as the series "Studies of the Land", with
map at 1:250,000, by the Soil Conservation Authority of Victoria.
Land Parameters considered: The relationships of climate,
parent material, topography, soil and vegetation are examined. The
soil receives most attention, with some twenty-five attributes
estimated; seven climatic attributes are considered, geological and
topographical information as available and in terms of fossil landscapes, and native vegetation at some detail of structure and
floristics. The soundness of the land is also noted. Two generalpurpose soil-classificatory systems are used, neitheras detailed
nor precise as the Dutch system.
Mapping units are characteristic patterns of the various
features, for example, a repetitive topographic sequence with
particular soils and vegetation at certain positions on the
sequence. Such patterns are at different categorical levels
according to the degree to which the various features are correlated
in the sequence. Upon this correlation depends the usefulness of
the units, both as a mapping-tool over large-areas and for an
understanding of the processes.
Linking the Features and Use of the Land:
Observed relationships between land type and production are
interpolated or extrapolated. In doing so, there may be an attempt
to surmise the processes in order to identify the most relevant ones
for ranking the land-types, but there is no scheme for relating
land-features, site-conditions and productivities in appropriate
terms•
Conservation Aspects: The Victorian approach emphasises the
!
processes and hazards of deterioration and the significance of the
land-features for them.
An example is the assessment of the suitability, for pastoral
development, of about 20,000 hectares of forested land around a
reservoir which supplies water to 10,000 farms in a semiarid region
of Victoria. With development, the trees would be replaced with,
shsllówly-rooted, annual pasture-plants. From a knowledge of the
following matters - hydrological processes, the effect, on them, of
22
plants with different root-systems and life-cycles, the significance
of the climate, the soil's hydraulic properties and the salinity of
underlying aquifers - it was credibly predicted that the development
would result in as unacceptable increase in the salinity of the
waters. The land, although capable of development, as it happened,
was unsuitable for such. So, the purpose of an appraisal may be
defeated unless we assess the hazard of land-deterioration, resulting from each type of use and accruing to any type of use. Through
such knowledge, the hazards may be avoided or the restorative
treatments devised.
Socio-Economic Aspects: In Victoria, some of the uncommitted
State-land is capable of more than one kind of production without
known hazard. There, to achieve its purpose, the appraisal must
estimate the relative worthwhileness of different systems of use,
allowing a choice to be made. This requires, for each kind of
production, a knowledge of the future needs for the product and of
the costs of producing it from the land appraised and from elsewhere.
Usually, some of this information is lacking,but even to realise its
significance has resulted in better decisions.
d. Comparison and Conclusions:
In both approaches, a number of features and their relationships, are considered, and a range of kinds of land-use, although
the relationships are important more for the Victorian than for
the Dutch approach.
Only in the Dutch approach is there a sophisticated attempt
to estimate the capabilities from the features; this is in terms
of the limitations to be removed. On the other hand, in the
Victorian approach, empasis is put on a knowledge of processes,
hazards and compatibilities.
Socio-economic factors constrain the scope of the Dutch
5 apprais'al, but are not themselves included; in the Victorian
approach, their importance is pointed out, but it is not easy to
bring them fully into the appraisal.
These features of the two approaches may be related to the
circumstances of the two countries. The Netherlands has variable
soils, no great range of climate and topography, few hazards other
than high watervfcaTale, and a dense population which requires an
intensive use of the land, and has the resources to appraise it, but
which largely predetermines what that use shall be. This has given
23
rise to an Intensive system of land-appraisal with emphasis on the
features and distribution of the soils and how they can be modified
and managed best for a chosen form of use. In Victoria, the environmental features and productivity vary widely, the land has become
deteriorated in some places, whilst in some others it remains unused,
and sparsely populated. In their system of appraisal, the relationships of the environmental features are used for rapid mapping of
the land and for conserving it, through identifying and avoiding
the hazards, determining the restorative measures and estimating
the relative worthwhileness of various forms of use.
Acknowledgements
We are grateful to Dr. J.Schelling, Dr G.Steur, Dr H. de Bakker
and Dr R.G. Downes for interesting discussion of ideas, and to Mr
D.Lloyd for Fig. I.
R e f e r e n c e s
de Bakker, H. and J.Schelling "Systeem van Bodem-classificatic voor
Nederland", Shehtirg voor Bodemkartering, Wagenirgen, 1966.
de Smet, L.A..H. "Het Sollardgebied", Versl.Land 6. 0ndere.6t-.I6,I96I.
van Heesen, H.C. Geoderma,4 ( 1970.
Summary
Important features in a system of land-appraisal are:- a wide
range of environmental attributes, a range of kinds of land use,
input-output relationships for each kind of use, conservation aspects
and socio-economic data. The intensive Dutch approach emphasises
one feature - soils -, their distribution, and how they must be
modified and managed for the chosen kind of use, whereas the
Victorian approach emphasises inter-relationBhips of attributes,
and conservation aspects. These differences reflect the circumstances
of the two countries. By bringing together the important features,
a model of more general usefulness is proposed.
Résumé
Dans un systems d'evaluation de la terre, les points importants
sont:
- un grand eventail des caractères du milieu,
- un éventail des différents types d'utilisation de la terre,
- les aspects de conservation,
- les données socio-économiques.
24
j
*
L'approche intensive des Hollandais met 1'accent sur un aspect des sols -, leur repartition et la facon de modifier en
fonction des leur destination. Dans le Victoria, au contraire,
l'approche met 1'accent sur le complexe des rapports entre
différents oaractères et sur les aspects de conservation. Les
differences reflètent la situation dans les deux pays. En
rapprochant les oaractères les plus importants, on peut proposer un
modèle d'utilité plus génerale.
Zusammenfassung
Die wichtigsten Merkmale in einem System der Bodenabschatzung
sindi
- eine grosse Reine von Umgebungseigenschaften,
- zahlreiche Arten der Bodennutzung,
- das Verhaltnis der Ein-und Ausgangsenergie für verschiedene
Arten von Bodennutzung,
- sozial-Skonomische Tatsachen
Die Niederlandische Einstellung zur Bodenabschatzung hat in
ihrer Grundlage einen Charakterzug, und zwar die Boden selbst, ihre
Verbreitung und ihre Veranderung bei der ausgewanlten Art der
Bodennutzung, waarend die Viktorianische Einstellung die gegenseitigen Verhaltnisse der Eigenschaften sowie der Natur-Bodenschutzungsaspekte hervorhebt. Diese Unterschiede spiegein die Umstahde der beiden Lander wieder. Durch eine Vereinigung der wichtigsten Merkmale ist ein Modell der allgemeinen Anwendbarkeit
vorgeschlagen worden.
Fesuiie
K BaxHuu xapaKiepHciHKau oacieiiu OH6HKH 3enejiB OTHOCHTCH: pa3JW<jBue CBOHCTBa üKpysacmeü cpeau, Bmu 3eu.nenoJiL30BaHHH, oTBoineHHH uexay floxoaajiH H pacxoaaun js,nn Kaxaoro H3 BI«OB, oxpaHa no<iB H comiajiBH0-3K0BouHi)eoKHe aaBBue. ToaaaHacKHfl*noaxoa K oueaKe 3eneaB ciaBHT
BO rnasy yraa oana npH3BaK - BOUBU, ux pacnpeaejieBHe, «eimopamiB H
£ oöpaöomy npij BiiöpaBBou cnocoöe aeiaenojiisoBaaHH, B TO BPOHH KaK B
"BHKTopaaBCKOii" noaxoae ocHOBBoe BBiuiaBHe yaeJiHercfl B3annoaeJtcTBHB
CBOHCTB noiB H oxpaBe no<iB. tlpeanoxeH BOBUÖ noaxoa, yiHTHBaomatl aocTOHBciBa OÖOHX Ba3BaBBUx noaxoaoB z npeanoaaraiomHtl öojiee imipoKyB
cipepy npmieiienHH.
?5
PA3PAB0TKA HOBOrO METOflA EOHHTHPOBKH
nO^B B BEHTPHH
n.lDTe$aHOBBH, M.*opix
CeXBOXOZOSflHCTBeHHHH.yHXBepCXTet,
HHCTHiyT HCOJieflOBaHHH
KaieoiBa cejiBCROzoaflltciBeHHuz npoAyHTOB, BeHrpaH
XOTH BonpocoH oueHKH 3exex£ B BeHrpxx 8aHmiaDTCfl Ha npoTHxeHXX
H60ROJURHZ ASCfliBJiaiRH, 40 HacTOHnero BpeueHi ene He paapaÖoiaHa
eAHHafl cHCieua y i e i a s e x e x * . OönanpaHHTas ouewta MX, ooHOBaHHaH Ha
y i e i e AOXOAHOCTX SOMJIX, paapadoiaHHafl B ROHUO npoiuoro CTOJIBTHH,
yxe He yAOBieiBopaei ipeöOBaaEHM. PaapaöoiKa oueHKH aexex*, OCHOB8HHafl Ha HOBettmHx AOcixxeHKHX Hayxx, oiaza soaxoxaox BCJie^cTBHe npoBeAeHXfl noiBeHHux odoaeAOBaHxa Boez oeuBcxozoaflttotBeHKHZ a e x e a t , B Z O Ae KOiopuz npoH3BeaeHo RaptxpoBaHxe n o w B xacxraöe 1:25000 x,xpoxe
Toro, AJifl OAHOii nfliOH leppxxopxH - B uacniaöe 1:10000.
npx paapaöoixe HOBOÜ cxcTexu ÖOHHTHPOBKH noiB s a ocHOBy 6uxa npxHHia reHeiH^eoxaH HAaccH$XRanxH, xcnoxBayexaH npx HpynHOxaoxiaÓHOH
RapixpoBaHKH 1:10000. flnn no<ueHHHZ iaRC0HOXH<iecHxz eAXHxn. saHHOfl
KJiaccH$HKauHH ÖUJIH ycTaHOBJiBHu oueHOMHuo oaJiJiti, zapaRTepxayonxe xx
iuoAopoAxe.
H3B6CTH0, I,TO iuioaopoflHe no<jB xoxHO xaxepxTB BenxTOHOii noJiyieHHoro ypoxafl, a odnuie BHBOAX cAejiart JIHUIL npx npopaóoixe KHorojieTHHX
AaHHUz no ypoxaflx, nonyieHHux npx cpeAHex arpoiexHxqecHox yposHe.
HoBaa CHCTeua ÖOHHTHPOBKH noiB TOABHO iacrx»iHO cociaBieHa no AaHHUH ypoxaiiHOCTH, doABxaa l a o i B ee ooHOBHBaeicH Ha npaHixieoxOH oueHRB CBoaciB n o u . IIpx oneHKe iuioflopoaHH öaJuauH uejiecooöpa3Hee HCnojiB30Baii> oTHocHTejiMHe i x c i a , TaK RBR aÓcomoTHaa BeaxixHa ypoxaeB
oxcipo p a c i e i , a oTHomeHxe adcoABiHuz BeaxqxH ypoxaeB OTAOJIBHHZ
noiBeimux paaaoBXAHocTea eABa yBejiHiHBaeTCH. IloiBeHHue pa3H0BHAH0Cra o caxux BHCORKX iraoAopoAxex oueHHBaDica öajuiou 1 0 0 , a c caxxx
HK3RXH - öajwou I . TaRHH oöpa30H, A M BHpaxeHHfl cieneax IMOAOPOAHH
HxeeTCfl
mipoRafl xnajia oqeaRH.
OCHOBOH flJIH ÖOHHTHPOBKH ÏÏOHB B BeHrpHH HBHJICH CIIHCOK B C T p e q a B -
nxxca noiBBHHHx pa3HOBHAHociefl (CaöoABi, 1966), B ROiopafl npx paa-
26
T a d u g a
rjiaBHtio THBU, rami H noamim rcHeTircecKoB Kviaccuc[)KKauHH noiB
rsaBHua THn
GKejieTHue noqBu
THB
ÜOaiHB
KaueHHGTue, cKajmciue
GKoaeTtme noiBH
raneiaue cKeaeiBHe
noiBH
He noapa3flejiHBTCH
lUeóeHHCTue ITOMBU
KapÖOHaiHue
HeKapÖOHaiHue
BpoAHposaBBHe ao i i a i e PHHCKOÜ IIOpOSH
KapÖOHaTHHfl
HeRapöoBaiBuit
Cunyiüfi necoR
He noapa3flejiHDTCH
KapdosaiButt BOKPOBBUH
CjiaÖoryiiycHpoBaHHHa
nee OR
TeuBiie jinTO5 Mop$Hue Jiec* BHe novBH
ryMycHO-KapÖOHaiHue
noiBH
PeHfl3HHM
3pyÖa3HOHHHG ncran
Bypae aecEiie
n o u u nro-BoeTO^Hoii EBponu
CiuiËBORHCxue Henoa30JiHCTue öypue xecBue
no^BH
necoR
HeRapÖoBaiBUB nonpoBHiii/i nee OR
KoBapsaHBUtt
KapÓoHaiHua
HeRapöoaaiBUH
KapCosaiHuit flByxcjiottBHH
HeKapöoHaTHuH SByxcjioHBHH
He noapaaaeJiflBTCfl
HepHan peim3HHa
BypaH peB43HBa
Kpaoao-raiHHHOTaH peHsaiaa
He noflpa3aejiHBTCH
He noapa3aeJiH)0TOH
27
fjiaBHHit THJ1
noaian
Tan
Ilofl3oraicTHe öypue
Jiecaue noMBU
toJHMepH30BaHHM6 öypue
jieoHKe noiBH
IlceBsorjieeBue Öypue
jiecHue noiBH
He noApa3AejxHHTCfl
ilOA30JIHCTUe H OHJILHORXCXH6
Heno£30JincTiie
Hoa301UICTUe H CJUIBHOKHCJIU6
ïU JIHM6PH3 OBaHHUe
Eypue necHue no?Bu
no FauaRy
rwwiHue
PxaBOöypue
KoBapBaHHue öypue aecHue noqBu
FIOflBCmHCTUe
Itn jiHMe pH3 OBaHHue
TanniHue
TyuycHpoBaHHue KOBapBaHHue
OcïaTOTOo-KapöoHaTHue
Öypue jiecHue IIOIBH
He noflpa3AeiffloiCH
HepH03euoBH4Hue öypue
jiecHue no<!Bu
KapÖOHaTHue
HeKapöoHaiaue
lepBOseuHue
OcTaioqHO-necHue q e p -
IIOIBU
HoseuHue IIOIBU
KapöOHaiHue
HeKapöOHaiHue
BumejioieHHue iepH03evu
He noapa3aejiHBTCH
StauejiapHhie wepHOseiiu
T H nu m i e
An$e;iL3CKHe
rayöOK03acojieHHue
JlyroBne <qepao3enu
KapÖOHaTHue
HeKapöoHaiHue
rjyÖOK03aoojieHHHe
CoaoHueBaTue
TayÖoKocojioHaeBaiue
TeppacoBue iepH03eitu
KapöoHaiHue
HeKapÖOHaTHue
Tun
TjiaBHuft i n n
3acoaeHHue no^Bu
JlyroBiie noqBu
üoamn
CoaoHiaK
KapdOHaTHaü
KapÖOHaTHo-cyaB$aTHnö
KapÖOHaTHO-XJIOpHflHHfl
CojioHiaK-coaoHen
KapöoHaTHull
KapÖOHaTHO-cynL$aiHufl
KapÖOHaTHO-XJIOpHflHHfl
JlyroBOü coOTHeij
KopKOBHH
CpeaHHB
rayöOKHa
OcienHHiomHiicfl
BO3 ooaoHeq
CpeaHHft
rayÖOHH8
jiyro-
Coaoan
He noflpa3«6JiHBTCH
BT0PH1H03ac0JieHHbie
noiBH
CojIOHTOKOBilO
CojiOHueBaTue
CoaoHiaKOBue JiyroBue
noqBH
Cyn£$aTHne
Kapt5oHaTHue
KapöOHaiHO-xjiopHflHHe
CojiOHseBaTO-JiyroBHe
noiBti
CojioHueBame
CHJIBHOC ojiotmeBa m e
JlyroBae n i r a i j
TmnraHne
r3iyöOK03aooaeHHue
TjiyÖOKOCOaOHUeBaTHe
AjunoBHaatHhie jiyroBue
noqBH
KapÖOHaiHtie
HeKapöoHaTHue
EoJiOTHue ayroBue
noiBH
TnnHiHtie
CoaoHqaKOBHe
CojioHiteBaTue
1epH03euHH6 jiyroBae
TanimHNe
KapöoHaTHae
rayöoK03acojieHHHe HJM
rjiyöOKoconoHiieBarae
IIOIBH
Tan
TjiaBHHÜ THII
EOJIOTHHe no^BH
MoxoBiie öojiOTHue no^Bu
JlyroBO-öoaoiHiie noqBH
OcymeHHue H ncnojiB30BaHHne nyroBo-öojiorHue noran
IloaTHn
He noapa33exHBTCfl
He noapaaaeaHDTOfl
OcymeHHue TOP$HHO-6OJIOTHhie
OcymeHHue TOP$HHHCTO-
öonoTiiue
OcymeHHue 3aöoa;oieHHue
HcnojiB30BaHHiie JiyroBue
ÖOJIOTHue
EojioTHue H noHMeHHue jieoHtie noiBu
jjecmie noiBH
HaHocHue noiBu
pen, 03ep H no
noiBu
EOJIOTHHB H noüueHHtie
CKJIOHaM
30
He noapa3»eaHBTOH
KapöoHaTHtie
HeKapÖoHamue
KapÓOHaiHue flByxcaoöHue
HeKapcSoHBTHHe «ByxcnoaHbie
CjiaÖoryiiycHpoBaHHue
aJüiKBHajrLiiHe noqsu
KapöoHaiHne
HeKapöoHaTHire
KapCoHaiHBie flByxcJiotfHue
HeKapöoHaTHiie flByxcfloflHue
JlyroBue 8JiJifOBnaJiBHHe
HaHocu no coonaiJ
HaHocü no cKJioHaii i e p pHTOpHH <iepHO3eU0B
HaHocu no cKJioaau JIGCHUX noiB
padoTite oneHOiBux öaJinoB no<iBH Heoöxoamio ÖUJIO BBOCTB HesuaiHiejiBHue H3ueB6BHH, He saiparHBaonJie npHHiaana KaaooHiJiincauHH a ee cynaocTII, c ueJiMi ynpomeHHH cncTeim.
B Taöjran.8
noKa3aH nopnaoK smeneKHnx.
TJIQBKHX. TIMOB, THBOB
H
noAtHnoB nocJie H3MeBeHHfl, BHeceHHnx npn oneHKe n o i i .
OCHOBHHU 0ÖÏ6KT0U ÖOHHTHpOtKH Cpe«H TaKOOHOUUyeCKHX ejHHHK ÖtM
H3(5paH noflmn, a npn yciaHOBJieHiiH OKOHiaieaiaOH B6MWHUU onenoiHoro
Öaraa oiaejiLHue pa3H0BnaH0CTH, no ROIODUU Jierno onpe^ejiaeuue n o q aeiiHiie CBOüciBa cjiyaai OCBOBOH RJOS BueceHHH nonpaiiOK. Qo nüflTHny 6um HaueieHH sepxaiie H HHXHHe rpaaiinH oiieaoiBHX ÖajuioB,
no CBOÜCTBau no^Beaaux pa3BOBHaaocTeB UBOSHJIHOE nonpaBoiHue K03$$HnHeBiu.
Hasróojisuiee sBa^eane öajuia noamna HMGSI noiBeBHan pasaoBHAHOciL o
caidiui BHCOKHU njiOAopoAHeu.
Oneaoqatie Öajura THnoB w noaranoB «OJISBH cneflOBaTt apyr s a apyroiï
c onpeaeaeHBUMH nepeKptiTHHiiH. TOJILKO laKau oöpa30u BO3UOIBO no B Ö npopHBHoa umajie OUBBKH noiBH npocjiesHTB H Bnpa3HiL B03paciajoinee
naoaopoane onpeaeaeaaoro reneiH^ecKoro paaa noiB. Ha p n o . I noKa3aBO, c KaKHMH nepeKpuiHHMH B03U0ïaue oneHOiane Öajum CJiesyM apyr 3a
flpyrou, Kan yciaBaBJuiBaBTCH öaJiJH OB8HKH MH rflaBaux innoB ti innoB,
i . e . B paHKax reHeTjmecKofl KaaocmJiiiKanJHi noiB.
OieBHflHo, I T O esHBHUH no^BeaHoa reBeTHiecKOfl KJiaccH$nKanitH raaBHjjfl Tan, i a n JMH n o a m n - Be uoryT ÖHTB oxapaKiepH30BaHH OABHU
oneuoyHHB Öajuiou a a a a e onpeflejieimuu HBiepsaJiou oueHOiaax ÖaiuiOB.
Bce 3TH e^HHHUii CHCTeuH oöjiaaaioT nmpoKoB micajioft njioaopoflitH, H B KOBKpeiaoM cjiyiae luioaopoaiie, a ojieflOBareaBBO, H oneHoiBua öanji onpeaejiHeT pa3BOBHflBociB. H3 3 i o r o wieayei Tamte, <ITO pa3fl0BHaH0CTH p a s jiM'iHtix noflTHnoB u o r y i vweih oanaaKOBHfl oueHoqHHft d a a s .
B saJiBBeflineu doHHTHpoBOimia dajui noiBii caysHT OOHOBOM onpeaejieHHH 3Ko^ornqecKOfl neaaocTH 36MJIH, B KOTopoft y«e yyHTUBaeTCfl H BtipasaeTCH BJIHHHH6 RjiHuaia, pasBe$a H BOflHoro pexmia. Haun pa3paö"0TaHa
H CHcieua onpeaeaeBHH SKO^oraiecKofl Heaaocm 3eiuiH, HO B aoKaaae
3TOT Bonpoc s e paccuaTpHBaeroH. B aacTOHinee BpeiM npoBoaaiCH pa3paÖOTKa MeToaa oiieBKH SKOBOMHiecKHX ycüOBHa, KOTopuö BMeoie o onpeflejieBiieiJ SKOJiorHieoKOft n e a a o c m HX cayaoiT OOBOBOÖ onpeaereBHH aeHaooTH 3ei01H.
CyuiiHpyH BHineH3aoseHHoe, uoxao 3aKJüoiHTi>, I T O paspaÖoiaHHiifl BauB
MBTOa ÖOBHTHpOBKK nO<JB OOBOBUBaeiCH Ha reBeTHieCKOfl KJiaOCH^UKaUHH
H noaBoraei onpeaejiHTB oneHoiHHö 6ann Ha ooaose H3iiepHUHX CBOHCTB
no^B. Ilpn STOM npHBHuaeTCH BO BHHMaHHe BOflHua peatHH, H pesHM m n a -
31
T6JIÏHHX 3JieM6HTOB nOIB HyTeU HenOCp6flCTBeHHO*i,
K0CB6HU0Ü A KOUHJieKC-
HO& HX oueHKH. EoHHTHpoBOMHue (3aJiJiu H ycTaHaBjiHBaeuaH no HHU 3KOJI0rn^ecKaH neHHOCTB 3eneji£ nosBonHi» Bnpa3HTL Kan B rocyflapciBeHHOM,
Tan H B iiecTHOU uacnraaöe pa3JiniHH iuioaopoaHH, BHT8Kaximne H3 npapoAHUX ycnoBHfl. H3o0pa«eHHe 3THX BemnHH AOCTaToqHO noapoÓHO HOSHO
npOH3B8CTH Ha n01B6HHUX KapTaX X03H8CTB.
Fesnte
ABiopu paspadoTaJiü HOBHÖ neTOfl oueHKH nonB, ocHOBaHHHtt Ra reHSTHMecKüK KJiaccH$HKauHn noiB. flaHHtie, oTpaseHHue na noiBeHHinc Kapiax
CuacmTaÖ 1 : 1 0 0 0 0 ) , HBJIHBTOH OCHOBOB A M noJiyieHHH ÖOHHT6THUX noKa3a-
Tene8 pa3JiHiHux noiB. Hapaay c öOHHieTHbiuH noKa3aiejiHiU!, ncwiyqeHHHUH Ha ocHOBe KJiaccH^HKauHH ncmB , paccuaTpHBauTCH TaKxe KJmuaTimecKH6, ionorpa$HieoKHe H rHapojioraiecKHe xapaKTepHCTHKH, Koiopue n o 3 BOJIHDT nojiyiHTt oueHKy uecTOOÖHTaHHB. TaKHU oÖpa3ou, noKa3aie^H ÖoHHTeia uecTooöHTaHHB BupaKaci pa3JiHiHH B naoflopoaHH noiB, OÖyCJIOBjienHue npHpoflHH«n ycjioBHHUH.
Summary
The authors have evolved a new system of soil evalution founded
on the genetic classification of soils. Data supplied by soil maps
(scale 1:10,000) permit calculation of value indices for various
soils. Certain transformations of these indices give site value indices which describe climatic, topographic and hydrological features of the sites. Thus, these indies can characterize differences in
soil fertility caused by natural factors.
Resume
Les auteurs ont élaboré une nouvelle methode pour la qualification des sols, basle sur Ie système de la classification glnétique
des sols.
On peut calculer a 1'aide des données des cartes de sol é. 1'éche11e 1:10.000 1'indice de valeur du sol concemant différentes variétés de sol.
L'indice de valeur de 1'habitation, obtenu par la modification de
1'indice de valeur du sol, exprime a la fois les conditions climatiques, hydrologiques et celles de relief.
Ainsi eet indice est apte a mettre en evidence les differentiations qui se présentent dans la fertilité des sols, dues a 1'hltlrogénéitl des conditions naturelles.
32
Zusammenfassung
Die Verfasser haben ein neues Verfahren zur Bodenbewertung aufgrund der genetischen Klassifikation der Boden ausgearbeitet. Angaben in den Bodenkarten vom Masstab 1:10.000 bilden die Grundlage
der Berechnung der Wertzahlen fur verschiedene Boden. Mit der durch
Modifizieren derselben erhaltenen Standortwertzahi sind auch die
kllmatischen, topographischen und hydrologlschen Faktoren in Betracht gezogen. Somit bringt die Standortwertzahi die durch nafcurliche Verhaltnisse bedingten Unterschiede in der Fruchtbarkeit
von Boden zum Ausdruck.
3;!
SIGNIFICATION DES CARACTERÏSTIQUES PÉDOLOGIQUES UTILISEES
POUR L'EVALUATION DES TERRES EN REGION TROPICALE HUMIDE
R.Prankert, C.Sys
Université de Louvian, Univeraité de Gand
Belgique
La réussite d'un projet de développement rural depend en ordre principal de la connaissance des ressources naturelles, auxquelles appartiennent les sols. Dans une zone écologique définie, 1'inventaire des
sols, la determination de leurs propriètès physiques, chimiques, biologiques et morphologlques, la definition de leurs aptitudes constituent la phase initiale de tout programme visant a 1'elaboration d'une
planification rationnelle de 1'aménagement du territoire.
La productivite et 1'aptitude d'une terre a 1'aménagement agricole
dependent d'une série de facteurs dont les plus importants sont Ie
climat, la topographic, les types d*utilisation envisages, les faits
socio-économoques et la nature ou qualité des sols.
Dans de nombreux projets d'aménagement Ie temps est souvent un facteur limitant, aussi 1'utilisateur des cartes pédologiques exide-t-il
une réponse rapide aux problèmes poses par 1'aptitude des sols pour
des types d'utilisation determines dans des environnements techniques
définis. Pour cette raison, la mise au point d'un système simple et
pragmatique d'evaluation de 1'aptitude des sols basé sur des caractèristiques pédologiques s'imposait.
Dans cette note, nous nous proposons de passer en revue les caractéristiques pédologiques retenues en tentant de dègager leur influence sur la productivite des sols. La selection et 1'importance relative
attribuée a ces facteurs découlent des considerations suivantes:
1. Les critères choisis sont, en majeure partie, des caractères pédologiques observables et mesurables sur Ie terrain de sorte que 1'on
peut traduire tres rapidement et aisèment les unites pédologiques en
termes de productivite.
2. La selection des caractéristiques pédologiques et leur cotation sont
basées sur nos connaissances actuelles des relations existant entre
34
les proprlétês des sols et les rendements des cultures.
Dans cette optique, nous avons sélestionné les caractéristlques
pèdologlques suivantes: dèveloppement du profil, nature du matériau
original, profondeur du sol meuble, couleur et conditions de drainage, pH et saturation en bases, dèveloppement des norizons humifères.
Le dèveloppement du proïil
La différenciation de la pelllcule superficielle de la terre en
horizons pèdologlques et le degrétt'alterationdu matériau originel
évoluant de maniere senslblement parallèle, il en découle que le profil pédologique reflète dans son type de dèveloppement des caractères associés a la réserve minerale, & la nature des minéraux arglleux
et a la structure.
Au stade récent de 1' alteration, le profil est du type A-C
ou
A-(B)-Cj le sol contient encore une réserve minerale et la capacité
d'échange cationique de la fraction argileuse est supérieure a 25
meq par 100 g d'argile. A ce type appartiennent les Tropofluvents,
les Troporthents et les sous-groupes non oxiques des Ultisols et des
Alfisols. Le stade intermediaire d'alteration est notamment caracté—
risé par des mouvements d'argile avec formation d'un horizon argillique. Ces sols, a réserve minerale tres faible ou nulle, ont une fraction argileuse oü domine la kaolinite et une capacité d'échange cationique inférieure a 25 mêq par 100 g d'argilei lis représentant
les sous-groupes oxiques des Ultisols et des Alfisols.
Le stade ultime de 1'alteration ferrailitique se traduit par une
structure falblement développée et une capacité d'échange cationique
tres faible. Il correspond aux Oxisols dont la phase la plus degrades positive (Acrorthox) n'a plus aucune valeur agricole.
Les relations entre dèveloppement du profil pédologique et eer 5 tains rendements sont iliustrés au tableau ci-dessous. Rendement des
cultures, en relation avec le stade d'altération des sols (dèveloppement de profil) (Mosso, Burundi, 1958)
Le matériau originel
Le matériau originel peut étre caractèrisé par sa composition granulométrique et minéralogique. La nature et 1'evolution de cette dernière étant traduite par le type de dèveloppement de profil, c'est
essentiellement 1'influence de la texture sur la productivité qui est
interprétée sous eet intitule.
La composition granulomètrique de la terre entière a une action
35
Production en kg/ha
Sols récents
(Troporthents)
Eleuslne
Haricots
Arachides
Coton (var.11-125)
Patates douces
1
1
1
27
Alteration
intermediaire
(Oxic
Rhodustults)
-
825
702
188
270
017
1 021
Alteration
ultime
(Haplustox,
877
976
62*
677
808
659
13 050
8 060
déterminante sur le rêrime en eau et an air, la structure, le volume
des "surfaces actives", le développement racinaire du sol comme 1'attestent de nombreux exemples. Si la fraction argileuse y Joue un r6le preponderant, on ne peut sous-estimer 1'influence des elements grossiers (charge graveleuse) qui par leur pourcentage et leur nature
(materiaux inertes ou susceptibles de libérer des elements biogènes)
peuvent amêliorer ou dêgrader les propriêtés des sols.
On constate qu'en general la productivitê des sols croit avec la
teneur en elements fins (0-20 ja) jusqu'A un certain seuil, fonction
des conditions climatiques et que toute difference texturale significative qui apparalt dans les 100 premiers cm 1'influence défavorablement; ces effets sont les plus évidents pour les cultures exigeantes.
Bpaisseur du sol meuble (profondeur)
La presence dans le profil pédologique d'une zone d'étranglement
physiologique ou mécanique formée par une strate impermeable d'origine pédogênétique (cuirasses iatèritiques) ou non (roches) influence
j
iortement la productivitê des sols en application des facteurs êvoqués au point 2\ cependant cette action sera fonction de la nature
du systems racinaire (superficiel, profond), partiellement du caractère peren ou annuel et des exigences spêcifiques des cultures.
Couleur du sol et conditions de drainage
Les conditions de drainage sont interprétêes dans toutes les classifications d'aptitude des sols oü elles dêfinissent des limitations.
36
En outre, en regions tropicales humides, les agronomes paraissent attribuer une meilleure productivité aux sols rouges qu'aux sols jaunes derives d'une même entitê lithologique.
pH et degré de saturation du complexe d'êchange
Dans les sols des tropiques humides, a fraction colloïdale dominee
par la kaolinite, on note des correlations etroitea entre les mesures
du pHCHoO/KCl) et Ie degré de saturation en bases et des relations
plus générales avec la teneur en aluminium êcnangeable. C'est ainsi
qu'aux ptt supérieurs a 5,5 on ne dêcêle que peu ou pas d'aluminium
èchangeable, tanais qu'aux pH compris entre 4,8 et 5»5 ces teneurs
sont faibles a moyennes et appréciables aux pH inférieurs a 4,8.
L'evolution du pü oans ie profil pêdologique doit également être irterprétée;
c'est pourquoi les pH des horizons humifères et des horizons sous-jacents sont pris en consideration individuellemtsnc.
Développement des horizons humifères
Dans les tropiques humides et sous vegetation naturelle Ie développement des horizons humifères conditionne dans une large mesure la
valeur agricole des sols. La matière organique n'agit pas essentiellement comme source d'azote mais elle ;joue un róle tres actif sur les
propriétés physicochimiques des sols (structure, complexe d'êchange,
microbiologie, etc.). En ce qui concerne son role génêrateur d'elements biogènes, il y a lieu de remarquer que des quantités tres variables d'elements minêraux sont immobilises dans les diverses associations végetaies. Lors de 1'interpretation de ce facteur on tiendra
compte non seulement de 1'êpaisseur des horizons humifères mais êgaï! lement ae leurs origines (forêt, savane, culture) sans oublier 1'interaction avec la texture.
Notre objectif étant d'élaborer une methode susceptible de permettre 1'evaluation de la productivité des sols basée sur des caracteristiques pédologiques aisêment identifiables ou mesurables sur Ie
terrain, on a établi, pour chacun des facteurs et è. 1'èchelle régionale, un système de cotation prenant en consideration leur importance
relative et leurs interactions mutuelles.
La methode paramêtrique multiplicative adoptée rend compte, malgrê
ses imperfections, des differences de productivité constatées
et
les résultate sont tres encourageants (fig. 1 ) . Ces productivités
sont traduites par un coefficient pédoagronomique (C.Sys, R.Frankart, in press, 1972).
37
Il est évident que ce coefficient n'est qu'un des elements qualitatifs intervenant dans 1'evaluation de 1'aptitude des terres. En
effet,cette derniére doit tenir compte,en outre,du type d'utilisation (degré et type de technicité),de facteurs techniques et socioéconomiques. L'evaluation ne sera quantitative que lorsque tous les
facteurs mis en cause auront été traduits en termes d'entrees et de
sorties de capitaux.d'oü nécessité d'une collaboration multidisciplinaire.
Résumé
On étudie les caractéristiques pédologiques qui influencent la
productivité des sols en region tropicale humide notamment: Ie
développement du profil, Ie matériau originel, la profondeur, la
couleur-drainage, Ie pH et la saturation en bases et la teneur en
matiéres organiques. La cotation de ces caractéristiques est a la
base du coefficient pédo-agronomique.
Summary
The soil characteristics considered as important for the productivity of soils in the humid tropics ares profile development,parent material, depth, color,drainage,pH and base saturation,organic matter content. Evaluation of these characteristics is the
basis for the calculation of a pedo-agronomic index.
Eusammenfassung
Die Charakteristiken der Böden.die die Bodenproduktivitat in
den humiden Tropen beeinflussen.namentlich: die Profilentwicklung,
das Muttérgestein.die Tiefe,Farbe-Entwasserung,der pH-Wert,die
Basensattigung sowie der Gehalt an organischer Substanz werden
untersucht.
Die Quotisierung dieser Charakteristiken bildet eine ^rundlage
fur die Berechnung des pedo-agronomischen Koeffizienten.
FesDHe
H3ywajinoi> oJie^yioiiiHe CBoftcTBa noiB E^axsux TponuKOB,oKa3biBa»iune
iiumnue Ha HX npon3B0flHTeju>H0CTB: paaBiiTne noiBeHHoro npo$njiH,iiaTepHHCKan nopoaa.rjiyöHHa.oKpacKa H ycJioBHn apeHasa,pH,HacbimeHHOcu>
ocHOBaHMHMK H coflep*aHne oprammecKoro BemeciBa.
OueHKa 3TIIX CBOBCTB HBineicH ocHOBaHJJeu JJIH BupameMH paajMiiifl
B npoayKMBHooTH HsyiaeiiHX noiB B Base noiBeHHO-arpoHoiwwecKoro
38
y
o
f 1 g. 1. Coefficients pédonao
agronomiques de la productlvités des sols en dependence de
leur propriétés.
noo
I
- Le développement du pro§
fil
- Le matériau orlglnel
Kiooo
II
I I I - Epaisseur du sol meuble
- Couleur du sol ei condiIV
a 800
tions de drainage
- pH et degré de satura1
tion du complexe d'échan'
H 600
ge
^>
- Développement des horiVI
t
zons humifères
/
f
o
oo
n
o
00
1
m
f °
/o
a c
5 WO
1
ZOO-
r
n/
— i
10
30
SO
COTON y =13,931 -13,92
•
1 —
'
1
1
W
90
z
r-0,93 Coef.pido-a.gr.
W
ECOMETHÏ AS A BASIS FOR FARMLAND JUDGING
D.Teaci, M.Burt, N.Voiculescu, M.Munteanu
Research Institute for Soil Science
Romania
The determination of casuality and intensity of the influence of
numerous factors on plants growth and yields is one of the main
scientific concerns of a large number of scientists. Production of
native vegetation or crop plants may be regarded as a multiple function, related to several "more or less independent"'' variables
which in all cases reflect the variations of natural and technological conditions.
The great number of such "variables" requires a certain systematization, according to their origin. As commonly accepted, it is possible to distinguish variable effects concerning: a) climatic conditions (cosmic and atmospheric); edaphological environment (pedo-hydrological); c) biological environment (a complex of genetic and
phytosociological features); d) technological environment created by
land management and reclamation, which change in time.
The different effects of these factors - particularly when isolated (the others being maintained at a constant level) have been thoroughly investigated by several researchers, working In various fields
of science. Ranges of tolerance or of minimum, optimum and maximum efficiency, have been determined for native vegetation or crop plants.
If we wish to know the surface area of a field we use Topometry;
if plant growing on that field is to be Investigated we use Ecology
or Agrology and if we wish to measure its productivity, we deal with '
Ecometry. We suppose that Biometry has its functions based on biometric measurements, and the statistics of production in view of an Economic Land Rating does not permit forecasting of actual soil fertl1) Absolute independance may be considered as casual in a single
environment.
40
lity. By analogy with Econommetrics, this new branch of research
work which we have named Bcometry is associated with several disciplines as: pedology, soil management, land reclamation, agricultural
economics, etc. Applying statistical and mathematical methods, ecometry tries to determine quantitative relations between the resulting
values (yields in the first place) and casual factors - natural and
man-made - both separately and as a whole. Consequently, it is thus
possible to determine the productivity of a given area.
Quantitative elements should be used when carrying out ecometric
computations; it will sometimes be necessary to quantify the qualitative characteristics. In the case of characteristics with nonlinear efficiency it may be necessary to use preliminary procedures
of liniarisation or coding natural values taking into account the type of the regression curve.
In this report an attempt has been made to determine the type of
the curve (linear, parabolic, hyperbolic, exponential etc) on which
crop yields are plotted as a function of a number of factors and to
estimate the intensity of the influence of these factors. Investigations were based on a rich material gathered in a great number
of agricultural farms: State farms (SF), Cooperative societies (AC),
and Experimental Stations
attached to the Academy of Agricultural
and Forestry Science (E.S.). A close correlation was found between
soil chemical properties (N,P and humus contents in 20 and 100 cm
layers) and mean yields of wheat and corn during 7 years at about
200 S.F. In the A.C. of the north-eastern ( Suceava, Botasani) and
south-western (Dolj, Olt, Gorj, Teleorman) parts of the country,
significant correlations were found between environment al conditions
and yields of wheat, sunflower, corn, sugarbeet and potatoes. These
first investigations showed that for a ton of humus yields amount
to: 14.4 kg/ha for wheat and 16.8 kg/ha corn; for a ton of nitrogen
to 236 kg/ha wheat and 372 kg/ha corn; and for a pH unit (=r) to
52.4 r - 3.8 r 2 for wheat, and 81r - 5.87 r 2 for corn.
The great number of multiple! correlations show the dependency of
wheat production to be as follows: P,.(kg/ha) = -5356 + 5.91 h + 62.9f
; -1573 r - 120 r 2 + 21.9 c - 0.091 c 2 and of corn: P 2 (kg/ha) =
- = - 6280 + 9.89 h + 73-9 f + 1180 r - 89.6 r 2 + 49.50 c - 0.136 c 2 ,
in which h a humus stock t/ha; f = total phosphorous (t/ha);
r= pH; and c = available water capacity. By calculating the respective weights, the following values were obtained; humus 7.2 -7.5%;
phosphorous 3-4%; pH 15 - 18%; available water capacity 19-21%.
41
Some surprizing results were obtained when correlating crop
fields with meteorological data. Using the index of water use (rabio of yields per hectare to the amounts of rainfall from autumn
to harvest) it was possible to calculate yield increases per mm of rainfall for 5 E.S. for a 15-22 years) time period.
These Indices have been doubled in 10 years for corn and in 15
/ears for wheat. It is doubtful that these increases are due to
technological progress in management systems.
If we now consider a larger area with a greater number of
farms, we usually obtain a negative regression ooefficient, which
proves that in regions with abundant rainfall, yields decrease.
This fact points to the deterioration of other conditions (drainage,
soil fertility, etc). Yields of drought-resistant cereals were satisfactory even in dry years, and, consequently, the correlation
coefficient may remain low for a single E.S. located in the center of the BarSgan steppe.
In order to estimate the weighed effects of several factors, it
is possible to draw the matrix of correlation coefficients
r
*i*d ' b i - r 7 * i
Percentage weights of a group of natural factors could thus be determined as follows:
F actor
Crop
mo
Wheat
Corn
9.4
4.4
Rainfall Topography
10.7
9.8
9.5
10.4
Kidrology
6.4
6.6
Texture
18.9
18.6
Humus
1S.1
12.0
pH
17.2
15.2
These data were obtained by correlating casual factors (x,) with
the average yields obtained during the time period 1960 - 1966 in
more than 500 S.P. The data wore uned an a basis for elatorating
and improving schemes and nomograms for estimation the natural conditions. Evaliatlag the favourability of pedoclimatic conditions
.,
by means of these schemes, it was possible to obtain highly slgnifi- ï
cant correlations for wheat and corn yields, for 80-100 state farms
located in each o£ the 4 major regions of Romania.
These data indicate that for a point of land rating (x), we get an
average of 17 kg wheat, or 30 kg corn.
42
Wheat
Region
Correlation
North
119
East
1557
South
951
West
603
The
whole
818
country
+ 18.30 x
+ 6.34 x
+ 21.00 x
+ 21.90 x
Corn
r
r
Correlation
0.581 +++
0.295*
0.677 +++
0.691 +++
936
1478
592
627
+ 17.50 x
+ 28.09
+ 22.66
+30.31
+ 37.63
x
x
x
x
853 +30.12 x
0.560 +++
0.519 +++
0.653 +++
0.660 +++
(Weighted
data)
Studying the natural factors, (soils and rainfall for two periods
of the year, winter- variable x,) and spring variable x^ ) combined with the management factors irrigation x,) and fertilization
P
2
x^), the following partial determinations (from R ) were obtained
in several experimental plots during 3 - 6 years:
Table 1
Determinations of factors in %
Soil
Crop
Chestnut Chernozem
Wheat
Chestnut Chernozem,
It
calcareous
tt
Leached Chernozem, loamy
Id., clayey
"
tl
Terrace Chernozem, gleyified
Alluvial Humiferous,gleyifiedi.
"
is Corn
Chestnut Chernozem, calcareous
Sugar
Leached Chernozem, loamy
beet
Id. a Id., non irrigated
Soy-bean
Reddish Brown Forest soil
x^
Xg
x,
x*
7.1
28.2
21.3
30.4
26.7
11.5
20.0
19.7
26.5
27.6
0.3
14.8
11.7
25.7
21.2
10.0
29.8
28.5
4?.8
4.5
1.2
6.5
10.9
9.1 7.2
3.6 20.5
5.5 44.7
3.4 13.7
35.1
48.2
22.1
14.3
75.7
14.1
13.2
For non-irrigated sunflower, the participation of x„ factor - fertilisation - was low in 5 E.S. under various pedoclimatic conditions.
On the basis of several calculations carried out in Romania,
for various ecological conditions, the following synoptical table
could be suggested. It contains average data representing the
weighed effects of the various ecological factors (in %).
43
Table 2
Weighed effects of the various ecological factors
(in %)
Crop
Factor's participation
Texture Humus
Total
content P2°5
Wheat
Corn
19
21
7.2
7.5
4.0
3.1
„
Total TopoS^aphy
soil
18.0 48.2
15.3 46.6
17
18
Water
level
4
12
Climate
30
25
On account of the permanent improvement of crop varieties and
of soil technology, as well due to the important influence of
yearly climatic conditions, and of the lack of uniformity in management methods, these figures should be considered only as preliminary. However the method suggested may still be improved and developed as a theoretical basis for (land capability) classification,
according to productivity and technological peculiarities of each
crop.
R e f e r e n c e s
Burt M.,Teaci D.,Gusar Gr. Analele ICCA 2_4, Seria A, 1967.
Burt M..Teaci D.,Hita Th..Popescu Gh. Analele ICIFP 35,v.1, 1968.
Burt M.,Teaci D., Analele ICIFP 38, v.III. 1970.
Burt M.,Stiinta Solului (Soil Science) Bucarest Iïr.1,, 1970.
Teaci D., Burt M. Analele ICIFP 36, v.II, 1969.
Teaci D., Burt M., Morgenstern S. Analele ICIFP 38, v.III, 1970.
Teaci D. Bonitarea Solului (Soil Rating) Bucharest, Ceres, 1970.
Summary
Ecometry is estimation of cropland productivity by methods of mathematical statistics. As factors affecting the productivity seem
to be numerous and complicated they are considered by groups. Significant correlations are reported between crop yields and both
natural (temperature, seasonal) rainfall, topography, soil texture,
humus content) and artificial (irrigation, fertilization) factors.
The data obtained are of preliminary nature but the estimation
method suggested is undoubtedly progressive and merits further development.
44
Résumé
Ou propose de nommer écometrie, la determination de la productivité des terrains agrlcoles a 1'aide des methodes statisticomathématiques. Ayant en vue la complexité et la multitude des
facteurs qui influencent la production, leur effet est étudié par
groupes de facteurs. On présente toutes les correlations les
plus significatives entre la récolte des plantes agricoles et les
facteurs naturels (temperature, precipitations saisonnières, relief, propriétés du sol - composition granulométrique, teneur en
humus aussi bien que les facteurs anthropogènes (irrigation,
fertilisation).
Les résultats obtenus ont ua caractère préliminaire, mais la
methode d'appréciation est prometteuse et mérite une étude plus
poussée.
Zus ammenfassung
Es wird vorgeschlagen, die Ermittlung der Produktivitat der
landwirtschaftlich genutzten Boden mit Hilfe mathematischer und
statistischer Methoden ala ökometrie zu nennen. In Anbetracht
einer grossen Mengo an zahlreichen komplizierten, die Produktivitat beeinflussten Faktoren mussen sie nach einzelnen Gruppen untersucht werden. Es wird die wichtigsten Wechselwirkungen zwischen
dem Ernteertrag der landwirtschaftlichen Kuituren und den natürlichen Faktoren (Temperatur, jahreszeitliche Niederschlage,
Relief, Bodeneigenschaften, 1'extur, Humusgehalt) sowle den ausseren Einflussen (Bewasserung, Düngung) hervorgehoben.
Die erhaltenen Ergebnisse sind vorlaufig, die vorgeschlagene
Methode aber verdient im weiteren untersucht zu werden.
";
't.
Pesnie
Onpefl&neiae npoayKTaBHocTH caiBCKOxosHöcTBeHioa 3euexb npu DOMOm CTaTHCTHKO-iaaTeMaTaieoKHx MeioaoB Ha3HBaeM aKOMeTpneü. B BHW
CJIOKHOCTH a MB0r00Öpa3BH (|iaKT0pOE, BffHHBIItax Ha npOAyKTHBHOCTl, OHH
HcoaeflyioTca no rpynnaM. B paóote npaBO^aTca Haaóojiee cymecTBeHHue
CBH3H iiexay ypoxaeM cejiLCKoxo3.aflcTBeHHHx KyjiiTyp H npapo^Hiani §aKTopaMH (TeiuiepaTypa, ce30HHHe ocawca, pejnie$ Mecraocra, MexaHHlecraB cocTaB noiB, coaepataHae B noiBe ryuyca;, a TaKxe K O aHTponoreiiHHMa TexHHHecrauui lopomeHHe, yfloöpeaae).
nojnyneHHHe flaHime wem opaeHTHpoBoiHHa xapaKTep, HO caii MeTOfl
oueHKH.HecoMHenno, nporper.,IBCE H 3aasyziiBaeT AaxbHeSnaa. pa3padoroK.
45
ZTJE BEWERTUNG DER BODENEIGENSCHAFTEN AÜF DER BASIS TON
BODENPROFIIDATEN - EIN METHODISCHER BEITRAG ZUS AÜSWERTUNG
BODENKIASSIFIKATORISCHER MERKMAIE
I.Lleberoth, E.Cronewitz, P.Duhkelgod, H.Gondek
Xnstitut für Bodenkunde Eberswalde der Akademie der
Landwlrtschaftswissenschaften der Deutschen
Demokratischen Republlk
Urn die neuesten Erkenntnisse der Wissenschaft besser nutzen und
moderne kaschinensysteme noch effektlver einsetzen zu können, setzt
sich In der DDR mit zunehmendem Masse eine Kooperation zwischen den
sozialistischen Landwlrtschaftsbetrieben durch, insb. auf dem Gebiet der Pflanzenproduktion. So entstehen überall dort, wo es die
natürlichen Bedingungen gestatten, grosse Felder, die slch in der
Regel auf uber 5° ^ i In vielen Pallen aber auf wesentlich gröesere
Flachen erstrecken. Damit 1st elne der wichtigsten Voraussetzungen
für die Einfuhrung lndustriemassiger Produktionsmethoden geschaffen.
Elne sachgemasse Bewirtschaftung und eine wirksame meliorative Verbesserung dieser Felder setzt auoh neue Vege bei der Kennzeichnung
der Boden voraus. Nachdem zunachst elne den praktischen Anforderungen besser gerecht wordende Klassifikation der landwirtschaftlich
genutzten Boden auf der Basis spezieller bodonsyctematiucher Elnhciten, den Bodenformen, geschaffen worden war (Lieberoth, 1968), ging
es In der 2. Etappe darum, auch die Klassifikation ^rösserer Areale
auf ein neues Niveau zu heten und komplexe, heterogone Bodeneinheiten auszuscheiden, in donen die Struktur der Bodendecke, d.h.
die inhaltliche und raumliche Heterogenitat der mitelnander vergesellschafteten Bodenformen berücksichtigt wlrd.
Parallel dazu stand die Aufgabe, vorhandene bodenkundliche Forschungsergebnisse auf die neuen Bodeneinheiten zu transfonnieren
und so zu elner praxiswlrksameren Beurteilung der landwitschaftlich
Kenutzten Standorte zu kommen, lm folgenden Beitrag wird elne Me46
thode aufgezeigt, wie man vorhandene Gelandebefunde und Analysendaten von BodenprofHen zur exakteren Beurteilung von Bodenformen
nach den Bedlngungen der Pflanzenproduktion heranzlehen kann. Bles
war insofern von Bedeutung, weil auf der Basis der Bodenformen eine
den praktlschen Belangen der Landwirtschaft angepasste Verallgemeinerung wlssenscbaftllcher Ergebnisse mó'gllch ist. Die vorgenommene Beurteilung der Bodenformen basiert auf einer detaillierteren
Kennzeiohnung ihrer einzelnen Fruchtbarkeitseigenschaften.Dabei
wurde von der Vorstellung ausgegangen, dass alle Bodeneigenschaften
in irgend einer Weise den Srtrag beeinflussen, d.h. fruchtbarkeitsbeeinflussend sind. Die positiv wirksamen werden als fruchtbarkeits
begunstigend, die negativ wirksamen als fruchtbarkeitsbegrenzend be
zeichnet. Auf der Grundlage dieses Prinzips wurden folgende Bewertungsstufen gebildet:
1 = betr. Merkmal sehr gunstig bzw. sehr grosser Oberschuss am
betr. Nahrstoff (stark fruchtbarkeitsbegünstigend),
2 = betr. Merkmal gunstig bzw. grosser Oberschuss am betr.Nahrstoff
(fruchtbarkeitsbegünstigend),
3 = betr. Merkmal noch gunstig bzw. weder überschuss noch Mangel am
betr. Nahrstoff (i.d.E. nicht fruchtbarkeitsbegrenzend),
4- = betr. Merkmal ungünstig bzw. grosser Mangel am betr. Nahrstoff
(fruchtbarkeitsbegrenzend),
5 = betr. Merkmal sehr ungünstig bzw.sehr grosser Mangel am betr.
Nahrstoff (stark fruchtbarkeitsbegrenzend)
Entscheidend für die Beurteilung eines Bodens in Landern mit intensiver Landwirtschaft sind die Stufen 4 and 5, also die fruchtbarkeitsbegrenzenden Stufen, da durch sie Höchstertrage einge schrankt werden können. Nach dem angeführten Schlüssel wurden entsprechend unserem derzeitigen Kenntnisstand und der Haufigkeitsverteilung der Daten etwa 25 Bodeneigenschaften bewertet. lm Vordergrund der Auswertung stand zunh'ch^t die Gewahrleistung der Versor5 gungsfuktionen gegenuber den Pflanzen (Kondler, 197'0, Elle übrigen
fruchtbarkeitsbestimmenden Bodonelgenschaften lassen sich aber nach
dem gleichen Prinzip beurteilen. lm ersten Ansatz konnten auch die
Wechselwirkungen zwischen den Eigenschaften nur grob berücksichtigt
werden, da eine grössere Genauigkeit einen in keinem Verhaltnis zur
Aussage stenenden Aufwand erfordert natte. Als Beispiel für die Art
der Bewertung werden der Gesamtstickstoffgehalt und der am Profil
ermittelte Strukturzustand (Gefügeform) gebracht (0?ab. 1 und 2 ) .
47
Tabelle 1
Bewertungsbeispiel "Gesamtstickstoffgehalt"
Pflughorizont
Bewertungsstufe
leichte
Textur
übrige Horizonta
mittlere und
schwere Textur
>10O mg N
> 1 7 5 mg N
100-86
175-151
85-66
150-101
65-50
100- 75
<50
< 75
leichte
Textur
> 5 0 mg N
50-41
40-21
20-10
< 10
mittlere und
schwere Textur
^ 1 5 0 mg
150-126
125- 76
7 5 - 50
< 50
"
"
"
"
Tabelle 2
Bewertungsbeispiel
Bewertungsstufe
leichte Textur
Kleinbrö'ckelgefüge
Grossbröckelgefüge
Einzelkorngefüge
Massiv- und verhartetes Verkittungsgefüge
"Gefügeform"
mittlere und schwere
Textur
Stark ausgepragtes Krümelgefüge
Vlassig und schwach ausgepragtes Krümelgefüge
Fein- und Mittelpolyedergefoge
Grobpolyeder-, Grobplatten-,
Priemen- und Klumpangefüge
Massiv- und Feinplattengefüge
Entsprechend diesem System wurden dia im Feld und Labor ermittelten Bodeneigenschaften bewertet ur.d öanach von allen Bodenformen für 3 bzw. 4 liefenstuf en (bis 80/120 cm Tiefe) die Bevertungsziffern ermittelt. Einen einzigen zusammenfassenden Kennwert aus
allen Einzeleigenschaften zu bilden, ist u.E. unzulassig. Es wurde
18
lediglicb der Versuoh unternommen, für bestimmte Versorgungsfunktionen (in Tab.3 hervorgehoben) komplexere Kennwerte zu bilden,
wobei die berücksichtlgten Einzeleigenschaften zunachst mit gleichem Gewicht eingingen. Stnd solche Werte auoh mit einem gewisaen Vorbehalt zu betrachten, so geben sie doch einen umfassenderen
Einblick in den betreffenden Versorgungszustand dea Bodene. In
Tab.3 sind als Beispiele für die Bewertung 3 Bodenformen mit den
ersten 3 Tiefenstufen angeführt. Die Bodenform A zeigt fast durchgehend bei allen eigenschaften Fruchtbarkeitsbegrenzung an. Die
Bodenform B ist nur in bezug auf die Humus-, Phosphor- und Magnesiumversorgung fruchtbarkeitsbegrenzend. Bei der Bodenform C sei Yor
allem auf den sterkeren Abfall einiger Versorgungsfunktionen vom
Fflughorizont zum Unterboden hingewiesen, weshalb hier mit leichten Schockreaktionen für die Pflanzenwurzeln zu rechnen ist. In
etwa dieser Form wurden alle Bodenformen der DDR zu einem Eatalog
der fruchtbarkeitsbegrenzenden Bodenfaktoren zusammengefaast.
Auf der Basis einer solchen semiquantitativen Bewertung der
Fruchtbarkeitseigenschaften wurden zusammenfassende Auswertungen
verschiedenster Art für alle Boden der DDR vorgenommen. Das dafür
verwendete üntersuchungsmaterial stammt aus den Jahren 1963-1969.
Als erstes erfolgte eine Gesamteinschatzung der Fruchtbarkeitsbegrenzung der Boden. So konnte z.B. ermittelt werden,dass bei der
S t x c k s t o f f v e r s o r g u n g
lm allgemeinen keine Frucht
barkeitsbegrenzung vorliegt. lm Fflughorizont kommt die Bewertungsstufe 5 kaum, die Stufe 4 nur bei den anhydromorphen Sand— und
Lehmböden des Tieflandes der DDR in gewissem Umfang vor. Unterhalb
des Pflughorlzontes zeigen die Boden ein ahnliches Blld, allerdings 1st hier der Anteil der indlfferierten Boden grosser. Bei der
? P h o s p h o r v e r s o r g u n g
hingegen dominiert im Pflughorizont vieler Bpdengruppen die Bewertungsstufe 4, wahrend die Stufe 3 kaum vertreten 1st. Besser schneiden nur die Boden der Mittelgebirgslagen, die Schwarzerden und die tonigen Auenböden ab. Im Unterboden bis 80 cm Tiefe überwiegt eindeutig die Stufe 5. Im Hinblick auf den S t r u k t u r z u s t a n d
tritt im Fflughorizont
die Stufe 3 im allgemeinen nur selten auf. Die Stufe 4 nimmt einen
höheren Anteil ein, insb. bei den anhydromorphen Sandböden des
Tieflandes und bei den hydromorphen Lehmböden der Auen. Uit zunehmen
der Bodentiefe wird das Gefüge deutlich ungünstiger, in 41-80 cm
Tiefe dominieren eindeutig die Stufen 4 und 3. Diese wenigen Beispiele mogen genügen. Sie verdeutlichen die Aussagekraft des Bewer-
49
Tabelle 3
Beispiele für die Bewertung von Bodeneigenschaften
Bodeneigenschaften
B
A
Rhegosol
aua Sand '
a*) b
0
Teilohen
0,002mm
"
0,002-0,02 mm
0,020-0,20 mm
"
0,630-2,00 mm
Textur
C
Luviaol
Cambiaol aua
„ o} Sohlufflehm3)
aus b
Loss0 ' a b
a
c
4
4
5
5
3
3
3
3
4
2
4
2
l
1
4
4
1
4
3
3
1
1
1
2
1
1
4
1
1
1
4
Humus
T-Wert
4
4
5
5
5
5
|3 •I
5 |2
4 2
pH-Wert
austauschb.Al.
i.frr.T-Wert
3
3
3
3
1
4 3
4
5
5
2
2 1
2 2
Reaktionsverhaltnisse
4
4
4
3
3
3
h
3| 3
Gesamtatickstoff
C/N-Verhaltais
5
3
5
2
4
3
2
5
1
5 1
1 2
4 1
Stickstoffversorgung
4
5
4
3
3
3 2
3 -
Gessmtphosphor
laktatlöal.P205
4
3
4
3
5
3
4
4
4
4
4 3
5 2
3 3
5 5
Phosphorversorgung
4
4
4
4
4
5
I?
•I 4
Gesamtkallum
laktatlöal. KgO
K-HacSlieferung
K-Fixierung
4
4
4
4
4
3
2
1
3
-
-
4
2
3
3
3
3
3
2
2
4
5
3
5
5 5
3 3
5 5
50
3
-
5
*
*
2
*l 3
3 3
2
A
Bodeneigenschaften
KaXiumversorgung
B
C
Rhegosol
Luvisol
aus Sand '
aua LSss^Schluffleha^
Cambisol aua
a4>
b
c
a
b
c
a
b
0
4
4
4
3
3 3
4
4
4
Gesaatmagnesium
4
4
4
4
3
4
4
4
CaCl 2 -lösl. H g
3
3 3
4
1
4
2
4
1
Ila gnes iumve rs orgung
4
4
4
4
4
3
3
3
Gefügeform
4
2
4
2
Aggregatstabilitat
3
5
2
2
2
2
3
5
4
1
3
n.b.
3
3 3 2
3 1
3 3 1
3 n.b 3
Strakturzustand
4
4
3
2
3 3
Festigkeit
Porenvolumen
Feldkapazitat
Welkepunkt
4
4
2
4
1
3
2
2
2 n.b.
2
2
3
2
1
4
5
3
3
2
2
2
2
5
1
5
1
3
3
3
3
5
5
5
5
3
2
pflanzenverfügb.
Wasser
Durchlassigkeit
'Sand-Rosterde (40 ca schwachlehmiger Sand über Sand)
•)Löss-Parabraunerde (40 cm lehmiger Schluff über Schlufflehm)
5>Schluff-Vegagley (mehr als 120 om Schlufflehm)
4)a:0 - 27 ca, b : 28 - 40 cm, c
41 80 ca tlef
-, tungsschemaa. Es laasan sich Grupplerungen dar Bodenforaan erken* nen, die bei den blsberlgen qualitativen Auswertungen nicht ao
deutlich hervortraten.
Eine weitere Auswertungsaóglichkeit beateht darln, aua dan eraittelten fruchtbarkeitsbegrenzenden Kennwerten Hlnwelsa zur Nutzung und Behandlung sowie zur Bang- und Belhenfolge ron agrotechnischen und aeliorativen Hassnahaen abzuleiten. Dabei mussen die
51
Boden fur jeden einzelnen Auswertungszweck geaondert eingestuft
werden. So warden Gruppierungen im Hinblick auf die Anbaueignung,
Bearbeitbarkeit, FK-Vorratsdüngung, N-Flüssigkeitsdungung, Unterbodendüngung, Gefügemeiioration, Beregnung und Entwasserung durchgeführt.
Die angeführte Bewertung der einzelnen fruchtbarkeitsbeeinflussenden Bodeneigenschaften ist eine der Möglichkeiten zur exakteren
Kennzeichnung und Beurteilung landwirtscnaftlich genutzter Standorte. Bei zielgerichteter Primardatensamjniung kann eine solohe
Auswertung auch auf einem Computer durchgefuhrt und damlt qualitativ besser, getiauer, umfassender und rationeller gestaltet werden.
Die so erarbeiteten Kennwerte sind die wichtigsten Bauateine
fur eine intergrierende Standortbeurteilung. Auf den grossen Feldern unserer kooperierenden sozialistischen Landwirtschaftsbetriebe sind es die heterogenen Bodenareale, auf die letztlich die Auswertung bodenkundlioher Forschungsergebnisse ausgerichtet sein
muss. Die von den Bodenformen erhaltonen Befunde mussen daher auf
diese komplexeren Einheiten übertragen werden, wobei es sich nur
in bestimmten Fallen urn ein einfaches Additionsproblem, d.h. urn die
Bildung eines gewogenen Mittels handelt. In anderen Fallen mussen
die zusatzlichen Wechselwirkungen zwischen den Bodenformen sowie
weitere Standortfaktoren berüoksiohtigt werden.
L i t e r a t u r
Kywiaep E. noiBOBejieHHe, 2, 83-87, 1972.
•HnöepoT H. IIoqBOBefleHHe, 10,13-28, 1968.
Zusammenfassung
Es wird eine Methode aufgezeigt, wie vorhandene Gelandebefunde
und Analysendaten von Bodenprofilen zur exakteren Beurteilung von
Bodenformen nach den Bedingungen der Pflanzenproduktion herangezogen werden können. Die Beurteilung basiert auf einer Bewertung jeder einzelnen Bodeneigenschaft in 5 Stufen.
Entscheidend fur die Beurteilung des Bodens sind die Stufen 4
und 5, da in diesen die Fruchtbarkeitsbegrenzung zum Ausdruck kommt.
Nach diesem System wurden die Eigenschaften aller untersuchter Bodenformen in 3 bzw. Tiefenstufen bis 120 cm Tiefe bewertet. Auf der
Grundlage dieses Materials können Auswertungen verschiedenster Art
fur alle Boden der DDR vorgenommen werden. Auf 2 MÖglichkeiten der
Auswertung wird eingegangen.
52
Summary
The paper describes how to use available field findings and analysis data of soil profiles for more precise assessment of soil series according to the demands of plant production. This techniques
is based on the assessment of every single soil charater in a 5phase system. The phases 4 and 5 are the most decisive ones for
soil assessment, since they represent the fertility limit. By means
of this system the characters of all the analysed soil series were
evaluated in 3 or 4 different depths up to 120 cm. On the basis of
the present material all the GDR soils may be analyzed In various
ways. Two i-iossibllities of analysis are explained in detail.
Résumé
Les auteurs exposent une methode permettant d'utiliser les caracteéristiques de terrain existantes et les données obtenues par
1'analyse de profils du sol pour le jugement exact des formes du
sol suivant les exigences de la production végétale. Elle repose
sur une evaluation de chaque propriété du sol en 5 degrés, oii 1'importance decisive pour 1'evaluation des sols lncombe aux degrés 4
et 5, puisqu'ils exprlment les limites de la fertilité. En employant le systems décrit on a évalué les propriétés de toutes les
formes du sol étudiAes è. 3 ou 4 niveaux jusqu'a. une profondeur de
120 cm. Les informations ainsi obtenues constituent la base des
exploitations les plus diverses pour 1'ensemble des sols de la RDA.
Deux exploitations possibles sont discutées.
Pe3E»ie
^
Onncan MeT0,n, no KOTopoMy pe3yjiBTaTti HccjieaoBaHHH ynacTKa MecTHOCTD H aaHHue aHajin30B noiB MoryT ÖHTB Hcnojit30BaHH wm öcwee TOHHOft OqeHKH $0pM nOHB B COOTBeTCTBHH c pacTeHHeBojqecKHMa TpeÖOBaHHflMa. MeTOA OCHOBSH Ha oueHKe Kaacnoro OTflejitnoro cBoücTBa DOIBH
no aura cTyneHflM. CTynems neTtipe n HOTB HMeioT Hanócjiee pemaiomee
SHaneHHe, T . K . BHpaKaioT npeaeji njioflopofflan. Ilo STOÜ CHOTeMe ötum
oueHeHH CBOMCTBa Bcex Hcaie,uyeMHx $opM no^B «o rayonHH 120 CM. Ha
ooHOBe 3Toro MaTepHana NIOXHO npon3BOKHTt caMyio pa3Hooópa3Hyio oneHKy nOHB B H I P . DOflpOÓHO paCOMOTpeiIH RBe H3 TaKHX BO3M0SH0CTeÖ.
53
CORRELATION OF SOIL PROFILE PROPERTIES WITH
FORAGE FRODUCTITITÏ ON FOUR CULTIVATED
PODZOLS IN EASTERN CANADA
A. F. MacKenzie and A.N. Manson
McGill University, Air Pollution Control
Directorate, Canada
Introduction
Assessment of soil productivity is important in areas of
intensive land utilisation, but there are no universally accepted
methods of predicting productivity. The soil series may be used as
a basic unit or alternately, soil properties which influence
productivity may be calibrated over a wide range of soil series. This
study was designed to determine if soil profile properties related to
productivity acted independently across soil series or if there was
a soil series - soil properties interation with respect to forage
yields in Eastern Canada,
Review of Literature
There are two pedological methods of determining soil productivity. The first is productivity by profile type or soil series
(Anderson et al. 1938; Odell and Smith, I94-I; De Leenkeer and
Seniour, 1950). However often there are numberous soil series and
mapping units involved, requiring extensive research.
A second method for determining productivity consists of
measuring soil properties and relating the proportionate influence
of each of these properties to productivity (Storie, 1933; Mitchell,
1940; Clark, 1951; Searl, 1966; Ferrari, 1950; Lupinovich et al. 1968).
Either an index method or direct calibration has been used. Drawbacks
of the calibration method are the difficulties in studying all
important factors, while using conventional experimental techniques.
Little comparative work has been done in eastern Canada, and it
seemed useful to study this problem in order to improve land-planning
techniques.
54
Materials And Methods
Four soil series, covering y8% of Prince Edward Island, (about
46° JT latitude, 6J0 West longitude) were selected, the 0'Leary,
Charlotte-town, Alberry and Culloden (Whiteside, 1965). They were
sandy loam to clay loam podzols. Four farms were selected on each
soil
se-ies and four sites were shosen on each farm. At each site,
four two-square yard plots redeived fertilizer treatments, applied
in a randomized fashion ranging from no fertilizer to 300 lbs N,
200 lbs P and 200 lbs K per acre.
The fertilizer was broadcast within four days in the early
Spring. Square yard yield samples were harvested from all plots in
early July.
The sequence, depth, thickness and touch estimate of texture
was noted for all horizons of the soil at each site. An estimate of
available water holding capacity was made using the method of Salter
and Williams (1967). Three bulk density determinations were taken
for all horizons greater than 5 inches in thickness. pH was
determined in 0.01 M CaClo. A nutrient index was calculated usirga
modified method of Fried and Broeshart (1967) in which values of 40
lbs per acre N0,-N, 250 lbs per acre Bray 2 extractable P and 200
lbs per acre Ammonium acetate extractable K were taken as sufficient
for mixed forage production. Loss-on-ignition at 550" C was used to
estimate the organic matter content, after correction for hygroscopic
moisture. The slope at each site
was measured using an Abney hand
level.
Results
Regression analysis on groupings of soil series: Analysis of
variance of the yields indicated that the four soil series were
similarly productive. However, there were significant differences
j amongst the
series as to their soil properties. The correlation
*• matrix of soil properties used as independent variables indicated
that if certain precautions, as outlined by Mayer and Stowe (1969),
were observed these variables were within acceptable limits of
independence. The independent variables were not orthognal as
recommended for multiple regression analysis (Draper and Smith 1966).
Multiple regression equations were calculated to relate soil
properties to forage yields. Five of the seven control yield
equations were superior to the maximum yield equation in terms of
explained variance (table I ) . Generally, however, maximum yield
equations had a lower standard error of estimate and one can conclude
55
-J
Multiple linear regression values of forage yield on soil
profile prope. .ies across soil series.
Soil Series
All soils
combined (A)
All soils less
Culloden Series
(B)
All soils less
Culloden, O'Leary
(C)
O'Leary
Charlottetown
Alberry
Culloden
Control plots
Standard
Regression
error
R2
F value
Standard
error
Fertilised plots
Regression
R2
F value
1200
.32
••
1000
.26
*•
1100
.43
••
960
.36
**
1070
806
708
769
571
.38
.81
.80
.52
.81
•
*.
••
•
•*
823
815
520
360
720
.40
.71
.70
.85
.66
•
**
•
•*
**
* Significant at 5* probability
** Significant at 15& probability
Table 2
Multiple linear regression equations of fertilized forage
yields on soil profile properties.
Equation for maximum yields (Y) in kg/ha
Soil Series
All soils
combined
All soils less
Culloden series
All soils less
Culloden, O'Leary
series
O'Leary
Charlottetovm
Alberry
Culloden
Y = 7970 + 99 TA "
34 TC - 845 - 16 D - 2260 BDA
Y = 7940 + 77 TA - 29 TC - 122 S - 142 BDA - 1080 BDC
Y = 5360 + 87 TA - 21.TC + 21 D - 779 pH + 454 OMA + 126 BFH
Y
Y
Y
Y
=
=
=
=
1) TA, TC =
=
S
D
=
BDC, BDA
OMA
=
BF, BFH =
AWC
=
NIA
=
18000 - 690 AWC - 522 S - 5710 BDC
I8I00 + 182 BFH - 6400 BF + 129 TA
56.4 D - 186 S + 7090 BDA - II90 AWC - 1090
1370 AWC + 1550 NIA + 20.4 BF - 144
% clay in Ac, C
% slope
Solum depth
= bulk density of C, Ac
% organic matter
Bf, Bfh horizon thicknesses
available water capacity of profile
nutrient index
that some of the natural variability among 9ites was removed by
fertilization. Thus maximum yields are used in subsequent discussions.
When the most dissimilar series (Culloden) was removed, an
increase in the co-efficient of determination and a decrease in the
standard error of estimate was observed.
When the Culloden and O'Leary series were removed, leaving the
two most similar soils, there was an increase in the amount of
explained variance to 40% and a decrease in the standard error of
estimate to 823.
Several equations, calculated using randomly selected sites,
indicated that the improvements in the equations were not due to
reduced numbers of observations.
Regression analyses of individual soil series: Multiple linear
regression values were calculated for each of the soil series and
significant improvements in yield prediction were obtained (Table I ) .
However, the soil properties important for yield prediction varied
amongst the soil series (table 2). In all cases multiple regression
equations were superior to regression of yields against any single
parameter.
Multiple linear regression equations: Combining all soils
showed that some profile properties were useful in predicting
yields, namely surface clay contents, surface bulk densities, clay
content of the C horizon and slope (Table 2). However, decreasing
standard errors of estimates with the decreasing numbers of soil
series indicated that there was an implicit interaction of various
soil profile properties, and soil series with respect to maximum
forage yields. Some soil properties were more important in some soil
series combinations than in others. Only two properties, the texture
of the A and of the C horizons wore important over all three soil
series combinations. Other properties were variably related to
productivity depending on the soil series being considered. Three
other factors entered the equations for two of the series groupings;
slope, depth of the solum and bulk density of the A horizons.
Conclusions
£
The explained yield variation was much higher within individual *
soil series than across groupings of soil series. The most important
profile properties relating to yield varied from series to series.
Thus profile properties were valuable in assessing the productivity of any one series. Such properties were not valuable in
assessing productivity over dissimilar soil series.
58
R e f e r e n c e s
Anderson, A., A.P. Nelson, F.A. Hayes. Neb. Agric. Expt. Stat. Res.
Bull., 98:34, 1938.
Clarke, G.R. J. Soil Sci. 2, 50-60, 1951.
Draper, W.R. and H. Smith. Applied regression analysis. John Wiley
and Sons Inc., New York, 1966.
DeLeenker, L. and Id. Senior. Trans. 4-th Int. Gong. Soil Sci., Vol.2,
1950.
Ferrari, T.J. Trans. 4th Int. Congr. Soil Sci. I, 1950.
Pried, M. and H. Broeshart. The soil-plant system. Academic Press
New York, 1967.
Lupinovich, I.S., T.N. Kulakovskaya, I.M. Bogdevich, and L.P.
Ketkovskaya. Soviet Soil Sci., 5, 613-619, 1968.
Mayer, R.P. and R.A. Stowe. Would you believe 99.9969% explained?
Eng. and Ind. Chem. 61, 42-47, 1969.
Mitchell, J. Sci. Agric. 20, 281-284, 1940.
Odell, R.T. and G.D. Smith. Soil Sci. Soc. Amer. Proc. 5, 316-321,
19*1.
Salter, P.J. and J.B. Williams. J. Soil Sci. 18, I74-I8I, 1967.
Searle, W.E. Use of micromorphological properties of soils to
establish land capability ratings. M.Sc. Thesis. McGill
University, Montreal, Canada, 1966.
Storrie, R.E. Cal. Agric. Expt. Sta. Bull, 556, 1933.
Whiteside, G. Soil Survey of Prince Edward Island. Department of
Agriculture, Ottawa, Canada, 1965.
Summary
Forage productivity on four soil series in Eastern Canada
related to certain soil profile properties: depth, thickness of
horizons, organic matter, bulk density, slope, texture, pH, water
retention capacity and nutrient index. The four series had similar
productivity levels. Multiple regression equations were more precise
for single soil series than when 2, 3 or 4 series were combined.
There was an implicit interaction between soil properties
v and soil series as related to forage productivity. Soil profile
properties were useful for predicting yields on single series or
groups of similar soil series.
Résumé
La productivité de fourrage sur quatre séries de sol a. 1'Est du
Canada a été comparée avec la profondeur du sol, 1'épaisseur des
horizons, matière orgsnique, densité apparente, pente, granulometrie,
5v
index des nutrients, pH et capaoité de retention d'eau pour le sol.
La computation de regressions multiples dans chacnie série de
sol a donné une evaluation plus precise de la productivité que les
regressions multiples lorsque 2, 3 ou 4- séries étaient incluses.
II y a une interaction implicite des propriétés du profil avec
les séries de sol en rapport avec la production du fourrage. Les
propriétés du profil furent utiles pour la prediction des récoltes
lorsqu'elles étaient limitées a une série de sol ou a un ensemble
de sols semblables.
Zusammenfasoung
Die Produktivitat von vier Bodenarten unter Futterkulturen in
Ostkanada ist mit einigen Eigenschaften des Bodenprofils verbundens
Tiefe, Machtigkeit der Horizonte, Gehalt an organischen Stoffen,
Volumengewicht, Abhang, Textur, pH-V/ert, Wasserhaltefahigkeit und
Nahrleraftwert. Diese vier Bodenarten v/eisen ahnliche Produktivitatsnlveaus auf. Die Anwendung der I.iehrfachregression führt im Falie einer Bodenart und nicht bei zwei, drei oder vier Bodenarten zu
besseren Ergebnissen.
Es wird ein deutlicher Zusammenhang zwischen den Eigenschaften
und den Bodenarten in bezug auf ihre Produktivitat festgestellt.
Die Eigenschaften des Bodenprofils wurden zur Voraussage des
Ertrags von Futterkulturen, die auf einer Bodenart bzw.einer Reine
von ahnlichen Bodenarten gedeihen, erfolgreich benutzt.
Pe3»Me
npoflyKTHBHocTL qerupex ceptiti noiB,3aceHHHHx KOPMOBUM KyJiBTypaMH,
B BocroqHoii KaHa^e cBH33Ha c HeKOiopHMH napaMeTpaMH noqBeHHpro npo(liHJiaïrjiyöHHOii.uoiuHORTiiio ropH30HTOB,coflepKaHneM opraHHqecKoro BemccTBa, yKJioHOM, MexaHHwecitHM cocraBOu.pH.BOfloyaepHHBaiomeii cnocoÖHOcTBio
H noKa3areneM oöecneqeHHOcrn noqB sjieiueHTaMH nmaHHH pacieHiiti.
UTH qeiupe cepnsi noqB wueioT oxoflHbie ypoBHH iipoflyKTKBHOCTH.ÏIpHMeHeHHe vj
ypoBHoH MHOsecTBüHHOii perpeccH flaer Öojiee qeTKiie pe3yjiBTaTU AJIH oa*
HOii cepHH.qeu npn oö'Be^HHemiH «Byx, Tpex nan qerupex cepiiü noqB.
OrMeqaeicH qemaH B3aiiMOCBH3B Momay CBOiiCTBaiiH H oepmiM noqB
no oTHouieHHio K HX iiposyKTHBHüCTH.CBoMcTBa noqBeHHoro npo$MH ncnojiB30BajincB flJiji nporH03a ypoataüHOcTH KopuoBbix KyjiBTyp,npon3paoTaioii(Hx
Ha noqBax ufluoii cepHH !«m CXOXHHX cepMM noqB.
«o
A STRATIFIED LAND DATA SYSTEM TO FIT LAND USE PLANNING NEEDS
J„F. Corliss
Chief, Soil Management Branch,
Pacific Northwest Region, United States
Department of Agriculture, Forest Service,
Portland, Oregon, USA
Land capability potential and limitation are basic to efficient
resource planning and management. Planning may be done at several
levels of generalization and land and resource information can be
presented in many forms and levels of precision. Different levels
of planning can be done most effectively only if resource information
is matched to the needs of the planning model. The kind of data or
level of precision most useful for one particular level of planning
is generally less effective at other levels. Identification of the
planning level and its specific information needs is a vital early
step in the planning process.
Three integrated levels of land use and resource planning are
recognized for undeveloped to moderately developed forested lands of
the Pacific Northwest area of the United States. A similar suite of
planning levels are inherent in development of any land area and
5 resource; only the time and areal scales will differ. From the gross
"<• to the specific, the levels are!
Level A - Basic long-term land-resource allocation over large
geographic areas.
Level B - Short-term land-resource development and plaaningidentification and priority setting among individual
potential projects.
Level C - Individual resource project design.
All managers responsible for multi-resource and/or multiobjective planning and development generally follow a similar
planning sequence (A to B to C) if planning and execution processes
are to be optimized.
Levels A, B and C can be viewed primarily as a measure of
intensity or detail of planning effort. It is readily apparent that
if more than one objective or resource is involved, use conflicts
61
will occur. These may take several forms, such as (a) ecological,
i.e., development of one resource causes another to be destroyed,
(b) economic, i.e., developing one resource reduces the value of
others, or (c) visual, i.e., development of one resource causes reduction in visual character of another. This paper will present a
technique for structuring data suitable for application to the three
planning input levels. Project execution and monitoring and considerations of economic and sociological factors and trade-off
conflicts, although vital to the success of the plan, are beyond
the scope of this paper.
Several elements of the environment have been selected which
are highly relevant to each level of land and resource management
planning. The system of information stratification outlined here is
based on the nature of the physical and biological processes which
give each environmental element its character. The interaction of
these processes gives rise to interactions between the environmental
elements themselves.
This system 1/ ties together three separate but interdependent
subsystems: land, vegetation and aquatic. It is land and resource
potential oriented. The system has describable, mappable classification units composed of subsystem elements arrayed in a rational
hierarchy. The units can be aggregated upward and segregated downward. Thus, any desired level can be selected to fit planning
objectives of levels A, B or C. Each classification unit is
summarized by similar physical and biological features such that it
has a characteristic sensitivity to disturbance, use hazard, and potential productivity. The system is built around the natural association of the land subsystem which includes soil, landform and the
local associated climate with vegetation and aquatic subsystems.
For the system proposed here the lowest on-the-ground perceivable unit for land and vegetation subsystems is the Ecological Land
Unit. For land and aquatic subsystems, the Ecological Water Unit is
the lowest unit. The same or different strata of land, aquatic or
vegetation classification units can be combined in the hierarchical
system to form Ecological Management Units meeting particular land
use and resource planning needs at each of the three planning levels.
1/ Such a system is presently being studied for possible use by the
Forest Service, U.S. Department of Agriculture. Terms and definitions
are tentative.
62
The land classification forms the backbone of this system
because it is common to both the vegetation and aquatic subsystems.
The nature of the differentiating criteria (basic and manifest components) is a key consideration in the land system classification.
The diagram in Figure I illustrates these relationships. (Personal
communication, Richard J. Alvis, Northern Region, Forest Service,
U.S. Department of Agriculture.)
Figure I - Land System
BASIC COMPONENTS
GEOLOGY
^__ CLIMATE
(independent variates)
—-^ rpIMg4
LANDFORM
«.BIOTIC
(terrestrial
(plant & animal,
stream & lake terrestrial &
bottom)
lake bottom)
aquatic)
in the land subsystem is on basic components at the
of generalization and on manifest components at lower
1/
in Figure 2 is a summary of the land subsystem.—'
Figure 2 - Land Subsystem
aize ranee
Dominairuiy expressed
suggested
elements
(sq.miles)
applications
Basic Elements - 1st order
Nationwide,
1000's
stratification. Geologic
broad regional
structure and process,time.
mult i-state.
Basic Elements - 2nd order
Broad regional
100's to
stratification. Geologic
1000's
structure, process, time.
10's to
Basic Elements - Jrd order
Long term resource allocastratification. Structure
100's
tion-regional.
process, time.
MANIFEST COMPONENTS
(dependent variates)
SOILS
(terrestrial,
stream Se,
Emphasis
higher levels
levels. Shown
Name
Physiographic
Province
Section
Subsection
Landtype
Association
Landtype
Manifest Elements dominate
but Basic Element influence
remains strong^ Soil - landform - biotic Influences.
I to 10'!
Manifest and Basic Elements
Second order stratification
of manifest elements. Soil landform biotic influence.
I/IO to I
Long or intermediate term
resource allocation. State
or subdivision of state.
Resource multiple use plans
transportation
system plan,
county zoning
plans.
Resource project development plans.
Manifest and Basic Elements
I/IOO to
Third order stratification of I/IO
manifest elements. Soil landform - biotic influences.
1/Wertz, W.A. and Arnold, J.A.Land Systems Inventory. U, S.Department
of Agriculture, Forest Service, Intermountain Region.
Ogden.Utah,
&
12
° p., 1972.
*
Landunit
<>3
The vegetation subsystem emphasizes that climax or stable plant
jommunities are meaningful integrators of interacting environmental
factors affecting vegetation which in turn affects other life form
iistribution and use. Figure 3 shows the hierarchical relationships
uithin the vegetation subsystem.
Figure 3 - Vegetation Subsystem
(Tame
Definition and examples
Formation
Groups of regions with similar physiognomy. (Glassland Formation)
Region
Groups of series with similar physiognomy and
climatic controls. (Gteppe Grassland Region)
Series
Groups of habitat types with a common climax
dominant species. (Bluebunch Wheatgrass Series)
Collective term for those areas capable of supporting the same climax plant association. (Bluebunch
Wheatgrass-Sandberg Bluegrass)
Habitat Type
Community Type
Collective term for those areas of land supporting
or capable of supporting the same type of stable
plant community (Cheatgrass-Sandberg Bluegrass)
The aquatic subsystem related to those land areas on which
there is moving or standing water, urlteria include physical, chemical
and biological characteristics 'of the water and the lake or stream
bottom interface. The tentative classification follows:
Figure 4 - Aquatic Subsystem
Name
Definition and examples
Aquatic Order
Aquatic Class
Groups of classes based primarily on salinity.
(Freshwater, Inland Salt Lakes, Oceans, Estuaries)
Grouping of families based primarity on their
physical character. (Streams, Lakes, Marshes)
Aquatic Family
Aquatic type associations grouped largely by
temperature. (Cold Streams, Warm Streams, Alpine
Lakes, Lowland Lakes)
Aquatic Type
Association
Group of associated aquatic types, usually on a
drainage basis. (Dissected Mountain Stream)
Aquatic Type
A relatively homogeneous stream, a lake, a marsh,
an estuary. (Steep, fluvial headwaters stream;
steep, fluvial small stream)
' *•;•"
The total system is a composite of the 3 subsystem's. The overall concept is depicted in the following figure.
64
3
Vegetation Class
Formation
Figure 5
Land Class
Province
Section
A Stratified Land Data System '
Aquatic Class
Order
Class
Subsection
Series
Habitat Type
Community Type
Landtype Association
Landtype
Landunit
Family
Aquatic Type Association
Aquatic Type
(Basic Ecological Land Unit) ELU (Basic Ecological Water Unit) EWÜ
Ecological Unit
Each class, ELÜ or EWU, can be dealt with separately of can be
aggregated upward or downward to furnish the necessary data precision
for the resource and land use plan. Aggregation upward by data
processing techniques shows special promise for improving precision
of data at higher land unit categories.
The system is comprehensive and flexible. Its components are
assigned potentials on their individual characteristics for a wide
variety of land management activities. These inputs are suitable for
analysis by simulation response and linear programming techniques
to determine optimum resource product mixes and appropriate management systems. Segments of this system are now being studied or
applied in reaching management decisions at various levels on many
areas of forested lands in the United States. It has great potential
for application in other land use systems at all stages of management intensity.
Summary
The world-wide interest in land use planning has focused attention by earth and biological scientists on inter-resource development planning and information needs. There is a growing awareness of
multi-resource interactions and the resulting management complexities.
Recognition that various kinds or levels of planning require different kinds and precision of information, and subsequent development
of new systems to facilitate structuring the information can help
resource managers and scientists improve the predictability and
efficiency of land use plans.
1/ This system was developed by the following task force of Forest
Service scientists from regions in the western United States:
R.F. Buttery, J.F. Corliss, F.C. Hall, W.F. Mueggler, D. On,
R.D. Pfister, R.W. Phillips, W.S. Platts, and J.E. Reid.
65
Résumé
L'utilisation planifiée du sol fait que les pédologues et
biologues sont bien intéresses a la planification du développement
des ressources naturelles dans leur ensemble et aux informations
nécessaires. On comprend toujours mieux les interdépendances entre
les ressources et les complications dans leur gestion qui en
découle. On estime que différents niveaux de planification nécessitent une information au degré de précision différent. Ie développement ultérieur de nouveaux systemes pour la simplification de la
classification augmentera la prognose et 1'efficacité de la planification des terres utilisées.
Zusammenfassung
Das allgemeine Interesse für planmlssige Bodenbenutzung etellt
die Bodenkundler und Biologen vor die Aufgabe der komplexen Planung
des Abbaus von Ifaturschatzen und der Gewinnung der notwendigen
Informationen. Immer deutlicher werden die Zusammanhange zwischen
Naturressourcen und den daraus folgenden Schwierigkeiten der Aufgaben ihrer Steuerung. Klare Vorstellungen daruber, dass verschiedene Planungsebenen unterschiedliche Informationen mir verschiedemen Prazisionsgrad brauchen und die damit verbundene Schaffung von
neuen Systemen, die Klassifizierung der Informationen erleichtern,
kónnte den Leitern der landwirtschaftlichen Planungsorganisationen
die Moglichkeit geben, die Verwendungsmóglichkeiten der Bodenressourcén besser zu prognosieren und einen effektiveren Bodenfla'cheneinsatz zu gewaiirleisten.
Pe3K)lie
BceoömMlf HHiepec K nJiaHOsoijy HcnojiBsOBaHHio 3euem nocraBiui nepea
noiBOBemua H önojioraMH 3emaiy KOMiuieKCHcro luiaHHpoBamw paspaöoiKH
npnpo/iHnx pecypcoB H noayieHHH HeodxoflHiiOH' HH$opuaunn. Boe üojiBine
pacier noHHMaHiie B3aniiocBH3ett nes«y npnpoflHbi«H pecypcaHH H BiireKaioneü orciofla CJIOKHOCTBIO H X ynpaBneHiw. IIOHHMaHHe Toro, qro pa3^HMHue
ypoBHH naaHHpoBaHHH Tpeöyior pa3M<JH0fl HH$opMaiiHH c pasHOfi cieneHBD
TOqHOCTH H C03aaHHe B 3TO0 CBH3H HOBHX CHCTeM flJIH OÖJlerqeHHH KJiaCCH-
$HKauHH HH$opMauHH^uoseT noMcmB pyKOBOflwrenHM rmaHHpyiomHx CBJIBCKOxo3HüCTBeHHnx opraHH3auHö öoiee TO«HO nporH03HpoBaiB BO31IOKBOCTH H C nosB30BaHHH 3euenhaux pecypcoB H oöecnewHTB 3$$eKTHBHoe 3eunenonh3OBaH0e.
oe
SOIL SURVEYS AND EBVIRONMENTAL PLANNING
J.Bartelll
South Regional Technical Service Center,-Soil
Conservation Service, Department of Agriculture
U.S.A.
An objective of the Soil Conservation Service is to strengthen
its capability for showing ways in which the soil survey can be used to
better man's environment. The purpose of this paper is to outline
some uses of soil surveys for developing farming systems that do
not accumulate toxic end products or produce excessive sediment,
for selecting suitable areas for urbanization and related uses,for
farming and forestry, and for designing waste disposal systems that
maintain or Improve the quality of the environment.
Soil Potential for Farming
A land use system to be in harmony with the natural soil should
be geared to the potential of the soil. Potential is defined as the
capability to produce, yield, or serve a use in relation to
the
cost of treating the soil» Farmland with the best potential requires level, productive soils with a climate that is favorable (Bar5 telli, 1968). Siguier et al. (1970) express soil potentiality as
the capability under management. These authors (Riquier et al.,
1970) propose a numerical system for appraising the soil potential.
This system considers the cost of inputs required to bring the soil
to its productive capacity. To be lasting, farming must have a favorable cost input/output ratio» It should not pollute the environment. It must have a favorable impact on the environment.
Farming methods must be designed to take advantage of the unique
behaviour pattern of each kind of soil. Weber (1967) postulates an
application rate for farm manures on corn lands that would not release more than 300 pounds per acre of nitrogen. Smith (1968) suggests an application rate no higher than 100 pounds per acre of
67
nitrate fertilizer under Missouri soil conditions. Walsh (1969)
also supports the 100 pound rate for silt and clay soils in Wisconsin under corn. If leaching of surplus nitrates is to be avoided, sandy soils should receive lower rates. The capacity of soils
to take in nitrogen varies with differences in soil characteristics.
In humid regions finetextured soils with slow permeability will
have parts of the soil that are saturated and will experience periods of reducing conditions during the growing season. Denitrification will occur and leaching of nitrates will be reduced (Meek
et al., 1969).
The potential for nitrate leaching into surface and ground water is greatest near the point of maximum crop yields. Successive
increments of nitrogen may lead to excessive downward displacement
due to leaching beyond the reach of roots. Yield response curves
can be developed for each major soil. These curves, plotting yields
against increments of nitrogen, guide the application rates.
Most soils adsorb phosphates (Seatz et al., 1963), but Spodosols with spodic horizons low in aluminum do not (Fox .et al.,1971).
However, most of the phosphorous that reaches surface waters from
cropped fields is attached to soil sediment from such fields. Hence, reducing soil erosion effectively reduces phosphorous in surface waters.
Soil Potential for Wood Production
The potential productivity of soils when used to grow wood crops
is an essential evaluation of the forest land resource. The woodland resource evaluation (Case, 1971) includes the soil-site index
(Lemmon, 1958), yields, and woodland cost-return estimates '
An application of this technique to the woodland resources of
the Ouachita Mountains Resource Conservation and Development Area
in southeastern Oklahoma reflects that less than 3 percent of the
soils now in woods will produce net returns of 5 per acre or more
annually at 1972 cost and prices. About 46 percent offer potentials
that will produce net returns of 2 to 5 per acre. The remainder
2/ The soil-site index indicates the amount of wood products a soil
can produce under a specified set of management practices. The
cost-return estimates provide annual gross and net returns.
AH
of the soils in woods (51 percent) do not offer much economic incentive for wood production. These submarginal soils, if managed
for wood production, will not contribute to the economic growth of
the area.
Soil Potential for Urbanization
Interpreting soil surreys for the urban sector of our society is
an exciting experience (Bartelli, 1962). In 10 years, it has mushroomed into a major activity of the soil survey in the United States. The soil survey of Ventura Axea, California (1970), lists the
various kinds of interpretations prepared by the Soil Conservation
Service.
The potential, as used in this paper, includes the cost of overcoming the inherent soil limitation in addition to the impact that
use will nave on the environment. It becomes an expression of the
benefitcost ratio to society. Table 1 is an example of rating the
relative soil potential for urbanization for several soils in St.
Croix, Virgin Islands. Comparative costs were developed on the basis of contractors' operating costs in the soil areas. It was difficult to get actual dollar costs, but the costs of certain key
operations were used. For example, certain measures used on one soil were not needed on the other. Esthetic values (slope, trees,
vistas) and costs of maintenance (flood protection, stabilizing
vertic soils) were considered as part of the impact on the environment. Extended life of dwellings and buildings, solid dry basements,
and long lasting roads are parts of a better environment.
Potential for Land Spreading of Waste
The natural soil has provided a successful treatment facility
for biodegradable waste for many centuries. An understanding of the
J behaviour between components of the waste and the soil 'properties
will enable the prediction of behaviour or potential of any soil.
For example, soils with high water tables serve well as disposal
sites for waste high in nitrate nitrogen. Researchers in the Agricultural Research Service (1969) induced denitrification and removed
90 percent of the nitrogen by controlling the wet-dry cycle. John
(1971) reports that the capacity of a soil to remove phosphate from
sewage effluent is related mostly to Al and Fe content, pH, base
saturation, and texture. Soils high in Al and Fe are strong fixers,
acid soils are more effective than alkaline soils, and soils high
69
Table
1
Soil Potential for Urbanization
Cost of Development
Soil Unit
Land
Development
Utilities
Benefits
Roads
Housing
Esthetic
Value
Impact on
Cost of Environ- Poten»
Mainte- ment
tial
nance
Moderate
Low
Low
High
Low
Slight
Strong
Fraternidad
High
High
High
High
Low
High
Strong
Slight
Heeaelberg
Low
High
Low
High
Moderate
Low
Slight
Moderate
High
Aguilita
Sion
Fredensborg
Moderate
Low
Moderate
Low
Low
Moderate
Moderate
Low
Moderate
Moderate
Moderate
Moderate
Good
Moderate
Medium
Good
Moderate
Medium
Good
in sand content are poor removers. Hill (1972) found out that the
efficiency of a soil for removing cations and anions is conditioned by the amount of clay, the cation-exchange capacity, the pH,
and the permeability of the soil.
The soil biological properties influence the rate of decomposition of organic matter. The magnitude of carbon mineralization is
directly related to the organic carbon content of the soil. The
greatest rate of C0 2 evolution occurs near the surface of the profile where the highest concentration of organic matter occurs. Soil
reaction is also critical; carbon mineralization is most rapid in
neutral to slightly alkaline soils. Moisture level affects soil
respiration; the soil must contain sufficient water for maximum
microbiological action. Nitrogen levels in soil also are significant; low nitrogen content or a wide C:N ratio is associated with
slow decay. Another property of importance is soil temperature.
Some humus decomposition can proceed at temperatures down to
freezing, but most bacterial activity stops at 5°C. Little oxidation occurs at 7°C, at 37CC, the oxidation is intensive .Family^ soil
temperature classes can be used to characterize the biological activity of the natural soil. Soils in hyperthermic families, have
biological activity for 12 months. The activity in thermic families is almost as continuous.
Soils are also used to remove bacteria and viruses from sewage
effluent. The University of California research laboratory (1967)
reported that water of a bacterial quality suitable for drinking
purposes can be obtained by spreading and percolating secondary
sewage effluent through a minimum 3 to 7 feet of soil. Baars (1957)
and Caldwell (1938), in monitoring sewage disposal areas, noted little movement of bacteria. The rate of removal is a function of
^ particle size. For effective filtering, particle size must be
0.015 inn o r finer. Also, aerobic conditions accentuate the kill of
bacteria and viruses.
The predicting of the soil's potential for either industrial,
municipal, or agricultural wastes is a significant contribution of
the soil scientist to environmental planning. The rapid increase
in research dealing with pollution reflects the concern of the
public (Byerly, 1970).
2/ Soil families are subdivisions of subgroups based on texture,
mineralogy, and temperature (Aandahl, 19&5)«
71
R e f e r e n c e s
Aandahl, Andrew R. J. Soil and Water Conserv. 20, 243-246, 1965
Agricultural Research Service, U.S. Department of Agriculture.
Clear water from wastes. Washington, D.C. 1969
Baars J.K. Bull. World Health Organ. 16, 727-7*7, 1957
Bartelli, Lindo J. J. Soil and Water Conserv. 1£, 99-103, 1962
Bartelll L.J. Transactions 9th Intern. Congress of Soil Sci. IV,
243-251, (1968)
Byerly T.C. Agric. Sci. Rev., 8, 1-8, 1970
Caldwell E.L. Infectious Disease. 62, 271-292, 1938
Case James U. In "The shape of things to come". Proc.Soil Cons.Soc.
of Am. 26th annual meeting. Ankeny, Iowa, 109-112, 1971.
Fox R.L., and Kamprath S.J. Adsorption and leaching of F in acid
organic soils and high organic matter sand. Proc. Soil
Sci. Soc. Am. ,25., 154-156, 1971
Hill D.E. J. Environ. Quality. 1, 163-167, 1972
John, Matt K. Can. Jour. Soil Sci. 5_1, 315-322, 1971
Lemmon, Paul E. First North American Forest Soils Conference.
Mich. Agric. Exp. Sta. 153-158, 1958
Heek B.D., Grass L.B., MacKenzie A.J. Applied nitrogen losses In
relation to oxygen status of soils. Proc. Soil Sci. Soc.
Am. 21, 575-578, 1969 .
Siguier, J. Bramo, D. Luis, Cornet J.P. A new system of soil appraisal in terms of actual and potential productivity, FAO,
United Nations. AGL:TESR/7/6. 38, 1970.
Seatz L.F., Stanberry C O . Chapt. 6, in McVickar, M.H., Bridges,
G.L., and Nelson,L.B.(ed.) Fertilizer technology and usage.
Soil Sci.Soc.Am. Madison, Wisconsin, 1963.
Smith G.E. Proc. joint seminar. Univ. of Mo. and Mo. State Water
Pollution Board, 13-27, 1968.
Univ. of Calif. Sanitary Engineering Research Lab. Richmond, California. Report 67-11. 70 1967.
USDA, Soil Conservation Service. Soil Survey. Ventura Area, California. Washington, D.C. 148, 1970.
Walsh, Leo M. Does agriculture contribute to the nitrate problem?
Wisconsin Agric. Ext. Service Mimeo. 9, 1970*
Weber, L.R., Animal waste. Dept. of Soil Sci. Annual Progress Report. Univ. of Guelph, Guelph, Ontario, 45-49, 1967.
Wild, A., J.Soil Sci. J, 221-238, 1950.
12
Summary
Soil surveys are used to designate those areas well suited for
a home site, a factory site, or a school site and, in addition, to
predict the impact that specific uses of soil will have on the en-r
vironment. Soil survey is used to select suitable places for liquid and solid town's wastes. Soil survey with its commentary is included in the general plan for the melioration of the environment.
Résumé
La recherche du sol est utilisée pour designer des terrains bien
convenables pour situer une maison, une manufacture, ou une école,
de plus elle prédit 1'influence que 1'utilisation du sol exercera
sur 1'environnement. La recherche du sol peut être utilisée pour
choisir des terrains convenables pour cycler des déchets liquides
ou solides. Aveo son interpretation, la recherche du sol est une
partie integrale du plan d'aménagement de 1'environnement.
Zusammenfassung
Die Bodenaufnahme dient zur Bestimmung van Gebleten, die als
Hausgrundstücke, Fabrik- oder Schulgelande geeignet sind; ausserdem 1st es möglich vorauszusagen, welchen Einfluss solche Bodenbenutzung auf die Umwelt haben wlrd. Die Bodenaufnahme kann ausserdem der Auswahl geeigneter Platze für flüssige und feste Abfalle dienen. Die Bodenaufnahme und ihre Auswertung 1st ein wesentlicher Bestandteil der Umweltplanung.
Pe3DUe
üowBeHHafl cbeuKa ncnonb3yeTCfl una onpeseneHHH nnoinase», KOTOpue nonxojflT una cTpomenbCTBa mnux SOMOB, 3aB0H0B MBH mKOji, M,
; Kpoue Toro, OHa ncnojn>3yeTCfl una onpeneneHHfl xoro B03nefócTBHH Ha
* OKpyracnyio c p e i y , Koiopoe öynei 0Ka3tiBaTb TOT HHH MHO3 BHK 3e»inenonb30BaHHfl. ïïovBeHma cieMKa Hcnonbsyeicfl n,na Buöopa noixonflmnx
u e c i una umKHX H iBepuNx roponcKnx oidpocoB. üoiBeHHafl cbeMKa c ee
HCTonKOBaHHeu BxoiflT B oöutHü nnaH Meraopai;nn OKpysaoneK cpemi.
73
SOIIS INFORMATION HEQUTrtEMEWrS FOR LARGE PROJECTS
WITH POTENTIALLY MAJOR ENVIRONMENTAL IMPACT
P.J.B.Duffy
Department of Fisheries and Forestry
Canada
Introduction
At the present time, major undertakings and actions are being
initiated without adequate regard for the environmental consequences.
Examples are to be found in oil and gas pipelines construction,
transportation routes, urban renewal, hydro-electric developments,
major airport planning and so on.
The problem is "hov/ to insure that the environmental ir.pact of
major undertakings is assessed before the decision is taken to
proceed with them". In the U.S.A. this problem has been attacked
mainly through the National Environmental Protection Act (1909) and
in the attendant environmental impact assessment program which is
requirsd under the NEPA. Similar developments may come in Canada and
if this is the case there are certain major necessities that need to
be identified. They are the institutional arrangements to manage an
environmental impact assessment staff aid programs within major
agencies undertaking major projects, new methodology in environmental
impact assessment, and, finally, useful and Integrated information
that permits the environmental impact of a major undertaking to be
assessed adequately and before the decision is taken to proceed.
The Current Situation
Up until recently the integration of resource information was
5
achieved by a laborous process of review of maps and documents and
overlapping of survey maps on geology, soils, vegetation, climate,
fauna, and land-use together with other information. Little effort
has been made until recently to derive an intergrated land resource
survey from a
multi-disciplinary team of resource surveyors.
Integrated field surveys are required to insure that the aforementioned disciplines undertake surveys according to a prescribed
integrated method and to insure that the resulting mop is prepared
in such a way that it is ready for its intended use, i.e., the rapid
74
and efficient environmental impact assessment of the undertaking as
well as use in the resource development activity.
Recent developments in the area of integrated land resource
survey have brought together experience from Australia and from
Canadian land inventory and land-use planning programs. Viable
methods appear to be available to undertake broad land resource
survey, However, it is recognized that there is a further need for
integrated survey and study of macro-environments and local environments to establish, on a project by project basis, the nature of an
environmental impact resulting from a given action. Having identified
the environmental impact, it must be measured, evaluated from a standpoint of its effect on the environment, and given some weight or
value to permit the decision-maker to assess the significance of
the impact.
Information Requirements
It is seen that the information base to serve environmental
impact assessment programs is piece-menl and scattered. Hot only is
there a need for new me thodological development to insure that
integrated resource information be gathered but there is also a need
for the identification of' specific parameters and environmental
characteristics in order that adequate environmental impact
assessments can be made. This points to the need for a centralized
environmental data and storage processing facility and capability.
A further need is the research and development thrust required to
serve the assessment of environmental impact.
Gumma ry
The paper deals with the soils information requirements for
large projects with potentially major environmental impact.
Résumé
L'auteur expose les idees concernant des exigences posées aux
informations sur les sols pour de grands projets de construction
ayant une forte influence potentielle sur 1'environnement.
Zusammenfassung
In der vorliegenden Arbeit werden die Anforderungen an die Bodenangaben bei der Realisierung grösserer Bauvorhaben mit potenziell starker Auswirkung auf die Umwelt dargelegt.
Pe3BMe
ABTOP H3JiaraeT cooöpaxeH»fl,Kaca»[iwecfl TpeóOBaHüü K jiaHHiw o non-
Bax npa ocymecTBJieHHJi KpynHnx CTpoHTejitHHX npoeKTOB c noTeHiwaHÈHO
cujiiHHM B03fleüoTBaeM aa OKpyxaiouorjo cpeay.
7S
LAND RESOURCES INVENTORY
A LAMB ZONE MAP OF BULGARIA
11.L, Dewan - FAO Project Manager-,
Chr. Trashliev, 11. Yolevski, S. Krastanov
Poushkarov Institute of Soil Science, Bulgaria
Introduction and Definitions
Systematic soil survey has been carried out in Bulgaria for
over 25 years. A large number of soil maps has been prepared and
utilised in agricultural development programmes. The whole territory
of the country has been divided
several times into regions. The
first attempt in that respect in I960 was based on soil survey on
1:200.000 scale. In 1972 a new soil and geographic regioning of
Bulgaria was completed and given for publication on the basis of
soil survey on 1:25.000 scale. An economic geographical regioning
of agricultural production in Bulgaria has also been prepared
recently. The present paper which divides Bulgaria into land zones
differs from the preceding 'ones by the well stressed agroecological
character of its criteria. The concepts used for "Land zone, system
and unit" should be understood in their agroecological sense and not
in the geographical one. Recently the concepts of ecology and land
evaluation have been synthesized with the soil mapping. The present
work is aimed to prepare a Land Resources Inventory of Bulgaria to
further assist in defining land suitability in Oifferent regions.
This is being done in stages. The first stage is the preparation of
a Land Zone Map of Bulgaria, which is the subject of the present
paper.
Before presenting the map together with the description of
each of the Land Zones and with the criteria of the separations of
Land Zone Maps, it is appropriate to define land and soil.
Land. "A tract of land is defined geographically as a specific
area of the earth's surface; its characteristics embrace all reasonably stable, or predictably cyclic, attributes of the biosphere
vertically above and below this area including those of the
atmosphere, the soil and underlying geology, the topography, the
76
hydrology, the plant and animal populations and the results of past
and present human activity, to the extent that these attributes
exert a significant influence on present and future uses of the
land by man".
Soil."A soil is a three-dimensional body occupying the uppermost part of the earth's crust and having properties differing from
the underlying rock material as a result of interactions between
climate, living organisms (including human activity), parent
material and relief over periods of time and which is distinguished
from other "soils" in terms of differences in internal characteristics and/or terms of the gradient, slope-complexity, micro-topography, stoniness and rockiness of its surface".
Land Zone is however distinguished as a broad area with a welldefined climate, denoting land types, soils and vegetation and forms
a broad area with the pattern of agriculture and other land use, is
significantly different from the other Land Zones of the country.
Each Land Zone consists of several land types, based mainly on two
major criteria, of physiography and the nature, thickness and
continuity of soil cover. Each land type consists of several land
units which are defined by a given combination of topography,
climate, soil, geology, hydrology and utilization over a given area.
This combination not only reflects the joint occurrence of these
characteristics, but also the mutual interactions and relationships
between the environmental factors and the human activities in the
area. A land unit stops where several of its features change,
together creating another combination of environmental conditions
and of human activities.
Among the characteristics defining the land units some are
easily observable for the surface. These are the landscape features.
However, other characteristics such as climate, soil, hydrology, etc.
are less conspicous and/or vary in time.
The characterization of a Laad Unit, therefore, requires the
combination of several specialized surveys.
The Land Units must be grouped into broader units under major
headings to make land resources inventory clearer. Two approaches
are given to be tried in this respect:
a) Geographical grouping showing actual combination of the
Land Units in the space. This may be called Land System.
Several Land Systems may form a Land Zone.
b) Grouping Land Units according to their inherent similarities
77
and differences, thus defining major types of land
resources, as mountains, hills, plains, etc. Each Land
Zone has a combination of several land types.
Schematically, the Land Zone - Land System - Land Type - Land
Unit approach can be given through an example in the following chart:
LAMP ZOKE VII (Sofia Region High Plateau)
|
J U T O SYSÏfiM A. |
Hills;
partly
denuded
UI-ID SYSTEM fc )
Utffl sïsïiM 3
|
I Pied- River Dismont allu- sected
plain vial
slopes
plains
-PiedRTgh"
mont
level
valleys plain
Deluvial
fan
—
|
Pied- IHiver
mont Ialluplain 'vial
|plains
_ Same Land T y p e —
'
Land Zones of Bulgaria
The present paper defines the Land Zones for Bulgaria. Table I
gives a brief description of these II Land Zones in terms of
physiography, climate, predominant vegetation, soils, erosion
problems and land use. Kach one of the terminology used in describing the Land Zones are further defined and quantified in Table II
which gives criteria for Land Zone Mapping in Bulgaria.
The Land Zone Map of Bulgaria presented is a Synthesis of
existing maps and information on physiography, soils, climate, vegetation, erosion problems and land use. The specialists in these fields
were consulted, but the main responsibility for this map rests with
the authors.
Land Resources Potentiality
Land resources potentiality or land suitability is the fitness
of a given tract of land for a defined use. Differences in the degree
of suitability are determined by the relationships, actual or anticipated, between benefits and required inputs associated with the
use on the tract of land in question.
The suitability for each particular type of land use, such as
irrigated annual crops, irrigated perennial crops, rainfed annual
78
?/ss
Table I
BRIEF DESCRIPTION OF IAND ZONES OF BULGARIA
LAHD ZONE
North Bulgaria
dissected
Danube Plain
Physiography
Undulating
II. Dobruja-Ludogorie hilly,
Plateau of North undulating
East Bulgaria
hilly and
III. Black Sea Belt
nearly
level
IV.Horthern Periphery
of Balkan Hountain
Range
V. Balkan Mountain
VI. Intermountain
Valley of Balkan
Sredna Gora
Rose Valley
VH. Sofia Region
Eigh Plateau
VHI. South Bulgaria
Thracian Plain
hilly
Climate
semi-arid
moderate
oaks
mixed
steppe veg.
sub-humid,
moderate
warm
semi-arid
moderate
warm to
warm
humid
moderate
warm
oaks
mixed
steppe veg.
oaks and
Meadows
mountainous humid,
cool
level and
sub-humid
undulating moderate
warm
hilly and
nearly
level
level and
undulating
Predominant
Vegetation
sub-humid
moderate
cool
semi-arid
moderate
warm
oaks
beeches
oaks and
meadows
oaks and
meadows
oaks and
meadows
Soils
Erosion
Problems
Land Use
calcareous
slight to dry land and
leached chern. medium
irrigated
grey forest
(wheat,corn
vineyards)
leached
slight to dry land
chernozem +
medium
(wheat and
grey forest
corn)
leached
slight to dry and irrichernozem,
medium
gated land
chernozem
(fruit ,viney.,
smolnitza
wheat + corn)
grey forest
medium to dry land
(shallow)
strong
(pastures +
light grey,
plums)
forest gleyed
brown
forest land
strong
forest
alluvial,
slight to roses and
deluvial
medium
lavender
cinnamonic
shallow
smolnitza,
slight to dry and irrig.
cinnamonic
strong
land (wheat,
alluvial
corn+vegetables)
smolnitza,
slight
irrgated + dry
cinnamonic
(vegetables,
alluvial +
fruit,rice,
inclusions of
tobacco,cotton)
low permeabil.
tsaline soils
Table 1 ( C o n t i n u e d )
LAND
ZONE
IX. East Rhodopes
X. Struma-Kesta
Valleys
XI. Rila-Haodopas
Physiofiraphy
hilly and
mountainous
hilly and
level
Climate
semi-arid,
warm
arid,
warm
mountainous humid,
cool
Predominant
Vegetation
Soils
oaks and
meadows
cinnamonic,
shallow
cinnamonic,
alluvial
conifers
and
mountainous
meadows
brown forest
and
mountainous
meadows
oaks
Erosion
Problems
severe
medium to
strong
strong
Land Use
intensive
(tobacco)
irrigated
(tobacco,
vegetable,
fruit)
forest land
and
pastures
Table
2
CRITERIA FOR IAND ZONE MAPPING
Physiography
Mountainous
(in meters)
lie 1. Height
Climate
Hilly
Undulating
Elev.
50 -
500
Elev.
5 -
50
Nearly Level
Elev.
I -
Level
Elev.
5
I
Precipitation
Precipitation
Humid
800 mm/year
Sub-humid
600-800 mm/year
Semi -arid
4-50-600 mm/year
Seasonally
arid
Temperature
Cool
Summer Precipitation
200 mm
I50- 200 mm
100- 150 mm
4-50 mm/year
100 mm
Sum of temperature above I0°C for the
Vegetation Period
3.000°
Moderate.cool
J.OOu - ^.500"
l.oderate warm
5.500 - 1.000°
Warm
Predominant
500
I 200
Kiev.
4.000°
(Occupying more than 50% of the area)
natural
vegetation
Forest
oaks
beeches
coniferous
Grassland
steppe vegetation
meadow vegetation
high mountain meadows
Predominant
soils
Only those soils are mentioned which individually
occupy more than 50% of the area. /Types and Subtypes
only.
../
Table 2 (Continued)
Erosion problems
No erosion
Slight erosion
E
E.
tiedium erosion E~
Severe erosion E-,
3
Very severe
erosion
Land Use
E„
None or very slight erosion
Chernozems - a portion of
horison A removed
Grey Forest and
cinnamonic - All of
horizon A removed
Chernozems - All of horizon
A and part of B removed
Grey Forest and Cinnamonic All horizon A, 2/3 of
horizon B removed
Chernozems - Horizons A
and B completely removed
Grey Forest and cinnamonic Horizon C exposed when
plowed
Parent material exposed in
all soils
(The main crops which occupy more than 3O5S are to
be indicated.
Dry farming /wheat/ corn
Irrigated farming
Horticulture (Fruits and vegetables)
Intensive Field Crops (Tobacco, cotton, sugar
beet).
Others.
crops, rainfed perennial crops, horticulture crops; range, pasture
and forest are different.
It is hoped that with the additional work which is being
carried out for land classification as well as Computerized Soil
Management, further quantification of the various parameters for
land productivity on each one of these Land units will be defined.
Conclusion
The present paper has outlined the first step in the Land Zone
Kap of the country. This Land Zone Map is not sufficient for detailed
planning and project studies beyond reconnaissance phase nor for
indication for individual development projects. For this purpose
detailed and semi-detailed studies are needed in preparing the Land
Unit Map. However, this map is a good guide on general information on
Land Resources, is useful for regional land use planning, also for
selection of areas for specialized development and crops.
82
A Land Zone Map is therefore the first framework for future
sub-division into L3nd Units for various regions and this assisting
the agro-industrial complexes in their increased specialization as
well as furthering the productivity of each Land Unit.
R e f e r e n c e s
Koinov et al., Soil Kap of Bulgaria, I:4O0.000, Sofia, 1965.
Geological Map of Bulgaria, 1:1.000.000;
Printed by Hap Factory, Sofia
Complex Climate Hap of Bulgaria, 1:1.000.000,
Geographical Institute of Bulgaria, Sofia
Goomorphological Hap of Bulgaria, 1:1.000.000,
Printed by Hap Factory, Sofia, 1956.
J.Gulubov et al. Geography of Bulgaria V. % 19&6f
Ch.Trashliev et al. Soil-Geographical Distribution of Bulgaria,
in press.
FAO Publication AGL-.LERP 72/1, October 1972.
Background Document "Expert Consultation and Land Evaluation
for Rural Purposes", V7ageningen, 1972.
Christian and Howart, Kethodology of Integrated Surveys,
Proceedings of the Unesco Conference on Aerial Survays and
Integrated Studies, Tolousse, 1968.
U.S. Soil Survey Staff, Soil Classification
7th Approximation, U.S.D.A., Washington, D.C., I960
Summary
A Land Zone Map of Bulgaria has been developed from the existing
information on soils and land. This map divides the country into 11
Land Zones based on a synthesis of factors such as physiography,
climate, soil, vegetation and present land use as well as erosion
conditions. Each Land Zone has a different potentiality. The future
potentiality is also referred to in the paper, but this depends
5 essentially on the inputs of managements and improvements. Prepara'*• tion of Land Zone Maps is one of the 3teps in future specialization
and optimization of crop production in the large agro-industrial
complexes under organization in Bulgaria. The paper describes in
short each of the 11 Land Zones indicated in the map. A Land Zone
Map is the first frame work vrtiich will help further understanding
of land resources of the country, their evaluation and land suitability determination for specific use. The next step is the preparation
of Land Units Maps for the individual regions.
Résumé
Une carte des zones de terres de la Bulgarie a été établie
fondée sur 1'information existante sur les sols et les terres du
pays. Le terrrtoiredu pays y est divisé en II zones déterminées
83
suivant plusieurs facteurs tels que les conditions physicogéographiques, Ie climat, les sols, la vegetation, 1'utilisation du
sol ainsi que les conditions d'erosion. Chaque zone a ses
potentialités. Le rapport parle aussi des potentialités futures ce
qui dépend essentiellement des mesures agrotechniques et
d'amelioration appropriées. L'établissement de la carte des zones
représente une des étapes de la specialisation et de 1'optimisation
future de 1'agriculture dans de grands complexes agro-industriels
organises en Bulgarie. Le rapport décrit brièvement toutes les II
zones de terres. La présente carte peut permettre d'étudier les
ressources de terres, de les évaluer et de determiner la
disponibilité des terres pour diverses formes d'utilisation. L'étape
suivante du travail consistera a preparer les cartes des unites de
terre pour diverses regions.
Zusammenfassung
Auf Grund vorhandener Daten über Boden und Landereien wurde eine
Rayonierungskarte Bulgariens zusammengeBtellt.
Das Territorium des Landes ist in elf Zonen eingeteilt, die nach
mehreren Paktoren differenziert werden; physikalischgeographische
Bedingungen, Klimaverhaltnisse, Boden, Vegetation, Bodennutzung sowie
Erosionsverh'altnisse. Jede Zone verfügt über unterschiedliche potenzielle Reserven. Das Referat besch'aftigt sich mit der Nutzung dieser
Reaerven in der Zukunft, was in bedeutendem Masse von enteprechenden
agrotechniachen und Meliorationsmassnahmen abh'angt. Die Zusammenstellung der Nutzlandkarte 1st eine Etappe der künftigen Spezialisierung
und Optimierung des Pflanzenbaus in grosseren agro-industriellen Komplexen, die in Bulgarien angelegt werden. lm Referat werden alle elf
Zonen der auf der Karte angegebenen Bodenressource kurz behandelt.
Diese Karte kann zur weiteren Porschung der Bodenreesource des Landes
und deren Auswertung hinsichtlich ihrer verschiedenartigen Nutzung
verwendet werden. Die n'achste Etappe der durchgeführten Arbeit soil
die Zusammenstellung einer Landeinheitekarte für einzelne Geblete
sein.
Pe3MMe
Ha OCHOBaHHH HUeiJB(HXOH aaHHUX 0 ,10iJBaX H 3eMeJTLHblX y r o a t H x
Qujia
cooTaBJieHa KapTa paiioHnpoBaHHH 3eMenL Uojirapwi. Ha BTOFI tcapTe TeppHTOPHH cipaHU pa3aeneHa Ha I I 30H, Bu«ejiennHX no pasy (JaKTopoB: $H3HK0-
84
reorpa$n<iecKne ycJiOBHH, KJIHMST, noiBu, pacMTeJiBHocTB, 3eMjieiitwiB30BaHJie
a r a r a e 3po3HOHHwe ycjiOBun. Kawaan 30Ha wueei paajurawe noTeHUHajiBnue
pe3epBbi. B a o r a a a e Tarae yaejiaercfl BHHuamie wcnojiBsoBaHHio STUX pa3epBOB B SyayneM, m o B 3Ha^MTeJiBHaii crenemi 3aBiicnr or cooiBeTCTByiomiix
arpoTexHH'iecKHx H MeJiHopaTHBHUx MeponpHHTHü. CocTaBJieHHe KapTii 3eMejii>HUX yro^HM - oflHH H3 3Tan0B öyayneü oneuHaj!n3amiii H onTHMH3aunn p a c r e imeBOflcTBa B ÖOJIBMX arponpoMtiraeHHHx KOMraeKcax, opraHH3yeMiix B LonrapHn. B a o r a a a e KparKo oimcaHbi Bee I I 30H 3cMeJiBHtix pecypcoB, npe/i
yTaBJiemiue Ha Kapre. HacrcmiiiaH Kapra Mo^er Q'HTB ncnojiB30BaHa A M naiibHeümero H3yieHHfl 3eMeJii>Hbix peoypooB cTpamj, HX oueHKH H onpraejieHMH
npiiroflHOGTH 3eueJii> Ann pa3JinqHHx BIHOB ncnojiB30Bannn. C^eayiom.M.1 aian
npoflejiaHimJS paóoiu - cocTaBJiemie Kapni 3eMeJiBHHX eanHHii flflfl OT^GJIBHHX poÜDHOB.
LAND ZONE I - North Bulgaria, dissected Danube Plain;
LAND ZONE II - Dobruja-Ludogaria Plateau of North East
Bulgaria; LAND ZONE III - Black Sea Belt; LAND ZONE IT Northern Periphery of Balkan Mountain Range; LAND ZONE VBalkan Mountain Range; LAND ZON5) VI - Intermountain Valley
of Balkan-Saradna Gora, Rose Valley; LAND ZONE VII Sofia Region High Plateau; LAND ZONE VIII - South Bulgaria,
Thracian Plain; LAND XONE IX - East Rhodopian; LAND ZONE XStruma-Nesta Valleys;LAND ZONE XI- Rila/Rhodopy Mountains
«5
USE OP SOIL SURVEY, FIELD EXPERIMENTS AND CHEMICAL ANALYSES POR
DEFINING AREAS OP MICRONUTRIENT DEFICIENCY
P.M.King and A.M.Alston
South Australian Department of Agriculture, Adelaide, Waite Agricultural Research Institute, University of Adelaide, Glen Osmond,
South Australia
Introduction
The Eyre Peninsula, South Australia,,is an old land surface of
Archaean metasedimonts largely overlaid to variable depths by a sedimentary mantle of alluvial and aeolian material (Johns, 1961). The
soil distribution shown in Figure 1 is based on the map of Stace at
al. (1968) whose definitions of Great Soil Group names are followed
in this paper. Soil associations within the zones mapped have been
described by Northcote (I960).
Micronutrient deficiencies in crops and pastures occur widely on
the Peninsula (French, 1958). However, the soils on which the deficiencies occur have not been clearly identified nor has their extent been defined.
This paper describes an investigation made to delineate soils on
which deficiencies of Cu, Zn, Mn, Fe, B and Ho occur in wheat. The
soils in two areas were surveyed, and field experiments were conducted to measure the response of wheat to foliar application of micronutrients.
si
Methods
Two areas were surveyed- one near Stokes (2,270 ha, mean annual
rainfall 50 cm) and the other at Wharminda (2,350 ha, rainfall 34 cm).
Each area was divided into land units according to landscape features and geomorphology. The soils within each land unit were then
described and mapped on a scale of l:20,000as principal profile forms
according to Northcote'e factual key (Northcote, 1971).
Twenty-four factorial field experiments were conducted on the most
widespread principal profile forms to determine the response of
wheat to Cu, Zn, Mn, Fe, B and Mo. The micronutrients were applied
Bé
as foliar sprays three times during the season. On each occasion,
according to the treatment, the wheat received, where appropriate:
- 100 g ha -1 Cu, 200 g ha -1 Zn, 500 g ha-1Mn and 500 g ha-1Fe as sulphates; 200 g ha B as H,B0,, and 10 g ha
Ho as Ha2Mo0..2H20.
The wheat was sampled at stem elongation and at maturity for dry
weight and grain yield determination. The micronutrient concentration was determined in plants which received no micronutrient fertilizer, and in the soils sampled before the wheat was sown. The availability of Cu, Zn, Mn and Fe in the soils was determined by extraction with 0,05 M HagEDTA at pH 6 (Viro, 1955), 0.005M DTPA at pH 7,2
(Lindsay, Horvell, 1969), and 0,01 H Ca (B0 3 ) 2 at pH 6 (K.G.Tiller,
1972, pers. comm.).
Results
The nature of the land units at Wharminda and of the soils developed thereon are shown in Table 1. The relationship of the soils to
the land forms and topography within Land Unit I (Dune and swale
system), is shown in Figure 2. There was a similar range of soils
related to land form in each other land unit.
There were positive grain yield responses to Cu at eleven sites
(Table 2), Zn at two sites (Dy5.83, Gnl.83), Mn at one site (Uc.1.11)
and Mo at one site (Dr3.62). There were positive vegetative growth
responses to Fe at two sites (Dy3.42, Db3.22) and B at two sites
(Dy5.83), but neither Fe nor B had any significant effect on grain
yield. Many significant interactions occurred, negative interactions
between Cu and Zn, Zn and Mn and Mn and Mo being particularly prevalent. This suggests that incipient deficiencies may be present,
and, if steps are taken to correct or prevent deficiency of one micronutrient, deficiencies of others may be induced.
«
The results are further illustrated by reference to Cu (Table 2 ) .
£ Grain yield responses to Cu treatment varied widely, and irrespectively of the nature of the soil were closely related to the Cu
concentration in the grain. Yield increases, with one exception,
were associated with grain Cu concentrations ^2,5 p p m in the untreated plants (Figure 3 ) .
Ca(N0,)2 - extractable Cu was not closely related to per cent
grain yield response, but more effectively separated responsive and
non-responsive soils than did EDTA - or DTPA-extractable Cu when
all soils were considered. Total soil Cu was of little value. Grouping together soils with similar properties improved the relation87
Table 1
Land units and associated soils at Wharminda
Description of land units
Great Soil
Group+
Dominant soils
Principal profile
formt
I. Dune and swale system:
Long parallel dunes of
unconsolidated siliceous
sand separated by flats.
Solodic soils
Solodized solonetz
Podzols
Dy5.83
Dy5.45
Uc2.21
II.Calcareous dune system.
Short irregular dunes of
unconsolidated calcareous
sand separated by flats.
Solonized brown soils Gc1.22,Gc1.12
Calcareous sands
Uc1.11,Uc5.12
Podzols
Uc2.21
III.Low undulating hills
with sharp outcropping
ridges of limestone.
Much surface limestone
Solodic 30ils
Solodized solonetz
Dy5.83
Dy5.43
IV. Low undulating hills.
No limestone outcrops
and little surface stone.
Solonized brown soils Gn1.83,Gn1.63
Solodic soils
Dy5.83
V. Stream valleys.
Gently sloping banks
and limestone hills
rising from saline
swamps.
+
Stace et al. (1968)
tNorthcote (1971)
B8
Solodized solonetz
Podzols
Solonchak
Red brown earth
Dy5.43
Uc2.21
Dy1.63
Dr4.63
Table 2
Grain yield response of wheat to applied Cu and Cu
concentration in grain and soil
Principal
Grain yield
C u c o n c
from
-Cu
-1
1040
kg ha"
1
1390*
600
ppm
1,5
-
650
Uc2.2lt
370
1050
1380'*•
Dy5.43$
Dy5.83t
2440
2600
1230
Dy5.8?t
890
1169
800
Dy5.834
1320
1400*
Dy5.83
1790
1790
Gn1.83
Dy3.82
1370
15
1230
Dy3.82
DTPA
+Cu
Uc2.2lt
By5.43t
EDTA
Ca(N0 ? ) 2
-Cu
kg h a
Uo1.11
Cu concentration in soil
,
in grain Total
profile
920'••
ppm
2,0
2,0
ppmxIO
p
ppmxIO
pprnxlO-5
2,3
2,4
3,0
2,9
1.1
7,2
1,0
0,8
7,2
1.3
2,0
1,5
2,0
1,8
5,0
3,8
2,5
2,6
2,5
3,0
9,0
5,3
9,0
3,8
2,5
-
2,5
3,0
6,5
5,0
5,0
8,7
9,6
10,0
1910'*•
1,8
2,5
3,0
4,0
3,7
4,0
1290
4,9
4,6
4,3
3,5
3,0
9,0
12,4
1,4
4,6
1,3
1480'
1,8
4,0
3,3
6,6
2,3
17,5
13,8
6,4
Dy3.82
1210
1250
4,0
5,0
13,3
34,0
Dy3.82
2520*•
2170»
1,5
2,4
3,0
6,0
5,7
13,4
15,2
Dy3.62
2190
1980
34,0
Py3.42
2830
3180*'
3,9
5,5
Ry3.42
2360
4,9
2200
11,8
32,5
7,9
Db3.22
2040
2620'
2,9
-
4,5
12,0
13,4
24,2
Dr3.62
2390
2160
6,5
8,4
4,0
4,8
5,7
3330'*•
2,0
6,5
5,9
10,7
14,8
Db3.62
1770
8,5
5,4
12,4
4,3
X light- Brown sands
Significance levels:
«P = 0,05;
•»P = 0,01;
•••£ = 0 001
a<<
ships. This is illustrated in Figure 3 by Ca(N0,)2 - eztractable Cu
In soils with light-brown sand Al horizons
Discussion
The principle profile form alone did not adequately identify the
soils where responses to micronutrients occurred, and it was necessary to put more emphasis on specific soil properties. For example,
the colour and texture of the A. horizons, which have little bearing on the principal profile form to which a soil belongs, may be
related to mlcronutrient availability. Solodic soils (Dy5.83) with
brown loamy sand A, horizons did not respond to Cu, while other
phases of this soil with light-brown sand A. horizons did respond.
The two phases of this soil usually occurred on different facets
within the land units- the brown loamy sands of facet c and the
light-brown sands on facets b and e (Figure 2 ) . The grouping of
light-brown sands was also extended to include the podzols (Uc2.21)
that occurred on facet a of Land Unit I (Figure 2) and also in Land
Units II and V (Table 1 ) . The parent material, and the colour and
texture of the surface horizons of the podzols were very similar to
those of the other light-brown sands.
Provided factors such as these were taken into account, areas of
potential mlcronutrient deficiency could be defined from the survey and the field experiments. However, not all soils regarded as
potentially mlcronutrient deficient responded to fertilizer treatment. Soil and plant analysis were used to separate responsive and
non-responsive sites.
Cu concentration in the grain was the best index of response.
Soil analyses provided an acceptable separation for Cu on the lightbrown sands, but had less value than- plant analysis particularly
when used without reference to the nature of the soil
A similar approach can be used with other groupings of soils and
with other micronutrients. Land units and soil associations can be
recognised over much of Eyre Peninsula and the topographic relation- j
ships of the soils within the land units provide a basis for the in- *
vestlgation and correction of micronutrient deficiencies throught
the region.
R e f e r e n c e s
French R.J. Department of Agriculture, South Australia, Bulletin,
457, 1958 90
Johns R.K. Geological Survey of South Australia. Bulletin 37,
1961 .
Lindsay W.L., Norveil W.A. Agronomy Abstracts 1969. 84, 1969 •
Northcote K.H. An Atlas of Australian Soils. Sheet 1. (C.S.I.R.O,
Australia; Melbourne), I960 .
Horthcote K.H. A Factual Key for the Recognition of Australian
Soils. Third edition. (Rellim:Glenside, South Austral ia), 1971 •
Stace H.C.T. et al. A Handbook of Australian Soils. (Rell^T»:
Glenside, South Australia), .1968..
Viro P.J. Soil Science, 22» 459-465, 1955 .
Summary
Land units based on landscape features and geomorpcology were defined on 460 ha of Eyre Peninsula, South Australia. The soils were
mapped and related to their position within the land units. A*-eas
of potential micronutrient deficiency were identified by measuring
yield responses of wheat to foliar application of Cu, Zn, lln, Pe,
Mo and B in field experiments.
Kesults for Cu are presented. Grain yield response to Cu was usually associated with grain Cu concentrations -c2,5 ppm. Total soil
Cu, and Cu extractable from the soil with EDTA, DTPA and Ca(N0,) 2
were poorly related to yield responses when all soils were considered, but grouping soils with similar properties improved the relationships.
Résumé
On a défini des unites de terre baaées sur les caractéristiques
du paysage et la géomorphologie sur 4600 ha de la Péninsule Eyre,
Australië du Sud. On a dreasé une carte des aols et les a rapportés
*, a leur position a 1'egard des unites de terre. Les terrains de dés. ficience potentielle d'oligo-éléments étaient constates par le mesurage des- réponses du rendement de blé a 1'application folieuse de
Cu, Zn, Mn, Pe, Mo et B dans des experiences en plein champ.
On présente les résultats pour Cu. La réponse du rendement de grain
a Cu s'était habituellement associée a des concentration de Cu -^2,5
ppm. Le Cu global du sol, et le Cu extraitable du sol au moyen d'EDTA,
DTPA et Ca(KO,) 2 n'ont qu'un faible rapport avec les réponaes de
rendement, pour 1'ensemble des sols mals le groupement des sols avec
des propriétés eemblables a amélioré les rapports.
91
Zusammenfassung
Auf der E y r e - H a l b l n s e l , Südauatralien, worden auf e i n e r Pluche von
4600 ha l i n d e i n h e i t e s h l n s i o h t l i o h i h r e r Landschaft und Geomorphol o g i e f t t . i j e a t e l l t und kartenmëasig e r f a e a t . Die Untersuchungsergcbnias.-! der Feldv: -auche zur Auswertung der E f f e k t i v i t a t an Cu,
Zn, Mn, F e , Mo und B b e i Blattdüngung deo Wlnterweizena b i l d e t e n
e i a e ttrundlage zur Ermittlung von Landflachen mit mangelndem 0 e h a l t an Spureneleoenten.
Die vorliegende Arbeit e n t h a l t d i e Ergebniaae der Cu-Anwendung.
Die E f f e k t i v i t a t an Cu korrelier!; meiatena mit s e i n e r Konzentration
£m Korn ^ 2 , 5 ppm. Der (ïeoamtkupfergehalt im Boden und das m i t t e l a
ADTE, DTPE und Ca(N0,) 2 e x l r a h i e r t e Fupfer 1 s t mit der E r t r a g s l e i s tung schwer i n Beziehung 7,u s e t z e n , wolLte man b e l den Boden deren
Eigenschaften auaseracht l a a a e n . Die Giuppierung der Boden nach
g l e l c h e n Eigenschaften verbesaerte die K o r r e l a t l o n mit dem E r n t e e r trag.
Pe3ioue
B KJatHOR ABcipajiHH Ha nojiyodpoBe 3flp, Ha iiJioiua^H 4600 r a ÖHJIH B U aeJieHH 3eMeJiBHbie 6flHHimti o yqeTOM ocoöeHHOCieü .naHfluia$Ta H reouop$ojiornH. Ha aToti OCHOBB npoBe«eHO KaprnpoBaHne noqB. JaHHije nojieBux
onhlTOB no BblHBJieHHB 3$$eKTMBH0CIH Cu,Zn,Mn,Fe,Mo ;<
BOM
B , npH BHeKOpHe-
HX BHeceHHH nofl 03Muyio nmeHHuy, HBHJIHCB OCHOBOS JJIH BHHBJieaHH
luiomaaeü c HeflocraToqHim co/tepataHHeti uHKpoBjieMeHTOE.
B aaHHOft paöOTe npe.ziciaBJieHu pe3yjiBTaiu no npmieHeHHB Cu. a|>$eKTHBHOCTB Cu oöuqHo itoppejiHpyeTCH c «OHueHTpamiet! ee B aepHe -^ 2 , 5
qacTeK Ha UHJIJIHOH. BajioBoe coaepsaHHe ueaH B noqBe H uem, Bu^ejiHeuaH
H3 noqBu 3THneHanauMHT0Tpaaii,eHaT0u, aKSTHJieHTpwaMMHneHTayKcycKoiï KHCJIOTOÜ H Ca(NO ? ) 2> cJiaöo yBH3HBaioTCH c ypoacaüHOCTBn, ecjiH paccuaTpHBari,
noqBU Ces y q e i a HX CBOMCTB. rpyiiir.ipoBKa noqB c OflHHaKOBUMH cBOHCTBauM
yjiyquiHJia KoppejiaiouHio c ypoacatiHOCTBio.
92
E3< EU'
EYRE'
PENINSULA
TJ
F i g. 1. Distribution of the major soil groups on Eyry Peninsula.
Legend: 1 - Lateritio podzolic soils, 2 - Terra rossas, 3 - Solodlzed eolonetz and solodic soils, 4 - Red brown earths, 5 - Solonlzed brown soils, 6 - Siliceous sands
F i g . 2. Diagrammatic representation of Land Unit I (Dune and
swale system).
Legend: Facets of Land Unit I and dominant principal profile forms:
a. Tops and upper slopes of dunes, (Uc2.21). b. Middle and lower
slopes of dunes, (Dy5.83, Dy5.43). c. Flats between dunes, (Dy5.83)
d. Limestone rises in the flats, (Dy5.83). e. Sandy rises in the
flats, Dy5.43, Dy5.83)
93
m
•55j
°
4U 5^7/^5
ALL SOILo
LIGHT-BROWN
SANDS
o
0
Ja
o tf, o
2 r
y •"
5
t
Cu in grain Ip.p.m.)
tf
0
CaiNO^-eitractable
S**
9
Ca Ui soils (p.p.m.'W )
t 1 g. 3. Relationship of per cent grain yield response to Cu concentration 1n wheat grain and Ca(>0O 9 - extractable Cu in soil
z
B i n . (Yield (+Coj - Yleld(-CuJL. xl00
Legend: Per cent grain
(
Yield (+Cu)
)
0 Grain yield irTPHee significant nt f • 0,05
Bo significant effect on grain yield
BESONDERE PROBLEMS DES BOnENNUTZUNGSSCHlM'XES IN
DICHT BBSIEDEIffiEN UND HOCHINDUSTRIALISIERTEN REGIONEN
B. Wohlrat
Ruhr-Universitat Bochum,
Bundesrepublik Deutschland.
Bodennutzung bedeutet grundsatzlich elno Verweadung des Bodens
als Stondort von Pflanzen, in erster Linie gartnerlachen, landwirtschaftlichen oder forstlichon Kulturpflanzen. Naben der
Froduktion phlanzlioher Hahrungsguter und Bohstoffe hat sie noch
andere Funktionen zu erfüllen oder zu berücksichtigen, in besondereia
l'aase die Landschaftsgestalturig und -phlege. Bodennutzung kann auf
die üauer Dit Erfolg nur betrieben warden, wenn sie im Gleicugewicht
mit dem Regenerationsvorraö'gen des komplexen Wirkum^-efüges
"fJaturhaushalt" steht. Abgesehen von oiner land- und forstwirtschaftliehen Cfbernutzung gehen Stó'rungen dieses Gleichgewichtes von
verschiedenen anderen wirtschaftilichenfcassnahniendes 1'enschen aus.
Zu besonderen Konfliktsituationen dieser Art kommt es in dicht
besiedelten und" hoohlndustrialisierten Regionen, bodennutzungsschutz
1st in solchen Gebieten eine zentrale Aufgabe des gesamten
Umweltschutzes. Er dient der Erhaltung und 'tfiederherstellung eines
ó'kologisch ausgewogenen Systems "Boden - Vegetation", dessen
Leistungspotential nachhaltig für die verschiedenen Ansprüche des
Kenschen verfügbar sein soil. Im wesentlichen handelt es sich uu
drel verschiedene Ursachen- und Problemkomplexe:
(L) Eingriffe in den V/asserhaushalfc,
(20 Bodenverunreinigongon,
O.) Eingriffe in die Bodensubstanz durch Abgrabungen.
Eingriffe in den iïasserhaushalt
Zunelunende Benutzungon der ober- und unterirdischen Gewasaer
füuren zwangalaufig zu Veranderungen des natürlichen ï/asserhaushaltes
mit unterschiedlich tief- und weitgreifenden Wirkungen. Die
wlchtigsten Eingriffe gohen dabei von der Siedlungswasserwirtschaft
CTi'iiik- und BraucUwasserentnahmon), vom Wasserbnu (Gevranseri'egulierung
95
und -ausbau, Bau von Staustufen und Kanalen) und vom Bergbau
(Entsiïmphung von Lagerstatten, Landsenkuag) aus. Flacheahaft wirken
sie vor allem uber das Grundwasser und aussern sich dann in einer
Absenkung Oder Anhebung des Grundwasserspiegels. Grundwasserabsenkungen können zu negativen Folgen für den Bodenwaaserhaushalt
(Wohlrab, 1965), zu Senkungen und Verformungen der Erdoberflache
(Wohlrab, 1972) und somit zu Wertminderungen von Nutsflachen
(Standortschaden) fiThren. Sie haben ggf. Vegetationsschaden und
Ertragseinbussen (Bestandesschaden) zur Folge (Koehne, 1948; Wohlrab,
1965). Bei Grundwaaseranstieg ist mit Gelandeveraassung (Wohlrab,
1965) und auf diese Weise mit Verlust oder Wertminderung von
Nutzflachen zu rechnen. Allgemein kónnen Stórungen der Grundwasserverhaltnisse den Landschaftscharakter nachteilig verahdern
(Buchwald, 1968) und somit den Erholungswert mindern.
Die negativen Erfahrungen der Vergangenheit geben dazu
Veraulassung, bei geplanten Eingriffen in den Wasserhaushalt aus der
Sicht des Bodennutzungsschutzes zu prüfen, ob und welche Auswirkungen zu erwarten sind und mit welenen Mitteln und Ilassnahmen ihnen
ggf. zu begegnen ist (Wohlrab, 1965). Eine derartige irufung hat
sich an den ó'rtlichen hydrologischen, bodenkundlichen, pflanzensoziologiscnen, lsndwirtschaftlich-pflanzenbaulichen und forstlichen
Gegebenheiten zu orientieren und bedarf daher entsprechender
Standortuntersuchungeh (Knabe, Gunther, 1971; Langner, Kramer, 1964;
Wohlrab, 1965). Diese liefern auch die fachliche Grundlage für die
Festlegung geeigneter Vorbeuge- und Abhilfemassnahmen. Anzuführen
sind hier im Falie des Grundwasserentzuges eine móglichst enge Begrenzung der Grundwasserabsenkungsbereiche mit geeigneten
technischen Ilassnahmen, Grundwasseranreicherungen aus Oberflachengewassern oder mit gebrauchtem, entsprechend gereinigtem Wasser,
aber auch Bewasserung, ferner Ilassnahmen zur schnellen Grundwasserneubildung nach dem Abbau von Bodenschatzen und naturnaher
Ausbau der Gewasser. Einer den Landschaftshaushalt und die
Bodennutzung stó'renden unmittelbaren oder mittelbaren Grundwasseranhebung kaan entgegengewirkt werden durch Vorflutwiederherstellung, notfalls mittels Schó'pfwerken, Flachenentwasserung,
Gelandeaufhohung
mit geeigneten Abraum- oder Abfa11stoffen sowie
bewusste Landschaftsumgestaltung unter Einbindung entstandener
Wasserflachen.
Die MÓ'glichkeiten, im Einzelfall durch bestimmte Auflagen und
Beschrankungen naohteiligen Folgen fü'r die Bodennutzung vorzubeugen,
96
sind begrenzt, insbesondere weil solche Auflagen sich an den
konkreten ortlichen Verhaltnissen zu orientieren haben. Prophylaktisch wirkungsvoller lassen sioh daher die Belange des
Bodennutzungsschutzes im Stadium der Rahmenplanung beriïcksichtigen.
Bodenverunre inigungen
Der Boden erfüllt je naoh seinen Eigenschaften und in Verbindung mit seinem Bewuohs besondere Abbau- und Pufferfunktionen
(Schlichting, 1972). Er ist offensichtlich in der Lage, nicht nur
natürliche, sondern auch vom Menschen ausgelöste Umwelteinflüsse
bis zu einem gewissen Grade auszugleichen. Selbst die durch die
verschiedenen Wirtschaftsmassnahmen des Menschen in den Stoffkreislauf eingebrachten synthetischen organischen Substanzen und
Wirkstoffe werden in einem aktiven Boden mit individuen- und
artenreicher, lelsfcungsfahiger Mikrofauna und -flora entweder ganz
abgebaut oder doch in ihrer Struktur verandert (Domsch, 1971). Die
Kenntnisse über die bei solcher mikrobieller Aufspaltung
entstehenden Ruckstande (Metabolithe) und uber ihre mögliche
Toxizitat sind jedoch noch sehr lückenhaft (Domsch, 1971). Hier ist
im Rahmen des Bodennutzungsschutzes noch ein weites Betatigungsfeld,
zumal standig neuentwickelte
synthetische Stoffe insbesondere
als Pflanzenschutzmittel zum Einsatz kommen oder als Fremdstoffe
auf verschiedenen Wegen in den Boden gelangen. Das gilt in gleicher
Weise für dieanorganischen Umweltohemikalien, unter denen vor allem
Schwermetallverbindungen besondere Bedeutung haben. Auf eine
Anreicherung dieser Stoffe ist u.a. in der Nachbarschaft von
Autobahnen (Kloke, Leh, 1969), im Umkreis von Erzbergwerksbetrieben
(Langner, 1963) und von Schwermetalle verarbeitenden Industrien,
aber auch im Zusammenhang mit standiger Verwertung von Abfallstoffen
s
U
auf Hutzflachen (Schafer, 1968) zu achten.
Prazisere Kenntnisse über die Pufferfunktionen, uber die
Abbau- und Umsetzungsmechanismen in den verschiedenen BÓ'den mit
ihrem jeweiligen Pflanzenbewuchs sind nicht nur aus der Sicht des
Bodennutzungsschutzes erforderlich. Wegen der engen V7echselbeziehungen zwischen Bodennutzung und Wasserhaushalt bilden sie such
eine wesentliche Grundlage fur den Gewasserschutz.
Eingriffe in die Bodensubstanz durch Abgrabungen
Den nachhaltigsten Eingriff in das System "Boden - Vegetation",
in seinen ökologisch ausgewogenen Gleichgewichtszustand stellt der
ubertagige Abbau der verschicdensten Minerale dar (Wohlrab, 1970).
97
Euckfiïhrung der auf solche Vïeise in Anspruch genommenen Flachen in
die Kulturlandschaft und Sioherung einer mó'gliohst nachlaltigen
Folgenutzung - also "Rekultivierung" im umfassenden Sinne - iat
eine weitere, zunehmend bedeutsame Aufgabe des Bodennutzungsschutzes.
Grundf ordeningen jeder Rekultivierung sind zunachst die
formgerechte morphologische Ausgestaltung des Tagebaugelandes und
die mineralgerechte Abraumunterbringung (Wohlrab, 1970). Letzteres
bedeutet, dass prinzipiell fruchtbare bzw. zur Kultivierung
£Z
besonders geeignete Bodenschichten, die im Deckgebirge der
Lagerstatte anstehen und im Zuge des Abbaues beseitigt werden
mussen, separat abzugraben und weitgehend wieder zu verwenden sind.
Ziel beider Forderungen ist es, im Rahmen der ortlichen
Gegebenheiten optimale Standortbedingungen für vielseitige
Nutzungsmöglichkeiten zu schaffen. Um eine morphologisch gunstigere
Ausformung des Abgrabungsgelandes zu erreichen, kann auch die
Deponie von Abfallstoffen in Betracht kommen. Vor allem aus Grunden
der Gewasserverunreinigung ist sie jedoch nicht überall tragbar
oder nur mit geeigneten Vorkehrungen zulasslg.
Hinsichtlich der Wiederherstellung von Kulturboden im Bereich
des Abgrabungsgelandes kommt es sowohl auf die Technik der Aufbringung geeigneter Substrate als auch auf die meliorative
Vorbewirtschaftung, d.h. eine Steuerung der Bodenbilgungsvorgange
in der entscheidenden Initialentwicklungsphase der auf solche Weise
entstandenen Rohbó'den an (13). Dieser Prozess wird durch versterkte
Zufuhr organischer Substanzen gefó'rdert, wobei die Verwertung
kompostierfahiger Abfallstoffe besonders in Betracht zu ziehen ist
(Kick, 1972). Die meliorative Vorbewirtschaftung hat vor allem für
eine wirtschaftlich tragbare gartnerische, landbauliche oder
forstliche Folgenutzung ihre besondere Bedeutung.
S
Der Mangel an Naherholungsflachen im Weichbild von
Siedlungsballungen legt örtlich eine andere Folgenutzung nahe.
-3
Abgrabungsgelande in entsprechender Weise auszugestalten, ist
besonders dann sinnvoll, wenn zurückgebliebene Wasserflachen
einbezogen und verwendet werden können (Darmer, 1967). Von seiten
der Wasserwirtschaft ergeben sich im Hinblick auf die Rekultivierung nicht nur - passiv - Forderungen zum Schutz der Gev/asser. Es
können auch - aktiv - Ansprüchehinsichtlich einer Gewassernutzung
in ehemaligem Abbaugelande, in dem das Grundwasser freigelegt wurde,
gestellt werden und Vorrang vor einer eigentlichen Bodennutzung
erhalten, Diese mit einigen Beispielen aufgezeigten sehr
98
verschiedenen Varianten der Zwischen- und Folgenutzung von
Abbaugelande machen deutlich, dass konsequent geplante und
durehgeführte Rekultivierung zu einer echten TJmweltgestaltung
führt. Dieses Ziel ist jedoch nur zu erreichen, wenn Abbauplanuug
und -betrieb mit der Planung und Durchführung der Rekultivierungsmassnahmen von vornhereln in Einklang gebracht werden.
Buchwald K.
L i t e r a t u r v e r z e i c h n i s
Buchwald/Engelhardt, Handbuch f u r L a n d s c h a f t s p f l e g e
und N a t u r s c h u t z ,
Bd. 2 , MÜnchen, Basel und Wien,
374 1968 .
Darmer G.
Domsch K.
Kick H.
Kloke A.,
Leh, H.-O.
Das Gartenamt 8, 572-376 196? .
Belastete Landschaft - Gefahrdete Umwelt. Wilhelm
Goldmann-Verlag, MÜnchen 1971.
Agrarpolitik und Landwirtschaft, Bd. 50, 69-77, 1972.
Air pollution-Proceeding of the first European
congress on the influence of air pollution on plants
and animals, Wageningen, April 1968, Wagenlngen
259-268, 1969.
Allgem. Forst-Z., Bd. 26, 24, 503-514, I97L
Knabe W.,
GÜnther, K. •H.
Koehne W.
Grundwasserkunde, 2. Aufl., Stuttgart 1948 .
Langner Chr. Ber. aus d. Landesanstalt für Bodennutzungsschutz des
Landes Nordrhein-Westfalen Bochum, H. 4, 83-95, 1963.
Langner Chr. , Forschung und Beratung - Beitrage zu Fragen des
Kramer F.K.
Pflanzenbaues Heihe B. H.IO. Landwirtschaftsverlag
Hiltrup, 1964.
Schafer K.
Ztschr. *• Acker- und Pflanzenbau, Bd. 128, 239-257,
1968.
Schlichting E. Umschau 72 H. 2, 50-52, 1972.
Habil.-Schrift, Giessen. Forsch. u. Beratung, Reihe C,
Wohlrab B.
H. 9 1965 .
Wohlrab B.
Zeitschr. f. Kulturtechnik und Flurbereinigung, II.
Jg. H. 3, 129-139, 1970.
Wohlrab B.
Zeitschr. f. Kulturtechnik und Flurbereinig., 13,
65-78, 1972.
Zusammenfassung
In dicht besiedelten und hochindustrialisierten Regionen ist
Bodennutzungsschutz eine zentrale Aufgabe des Umweltschutzes. Er
dient dort der Erhaltung und Wiederherstellung eines ó'kologisch
y?
ausgewogenen Systems "Boden - Vegetation", dessen Leistungspotential
nachhaltig für die verschiedenen Anspruche des Menschen verfugbar
sein soil. In diesen Regionen bestehen vor allem drei Ursachen- und
Problem-Komplexe: Eingriffe in den Wasserhaushalt, Bodenverunreinigungen und Eingriffe in die Bodensubstanz duroh Abgrabungen. tfber
ihre mó'glichen Auswiriaingen und Folgeerscheinungen auf die Bodennutzung, über sinnvolle Vorbeuge-, Abhilfe- und Ausgleichsmassnahmen
und uber die zu diesem Zweck erforderliohe Untersuchungs- und
Forschungsarbeit wird ein gedrangter tfberblick gegeben.
Summary
In densely populated and industrialized areas, proper land
utilization is a key problem of environment protection. In such
areas, land protection serves to restore and to preserve an
ecologically balanced system "soil-vegetation", whose potential
production must meet various demands on a sustained basis. In these
areas there are the three main complexes of factors and problems:
interferences with the hydrological soil regime, pollution of the
soil, and changes of the soil substance due to open-cut mining of
minerals. The paper gives a concise review of possible effects of
the above factors on soil, reasonable preventive, improving and
compensatory measures and necessary research.
Resume
Dans les regions fortement peuplées et tres lndustrialisées
1'utilisation du sol est un problème central dans la protection de
1'environnement. Elle y sert au maintien et a la restauration d'un
système balance d'ecologie "sol - vegetation", dont la puissance de
la production do it être disponible de longue durée pour les
différents besoins de 1'homme. Trois complexes de causes et de
problemes subsistent dans ces regions: des ingérences dans Ie régime
des eaux, des pollutions du sol et des ingérences dans la substance
du sol par 1'exploitations des mines a. ciel ouvert. Ici un apercu
concis est donné concernant le3 effets que cela peut avoir sur
1'utilisation du sol agronomique et forestière, ainsi que des actions
raisonnables a. prévenir,, a remédier et a compenser et finalement
Ie travail de recherche .
Fesiwe
B rycTOHaceneHHux H BHCOKOHnaycrpHajiBHux pafioHax ueHTpanBHoH npööJieuoü oxparnj cpe^H HBJiHeicH npaBHJiBHoe HcnojiB30BaHne noqB. OxpaHa noqB
CJlyMT COxpaHeHHB H BOCCTaHOBJleHHK) aKOJIOI-HqeCKH ypaBHOBemaHHOH CHCTellU
100
Z,
101
•9I0OBd UOHOÏIf9IBaoï9IfOOH
-HBJ, B '0IHH9irsedlIOH H 0IHH9HBdlO£
XBIfQtl XHI6 S HOffllKoaodn
0 91
'0IHH9lÖI[9dn^K9dU XH OU BHIHHdUodSJI
'9HHBaoeairoiion 99 u Xïhou BH Hnaio|j9tteoa x m e (jHajolteirooii x m i o n e o a
dOBpo {JHHIBdH H0I9B]T. *XHH9BII0H0H XHH89IT0U HHBHIOpBdeBd HFmiHdJUO
BirBHd9iBW 99 BHH9Hawen 'HHH9HEHdj:BË 99 'nïhoi 1 wHH9d sjraHtfoa a oaioairgi
-Büi9na :w9iroodu H HHhndu HHBOH9ITIIIIOH BH9di o oJ9oa glrtugdu oirgtf H99HH
HU XBHOHBd XHle g 'BH9ffOIf9h HOOdUBE 9HHhHIfËBd qMdOai9IfffoM OHÏIfBI
-Hifi? BHKItOtf HOdQIOH IJOOHQOOOUO HBHaHMAYodU
'ïI30Half9IHj;0Bd-Bah0U
K
nPHPOHHAfl PHTMHIHOCTB H HCII0JIL30BAHHE IIO<ffi
K.C.KaatHHOB
yjiBHHOBCKHü neaaroraqecKaa" HHCTBiyi, CCCP
TpyaHociB cocTaBJieHHH onpaBflUBaeuMx aoarocpoiHHX nporH030B a a HaMHKH rMapoTepuHiecKoro pesHua COCTOBT B TOII, q i o Be HaRaeHu HHaeKCH, xapaKTepH3y«3HHe B3UeHeHHH npapoaHOH OÖCiaHOBKH B CBH3B c
H3iieHeHHen cojmeqHoB aKTHBHocTH. H3yqeHHe xoaa leunepaiypii, ocaaK O B H apyrax iieieoaaeiieHTOB He aaeT «eaaeiiux pe3yjiBiaT0B: ara H H seKCH xoponio oipasacT cyioqHHH a rojOBOü xoa, H O öecnouomHH B <5Oaee asHTeaBHOM nepaoae. B H3BecTHofl «iepe, onocpeacTBOBaHHiui noKa3aieaeii npapoaHiix KoaeöaHHil M O H O T cayataiB cueHa cacieu 3eiiaeaeaaH
3a aaarejiBHuJi nepaoa.
Pa3Baiae a cueHa cacTeu 3euaeaeaaH Hepa3ptiBHo cBH3aHu c H3MeHeHaeu npoH3BoaaieflBHux caa a npoa3BoacTBeHHiix oiHouieHaH a coorBeiCTByei ocHOBHOuy SKOHOuaqecKouy 3aK0Hy cnocoöa npoa3BoacTBa. B T O
se Bpeua H3MeH6HaH raapoiepMaqecKoro pesaua B O BpeMeHB, oöycaoBaeHHue H.BKJIHIHOCTBB coaHeqHofl aKTBBHocTH, B oiaeaBHiie nepaoau ciaH O B H T C H KparaqecKHua a nepeciaioT cooTBeTdBOBaTB cymeciBycmaM $opuau BcnoaB30BaHBfl 3euaa a ueioaau oöpaöoTKM noqBH.
•»
9TO oöcioHTeaBCTBO oCycaoBflBBoao pa3aaqHyio oueHKy OTHOcaTeaBHo *
HHTeHCHBHHX a aKCTeHCHBHux cHcieu 3eMeaeJiHH yqeHHMH a npaKTBKaua
KOHKpeiHoro BpeMeHB. PaccMaipHBan c srofi Toqica apeHHH oueHicy cacieu
3eMaeaeaaH, Ha ocHOBaHaa onyöaaKOBaHHtix paöoi sa 200 nei, 6ujia ycTaHOBaeHa CBH3B n3MeHeHHH H X C paiuauH coaHeqHoM aKTHBHocTB (pac.I).
AHaaH3 pa3BBTBH yieHHH o cacTeuax 3eMJieaeaaH noKa3HBaeT, qio B
npaKTBKe BeaeHHH ceaBCKoro xo3aücTBa aioaB BtmyiweHH yqniuBaTB oöi>eKTBBHo cymecTByjoiuae paTMaqecKae KojieöaHHH npapoaHux ycaoBaW. 3 T O
BupaaaeTCH B cacTeMaraqecKOM qepeaoBaHaa oiHOCHTeaBHO aKcreHCHBHOft
a HHieHCHBHoJi cHCTeM 3eMJieaeaaH. H3HCKBBaH Haaöoaee onTHMaaBHue
ÈopMhi acnoaB30BaHHH 3eMaa, jnoaa npacnocaöaaBaiOTCH B3 roaa B roa K
cKaaauBaiomHUCH raapoiepMiiqeeKHM ycnoBHHU, nocieneHHO coBepuieHCTByH
cacTeuy 3eMaeaeaafl.H B O T , Koraa, Ka3aaoct OH, cacTeua BeaeHHH 3euaeae-
102
nun flocmrjia nzieajiBHoro ypoBHH 0 ee HaiiiHaioT IHHPOKO H noBceueoiHO
BHeapflTB, OKaauBaeiCH, ITO OHa He OTJiimaeTcn 3$$eKTHBHocT5D, oÖHapyKHBaeT Maccy OTpnn,aTeJiBHUx dopoH, BusuBaeT HetieJiaTeJiBHBie nooJieacTBHH, Topuo3HT pa3BHTne GeJiBCKOxo3HücTBeHHoro npoH3BOflOTBa. Torsa c n e UHajiacTH TepneMBO HamiHaioT HOBUH noacK H He3ai:eiH0 AJIH ceÖH npnxo3HT K HeOÖXOflHMOCTH
BHeflpeHHH
npOTHBOnOJIOMHUX JlOpM HCnOJIB30BaHHH 3eM-
JIH. A Bee 3T0 BpeMH no HHepn.nn ncnojiB3yercH aajieKO He onTHMajiBHaa CHcreMa 3eMJieaeJiiiH B ycnoBHHx HOBoro npHpoflHoro pHMia_,H B jajiiHeHneu B
raKou me nojioseHHH 0Ka3UBaercH BHOBB pa3paöOTaHHaa cwcieMa 3eMJieaeJiHfl. TanaHfleHTOJiBHOCTBjnofleü oöyoJio^jieHa HeyueHHeu HcnojiB30BaTB p n i MHqecKHe HBjieHHH npnpoflu. Cnopu o TOM, KaKaa cnuTeua 3eMJieaeJiHH Jiyqme - HHTeHCHBHas HJIH BKcTeHCHBHan, BeayTCH y s e He ncpBoe cTOjieTHe,
ocooeHHo ropnqo OHH pa3ropi;JiHCB B 3 0 - X roaax n B KOHne npomoro BeKa,
B 30-x H 50-x ro^ax XX ciojieiMfl. B ocHOBe CBoeH STH cnopu OecnouBeHHU.
npaposHüe yonoBHH pa3B00Ópa3BH B npocTpaHCTBe H TaK z e , RHK B
aKOHOMHnecKHe ycjioBHa, pa3BHBaDTCfl BO BpeueHH. Oïcr«a - aeoóxoKHuocTB BaueBeHBfi ciCTeu seiuieflaiBfl Be TOJIBEO B npocTaHCTBe.no a
BpeueHH,TTOÖH
CBOeBpeMeHHO UpHBeCTH B OOOTBeTCTBHe
0 H3MeHHBnfflM-
CH ruflpoTepuimecKJiu pezHUOH cnocoöti odpadoiEH noqBu B HcnojiB30BaBBfl
8eiUH. Hu y Koro He BU3UBaei COMHBHHH, HaapHiiep, HeooxOAHiiocïB noaroIOBKH K 3HH6, HOCMOTpH Ba 1 0 , ITO 3Hlia M0I6T HOCTynHTB paHBme HJIH
noaze, IOM B npeatmymBH roa. Tasaa ze noaroioBKa HOBUX cnoco(5oB oöpaÖOTKH noiB Epaflae ayzaa B CBH3H C H3ueBeBHen KOunjiüKca npnpoAHo» o ö CTaBOBRH,
OÓyCJIOBJieilHOil
UBKJIH1H0CTBB COJIHeqBOH aETHBHOCTH (B qaOTHOO-
TH, B npeaejiax I l - i e i a e r o pHTita), «aze ecJiH ranae H3neHeaHH Bactynat
:
Ha 1-2 ro«a paHBme HJIH noaze, i e a B TOM HJIH BBOM p a n i e . IlOBumeHHe
COJIHeWOH aETHBHOCTH CIIOOOÓOTByeT B03paCTaHHB UepHAHOBaJÜBBOH
QHpEy-
JIHUHH aiHOc$epu H yBejiaqeaH» noBiopaeiiooTH BiopzeaHH apaTH<iecRHX
B03jymHux uacc aa EBponeaoKyo leppHiopaD CCCP. nporpesaacB aa HaiepHh-e, apKTHwecKHtt B03ayx l e p a e i BOAHHUO napu, ITO npraoflHT E yaeHB•eaHB ocajEOB, oópaaoBaaHB CHJIBHHX sacyx, pasBHTK» BeipoBoa aposHH
noiB. noHHzeHHe COJIHOIHOÖ aRTHBaociH cnocoöoTByei ycaneaHD aanasHOBOOTOWHoro nepeHOca, yBejmieaHB HOjnroecTBa ocaaHOB, noBmneaH» ooqea
yBJiazBeHHOCTH, m o npesoiBpanaei pasBHiHe ae$JiauHH.
rosu c Haaöoaee pasBHiuua BeTposposHoaabiitH nponeccaua coBnaAani
c noBumeHHen cojweqKoa aETHBaociH ( p a c . 2 ) . TaK, uaEcanyu coaHe<jHoü
aRTBBBocTH 1957-1959 r r . Bupa3HJicH B ntuiBBHx- Öypax I960 r . , a TOR
aETHBBoro Cosana (1968) - B nHJiBBHX Öypax 1969-1970 r r . Haoöopoi,
noaazeaae coaaeqHoa .asiBBBOcTH cnocoÖciByei aaiyxaHHB BeiposposHOH101
HU
- t p a o o OT?.BraTio ux SSSUBIJO sf
S J O ^ O B J qons j o suo
• S J O I O B J J O jsqmnn
8 o% anp aSuBtp ^tTBOTPOfasd SJUTHLIBJ j o S £ B * pire suj^MBd
paai
i*m
uiiioqs SBq sraa^eXg ts.xnfnrio-l.i8B j o ^.ueradotaiBP sq* J ° sfSJCtauv
^OBrauing
•JOOD
KidoiHddex HHHBaodHHOHBd ojoHHOBBodeodiBB Bids» B BHSXO BnaifSBiooo
•BBOBOO HOHiirBHORJsd BH BOTIBE «HHesoeiirouoH ndocp XNHiirBHOHïiBd eeirop
-BBB BHHBÏOdHËOHJOdU OBXOHEOff OJ01G HHHBSOHOO BH 'BtlBITOO HIOOHÏIfBIlieï'
aïIOOHhHBJHd HSHI9K-II 0 BBBOdfi HOaOdiea BHH8IfffB0dU SËBffO BHSITffBHg
•BiOOHffHiae BOBhBHiroo a i i o o H h B n i a d o XKHHBËBSC
'HHSOITOA' XBHOBhHieimira
BBH8B8RBB HBHHBHIfï tfOU H BITOHh HOI ff 'HBhBdli HOtfHd 0 BBfflOIQSIOOO ff
H0MBB8H BHOBhBÏOHdBU
RffhOU BHIOpBdpO HpOOOlIO B HlfnOS BBHBSOBIIfOUOH
HJldO$ BH mTKIfJËff Olh 'ffBËBHOU BHIf9tfBim8E R9I0H0 BHIRffËBd SHIfBHtf
911088(1
•HHH9U
- £ i o nednjBh msieu
o n £ 0 0 0 SHHBsodiiHOBBd eoHHOBeodeodiea OHeiraBiooo
H HHBBffOdBHOBBd 0JOHH0HB0deOdl8ff
BH9X0 BHBIopBÜËBd HOdOIffV
'JfBIfBIBË
-8H0U XBHOBhBIBHHKH-OHHOBtlBir^etf BËHIfBHB 0J0HH9BJi09hBH ËH BtfOXOM 'JJBI
-00HH9P000 XMHfflTBBdOSHddei BI9h£ SffOHOO BH BOIIHOdlO OHXttOtf XiOBB B
-
HHsodË BOffodzea BiHBiraBodu sHHBsodHSOHJodu BËBSO H O I B a ' i r e u e d s a
9HHBBIfff eOHTireiHhBHBBB ÏIBËBHO H ROjfttï? a - 88 ÏMpeifOO OHHefflOBtH
-£o
'sHOBBd HOHBO a J&aoHBiopo a£EHOB8odeod£9a siBaodHffHanHir OHHSD
- d e a o o s e x o n BIOOHÜBIMB HOBheniroo SBHBpeiroH eoHoehaniBd e x o i B OHÏÏO
•HHBdiO XBHOBjed XnHhBITBBd ff XJCOBË H ffhOU HBEOde HOffOdlSff
BH OffOHBBBffOBH
BBHBIfffHOdU
H0I8BffRBBH0 BRHXBd OJOH08hBKd8IOdtfBJ 9HHeH9HEH
•9HIf0lTSIfB9Ë eOHBHOHSIHB 99IT0P H B9ttBtII0ini XRHS800U
9BH0dHfflOBd HHËBdpO009IT9tI BH£RBBHR HtfOBdeU ff B 'Hffliee BBHBSOËÏKOUOB
n n d o $ a m i a a o H e i o a e OHaireiBOOHio HHSffBHOBoBd seiropHBH HoaadH HBÏIBI/
-OXOHH H BR&IHOHBR RVOBdeU ff OJh 'OJOJ SB BEOXDR 'HiOOHSBiHB HOHhBH
-IfOO dïJOOHhHITHHtl B9HJt9If-22 R -JJ
9 ffJBffHBHffi ORHtfOXpOSH jQDO H O Bh
HOHOHenodag a HHireKeinteB oJOBsiBHOHtiBd eHBBaodHBOHJOdn HRedff e e n
-BBSHifp BH *aeBxod£ XHHOORB H xnffHhaoioA' BoiiHpoir • BurgffairRee n n d o $
SHHIlfBHOHtlBd SBlTOpiBH RÏOBdSB 8RHhR]T6Bd ff fflBdapEH ÏJOOHXOREOa 1961/
HBffOIfOi ZRHlTOdHdn BHH9H8RËH 9BHBff0dBB0HJ0dH 80HHBff0H00p0 OHhfBH
'ÖeHOff ' S 8 0 *d OH XBHOSU ZHb£UHO BH HHOOO HHI
-B09ff 0 0 0 1 RBHOHaifBHB!/ 9HHBffBtBBdHff 90HD8U0X KHOOOj E 90ffd9U BOJHOOHIO
• J J 8 1 8 1 o n 1K)8I ° >H8R8ds JCROHBI a ' B i o o H i o B h a ' a o o o e & o d n XRH
tions associated with the rhythms of solar activity. Correlation is
established between wind erosion and II-year periods of solar activity. This makes it possible to predict the most efficient forms of
land use on the regional basis. A wind erosion zoning diagram and
map have been compiled for the USSR territory.
Résumé
L'analyse du développement des systèmes agricolee a fait ressortir que des changements s'operent dans les formes d'utilisation du
sol et les procédés de traitement du sol. lis sont conditionnés par
plusieurs facteurs dont les variations des conditions climatiques
dues aux rythmes d'activité solaire. Une liaison eet établie entre
les manifestations de 1'erosion éolienne et la période de II ana de
1'activité solaire. Ceci permet de faire des prognostics sur les
formes les plus rationnelles d'utilisation du sol sur la base régionale. Le schema et la carte des regions d'erosion éolienne sont mis
au point pour le territoire de 1'URSS.
Zusammenfassung
Die Obersicht über die Entwicklung der vorhandenen Ackerbausysteme hat gezeigt, dass die Bodennutzungsarten und Verfahren zur
Bodenbearbeitung infolge elner Reihe von Faktoren periodisch verandert werden, insobesondere unter dem Einfluss der Veranderungen
von Klimaverhaltnissen, die mit der Rhythmik der Sonnenaktivitat
verbunden sind. Es ist ein Zusammenhang zwischen den Prozessen der
Winderosion und der II-jahrigen Rhythmik der Sonnent'atigkeit festgestellt. Dies macht es möglich, die zweckmassigsten Arten der
•» Bodennutzung auf Regionalgrund zu prognosieren. Das Schema sowie die
ï Karte für Rayonierung des Territoriums der UdSSR sind ausgearbeitet,
wo Winderosion vorhanden ist.
105
*,
7
/n
29
luc/io w rodbl
160 10
I I I l_
1373
1970
2g_
25
mo
1310
21
1920
23
1900
1880
1860
1810
1820
1800
1780
1770
P l C . I
P • c. 2
106
P a c . I . CBH3£ 3eMJieaejiHH c cojiHeHmnui PHTMOMH
CüCTeiiH 3e»uiejiejinfl:
I - EOJHOTOB A . r .
sKCTeHCHBHas;
HHTeHCHBHaH
( 1 9 7 1 ) ; 2 - KOMOB H.M. ( 1 7 8 5 ) ;
3 - noaTopammfl A.M. (1798-1799); 4 - JteBinHH B.A.
( 1 8 0 4 ) ; 5 - CaiiapHH H.H. ( 1 8 0 5 ) ; 6 - PacTomnm * . B .
( 1 8 0 6 ) ; 7 - Tsep A. ( I 8 0 9 - I 8 I 2 ) ; 8 - CaiiapHH H.H.
( 1 8 1 6 ) ; 9 r m&nexoB fl.n. ( 1 8 2 9 ) ; 10 - MOPRBHHOB H.C.
( 1 8 3 3 ) ; I I - yooB C.M. ( 1 8 3 7 ) ; 12 - üaBJioB M . r .
( 1 8 3 8 ) ; 13 - IDanexOB fl.n. ( 1 8 3 9 ) ; 14 - JIHHOBCKHZ A.A.
( 1 8 4 6 ) ; 15 - ycoB C.M. ( 1 8 5 4 ) ; 16 - rancwHHJS row
( 1 8 7 1 ) ; 17 - CoBeTOB A.B. ( 1 8 7 9 ) ; 18 - raiowHHli
r o s ( 1 8 8 0 ) ; 19 - CTeöyr H.A. ( 1 8 8 3 ) ; 20 - ranosHHz
row ( 1 8 8 1 ) ; 21 - BucTymieHise B n e i a r a woKyHaesa B.B.
( 1 8 9 2 ) ; KocTireeBa II.A., H3MaHJii>CKoro A.A. n THMHpH36Ba K.A. ( 1 8 9 3 ) ; 22 - EepreHCOH B.A. ( 1 9 0 4 ) ;
23 - CTeóyr H.A. ( 1 9 0 4 ) ; 24 - Cnopu npHHHmHBKOBa fl.H.
H BiuiBflMca B . P . ( 3 0 - e rowti); 25 - ycnexa nponamHOH CHCTeMH (40-e rowu); 26 - BHewpeHHH TpasoncuiLHofl CHCTeuH ( 1 9 4 8 ) ; 27 - BHewpeHHe nponamflofl CHCTeMH
( 1 9 5 4 ) ; 28 - BHewpeHHe npoTHB03po3H0HH0H CHCTeMH?
29 - PacnrapeHHe noceBHHX rmoDjaweft
P H c . 2 . CBH3I> npoHBneHHH BeTpoBOft spo3HH c I I ^ n e T He2 paMHIHOCTM) COJIHeiHOS aKTHBHOCTH.
1892 - ro«H c aKTHBHHM npOHMeHBeM wefiJiHUHH;
I - roaH nyTemecTBHH üajiacca (1773-1788);
I I - ro«H BHpamuBaHHfl 1000 flecHTHH OOCHH Ha necaax
JIaHHJieBOKHM ( I 8 0 4 - I 8 I 8 ) ; 1876 - nunLime Óypa B BeHr p a a , CepÓHH H EaHaTe; 1934, 1950 - muitHHe Öypa Ha
BejiHKiix paBHHHax CI11A
11111
101
-OHOdtfHJ H BIBdlOpjfO 0IIOHH93IO0£HOH HHHBVEOO 1191^11 HffBtilPim BdlBII
ojoiuBdKBaH OJOKRBH H m u o i o B d O J O M B H HsooHSitiHfóodn nnHGhniroa£ OJOH
-IBdHOJOHW ÏIOOHXOHSOa HltBEBHOÏ 9dHH H90S OS M m i B 9HHH9irOHhOJOH|(
•nahon egp
BHH9jOBd BEtioKoaeHndu E o i g n sjRmigirniHiiodn (jnacH Ï I P S H S Ë B C I
goaoa
oinnroaenii
BKKodotfoICU aodOIHB$ 9HHBHB0U JBSIOtfoaeHodlI HHJOIfOHXSI XBHSOIO^ XRn
-9BiraBduX a ' n a b o u eap HHH9J0Bd xwnoHa aiooHHgirniRiiüdu o £ x o g h n j o i r o n p
- Baioffosenodu
siroBdio orfsoH oHHgmdgaoo a tfoxna i}HM09hHi9do9j i 9 B a n h
- e u o g p o H OH 'BHit9tf9irn9E rJOHIUCRH oJOHHBUBdaoo 9S0H0Q a inaair
osaifoi
9H BHO OpH '0HHIC9a HHdo9J B0HO9hHJ0ITOHp9tnpO 0OIB 9HH9hBH£ 'JJHHBIOBd
BHHBMU OJOHaiCBdBHHII HHd091 (JOHHOdlO ^HIOpBdBBd BS OHdBKOJBIfp 03
-i03h9aOIC9h FIBHHHHXOdJB H HBHHItHX 'HBJOICCHp BOimbKJBCRa lUUfttK HHJOHH
H XaoHHHnwHBdii H Xa98HdHHHx '^a99it9ïfH9B 'XidgpiirHitf H XBOOJT 'onraj
-HdïIC9J H XUOHH 'fiCHpHJf H 0 J H 9 0 0 i g 'miC9V91tH9e
XBaoHOO PO BHHBHB HDIBH
iindnmoBd mrmroaeou UHHaioBd KHHBffMdKiïir^Ho ojoHHoaiooXxoH
Rtf0J9||
•HHHBaoffBITOOH XHJBOÏ
n o i e n V g d u BoirnaB cuodoioji SBIOOO ' B d o a i o B d OJOHSIMJEIHU
-MdU O HOKca Hlrll H0XD9II - HOIBdlOp^O HRHHGSIOOJCHOH RH9HBE 99
nevtuouon
'R3h0II
BHHBaodHIf9fOlt npoOOUO 9RHhHITEBd HITBiOpBdeBd XHIfOtl XHH0aif9IBff029If00H
3
I9If OOJ-OSI XHHtf9ir00U 9HH9h9I a HHH9I0Bd HJOItCHeH$ H HXHRHXOdJV
•aofodBH s a i o i R j o p H HHSHX nsnaoico^ BITBIO BICFOB 'jjoaiiou o ITOBE
-BSO BHHBIOBd gtfOdHdü 3 Olh 'OJOI 9H3I0V9IT0a H 'SJ(!H9I0Bd HHHBIMU Hl
-HSH9ire HICB3BHS0U HOJEITI e e J B I n i t 9 i E i H i i o w o 3 i o 9 i 0 9 HHigirmo 9HH9h9i g
•UB»0d^ BHHOOHa 99IT0P lIBhJflTOH *0J8 3Hmh^IC^ 'HpOJh *)JHH9I0Bd BHHBI
-HU MOOHMo 3IBH80U BOITHII9dlO BKJB03 H830If9h 'HHHBIOBd 0CÏIOOH3HIHXE:
-OdU H H9HHB1HII O BHBEBSO OHSHdEBdBH Bttjd 0J0HO9h93OIC9h BHdOIOH
iOO HOHOHBBdV X^BH HHICBtfBHV
HXHHOIIodïHJ H HBIfpodlI XHX09hHmiX0dJB ifaHIOHH
HBI3Bff*0*J
/sxDiroasiiodn
RShOU 833 pHBIDVd
H rrahon BHffodoEoitn
BHHVHSOU I O
B HacToamee Epeira HaHÓoJiee uejiecooópa3HUM HBJweTCH Tpex<$a3Hnfi
cyócTpaT: TEepsaa $ a s a (rpaBBfi, meóem., ByjmaHJPiecKHe uuiaKH, n e i o o Baa KpomKa. nepjiHTii, EepifflEyjniTH, KepaiiSHT z x p . ) , xnnKaa $a3a (imTaTejrLHHft pacTEop KaK HCTOHHMK EOflH H nHTaTattbHux EemecTB) H r a 3 0 BOH $a3a (B03ityx, OÖHJO>HO npoHZKampifl B nopu cjioH-RanomoiTejiH TBepAoft $ a 3 u ) . CoieTOHHe STHX Tpex $ a 3 , a He TOJIBKO Maccy HanojrazTejia
uu H Ha3HEaeM cyódpaTOM. 3TOT zcKyccTBeHHHft nHTaTanBHHft cyócTpaT
oóJia«aeT CBoftCTEaMZ, KOTopue KJiaccHnecKaa arpoHOMM E T e i e r a e BÖKOE
CTpenoüiaci) npHsaTB noiBaii. OH oójiaaaeT CEOflcTEaMH CTpyKTypHoft HOIEH,
oóecneTOBaraeft oÓHJCbHoe H OHHOBpeMeHHoe cHadxeHHe KopHeft pacTenafi
nHTaTejiLiiHMH EemecTsauH, BOJIOË H EO3HJXOM. HaM He H3EecTH0 nojraoe
ocymecTEJieHHe BTHX TpeóoBaHZH Ha ecTecTBeasHX noiEax r»e-jraóo Ha
aeimoH mape. B oóirmux nojieBHX ycjiOBHHX Bceraa iero-TO He xEaTaeT;
E jy^meM c n y i a e onTHMyid aocTzraeTCH Ha KopoTKoe Epeiw, nosTOMy p a c TeHHe ananTHpoBano m«eHHo K HepaEHOMepHHM ycnoBiuw, He oóecneHHEaDuooi nojmoro npoflEJieHHH EHCOROS npoHyKTKBHocTH.
B ycjiOBHHX OTKpHToft rnnponoHHKH c Tpex$a3HHM cyÖCTpaTOM 3Ta n p o ó jieMa peraaeTCH HOTTE zneajn>Ho; yaaeTca ocymecTEHTB aöcTparapoEaHHo
ttneajn.Hoe co^eïaHze $aKTopoE pocTa pacTeHHft, Jmnn> •qacTirmo EO3MOXHoe E oómmnx ycjiOBHHX.
Ha pao. I naiio cxeNiaTiraecKoe npejicTapjieniie pa3Hznu E ycjiOEHHX
oóecneieHHH pacTeHHft EOSOH H E03jryxoM E no^ee a rzaponoHHHecKoz c p e «e.
HamH MHoroTOcneHHHe ODHTH E Teienze 17 jieT onHOSHa^Ho HOKasajm,
HTO E yCJIOEHfflC OTKPHTOH rHflpOHOHHRZ B03M0KH0 yECJOrqeHHe npOH3EOflH-
TejiBHooTH pacTeHHft Ha enHHHny njiomanH E 3-7 p a 3 , a zHo:ma H öojame
(ïaüjiiiua)-.
BHpamxBaHHe pacTeHXt óe3 noTEH nprajieKaeT CBOHMH óeccnopninm n p e - q
HMymecTEaMH. OHO uoxeT ÓHTB opraHH3opaHo Ha 3aöpoiueHHux leppHTopunx
*
HenojiHoueHHux, KaueHHCTHX noiEax H 3JIOCTHHX cojioBTiaKax, Ha Kpamax
KpynHHX npennpHHTHH H roponcKmc HOMOE. OHO no3BOJiaeT yEerarnrn> B
3-7 H óanee pa3 BHXOH O enzHHHH njiomaaa cyxoro EemeoTEa, yrjieEOjioB,
óejncoE, ampoE, 3|EPHHX Macejt, ajncanozaoE, BZTaMZHOB H s p . , o ó e c n e i e HHe pacTeHHft ojBOEpeMeHHO EOKOH, MZHepajiBHHMz EemecTEaMH H EO3JIJXOM,
CnOCOÖCTByeT nOEHmeHHD HHTeHOHEHOCTH $OTOCHHTe3a H Kim HCnOJTb30EaHHfl
cojme^moH 9HeprnH; CHHMaeTca EO3MOXHOCTB "notEeHHoft 3acyxz"; MaoroKpaTHO coKpamaeTCH pacxoji Tpyaa BOHH Ha TOHHy y p o i a a ; oTnaaaeT TintejiaH jieTHaa oöpaöoTKa nojia; ycKopaeTca pa3BHTHe pacTeHHft; paoirapHeTc a B03M0XH0CTB ynpaEJieHHH He TOJIBKO KaïecTEOM npoflyKHHH, HO H BO3MO«-
108
Taójmqa
CpaBHeHHe npoH3EO,wrrejiBHOCTH oimoro reicrapa noqEH H OTKPHTOB
nwponoHHKH no cpenHHM naHHHM naÓjmxeBxA 3a 1962-1970 I T . E
ycJioEHHX ApMeHHH, T / r a
Cyxoe BemecTEO x ^
ypoxafl
KyjiBTypa
Ra
des
ncrae
noiEH
15-25
4-6
56
31
30-40
To x e ,
CTeÓjm n JIHCTBH
10-13
20
Po30Ead repaHB, sejieH.uacca
To a e ,
a^HpHoe Macjio
-
MopKOEB, KOpHenjIOHH
To a e , ÓoiEa
Cax. CEemra, KopHenjioaH
To K6, ÖOTEa
ÜOMHaopH, IWOflH
Taöax Boss. cyx. JMCTBA c
T7% EJiasH.
Hepen., CTpynas
Ea3HJinK, sejieH. Macca
HeTpyniKa,
"
CejiLnepea
Kopaaiwp
"
"
x
"
1.5-2
20-30
15-25
10-15
15-20
10-15
55-75
24-32
105
93
80-120
18-27
60-100
Ha
noiEe
2-3
<*I
12
6
~2
»I
-
4
0,02
4-7
60-80
90-120
80-100
150-160
50-60
1-2
1-2
2-4
2-3
2-3
=2
Óe3
nOHEH
7-9
5-6
23
16
5-7
1-2
11-18
0,06-0,1
3-6
5-6
11-14
14-18
23-24
8-9
^ Paoc^HTaHO no pa3HHM (^awriraecKHM) noKa3aTeJMM % cyxoro EemecTEa Ha n o t e e H npn nwponoHHKe; pe3yjn>TaTH OKpyrjieHH.
HOCTB EHeceHHH E ypoxai Toro mm HHoro ajieMeHTa E MejnmHHCKHX nejunc,
HanpHMep, npoTHE BHnenorqecKHX 3aÓ0JieEaHzft E naHHoJt öHoreoxaMMiecKOft
oóJiacTZ.
ÜOMHMO OTKpHTOft rHHpOHOHHKH, KOTopaa HaHÓojiee cpaEHHMa C OÖOTHHM
nojieEOKCTEOM, pacnmpseTCH npm/ieHeHHe 3aKpHTHX (TemnniHHx) nwponoHHKyMOE c EO3UOJCHOCTI)D peryjmpoEaHHH öojitmoro incyia iJaKTopoB EHenmeft
cpeflH.
MHorosTaaiHbie H BepTvwaJiBHO-KOHBeepHne maponoHHiecKiie coopyaeHim
iioryï ciaTB no4JiHHHuun $aöpnKaMH pacTeHHH. OHH IIOSBOJIHIOT, Buecro
OÖUIHOSI uepa 3ei*«H no rwoma,an, BHecm B pacTeHHeBoacTBO H i p e T t e
n3«epeHne, H6O ncnojiB3yeTCH He TOJIBKO nnoiuasB, HO H oöteM Has Heti.
109
HaflycTpEaufcHaa TexHOJionw npoE3BO«CTBa pacTeHHft Óe3 HOIBH, B TOH
HJIH HHOH CTeneHH ynpaanneMHX ycjioEHHX cpesu^yze He HBJiaeTCH seiuie«ejmeM B e r o TpajnjjajiOHHOM noHHManHH; STO npoMHnweHHoe npoB3EOflCTBO
no flonojiHHTejo.HOMy, HOBouy Kanany uexKy npoMunuieHHOCTtD E pacieHHeBOACTBOM - noEaH oTpacjm ÓHOJionreecKOH npoMunweHHOCTH pacTeHEË.
rEHponOHBKa He CTpeMHTCH HOJIHOCTBIO 3aMeHBTI> OÓOTHOe
nOJieBOflCTBO,
KOTopoe caMo EMeeT oojiBnme 3anacH BsnycTpHajiBHoro pa3BBTHa. B öjra3KOM öyflymeM oTKpirraH E TemnnHaH rnnponoHHKH, BepoarHo, 3aflMyr 3 K O HOMEHecRE Hanóojiee BHTOflHHe no3EnBB E npoMEoncTBe OEomefi, OEeTOE,
neHHHX TeiHjnecKHx B jieKapcTBeHHHx Kyjn>Typ TaM, riie STO nejiecoodpa3HO.
Hponecc pacnmpeHBH npoE3BOncTBa pacTeHHfi Óe3 HOHBH yxe Ha^anca
BO MHorBX cTpaHax MEpa,B MoxHO oxHflaTB, I T O eme «o KOHD3. Hamero
BeKa 3TOT nponecc ycBjnrrcfl. Ho riwponoHBKa, pcaweHHaa no3HaHEeM
EaoflopoHEH noHBH E HHTaHEa paoTeHEft, He ocTaHeTCH B flairy nepefl TpajmnBOHHHM 3emneflejiEeM; nocKOiBKy TexHOJionw npoE3BOACTBa nps n a n p o noHBKe noflflaeTCH y i e i y E ynpaBJieHHio, OHa nocjiyamT CBMOH KpynHoft
3KcnepEMeHTajii>Hoa óa3ofi JULH pa3paöoTKB peKOMeHflanaft no coBepmeHCTBOBaHHB 3eMnejiamH. MHorne HaniB arpoxBMEqecKBe E $H3BOJiorH^ecKEe
HOHHTHH yxe TenepB Tpeóym nepecMOTpa E yTOiHeHEH npBMeHBTejiBHo K
yCJIOEEHM OTKpHTOH E SaKpHTOH rHflponOHEKB.
TaK, HaUpHMep, E yCJIOBH-
HX OTKPHTOH rEflponoHBKH o ó i m o e noHHTHe "DJiomaflt EBraHHa" ycTynaeT
MecTO AEyM noHHTEflM: "oóteM KopHesoro mjTaHEH" H"oói>eM B03flymHoro
nETaHHs"; MH MoxeM EHpacTBTB nepcBKOBoe nepeBo, m n a n e r o KOPHB E
Heóoji&fflOM cocyne, HO npeflocTaBEB eMy cooTBeTCTBynmeft oóieia mis p a 3 BBTEH Hafl3eMH0ft
TOOTH.
5
JfeBeoTHO, I T O 3HaiHTe.ni.HaH iacTB aaoejieHEH 3eMHoro mapa TepnET
*
rojion. Ho TojTbKo JIB c yBejnraeHHeM HapoflOHacejieHHH cBH3aHo STO 3JIO?
HcTopE'iecKHe $aKTH oTpBnaioT 9 T O . B Haiane Hamero jreTOHcqHCJteHEH
3eMHoft map HaoejxHjra s c e r o 200-300 MJra,qejioBeK, a rojion ÖHJI! TenepB
CTajio 3 , 5 MBJuraapfla qejioBeK, HO OHE XBByT jiynne. MomHHe cpeflCTBa
HayKH E TexHBKE CHOCOÖHH yMHoacETB MaTepEambHHe ÓJiara a r a lejioBeKa.
IIp0H3E0flCTB0 paCTeHBH Öe3 H01BH OTKpHEaeT HOBHe nyTE yBejIBHeHBH
nepEHHHoro dnojiorBiecKoro HaKoruieHEH nyTeM HeBHflaHHoro paHee noBHUieHHH npOflyKTHBHOCTH paCTeHHH E yCJIOEHHX ynpaEJiseMOH
TeXHOJIOrHH
npoMHumeHHoro npoE3EOflCTBa. HcmoMy MH CMOTPBM B óyaymee rvia3aMH
Haymo yóexfleHHHX onTHMHCTOB, BÖO yxe TenepB E pane cneira$HqecKBX
cjiynaeE nejiecooöpa3HO B BHC0K03$$eKTBBH0 HcnojiB30EaHHe s i o r o HOBoro
flonojiHHTejiBHoro nyTE npoHSBOflCTEa pacTHTejrbHOE npojryKnBE.
110
Pe3me
PasEHEaeTCfl MHCJH> O TOM, I T O HccjtexosaHiifl cymHocm miofloposra
noHE H nHTaHHH pacTemift 3a nocwieflHHe 150-200 aeT no3Bo.mnn pa3padoTaTt pa3jinqHHe CÜOCOÓH Mo«ejiupoEaHHH n o i m - ee 3aHeHy HCKyccTBeHHUM iKTaTejrbHHM cyÓCTpaTOM, H uieHHO 3TH uoaeJiH B Hame Bpeun n e pepocjia E npoMHuweHHiie ycraHOBKH no npon3Eoji.cTEy pacTeHHfl óes noqEu.
Tpex$Q3HH8 DHTaTeJibHHft cyöcTpaT upa npoMHiiuieHHHX cnocoóax aBTOMaTHlecKoro ynpaaneaoa TexHcutorneft npoH3BO«CTBa pacTeHHfl OTKPHJI JIOIKWIHHTejn>Htf KaHaji ysejiireeHiw n e p s i m o r o ÖHononniecRoro naKoiuieHHH. C03Aaüa a nocTeneroio pa3EHBaeTCfl HOBafl oTpacjiB daojiorireecKoft npoMünuienHOOTl paCTeHHH. Il03HaHHe DJKWOpOflHH HOHBH npHB&nO K BO3M0XH0CTH
npO-
HSBQKCTBa pacTeHüS óe3 IIOHBH.
Summary
The author states that the studies on the nature of soil fertility and plant nutrition during the last 150-200 years have made
it possible to develop various means of soil modelling, i.e. substitution of the soil by artificial soil media. Today, these models
have become Industrial installations which cultivate plants without
soil. Under the conditions of industrial control of plant production
technology, the three-phase growth medium has opened up a new channel
for the increase of the primary biological accumulation. A new
branch in the biological plant production industry has been set up
and is gradually developing. The studies of soil fertility have
enabled plant production without soil.
Résumé
.,
On développe 1'idée que les recherches sur la fertilité du sol
ft et la nutrition des plantes, effectuées depuis
ces 150-200 dernières années ont permis d'élaborer divers procédés de modelisation du sol- sa substitution par Ie substratum nutritif - rendant
possibles les Installations industrielies pour Ie cultivage des
plantes sans eol. Le substratum nutritif triphasé et les procédés
lndustriels de controle automatique de la technologie du cultivage
des plantes ont ouvert une voie supplementaire permettant d'accroltre
de 1'accumulation biologique primaire. Une nouvelle branche de
1'industrie biologique des plantes a été créée et se développe progressivement. L'étude de la fertilité du sol a permis de cultiver
les plantes sans sol.
111
Zueammenfassung
Es wlrd der Gedanke entwlckelt, dass die Untersuchungen liter
das Wesen der Bodenfruchtbarlceit sowle der Fflanzenernahrung lm
l.aufe von letzten 150-200 Jahren machten es möglich, Terechiedene
Verfahren der Bodenmodellierung, d.h. des Ersatzes des Bodens durch
eln künstliches nahrhaftes Substrat, auszuarbelten. Dlese Modelle
sind In unserer Zelt in industrlelle Anlagen für Fflanzenproduktion
ohne Boden hinübergewachsen. Das nahrhafte Drelphasensubstrat hat
bei den induetriellen Verfahren, die bei automatischer Steuerung
der Technologie der Fflanzenproduktion benutzt werden, einen zusatzlichen Kanal für Steigerung der primeren biologischen Ansammlung eröffnet. Eln neuer Zwelg der biologischen Pflanzenindustrie
1st geschaffen, der sich welter entwlckelt. Die Kenntnlsse über die
Bodenfruchtbarkeit haben zur HÖglichkeit geführt, Fflanzen ohne
Boden zu produzieren.
P H c. I. CxeMaTHHecKafl KapTMHa " H O K H H U " B cHaöxeHM
pacTeHaü BOfloM H B03flyxoM B no^Be B nojieBux ycJiOBunx
no cpaBHeHH» c ycjiOBHAMH rpaBUËHoM KyjiiTypu (3ainTpHxoBaHHaH nojioca;.
A - B0.ua; E - B03flyx;
I - MaKCHMyM; 2 - cpeflttaa; 3 - MHHMMJTM;
I - aTMOc$epHan Boaa; II - cyxoii nepnoa
na
THE USB OP WASTE HEAT FROM THERMAL POWER STATIONS FOR
INCREASED PRODUCTION OF FOOD AND FIBER
L. Boersma and K.A. Rykbost
Department of Soil Science Oregon State University
Corvallis, Oregon, U.S.A.
Introduction
To meet projected electrical energy demands many new power
stations need to be constructed in the near future. The thermal
efficiency of power plants varies from 32 to 40%. This means that
about two units of waste heat are produced for each unit of electrical
energy. The waste heat appears as warm water from turbine condensers.
Ways of dissipating waste heat exist in the form of cooling towers
and cooling ponds, but such methods do not use the waste heat in a
productive manner. Conservation of energy resourses is an important
world-wide concern. Waste heat must be regarded as an energy resource
and efficient use of it is mandatory.
A system for pollution-free production of food and fiber based
on availability of condenser cooling water was developed. Several
factors were considered in developing the system design: (I) to
insure continuous operation of the power gene eating station, the
5 warm water should be taken at the plant outlet without interruption.
(2) the system should be able to operate without warm water for
short periods of time, (3) cooling water temperatures ranging from
20°C to WO are best suited to biological applications so the heat
should be used to stimulate life cycle processes, (4) nutrients
should be recycled to minimize stream enrichment by agricultural
practices, (5) production of food and fiber must be concentrated on
small areas with high yields and quality control, therefore, systems
should produce continuously at the same rate, independent of climatic
conditions, (6) pollution problems such as those arising from disposal
of agricultural and domestic wastes, air pollution, califaction, the
use of cooling towers and the use of persistent chemicals would
most efficiently be solved in concert.
Figure I is a schematic diagram of one possible integrated
system.The cooling water remains in a closed loop,first traversing
113
the fields in buried pipes, where some heat is utilized to warm
the soil above its natural temperatures for improved crop production. It then heats water in a series of basins which transmits
heat to the atmosphere. The basins thus become bodies of water at
a constant temperature with the first, the warmest, and the last
one the coldest. Water in the basins can be effluent from aerobic
or anaerobic treatment facilities for animal waste from a feedlot
or processing waste. The supernatant, rich in nutrients, can then
be used as a substrate for growing single celled proteins - algae,
yeast, or fungi. Some of the basins could be used for fish production. The protein, when harvested, becomes a diet supplement for
the animals and the fish can be processed for human or animal
consumption.
Use of Cooling Water for Soil Warming
The proposed underground network of buried pipes with warm
water flowing through them was simulated with electrical heating
cables installed in parallel lines at a depth of 92 cm at 183 cm
intervals. A thermostatic control was used to maintain cable
temperatures at a constant level. Four plots were used in 1971.
CONTROL: unheated, bare soil; NO COVER: heated, bare soil; CORN:
heated, planted with corn; SUBIRR: heated, bare soil, sub-surface
irrigation system.
Water movement. During the first year of operation extreme
drying of the soil core in the inmedifte vicinity of the line heat
source was noted (figure 2 ) . The soil water content near the source
continued to decrease, even though th< crop wes irrigated at regular JJ
intervals. When the heat source was ti.rned of2 in mid July, moisture *
migrated back to diy regionr. During August the heat souice was
turned on aga:_n, but maintained at a .lower temperature wnich made
it possible to maintain a higher soil waver content. The importance
of high water content near the heat source is its effect on thermal
conductivity and temperature distribution. During the second year
of operation higher wator contents vere maintained on one of thj
plots (SUBIRR) throughout the growing season by supplying wuter to
the soil from a perforatsd pips installed 10 cm above the line heat
source.
Temperature distribution. Soi". temperatures near the surface
(2.5 cm depth) of the NO COVER plot were about the same as thoee on
the CONTROL plot during the night and morning.
114
a-d
03 a
in
•
co
CO
CM fc
9
o
.
*CMMACT>i-)4-4-OlNKN*
. • • • • •
U3 ID I A * H M H 4 CNCO CO CO
I
H M3 CM OMT\KMO KNCM ONCM O
•
COlALTl^-^-^-^-UNCOCOOO-
Ol
H CO C O t N t N H CO tNcO H KM>-
CQIA4-CM CM K-\CNCM U3 cfl CM CO
O
s|
<H-P
CO
H
CQ 0)
M a9
•g
a ai
COP
•P-.-I.CI
m
CO^-P
•p a
-P
O
o s-d
r H CD
a <r>
CD
1 - 3 - P CO
o
O CO
M J3
a cod
O o -p
o (dD - P
I.
a »
5
H
o
si
o
-PCH
O
<H-P
1-liH O
OTjiH
P.
0) CO
Usitl
fn a »
«cod
a -<H
<D a o
4» O
O,
O O O O O O O H H H H O
I I I I I I I I I I I I
ShCVIKNC^KN^KNCDCOvOKMN
* CM O O CO CO O O M3 CM IAKN
O O O O H ^ O K M M d H O
I • I I I I I
rOir<\K\KNCM CM tc\KNr<N4-sf-4-
8
CO H CO
3 - P ct>
•P
-P
CO T j CO
HHHOHt-^tNCSlACMOO
I I I I I I I
H
O
H
-p
O
•§*
C N H H C M moOOMlNCOCNKNO
CVKNCOCMCTNOCDlAKNlDKNCT»
C3>C0CNCNOCNCr>OC0 4 - C M H
H H H H CM CM CM tOiCM CM CM CM
CM CM H H O H H CM K\tc\r<NCM
CMCMCMCMcMCMCMCMCMCMCMCM
p
ID
riKM»
.H . O
o ir, .a
COH-P
8 QS QQ QS OC QO OO QS OQ QS OO OO
OCM ? C O C O O C M 3 C D C O O C M
O O O O O H H H H H C M C M
O Q O Q Q Q Q Q O O Q O
•
OCQQOOOQOOOO
OCMg-CBcOOCMÏUJCOOCM
O O O O O H H H H H CM CM
a
01
•p
01
CD
jd
•H
u
o
CO
& cf
CO
p
••
-H
Tl
01
JA
CD
-p
jd
o
co ^
is +>
p
s 5a> §
A
O
d
H
•p
O
P.
a
1)
CO
The greatest temperature increase as a result of soil warming
was observed on the SUBIRR plot (with bare soil). The surface layers
of this plot were substantially warmer during the night. Differences
were largest on warm days, as a result of higher night time
temperatures, and smallest during the 0800-1600 hr period when the
sun was shining. The substantial temperature increase achieved on
this plot was a result of high water content maintained near the
heat source with subsurface irrigation and the resulting high
thermal conductivity of the soil.
Energy dissipation. The rate of heat IOBS (Figure 4) from the
NO COVER plot shows a distinct annual cycle. During the winter, the
soil was very wet as a result of frequent rains and the soil surface
was cold. From April through September little rainfall occurred while
the soil surface was heated by the sun. The rate of heat loss from the
SUBIRR plot was two to three times greater as a result of maintaining
a high water content near the heat source with the subsurface irrigation system.
Air temperatures. Air temperature measurements above heated
plots showed that any air temperature increase as a result of soil
warming was very small but appeared to exist on warm days. During
cold days no change in air temperature was measured.
Table 2
Difference in air temperature between heated and unheated 5
soil at the indicated heights above the soil surface.
A positive number indicated a higher temperature over the
heated soil.
Time
0000
0200
0400
0600
0800
1000
1200
1400
1600
1800
2000
2200
116
Warm Day
170cm
66 cm
°C
•Ö
0.0
0.2
0.2
-0.3
-O.I
0.5
0.2
-0.2
0.6
0.7
1.0
0.9
1.3
1.9
1.2
1.8
0.8
0.9
0.1
-0.1
0.3
0.3
-0.1
0.3
Cool Day
l'/Ücm
66cm
s
fl
•c
0.2
0.5
0.2
0.2
0.1
0.0
-0.1
-0.1
0.0
0.1
0.3
0.3
0.2
0.2
0.0
0.1
0.1
0.1
0.0
0.1
0.2
0.0
0.2
0.2
Crop Yields. Crop yields and yield response to soil heating
are presented in Table 3.
Table 3
Crop yields in tons per hectare and the yield increase
resulting from soil warming as a percent of the yield on
unheated ground.
Crop
Yield
Unheated Heated
T7Ea
Corn
Stover
Grain
Corn (high density)
Sudan Grass
Sorghum-Sudan Hybrid
Crimson Clover
Eye Grass
Alta Fescue
Soybeans (Silage)
Lima Beans
Bush Beans
Tomatoes
Strawberries
Green Peppers
Broccoli
8.1
8.5
7.5
12.0
II.9
3.0
3.8
19.7
6.5
Yield
Increase
T7Ea
|
10.0
10.7
24
26
10.1
35
16.8
40
17.6
48
4.8
60
4.9
29
22.0
12
8.5
31
6.3
29
*.9
15.0
18.2
21
69.7
95.1
37
30.5
37.6
23
6.4
8.9
39
2.3
4.9
112
The yields and yield responses varied from year to year. The values
shown are averages for several plantings over three years. In 1969
double cropping of bush beans resulted in two mature crcps on hoated
soil while the second crop on unheated soil did not mature. Fertility
variables were included on several crops and in all such cases yield
responses at optimum fertility levels were higher than the response
indicated in Table 3. Crimson clover and rye grsss crops were fall
planted and harvested through winter and spring months. Alta fescue
was harvested periodically over a 14 month period. Soil heating
depressed fescue yields during summer months. Heating resulted in
improved quality as well as increased yields on strawberries and
tomatoes. Significant maturity differences in favor of heated crops
were found in early and late plantings of bush beans, and in broccoli,
peppers, lima beans, and grain corn.
Summary
Pollution problems such as the disposal of agricultural and
domestic sewage, thermal pollution caused by power plants and unwise
use of agricultural chemicals must be solved in concert and not as
individual problems. Integrated systems must be developed in which
resources are recycled rather than being used in a destructive
117
manner. The concept of an integrated system based on the availability of waste heat is presented. One of the components of the system
involves pumping the heated water through buried pipes to obtain higher soil, temperatures for increased crop production. Research results
obtained in the study of soil heating are presented.
Résumé
Les problèmes de la pollution tels que les déchets agricoles et
domestiques, la pollution thermique due aux installations de force et
1'utilisation irrationnelle des matières chimiques agricoles sont a
resoudre de concert et non comme problèmes individuels. Il faut créer
des systèmes intégraux oü les sources de pollution ne seront pas détruites mais recyclées. Cette étude présente un exemple du système
integral pour 1'emploi de la chaleur utilisée. Une partie du système
est composée par un dispositif pour pomper 1'eau chauffée dans les
tubes sous-terrains afin d'augmenter la temperature du sol, ce qui a
pour résultat 1'accrolssement du rendement de cultures agricoles. On
expose les résultats des recherches sur ie chauffage du sol et son influence sur Ie rendement des cultures agricoles.
Zusammenfassung
Die Probleme der Umweltverschmutzung durch solche Abf'alle, wie
landwirtschaftliche und Stadtabw'asser, thermische Kraftwerkabfalle
und solche, die auf unrationellen Einsatz von landwirtschaftlichen
Chemikalien zurückzuführen sind, sollen nicht einzeln, sondern im
Komplex gelost werden. Es sind einheitlich Système zu schaffen, in
denen die Verschmutzungsstoffe nicht vollstandig zerstört werden,
sondern erneut den Kreislauf durchmachen. Im Referat wird ein Muster
eines solchen einheitlichen Systems zum wiederholten Verwendung der
abgearbeiteten Warme behandelt. Einen der Bestandteile dieses Systems
stellt das Einpumpen des heissen Wassers in unterirdische Rohrleitungen dar, wodurch die Ernteertrage der landwirtschaftlichen Kuituren
gesteigert werden kennen. Es werden die Ergebnisse der Versuche zur
Bodenerwarmung und deren Mswirkungen auf die Ernteertrage dargelegt.
Pe3K)lie
IlpoöJieubi 3arpH3HeHHH OKpyncaomeM cpeati TaKHMii OTxcwaiiH, Kaïc oejisCK0X03sBcTBeHHue H öbiTOBhie croqHbie BOAH, TepMH<iecKne oixoau CIUIOBUX
CTaHUHÖ H OTXOflU,
118
CBH3aHHbie C HepaUHOHantHblM HCnOJIB30BaHHe»( CeJIBCKO-
X03HÜCTBeHHUx xHiiHKajijieB, aoJWHti pemaiBCH B KOunjieKce, a He B HHAHB w y a j i t H o u nopHflKe. HeoöxcwHiio c o 3 4 a B a i B eatmue cHCTeiiu, B K o u p i i x
HCTOTOHKH 3arpH3HeHHH
He pa3pymaiOTCH flO KOHUa,
a BHOBÏ
nOBTOpHBT
CBOB I J H O . B aaHHoU p a ö o ï e noKa3aH npmiep eanHoH cncieMU no HcnojiB30BaHnio OTpaöoraHHoro r e r a i a . OAHOH JIS cocTaBHtix qacieif cHcieMti HBJIHeicfl nepeKaiHBaHHe H a r p e i o l i BO^U B nofl3eiiHue Tpyöu aJia noBumeHHH r e u n e p a i y p u noqBu, m o ö u yBeJiHUHTB y p o a a ü cejiBCK0X03HüCTBeHKiix KyJiBTyp.
npeaciaBJieHH p e s y j i L r a i u onuiOB no HarpeBaHM) noiBii H e r o BJIHHHHH Ha
ypo«aH cejiBCKoxo3HiïCTBeHHbix n y j i B i y p .
rutnn
FKSH
>/Tm
UATTH.
TION
"TT—TTp^** 7 3 uwu
t I
UAsrc
M/MM
INCU)mf£s
sou
UttMING
-BOUNDARY OF
WTEertATED srsrfM\rm
F i g . 1. Integratod aystem utilizing waste heat. Schematic diagram of one possible integrated system using
warm water for the production of food and fiber
119
MEASUREMENTS ATB
UNHEATED
^ | 10
\it
? 3S
I 30
MEASUREMETS ATA
UNHEATEV
15
>,o
35
3
10
J_L
20
JUNE
iM
W to
JULY
2030
AUGUST
SEPT
P i g . 2. S o i l water c o n t e n t changes n e x t t o t h e l i n e
h e a t source (A) a n d ' 3 0 cm above t h e h e a t source ( B ) ,
d u r i n g t h e summer. Heat was s u p p l i e d from June 30 August 4 and August 13 - August 30. During t h e second
h e a t i n g period t h e r a t e of h e a t u p s e t was lower
HORIZONTAL DISTANCE FROM HEAT SOURCE-CM
0
20 10 60 80 0
0 \r--'---'zd~-?.0
J
'
-
..
^ 163
/oy
.
^
/ -
/
-26'\
5; 200
«=> - NO COYER •
70 i
130
:-. -19.0
yf:
!6J
P /
-261
' 1
IS 7
22.1
IB
.30
,„/
'
r—— """
s
£ ISO r "
«3
"—IB—
NV'
i
SO
y
> 110
20 10 60 80
V~*Z " " # ^
"V^
\
S 60
§ 120
10 SO SO 0
-
~~^
fc BO - \
%, HO
20
_ (—T—1 -I _tjA. J~ J_ J
= ""
^a—.
CORN
SUBIRR
P i g . 3. Isotherms for three heated plots made August
11, 1971,at 0000 hrs. The soil temperatures of unheated
areas are shown on the right hand side
120
30 30 30 29 30 30 30 30 30 3D 30 30
NOV MC JAN FEB MAK APK MAY JUN JUL AUG SEP OCT
o
P i g. 4. Rate of heat loss in cal/om min as a function
of time of year and heat source temperatures during the
same period
121
OBER DIE VERFLECHTUNG ABFALLWIRTSCHAFTLICHER UND BODENKUNDLICHPFLANZENBAULICHER PROBLEME IN DER DDR AUS DER SICHT SOZIALISTISCHER LANDESKULTUR
P. Czerney
Instltut für Kommunalwirtschaft Dresden
Deutsche Demokratleche Republik
Die achadlose Beseitigong bzw. Verwertung von Abfallstoffen und
der Schutz, die Srhaltong und Verbesserung des Bodens sind zwel eng
mltelnander verbondene Aufgabenkomplexe der sozialistischen Landeskultor In der DDR.
Die Grundlagen für die gegenwartige und künftlge Lösung dleser
Aufgaben worden In der Verfassong der DDS und lm Gesetz über die plan
maüige Gestaltung der sozialistischen Landeskultur flxlert. Die schad
lose Beseitigung der nach Masse und Volumen standig zunehmenden
•erachiedenartigsten Abfalle aus Siedlungen und Industrie 1st für
die Stadte und Gemeinden elne zwingende Notwendigkeit.
Die bisherige Form der einfachen Verkippong fester Abfalle wird
wegen der damlt verbondenen vielfaltigen Belastongen unserer Umwelt
planmaBig verbessert durch Elnführung schadloser Beseitlgungsverfahren. Unsere Bestrebungen gehen jedoch über die schadlose Beseitigung
hinaus zur möglichst weitgehenden Wiederverwertung der Abfallstoffe
(recycling).
Neben der Elnführung elner geordneten Deponie, welche aus ökonomischen Gronden bei der Beseitigung fester Abfalle noch langere Zelt
vorherrsohend sein wird, worde mit der Vorbereitung zum Bau von Kompostwerken begonnen, die nach modernen Gesichtspunkten eingerichtet
sind. Vom Instltut für Kommunalwirtschaft der DDR, dem Leitinstitut
für Fragen der Forschung und Anleitung auf dem Gebiet der Siedlungsabfallbeseitigung, worden hlerfür Verfahren und Verfahrenakombinationen in Baukastenform erarbeitet.
Ein nicht unerheblicher Teil der gesamten Abfallstoffe 1st oxganogenen Ursprungs und damlt mlkrobiologischen UmsetzungsprozeBMD zu-
122
gangllch (groBe Anteile lm Hausmiill, besonders lm Hauamüll aas Wohngebleten mlt Ofenhelzang wahrend des Sommers und aus fernbehoizten
Gebieten, Klarschlamm, F&kalien, Abprodukte der holzverarbeitenden
Industrie, der Lebens- und Futtermittelindustrie, der inlagen industrieller tierischer Production u. a.). Gerade diese biologisch aktiven Abfalle sind für die Schadwirkungen
.bei ungeordneten Ablagerungen verantwortlich. Aber auch bei Anlagen der geordneten Deponie kennen sie noch Schwierigkeiten bereiten (CHv-Bildung, Setzungen).
Dengegenüber können diese Abfalle durch Eompostierung in wertvolle hygiënisch und esthetisch elnwandfreie organo-mineralische Dünge- und Bodenverbesserungsmittel umgewandelt warden.
In den neuerrichteten Kompostwerken erf olgt eine Verarbeitung der
Abfalle je nach der vorgesehenen Anwendung in form einer ausschlieB
lich mechanischen Aufbereitung (= Rohkompost), einer mechanischen
Aufbereitung und anschlieBenden kurzen Botte in Rottezellen und
(oder) Hieten ( = rrischkompost), oder einer mechanischen Aufbereit
ung und anschlieBenden Rotte bis zum Erreichen des sogenannten Beifestadiums (völliger AbschluB intensiver Umsetzungen, ** Reifkompost).
Nach ihrer Herkunft werden die Koaposte als "Stadtkomposte" bezeich
net.
Allgemein beeinflussen die Eomposte die Bodeneigenschaften und
das Pflanzenwachstum insbesondere durch
a) ihren Gehalt an organischen Substanzen und den spezifischen
davon ausgehenden Wirkungen (Erhöhung der Sorptions- und Wasserkapazitat, des Porenvoiumens, der biologischen Aktivitat, des antiphytophatogenen Potentiales)
*
b) ihren Gehalt an basisch wirksamen Substanzen
c) ihren Gehalt an Hakro- und llikronahrstoffen'
Zur Prüfung der Einsatzmöglichkeiten und des Nutzeffektes der Stadtkomposte warden bisher vom Institut fur Kommunalwirtschaft gemeinsam mit verschiedenen anderen wissenschaftlicheiï Einrichtungen und
Betrieben rund 50 Vegetationsversuche durchgefiihrt.
In den Versuchen konnten vielfaltige Einsatzmöglichkeiten der
Eomposte als
- organo-mineralische Düngemittél (periodisch wiederholte kleine
Gaben)
- Bodenverbesserungsmittel zür Melioration humusarmer Boden und auch
als
123
T a b e 1 1 e 1
Analytische Eigenschaften Ton Stadtkomposten aas dar
DDR-Produktion
bis
Ton
1)
1
% HgO (105 °0)
Scbüttdichte
Wasserkapazitat
% Glühvorlust (600 °C,
-3 der organ.Subst.)
%\
242
216
171
11,4 - 46,0
0,49 - 0,94
42,1 - 139,9
29,6
0,71
83,9
215
160
13,5- 56,7
7,1 - 27,1
29,8
16,3
* Corg. <=Ct " CC02>
134
6,4- 29,0
15,1
**X
206
32
32
32
10
10
6
15
15
15
15
242
113
143
43
23
5
5
5
5
0,22 - 1,27
0,33 - 23,10
0
- 0,190
0
- 0,057
0,64
9,26
0,065
0,011
23,6
12,0
11,5
6,93
21,1
dav. lelcht löslich % d.Nt
* UH^-N
* NO,-N
HS-C la % 70s Corg (Ct)
PS-C in % von Corg (Ct)
Q V b der HS
T-»ert «val/100 g
H-Wert mval/100 g
S-Wert mral/100 g
v %
pH (KC1)
* P
* X
% Ca
* Hg
**e
* Al
Zn ppm
Mn ppm
2,4 - 20,8
0,8 3,06 11,7 0,2 8,460,4 6,5 0,02 0,10 1,9 0,31 2,08 2,09 1390
1465
-
26,1
8,76
29,1
5,5
1,1
28,2
99,0
20,0
9,0
0,42
0,77
9,4
0,74
7,23
2,57
1890
2185
93,8
7,56
0,24
0,25
5,1
0,51
3,76
2,39
1632
1666
1) % H20 bezogen auf Friacbmasse,
a l l e übrigen %-Angaben b e z i e h e n sich auf Trockeumasse.
174
5
- Zuschlagstoff zu gartnerischen Erden nachgewiesen bzw. bestfitigt
werden.
Der mitunter noch gebrauchliche Begriff der "Müllempfindlichkeit"
zeigte sich als nicht berechtigt. Die chemische Zusammensetzung
und das Rottestadium der Komposte erwieaen sich dagegen als wesentlich für die Höhe des erreichten Nutzeffektes.
Bei Anwendung des Stadtkompostes in Gaben von 2 0 - 6 0 t/ha warden ahnliche llehrertrage wie bei gleich hohen Gaben Stallmlst erzielt.
9 mehrjahrige landwirtschaftliche Feldversuche auf verschiedenen
Standorten ergaben im Uittel folgende relative llehrertrage:
Diingiing
NPK + Stallmlst (Kot-, Harn-,
Strohgemisch)
NFS. * Hüllkompost
rel. Mehrertrag
100
124
Der absolute Gesamtmehrertrag bei Gaben von 2 0 - 6 0 t/ha zu land
wirtschaftlichen Früchten liegt nach unseren Untersuchungen bei ~
0,5 GE (Getreide-Einheiten) pro t Kompost. Der finanzielle Reingewinn für die Anwenderbetriebe lag bei ~ 7, - M/t Kompost (Hackfrucht, Getreide).
Eine besonders gunstige Wirkung ergab sich bei Anwendung zu Kuituren mit Zusatzberegnung. In einem in Zusammenarbeit mit der Hum,, boldt-Universitat Berlin durchgeführten Feldversuch mit Feldgemüse
J (WeiBkohl, Spinat, Möhren) und Zusatzberegnung wurden auf Grund
hoher llehrertrage und der relativ günstigen llarktpreise bei gleichzeitiger optimaler llineraldüngung finanzielle Reingewinne bis zu 60
II pro t Stadtkompost erzielt.
Bei Anwendung höherer, meliorativer Gaben verteilt sich der Gesamtmehrertrag auf langere Zeitraume. Die bisher vorliegenden Ergeb
nisse zeigen die Eignung des Stadtkompostes als Uittel zur Wiedernut zbarmachung von Bergwerkskippen sowie allgemein zur Verbesserung
humusarmer Boden.
Im Intensivgartenbau, speziell im Zierpflanzenbau, konnten andere
Fflanzensubstrate, auch Torf, teilweise durch Stadtkompost ersetzt
werden.
Bei der Standortauswahl für neu zu errichtende Kompostierungsanlagen 1st zwei Faktoren eine entscheidende Bedeutung beiaumessen:
a) dam Anfall der zu verarbeitenden Abfalle (llenge, Art, Zeit des
Anfalles, Einzugsgebiet)
125
b) dem zukünftigen Absatz der Komposte (objektiver Humusbedarf, Abnahme durch wen unter welenen Bedingungen)
Sas erste nach neuesten Erkenntnissen auagerüstete Kompostwerk
wird am GroBstadtrand (Leipzig).dicht neben einem ausgedehnten Braunkohlentagebaugebiet errichtet. Durch konsentrierte Anwendung der
dort produzierten Komposte auf den vom Bergbau zurückgegebenen Flaohen wird der Zeitpunkt für das Brreichen einer dem Standort entspreohenden annahernd optimalen Bodenfruchtbarkeit urn menrere Janre vorverlegt. Zur Erprobung der Technologie der Anwendung wurden
bereits mit Beginn der Projektierung der Anlage gesonderte Versuche
angelegt.
Unser Ziel ist eine zunehmende Nutzung kompostierbarer Abfall- £
stoffe durch die Kompostierung. Es wird eingeschatzt, daB den verschiedenen Bereichen der Pflanzenproduktion etwa 2 Hill, t Kompost
pro Jahr zur Verfügung gestellt werden könnten.Die darin enthaltene
organische Substanz würde zwar nur etwa 8 % der Henge der in der
Landwirtschaft verfügbaren orgaoischen Substanzen darstellen, aber
trotzdem von wesentlicher Bedeutung sein, da es sich urn eine zusatzliche Humusquelle mit sehr vielseitigen Anwendungsmöglichkeiten
handelt.
lm Bereich der einzelnen Fflanzenproduktionszweige ist allgemein
ein Mangel an verfügbarer organischer Substanz für Düngezwecke zu
verzeichnen. Hinzu kommt, daB groBe Teile unserer pflanzenbaulich
genutzten Boden - selbst die fruchtbaren Schwarzerden machen hiervon keine Ausnahme - im Laufe der letzten Zeit (Jahrzehnte bis
Jahrhunderte) Strukturverschlechterungen erfahren haben und vielerorte über ein unzureichendes Transformations- und Spreichervermögen,
insbesondere bei hohen NPE-Gaben, Terfügen. Beides kann durch die
günstlgen physiko-chemischen Wirkungen der Siedlungsabfallkomposte
nachweislich verbessert werden. Neben der Landwirtschaft im engeren
Sinn sind aber auch jene Wirtschaftsbereiche für den Einsatz von
Stadtkomposten pradestiniert, die einen hohen objektiven Humusbedarf haben, auf Gruad der eigenen betriebswirtschaftlichen Höglichkeiten jedoch über kein entsprechendes Humusangebot verfügen, wie
z.B.
- Zlerpflanzen- und Xntensivgemüsebau
- Wein- und Hopfenanlagen
- stadtische Parks und Grünanlagen.Sportplatze
- Eleingarten
126
- Bergwerkskippen und Hulldeponien
- Küstenschutzanlagen
Aus den Ausführungen geht hervor, daB in der DDR die schadlose Beset
tigung bzw. Verwertung von Abfallstoffen und der Schutz, die Erhaltung und Yerbesserung des Bodens in ökologisch sinnvoller Veise miteinander kombiniert werden und daB damlt ein wesentlicher volkswirtschaftlicher Nutzen erreicht wird.
Zusammenfassung
In der SDR stellen die schadlose Beseitigung bzw. Verwertung von
Abfallstoffen und der Schutz und die Erhaltung des Bodens zwei eng
mitelnander verbundene landeBkulturelle Aufgabenkomplexe dar. Sie
lassen sich auf Grund enger Sachzusammenhange In ökologisch sinnvoller Weise mitelnander kombinieren, indam bestlmmte konpostierfahige
Abfallstoffe mlttels der industriellen Kompostierung schadlos beseitigt und verwertet und anschlieBend in ausgewahlten Bereichen der
Fflanzenproduktion als organo-oineralische Diinge- und Bodenverbesserungsmittel nutzbringend eingesetzt werden. Damlt werden weniger Bodenflachen für Deponleanlagen beansprucht und vorhandene Pflanzenstandorte In lhren fruchtbarkeitsbestimmenden Bodeneigenschaften ver
bessert. Es werden analytische Eigenschaften von Stadtkomposten aus
der DDR-Produktion und Ergebnisse aus Kompostanwendungaversuchen mitgeteilt.
Summary
In the SDR the damage-free removal or utilisation of wastes and
~ protection and peservatlon of soils are two closely connected sets
ï of problems in the field of land management. On the strength of a
close context they can be combined In an ecologically reasonable way
by a damage-free removal and utilization of certain wastes fit for
composting by Industrial means and subsequently for profitable appli
cation in selected fields of plant produce as organic-mineral fertilizers and soil improvement agents. By that, less soil areas are needed for open dumping, and existing plant location will be improved
in the properties of fertility. The paper gives information about
analytical properties of GDH city composts and the results of compost application tests.
197
Résumé
En R.D.A., 1'elimination sans dommages et 1 ' u t i l i s a t i o n de déchets alnsi que la protection et l a conservation du sol representee : deux taches complexes dans Ie domaine de 1'environnement qui
sont étroitement l i é e s 1'une a 1 ' a u t r e . A cause des rapports
é t r o l t s qui existent entre e l l e s , 11 est possible de les combiner
lngénieusement sur le plan écologique. C'est a i n s i qu'on élimlne
sans dommages ou u t i l i s e certains déchets, susceptlbles d'etre compostéa, moyennant le compostage i n d u s t r i e l et qu'on l e s emploie
ensuite dans certains domaines choisis de la production de plantes
en tant qu'engrais ou substances d'amelioration organo-minéraux
f o r t p r o f l t a b l e s . I l en r é s u l t e une reduction de l a surface requise
pour l e s i n s t a l l a t i o n s de depot e t , d'autre p a r t , une amelioration
de certalnes vegetations par l a f e r t i l i s a t i o n du s o l . L'auteur
t r a i t e des caractériatlques analytlques de composts prodults dans
csrtaines v i l l e s en R.D.A. et f a i t part dea r é s u l t a t s des experiences effectuées avec ces d e r n l e r s .
Fe3Due
Ee3BpeiH0e yunmoxeHHe H Hcno/ibsoaaHHe OTXOHOB, a Taxie 3amma,
coxpaneHHe H ynyimenne IIOIBU npencTaBUfloi coöoit iecHO cBfl3auRue
uezty codoH 3aaain HapoKHoro xo3flflciBa IMP. Hx UOXRO KouOniinponaTb
B SKOiorH^ecKH pa3yMH0u sme c Teu, moOu yHHqiownb i Hcnonb30BaTb
onpeneneHHue OTXOÏH ueTonou KOunocTMpoBaBHfl H npniieHHTb HX B ome/ibHHX oipacjflx pacieHHeBonciBa B BHBe opraHO-UHHepanbHHX yiodpeHHii H
noiBoyiyinacKHX uennopaHTOB. B CB«3H C STHU noTpedyeica ueHbme 3euenbHux a JI outage ft npa coopyieuHH cnennajibHbix ycTpoüCTB ma nenoHHpoBaHHii OTXOHOB H ynymnaibCH csottciBa noiB, onpenenn»nHe HX nnonopoiHe, Ha Hcnonb3yeuHX B cejibcicoij xosaflcTBe TeppniopHnx. npHBoamèfl aHaiHTHiecKHe taHHue o CBOttciBax ropoicKnx ICOIUIOCTOB H pe3ynbiaTbi onHTOB no HX npHHeKeHHD.
ï
126
CARBON DIOXIDE FIXATION BY VEGETATION AS COMPARED TO CARBON
DIOXIDE EMISSION BY FOSSIL FUEL COMBUSTION
A.R.Swoboda and F.J.Peterson
Texas Agricultural and Mechanical University,
Louisiana State University,
U.S.A.
Introduction
Increasing emission of COp into the atmosphere by fossil fuel
combustion has been the subject of many acientific investigations
and publications. However, very little attention has been paid to
the large quantities of CO, removed from the atmosphere by the
increasing production of forests, crops, animals, steel, and
plastics.
Rohrman et al.(1967) have estimated that the escalating uses of
fossil fuels in the United States ahow that by the year 2000 CO»
emissions will have increased approximately eighteen-fold since
1890 or from 582.8 x IO 6 to 8655.5 x IO 6 metric tons.
Probably the most widely discussed effect of increasing
atmospheric C0~ is the carbon dioxide theory of climatic change
first proposed in 1861 by Tyndall. This theory considers the fact
that COp is a strong absorber and back radiator of infrared radiation. A buildup of carbon dioxide could produce a greenhouse effect
over the Earth's surface and encourage a warming trend over the
years.
Takahashi (1965) divided the Earth's carbon into four great
reservoirss the lithosphere, the hydrosphere, the biosphere and the
atmosphere. The CO, content in the atmosphere, since it is the small
est of all the carbon reservoirs, may be strongly influenced by
slight changes in the dynamic balance between the reservoirs.
The annual rate of COp production by combustion of fossil fuel
during I960 was enough to cause an increase of 1.3 ppm in the
atmospheric COg concentration if all the fossil fuel COg remained in
129
the atmosphere. The observed annual increment is only about half of
this value, implying that a portion of the fossil fuel COp is being absorbed by other carbon reservoirs (Takahashi, Taro, 1966),
perhaps 50% or more by the oceans (Singer, 1968).
The main processes in the exchange of CO- between vegetation
and the atmosphere are photosynthesis and respiration. According to
the productivity concept described by Leith (1965) plants grow in a
vegetation unit until equilibrium exists between new growth and
decay. At this point there is no more accumulation of the biomass,
and the CO- circulates only between the atmosphere and the biosphere
of the geosphere at a certain rate.
Materials and methods
The general technique used in this study was to compare the
increased amounts of C0 2 being released into the atmosphere by fossil
fuel combustion in the continental United States during the period
between 1945 and 1965 to the increased amounts of COp being removed
from the atmosphere during this same period by increased production
of forests, crops, animals, steel and plastics.
The years 19*5, 1955, and 1965 were selected as years from
which to gather data because there was a dramatic increase in the
use of fossil fuel and in the production of carbon-containing
materials during this period. Fossil fuel consumption for the United
States, Table I, was reported by Rohrman (Rohrman, 1967).
Only data from the United States was used in this study because
it was assumed that the increase in production of carbon-containing
materials and the consumption of fossil fuels for the Northern
Hemisphere was in proportion to the increase in the United States.
Forests in the United States were assumed to be similar to
those in Europe which will fix an equivalent of 15 metric tons of
C0 2 per hectare in total yearly productivity of which 5 metric tons
per hectare are in storage as wood and roots (Lieth, Helmut, I965).
In order to calculate the total COp fixed by forests in the United
States and the amount in storage as wood and roots the total area of
forests in the United States (U.S. Bureau of the Census, 1968) was
multiplied by these two values. The amount of C0 2 not stored in wood
and roots (such as leaves, twigs, and small branches that die annually) was calculated by subtraction.
Calculations for the amount of COp fixed in crops were cumbersome because it was necessary to include most of the crops produced
in the United States: wheat, rye, rice, corn, oats, barley, soghums,
130
Table I
COp emission by fossil fuel burning and fixation of COp by various
materials in the continental United States
Fossil fuel and
other materials in
which COp is fixed
Fossil fuel
Total yearly
production
Not stored in
wood and roots
Stored in wood
and toots
I!
Conplete plant'
I 9 » 5 % of "
-off
fossil
fuel C 0 2
2204.462
100.0
metnc\
tons )
x 106
2 634-.
468]
2797.852
126.9
1865.265
52-587
Plant parts
rts
not harvested
Harvested plant
parts (grain etc.)
Total fixed by
forests and crops
Domestic animals
Human population
Steel
Plastic
Total fixed
i^V
—cTT2
metric
tons
x 106
% of
* of
f5im
100.0
«59.519
100.0
2957.4-68 I III. 5
5089.150
9». 7
2059.405
63.1
1029.74'
31.6
4GT4~
1958.542
7^-3
42.
3.126
25
nies-
57.2
46.4
84.6
I 9 É-5.
metric "\
tons I
x 106 /
±
1 2 1 Ëz:
fue! 1 C0 2
794.486
?».o
831.275
51.6
1029.042
51.6
352.699
16.0
391-18?
14.9
484.247
14.9
4602.447
141.2
*w
~STü57
3933.905
176.
T7i
ITT
-QTT
413
178.5
4207.482
:SS I ^L-f
3
~o~^
~07T~
otr
331
II 159.7
* Calculations made from I960 data since 1955 data was not available.
^658.172 ,,H
23:
142. a
cotton, sugar beets, sugar cane, cottonseed, flaxseed, peanuts,
soybeans, and hay. The total amount of each crop produced (U.S.
Department of Agriculture 1969; U.S. Bureau of the Census, 196?)
was tabulated and converted to metric tons. It was impossible to
find a recorded percent carbon for many of the crops, therefore, it
was necessary to look up the average concentration of cellulose,
carbohydrates, fats, sugars, and proteins in each crop (Kent,.I966;
Martin et al, 1967; Van Dillewijn, 1952; Encyclopedia of Sci. and
Tech., 1966; Morrison, Frank, 1967; Editors, Encyclopedia of Textiles,1960), calculate the percent carbon in each of these materials
and in this manner sum up the total percent of carbon found in the
harvested parts of each crop. Calculating the total C0 2 fixed by
harvested plant parts of crops then became a simple matter of multiplication to convert percent carbon to total carbon and total carbon to a COg equivalent for each crop and addition to arrive at a
total amount of CO, fixed for each year studied.
Total COp fixed in the complete plant, reported in Table I,
was calculated by assuming that most crops are similar to corn which
according to Miller (I93D contains 32.0# of its total carbon in the
grain. Considering tnat COp content is directly proportional to
carbon content:
0.32 X = (CO, in the harvested plant parts for 191-5)
= 352.699 x IO 6 metric tons
X =1102.186 x IO 6 metric tons
*
where X is the COp fixed in the complete plants, COp in plant parts
not harvested was then determined by subtraction.
The errors of assuming all crops similar to corn are apparent,
however, a breakdown on the carbon distribution for each crop could
not be found.
The amounts of COp fixed in domestic animals were calculated
by the same method used for crops. Most of the domestic animals in
the United States were included: cattle, hogs, sheep, dairy cows,
and chickens.
Calculations for the C0~ fixed in the human population were
made by multiplying the total population (U.S. Bureau of the Census,
196?) by the average weight (Hathaway, Milicent, I960) and the
percent carbon (The World Book Encyclopedia, 1966) in the average
human body. The total carbon was then converted to a CO- equivalent.
Calculations for steel and plastic were made by multiplying the
total production (U.S. Bureau of the Census, 1967; U.S. Tariff
132
Commission, 1960-1965) for each, by the percent carbon in each
material. Total carbon was then converted to a CO- equivalent.
Re stilts and discussion
Table I is a summary showing the amounts of COp released to
the atmosphere by fossil fuel combustion and the amounts fixed by
carbon-containing materials produced in the United States for the
years 19*5i 1955. and 1965.
In Table I and throughout this paper, the term "COp fixed" is
somewhat misleading in that COp as such is not actually bound in
most of these materials. This term describes the amount of COp which
is equivalent to the amount of carbon found in each material. The
CO- fixed by each carbon-containing material is reported in metric
tons and as a percent of fossil fuel C0-. In this manner it is
possible to see the relative value of each material with regard to
its ability to remove a part of the total CO- released to the
atmosphere by fossil fuel combustion. This is a very interesting
analysis which points out, both numerically in Table I and graphically in Figure 2, that each year more CO- is being fixed by production
of carbon-containing materials than is being released to the
atmosphere by fossil fuel combustion. And it would be a perfectly
valid estimate of COp removal from the atmosphere if one could
disregard the fact that most carbon-containing materials eventually
return the COp which they have fixed back to the atmosphere by
respiration or decomposition. The main purpose of presenting the
data in Table I in this arrangement was to show that the total body
of "COp fixed" by these materials is increasing, it was not to show
the complete CO- balance between carbon-containing materials and
the atmosphere nor to show a complete and accurate account of net
COp removal from the atmosphere.-Nonetheless, these values should
be closely related to the amount of CO- removed from the atmosphere
by each material.
Forests, as can be seen in Table I and Figure I, offer a far
greater capacity for removing C0 ? from the atmosphere than any of
the other carbon-containing materials reported because of their
great bulk, the large quantities of land covered with forests, and
the fact that it generally requires as much as 100 years for carbon
to make a complete cycle in forests (Lieth, Helmut I965). Crop
plants, on the other hand, only require about 10 years for carbon to
make a complete cycle (Miller, Edwin, I9JI) and cover leso land area
than forests. The amount of C0 ? fixed in domestic animals, the
133
human population, steel, and plastics is so small that it is
relatively insignificant.
The COp fixed shown in Figure I is divided into two main parts:
(Bischof, 1966) short term CO- fixation which refers to C0 2 fixed in
the parts of forests such as leaves, twigs, and small branches that
die annually and in parts of crops such as leaves, stems, and roots;
(Bolin et al.1965) long term CO- fixation which refers to C0 2 fixed
in the wood and roots of forests and the harvested plant parts of
crops. Using this graphic presentation it is possible to make a
visual estimate of the increases in the amounts of CO- that will
remain removed from the atmosphere for longer periods of time and
possibly be of greater value in ultimately reducing the COp content
of the atmosphere.
After all arguments are considered it must be admitted that
most COp fixed by a great majority of these materials will eventually find its way back into the atmosphere and that the only real
reduction in atmospheric COp content is the amount of increase in
COp fixed from one year to the next which will not be equaled in
that year's COp return to the atmosphere by decomposition of a
smaller amount of materials which had fixed COp in previous years.
These increasing values are shown numerically in Table I and
graphically in Figure.I
Figurelshows a curve which describes the increases in CO- fixed
by forests, crops, and other materials for 1955 as compared to 194-5
and for 1965 as compared to 1955. This curve, according to our
definition above ^escribes an estimate of the real amount of COp that
was revoved from the atmosphere in the continental United States due
to increased fixation by these materials. Comparing this curve to
the curve in Figureidescribing COp emission by fossil fuel combustion, it is obvious that the COp removed from the atmosphere as a
result of increased fixation by forests, crops, and other materials
was far from enough to equal the amount released to the atmosphere
by fossil fuel combustion. For example, in 1965 the amount of C0removed form the atmosphere due to the increase in the amount of
COp fixed over the 1955 level was 4-50.689 x 10 metric tons or only
13.8% of the fossil fuel C 0 2 for 1965.
Assuming our hypothesis to be correct, and assuming that fossil
fuel combustion and forest and crop production are increasing at a
similar rate in other industrial nations in the Northern Hemisphere,
large quantities of COp are being removed from the atmosphere each
year by increased production of forests and crops, however, the
amount is not sufficient to prevent the huge tonnage of COp released
to the atmosphere by fossil fuel combustion from increasing the
concentration of COp in the Earth's atmosphere.
Fortunately, most of the fossil fuel COp is released from a
relatively small portion of the total surface of the earth between
30° to 60° N latitude (Bolin et al. 1963) and approximately 50% or
more is absorbed by the vast oceans of the Earth during the two
years which is the estimated mean exchange rate between the Northern
and Southern Tropospheres (Landsberg, et al. 1961). Considering all
these factors, Bischoff and Boling's (1966) estimate that the
concentration of COp in the Earth's atmosphere is increasing by
0.7 ppm eacn year seems reasonable.
R e f e r e n c e s
Bischof, W., Walter and Bert Bolin. Space and time variations of
the CO- content of the troposphere and lower stratosphere.
Tellus? I8(2):I55-I58, 1966.
Bolin, B., and Keeling, C D . J.Geoph. Res. 68(13):3899-3920, 1963.
Editors, American Fabrics Magazine. Encyclopedia of Textiles.
Prentice-Hall, Inc., New Jersey, p.69, I960.
Encyclopedia of Sci. and Tech. McGraw-Hill, 5:298, 1966.
Hathaway, Milicent L., and Eloise D. Foard. Heights and weights of
adults in the United States. Home Economics Res. Rpt. 10.
Human Nut. Res. Div., Agr. Res. Ser. USDA Washington, D.C.,
Aug. I960, pp. 26-27. Tables 15 and 16, I960.
Kent, N.L. Technology of Cereals. Pergamon Press Inc., Long Island
City, New ïork, p.37, 1966.
Landsberg, H.E., and Mitchell. J.M., Jr. Royal Meterological Soc.,
Quarterly Journal 87(373):*35-437, I961. (Comments by G.S.
Callendar, pp. 436-437).
Lieth, Helmut. J.Geoph. Res., Vol.68, pp. 3887-3899. 1963.
Martin, J.H., and W.H. Leonard. Principals of Field Crop Production.
The Macmillian Co., New York, pp. 876-985, 1967.
Miller, Edwin C. Plant Physiology, 1st Ed. McGraw-Hill Co., p.238,
I93I.
Morrison, Frank B. Feeds and Feeding, 22nd Ed. The Morrison
Publishing Co., Ithica, New York, pp. 17 and 1135, 1967.
Rohrman, F.A. et al. A projection. Science 156:931-2, 1967,
Singer, S.F. Towards planetary engineering: the first global weather
research, its questions and possibilities. Astronautics and
Aeronautics 6(5):30-35i 1968.
The World Book Encyclopedia. Field Enterprises Education Corp.,
Chicago, III. Vol. 9, p. 380, 1966.
U.S. Department of Agriculture. I969. Agricultural Statistics. 1968.
U.S. Govt. Printing Office, Washington, D.C.
135
J.S. Bureau of the Census. Statistical Abstracts of the U.S. 88th
Ed. Washington, D.C., 1967.
J.S. Bureau of the Census. Statistical Abstracts of the U.S. 89th
Bd. Washington, D.C., I968.
J.S. Tariff Commission. Synthetic Organic Chemicals. U.S. Production
and Sales. T.C. Publications 34 and 206, I960 & 1965.
Takahashi, Taro. Carbon dioxide cycle in the sea and atmosphere.
McGraw-Hill Encyclopedia of Sci. and Tech., pp. I3I-I36, I966.
Tyndall, J. Phil. Mag. 22 Ser. 4. I69-I94, 273-285, 1861.
Tan Dillewijn, C. Botany of Sugarcane. The Chronica Botanica Co.,
Wattham, Mass., p. 172, 1952.
Summary
Estimates of the COp removed from the atmosphere by increases
in the production of forests, crops, animals, steel, and plastics in
the continental United States were made and compared to the COemission by fossil fuel combustion for 1945» 1955» and 1965. These
estimates revealed that although a large quantity of CO~ is being
removed from the atmosphere each year by increases in production of
carbon-containing materials, this quantity only accounts for a small
percentage, approximately 13.8# in 1965, of the COp being released
each year by fossil fuel combustion.
Résumé
On a estimé Ie COp absorbé de 1'atmosphere par 1'augmentation
de la production des forêts, des cultures, des animaux, des métaux
et des plastiques dans les Etats Unis continentaux et on 1'a compare J?
avec 1'émission de COp par combustion de fuel fossil pour 1945, 1955
et 1965. Ces estimations montrent que, bien que la grande quantité de
COp absorbée de 1'atmosphere fasse accroïtre la production des
matériaux de carbon chaque année, cette quantité n'est qu'un petit
pourcentage, environ I3»8% en I9&5» du COp formé chaque année par
combustion de fuel fossil.
Zusammenfassung
Es wurden Berechnungen der durch das Wachstum der Forstwirtschaft, des Pflanzenbaus, der Viehzucht sowie der Stahlund Kunatfaeerproduktion in den kontinentalen USA
bedingten COpAufnahme für die Jahresschelben 1945, 1955 und 1965 gemacht. Diese
Angaben werden mit den bei der Verbrennung der natürlichen
Brennstoffe in den gleichen Jahren ausgeschiedenen COp-Mengen
verglichen.
Die Berechnungen haben erwiesen, daas obwohl jedes Jahr grosse
COg-Mengen aus der Atmosphere aufgenommen werden, sie mir einen
136
kleinen Teil der gesamten COp-Henge ausraachen (13,8% im Jahre 1965),
weil die Produktion der kohlenstoffhaltigen Materialien mit der
Steigerung der Verbrennung der Naturbrennstoffe immer grosser wind.
Pesioue
IlojiyqeHbi aaHHue no noflcqeiy Konmecisa
$ e p u B CBH3H C POOTOM JleCOBO^CTBa,
C0~, yaa;iHeuoit H3 aTMoc-
paCTeHHeBO^CrBa,
KHBOTJiOBOflCTBa,
a
raicne yBenimeHHH npoH3B0/icTBa ciajiH H njiaciuacc Ha KOHTHHeHre CEIA B
1945, X955 H 1965 r r . 3TH flaHHtie cpaBHHBaiOTCfl c KonmecvBou COp, Biwenflejjoil HDH cropaHHH HCKonaeuoro TonJiHBa 3a r e «e r o a n . üo;ic<jeTH noitasajiH, qro, Hecuoipn Ha r o , qio Kaawuti r o s «3 amocitepu yaaJiHeTCH ÖOJIBinoe KojiHqecTBO COg B CBHSH C yBeJiHyeHHeM npoH3BoacTBa MarepnajiOB, c o AepmauiHx yrjiepos, OHO cociaBJiHeT JIMUIB HeöoJiBmoft npoueHT ( OKO^O 1 3 , 8 ^
B 1965 r . ) COp, BnaeBHeuoö Kasmuft r o s B pe3yjiBrare CKHraHHH HCKonaeMoro Ton^MBa.
5000
r
4000
TOTAL C 0 2 FIXED BY FORESTS, CROPS,
AND OTHER MATERIALS
o
X
3000
co
2
O
H
o
er
(-
EMISSION BY FOSSIL FUEL
COMBUSTION
2000
LU
5
O
o
1000
O
INCREASE IN C 0 2 FIXED BY FORESTS,
CROPS, AND OTHER MATERIALS
1965
1955
YEAR
Figure I . Total CO» fixed, CO» emission by f o s s i l
fuel combustion, and increases in CO»
fixed over the 1945 and 1955 l e v e l s .
1945
137
IMDEX OP AUTHORS
Alston.A.M., 86
Krastanov,S.,76
Lieberotb.,1.,46
Bartelli,L.J.,67
Boersma.L., 113
Burt,M.,40
Corliss,J.F.,61
Czerney.P. ,122
llacKensie,A.F.,54
Manson.A.N.,5*
Munteanu,M., i * 0
Peterson,F.J.,129
Davtian,G.S.,107
Dewan,M.L. ,76
Duffy, P. J. B. ,74
Dunkelgod.P. ,46
Rozov,N.N.,13
Rykbost,K.A.,113
FÓrizs,M. ,26
Franlcart.R. , 3 ^
Swoboda.A.R. ,129
Gibbons,F.H. ,19
Gondek.H.,46
Gronewitz.E.,*6
Teaci,D.,40
Haana,J.C.F.H.,19
Wohlrab,B.,95
Kal'yanov,K.S.,102
Karmanov.I.I.,13
King,P.M.,86
Yulevski.M., 76
138
Shuvalov.S.A. ,13
Stefanovits,P.,26
Sys,C.,3«Trashliev,Chr.,76
Voioulesou.N. ,*°
M3aaHHe ocvuiecTBJieHo cnocoöoM aJ)ceTHoft nenaTH
c opHTHHaJioB, npeacraBJieHHbix OprKOMHTeTOM
X MöHtnyHapoaiioro KOHrpecca nonBoBenoB
TPyflbl
XME>KnyHAPOHHOrO KOHrPECCA
TOM V
nOHBOBEflOB
YTBepjKaeHo K nenaTH
OprKOMHTeTOM X M e ^ a y H a p o a H o r o KOHrpecca noHBOBeaoB
XyaoJKecTBeHHbifl penaKTop C A . JluTBaK
TexHHsecKHfi p e a a x T o p C . M. E a x e p e B a
rioanHcaHO K nenaTH 1 6 / 1 Y - 7 4 r . T - 08111
Yc/i.
nen.
n.
8,75
YH.-H3O..
n.
8,15
$opMaT 6 0 x 9 0 V 1 6 . ByMara o4>ceTHaH N? 1
Tnpa*< 4000 3K3. T n n . 3aK. 7*58
l i a n a 57 Kon
KHHra H3aaHa ocfceTHbiM cnoco6oM.
H3naTenbCTBO "HayKa",
103717 r e n , MocKBa, K - 6 2 , rioncoceHCKHft n e p . . 21
<t>umian MOCKOBCKOH rmorpabnH
r . HexoB,
5
*
N? 9
"Corosnonwrpa^npoMa'

Documentos relacionados