WINDAS - Departamento de Ciências Atmosféricas

Transcrição

WINDAS - Departamento de Ciências Atmosféricas
PRINCÍPIOS DE RADAR
TÓPICOS AVANÇADOS
CAPÍTULO 6
OSWALDO MASSAMBANI, Ph.D.
Professor Titular
Departamento de Ciências Atmosféricas
Instituto de Astronomia,
Astronomia Geofísica e Ciências Atmosféricas
Universidade de São Paulo
São Paulo – Brasil
Tópicos avançados para a disciplina Meteorologia com Radar
Departamento de Ciências Atmosféricas
Instituto de Astronomia, Geofísica e Ciências Atmosféricas- IAG-USP
Universidade de Sáo Paulo
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil PRINCÍPIOS DE RADAR
Radares Perfiladores de Vento
Radares Perfiladores de Vento
Wind Profiler Radars
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil Wind Profiler Radars
Wind Profiler Radars
PRINCÍPIOS DE RADAR
C t t
Contents
ƒ
ƒ
ƒ
ƒ
ƒ
ƒ
Introduction
User requirement
Operational and frequency aspects
Spectrum requirement
Sharing aspects of wind profilers
Japanese wind profiler network
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil PRINCÍPIOS DE RADAR
INTRODUCTION
• What is a Wind Profiler Radar?
• Advantages of WPRs
• RASS
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil Wh i
What is a wind profiler radar?
i d
fil
d ?
PRINCÍPIOS DE RADAR
• Wind Profiler Radars (WPR )
(WPRs) are used to d
obtain the vertical profiles of the wind over
profiles of the wind over an unattended and sometimes remote area by detecting the tiny fraction of emitted power backscattered b k tt d
from turbulence in the clear atmosphere
clear atmosphere.
Air flow
Wind vector
Reflected radio wave
Reflected radio wave
Emitted radio wave
Principle of measuring wind by WPRs
The frequency of reflected radio wave is changed Th
f
f fl
d di
i h
d
by Doppler effect.
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil Example of wind profiler installation
PRINCÍPIOS DE RADAR
449MHz
WPR
RASS
This picture is from the Handbook(2008)
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo –
Brasil 6
Example of wind profiler installation
Example of wind profiler installation
PRINCÍPIOS DE RADAR
Snow covered area type
(f = 1357.5MHz)
Generall structure
G
t t
in
i Japan
J
(f = 1357.5MHz)
Redome: for antenna protection from snow
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil Advantages of WPRs
f
PRINCÍPIOS DE RADAR
• One
One of the major advantages of wind profilers to other wind of the major advantages of wind profilers to other wind
measurement systems is their ability to continuously monitor the wind field.
• they can also be used to
–
–
–
–
detect precipitation,
measure major disturbances in the vertical velocity,
measure the intensity turbulence,
measure atmospheric stability.
t
h i t bilit
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil Example of WPR’ss data
Example of WPR
data
PRINCÍPIOS DE RADAR
As an example mobile profiling system operating at 924 MHz produced the plot of wind velocity vs. altitude. The orientation of each flag represents wind direction as a function of altitude (vertical axis)and time (horizontal axis) while its colour represents
function of altitude (vertical axis)and time (horizontal axis), while its colour represents wind speed.
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil PRINCÍPIOS DE RADAR
Advantages of WPRs
• WPRs can also provide detailed information on atmospheric virtual temperature through the addition of a Radio Acoustic virtual temperature
through the addition of a Radio Acoustic
Sounding System (RASS)
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil RASS
PRINCÍPIOS DE RADAR
Acoustic Wave
• RASS utilizes an acoustic source that is matched in h i
h di
frequency so that the wavelength of the acoustic g
wave is matched to half the wavelength of the radar transmitted electromagnetic
transmitted electromagnetic wave.
The speed of sound
Electromagnetic Wave
(The speed of light)
RASS
RASS
WPR
RASS
RASS
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil RASS
PRINCÍPIOS DE RADAR
Acoustic Wave
• RASS measures the speed of p
the acoustic wave which is dependent upon temperature. • In this way RASS provides a t
t f th
remote measurement of the atmospheric virtual temperature.
The speed of sound
Electromagnetic Wave
(The speed of light)
RASS
RASS
WPR
RASS
RASS
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil User requirement
PRINCÍPIOS DE RADAR
A good way to examine the impact of user requirements upon wind profiler A
good way to examine the impact of user requirements upon wind profiler
operating parameters and design is to consider the following equation rewritten from [Gossard and Strauch, 1983]:
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil User requirement
User requirement
PRINCÍPIOS DE RADAR
•
•
•
•
High temporal resolution
High vertical resolution
Obtaining wind data at high altitudes
Reliable all‐weather operation
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil User requirement
User requirement PRINCÍPIOS DE RADAR
• High temporal resolution High temporal resolution
1.
2.
3.
4.
Large aperture
High peak power and high pulse repetition frequency (PRF) Long wave length
Operation over a range of heights close to the radar
• High PRF does not cause range ambiguity
• Atmospheric backscattering are relatively large ________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil User requirement
User requirement
PRINCÍPIOS DE RADAR
• High vertical resolution
– large aperture
– high peak power, high PRF, and pulse compression to increase the average power
– long wavelength
– operation over a range of heights close to the radar where high PRF does not cause range ambiguity problems and where atmospheric backscattering and g
g yp
p
g
inverse‐height‐squared are relatively large
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil User requirement
User requirement
PRINCÍPIOS DE RADAR
• Obtaining wind data at high altitudes
–
–
–
–
large aperture;
high peak power and pulse compression to increase the average power;
long wavelength;
long wavelength;
large averaging times.
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil User requirement
User requirement
PRINCÍPIOS DE RADAR
• Reliable all‐weather operation even if low‐scatter conditions
–
–
–
–
frequency band;
high average power and antenna aperture;
higher receiver sensitivity; and
low level of interference and system noise
low level of interference and system noise.
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil Monthly average of highest altitude
for wind data
PRINCÍPIOS DE RADAR
highest altitu
ude for wiind data [m]
both
Non‐Precipitation condition
Precipitation condition
Apr
Winter in Japan
low humidity
Low Tropopause altitude
Mar
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil Operational and frequency aspects PRINCÍPIOS DE RADAR
• Three types of WPRs
Three types of WPRs
• 50MHz band WPRs 50MH b d WPR
– Middle and Upper atmosphere radar • 400MHz band WPRs
• 1000MHz or more band WPRs
– Boundary layer radar
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil Comparison 50, 400, 1300MHz
p
,
,
PRINCÍPIOS DE RADAR
30km
15km
Stratosphere
5km
Troposphere
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil PRINCÍPIOS DE RADAR
O
Operational and frequency aspects ti
l df
t
• MU radar( 50MHz band) is very large, powerful and short pulse
– About 10 000m
b
0 000 2,
– 250kW or more peak, 12.5kW or more average
– Pulse width: 1 microsecond
Pulse width: 1 microsecond
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil PRINCÍPIOS DE RADAR
Operational and frequency aspects
Operational and frequency aspects • 400‐500MHz Wind profiler have been designed to :
400 500MH Wi d
fil h
b
d i dt
– Measure wind profiles from about 0.5 ‐ 16km
– Vertical resolutions:
• 250m( low altitude)
• 1000m( high altitude)
– Antenna gain is about 32dBi,
Antenna gain is about 32dBi
– Mean power of:
• about 500W( low altitude)
• About 2000W( high altitude)
(
)
– Necessary bandwidth of less than 2MHz
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil PRINCÍPIOS DE RADAR
Operational and frequency aspects f
• 915MHz and 1270‐1375MHz Wind profiler have been designed to : boundary layer profiler,
–
–
–
–
–
Measure wind profiles up to about 5km
Vertical resolutions are about 100m
Antenna gain is below 30dBi
Antenna gain is below 30dBi,
Mean powers of about 50W
Necessary bandwidths of 8MHz or more
y
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil PRINCÍPIOS DE RADAR
spectrum requirements
t
i
t
• Geographical separation and terrain shielding are effective protection against interference to and from other profilers.
• Hence, an affordable network of wind profilers, say separated by at least 50 km over level terrain – less over more rugged or treed terrain could operate on the same frequency.
treed terrain –
could operate on the same frequency
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil PRINCÍPIOS DE RADAR
spectrum requirements
spectrum requirements
• It
It is generally agreed that 2 to 3 MHz of bandwidth are is generally agreed that 2 to 3 MHz of bandwidth are
required near 400 MHz and 8 to 10 MHz near 1 000 MHz or 1 300 MHz
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil PRINCÍPIOS DE RADAR
Sharing aspects of wind profilers
• The bands for profiler use allocated by WRC‐97 were carefully selected to minimize the likelihood of interference to and l
d
i i i h lik lih d f i
f
d
from other users of these bands.
•
•
•
•
•
•
46‐68 MHz in accordance with No. 5.162A
440‐450
440
450 MHz
MHz
470‐494 MHz in accordance with No. 5.291A
904‐928 MHz in Region 2 only
g
y
1 270‐1 295 MHz
1 300‐1 375 MHz
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil PRINCÍPIOS DE RADAR
An example of a WPR network
l f
k
• The Japan Meteorological Agency (JMA) is operating a Wind profiler Network and Data Acquisition System (WINDAS) network.
• Consist of thirty‐one 1.3GHz wind profiler
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil PRINCÍPIOS DE RADAR
WINDAS
• Purpose of WINDAS
– Monitoring and Predicting the severe weather
– Initial value of JMA Numerical Weather Prediction models
– Combined with another data to comprehensive Upper‐air wind analysis
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil PRINCÍPIOS DE RADAR
WINDAS
Wind Profiler Network and Data Acquisition System
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil JMA Upper‐air Observation Network
Observation Network
PRINCÍPIOS DE RADAR
31 Wind Profilers
Wind Profiler Control Center
16 Radiosonde stations
Wakkanai
Rumoi
Sapporo
Nemuro
Muroran
Obihiro
Akita
Miyako
Sakata
Takada
Hamada FFukui
k i
Takamatu
Yonago Tottori Wajima
Oita
Miham
Izuhara
a
Fukuoka
Hirado
Kumamoto
Ichiki
Shiono‐
misaki
Kagoshima
Yakushima
Kouchi
hi
Shimizu
Nobeoka
Kumagaya
Tateno
Mito
Control Center
(JMA Headquarters)
(JMA
Headquarters)
Katuura
Kawaguchiko
Hachijojima
Shizuoka
N
Nagoya
Owase
Naze
Chichijima
Minamidaitojima
Ishigakijima
Yonagunijima
1000km
Minamitorishima
JMA upper‐air observation network consisting of rawinsonde stations and wind profilers of WINDAS. ________________________________________________________________________________________________________
Upper‐wind observations are made at the interval of about 120km. Prof. Oswaldo Massambani –6.2 Wind Profiler Radars
Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil Data Flow in WINDAS WINDAS
Profiler3
PRINCÍPIOS DE RADAR
Profiler30
Profiler2
10 minute values of Doppler velocity and signal intensity l it
d i
l i t it
being sent every 1 hour
Profiler1
CONTROL CENTER(JMA Headquarters)
Profiler31
Data quality control and remote control of profilers being made
Horizontal and vertical components of wind and signal intensity being sent with BUFR code every 1 hour
C O S M E T S (JMA Central Computer)
C O S M E T S (JMA Central Computer)
N A P S
Every 6 hours
Forecast made with Mesoscale Model
ADESS
Every 1 hour
Hourly analyzed y
y
atmospheric GPV
10 minute data being sent every 1 hour
Wind profiler data
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil Appearance pp
PRINCÍPIOS DE RADAR
General structure (Kagoshima: Department observed Ichiki) Snow‐covered area (Hokkaido: Department observed Obihiro)
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil Major equipment and signal flow PRINCÍPIOS DE RADAR
Module Unit
Antenna System
CONTROL CENTER
Transmitter and Data Processer
________________________________________________________________________________________________________
Receiver System
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil Block Diagram of the JMA Wind Profiler Network ( WINDAS)
CONTROL CENTER
CONTROL CENTER
OBSERVATION SITE
OBSERVATION SITE
Type A
中央監視局
観測局
PRINCÍPIOS DE RADAR
Antenna System
Transmitter and Transmitter
and
Receiver System
Module Unit
LAN
Server 1
Server 2
L3SW
L3SW
HUB
L2SW
Operating Display
Printer HUB
Data Processer
L2SW
Leased line
国内基盤通信網
Type B
Weather station Operating & Watching
& Watching
Quality Control
Data Processer
Outdoor
L2SW
L3SW
Observation hut
Observation hut
Rou
ter
Rou
ter
HUB
ISDN
Operating Display
Data Processer
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil Characteristics of the JMA Wind Profiler Parameter
PRINCÍPIOS DE RADAR
Characteristics of WINDAS
Antenna type
Active phased array
Antenna size
4mx4m
Antenna gain
33 dBi
Antenna beam width
4 degree (both elevation and azimuth direction)
Antenna scan
Vertical and four directions (elevation angle 75-80 degree)
- These four directions make a right angle.
Th b
The
beam di
direction
i changes
h
to another
h every about
b
0
0.4
4 seconds.
d
Frequency
1357.5 MHz
power
Peak p
1.8 kW
Pulse width
0.67, 1.33, 2.00, 4.00 microseconds (selectable)
Pulse repetition
frequency (PRF)
5, 10, 15, 20 kHz (selectable)
Pulse compression
8 bit
Observation range
300m – about 5 km in height
Observation interval
10 minutes (0.4 s x 5 beams x 28 times x 10 data of 1min)
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil Data Quality Control
Q
y
PRINCÍPIOS DE RADAR
W P R
R i
Receiver
W P R
Si
Signal Processor
lP
F F T / Wavelet
White Noise
Rejection
Ground Clutter
Rejection
line Spectra
Rejection
Multi‐Peak
Processing
W P R
D t P
Data Processor
Network C
Center
Receiving Power
Check
Horizontal Buddy Check
Spectrum Width Check Surface Wind
Check
Velocity Unfolding
Quadratic Surface
Check
Time‐Height Check
Vertical Shear Check
Spectrum
Data
1 Min.
Doppler Velocity
pp
y
10 Min.
U VW
U,V,W
10 Min.
U,V,W
Development of QC Algorithm
JMA Central
JMA
Central
Computer
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil PRINCÍPIOS DE RADAR
Example of data
Example of data
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil Surface weather map
PRINCÍPIOS DE RADAR
Yakushima
Typhoon was 980 hPa, moving to ENE 13kt near Yakushima WPR site. ________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil Satellite image
PRINCÍPIOS DE RADAR
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil 台風13号通過(屋久
島)
Yakushima
PRINCÍPIOS DE RADAR
2008/09/18 12:00-18:
00
Vertical velocity
Vertical velocity
鉛直速度
S/N比
鉛直シアー
東西成分
南北成分
スペクトル幅
ペクト 幅
受信強度
________________________________________________________________________________________________________
ヘリシティ
Prof. Oswaldo Massambani –6.2 Wind Profiler Radars
Departamento Ciências Atmosféricas ‐ Universidade de São Paulo –
Brasil 41
台風13号通過(屋久
島)
Yakushima
PRINCÍPIOS DE RADAR
2008/09/18 12:00-18:
00
SNR
鉛直速度
S/N比
鉛直シアー
東西成分
南北成分
スペクトル幅
ペクト 幅
受信強度
________________________________________________________________________________________________________
ヘリシティ
Prof. Oswaldo Massambani –6.2 Wind Profiler Radars
Departamento Ciências Atmosféricas ‐ Universidade de São Paulo –
Brasil 42
台風13号通過(屋久
島)
Yakushima
PRINCÍPIOS DE RADAR
2008/09/18
00
12:00-18:
Vertical Shear of horizontal wind speed
Vertical Shear
鉛直速度
S/N比
鉛直シアー
東西成分
南北成分
スペクトル幅
受信強度
________________________________________________________________________________________________________
ヘリシティ
Prof. Oswaldo Massambani –6.2
Departamento Ciências Atmosféricas ‐
Universidade de São Paulo –
Brasil Wind Profiler Radars
43
台風13号通過(屋久
島)
Yakushima
PRINCÍPIOS DE RADAR
2008/09/18
00
12:00-18:
East-West component
East-west
component
鉛直速度
S/N比
鉛直シアー
東西成分
南北成分
スペクトル幅
受信強度
________________________________________________________________________________________________________
ヘリシティ
Prof. Oswaldo Massambani –6.2
Departamento Ciências Atmosféricas ‐
Universidade de São Paulo –
Brasil Wind Profiler Radars
44
台風13号通過(屋久
島)
Yakushima
PRINCÍPIOS DE RADAR
2008/09/18
00
12:00-18:
North-South component
North-south
component
鉛直速度
S/N比
鉛直シアー
東西成分
南北成分
スペクトル幅
受信強度
________________________________________________________________________________________________________
ヘリシティ
Prof. Oswaldo Massambani –6.2
Departamento Ciências Atmosféricas ‐
Universidade de São Paulo –
Brasil Wind Profiler Radars
45
台風13号通過(屋久
島)
Yakushima
PRINCÍPIOS DE RADAR
2008/09/18
00
12:00-18:
Spectral width
Spectral width
鉛直速度
S/N比
鉛直シアー
東西成分
南北成分
スペクトル幅
受信強度
________________________________________________________________________________________________________
ヘリシティ
Prof. Oswaldo Massambani –6.2
Departamento Ciências Atmosféricas ‐
Universidade de São Paulo –
Brasil Wind Profiler Radars
46
台風13号通過(屋久
島)
Yakushima
PRINCÍPIOS DE RADAR
2008/09/18
00
12:00-18:
Received Intensity
Received
intensity
鉛直速度
S/N比
鉛直シアー
東西成分
南北成分
スペクトル幅
受信強度
________________________________________________________________________________________________________
ヘリシティ
Prof. Oswaldo Massambani –6.2
Departamento Ciências Atmosféricas ‐
Universidade de São Paulo –
Brasil Wind Profiler Radars
47
SUMMARY
PRINCÍPIOS DE RADAR
• WPRs are used to obtain the upper‐air wind and other useful data continuously.
data continuously.
• WPRs
WPRs contains various type, and they use 50MHz band , 400
contains various type and they use 50MHz band 400‐
500MHz band or 900‐1400MHz band.
• In Japan, data of WPRs are used in various scenes, and very useful.
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil PRINCÍPIOS DE RADAR
Sucesso para cada um de vocês ! Ob i d !
Obrigado !
_____________________
Prof. Oswaldo Massambani
________________________________________________________________________________________________________
Prof. Oswaldo Massambani – Departamento Ciências Atmosféricas ‐ Universidade de São Paulo – Brasil 

Documentos relacionados