Ceramics Manufacturing

Transcrição

Ceramics Manufacturing
Expert Fachmedien GmbH
Ceramics Manufacturing
Raw Materials
Silicate ceramics, such as porcelain, are made from materials including kaolin, clay, feldspar and silica sand. Oxide ceramics and non-oxide ceramics, on the other hand,
are based on oxides, nitrides, borides and carbides with
precisely specified composition and particle morphology.
These powders commonly need to be synthetically manufactured since natural products don’t meet the necessary requirements for chemical purity, homogeneity and
stability. The industry trend is toward finer (down to
nanometre-range) and more pure ingredients.
Deposits
Continuous prospecting and exploration – recording of deposits and assessment of clay types and
amounts – is necessary to meet the demands of the
ceramics industry for raw materials. Procurement of
new deposits creates a balance between the consumption and supply for the processing industry.
Open-pit mining is still the prime source for raw materials. The daily extraction capacity reaches 1.500
tons in larger mines. Extraction is strictly monitored
and controlled.
Final Treatment
After shaping and sintering the ceramic components often need additional
processing to meet requirements for dimensional accuracy and surface quality. Cutting and finishing of high-strength ceramics is quite costly due to their
durability and wear resistance and because it requires expensive tools and
utilities. Only abrasive procedures like grinding, honing, and lapping and special techniques like ultrasound- and laser-shaping are effective against these hard and durable materials. Ultrasound technology allows for economical
processing of tough and brittle components. High-performance ceramics like
alumina, zirconia, silicon nitride and silicon carbide can also be processed in
the same manner as glass and glass ceramics. That opens up a number of
new applications in mechanical engineering, medical and laser technology,
and in the field of optics.
Preparation
The natural characteristics of most raw materials and
powders don’t satisfy the needs of the majority of ceramic manufacturers. In addition, the consistency of
composition is – as with any other mineral raw material – insufficient for industrial production. Further
preparation is needed. The ideal characteristics are
determined in the laboratory and processing instructions are compiled for different raw ingredients. The
actual preparation involves grinding and homogenous
mixing of all components in the specified proportions.
Grinding is normally done in aqueous suspension. In
rare cases, dry grinding is also employed. Spray drying is often used after the wet grinding for technical
ceramics. The watery suspension is first atomised
and the droplets are dried in a hot airflow. This results
in a flowable granulate.
Wide Range of Applications
Ceramics play natural and important roles as building materials (roofing tiles, wall and
floor coverings, etc.), in fine porcelain, as practical or decorative containers, and in
bathroom products. New applications in ceramic technology have been continually
developed since the mid-19th century. Ceramic components have solved many problems, especially in industry. High temperature resistance was needed in materials
used for steel and glass production. Also important was the use of ceramic insulation
on electrical wires. Today, artificial hip joints and dental inlays made from ceramic materials give many people an improved quality of life. In modern automotive engineering
ceramic products are used in spark plugs, filters, valves and exhaust manifolds. The
heat shield tiles on the Space Shuttle were made of a low-density ceramic composite
material. Ceramics is one of the most popular and versatile high-tech materials.
Sintering
The complex process in which ceramic particle bodies fuse together under high temperatures is called sintering. Compression
occurs since every powder particle has a
desire to minimize its surface energy. This compaction results in the component shrinking by
20 % without losing its shape. A ceramic product with desired characteristics is created
after firing is performed. Common sintering
temperatures – depending on the raw materials – are between 1.000 - 2.200 °C. The sintering process can be controlled by varying the
atmospheric conditions in the furnace (air, inert gases, etc.). In addition, pressure – up to
2.000 bars – is used for some raw materials
(in processes known as hot or hot-isostatic
pressing and gas pressure sintering).
Shaping
During the shaping process the prepared mixture (in granules or in
liquid form as slurry) are moulded into a form that, for cost efficiency
reasons, should be as close to the required shape as possible. This
minimizes costly finishing. The most economical shaping for further
processing is primarily determined by the component’s geometry and
required tolerance measurements. In any case the work pieces (components) need to be slightly larger at this stage since they shrink by
about 20% during the sintering process that follows. The method of
shaping is determined by the moisture content in the component:
r Press (5 % water)
r Extrusion (25–30 % water)
r Slip casting (60–70 % water)
In hot pressing and hot isostatic pressing two production steps are
combined into one: shaping and firing. In thermal spraying two kinds
of processing are common: plasma- and flame-spraying. This involves spraying of melted ceramic powders, e.g., onto rotating tubular
tools.
Green Machining
The contour finishing of a green body manufactured
by a pressing process, followed by turning, milling
and drilling is called green machining. This is done
before sintering takes place. Green machining is
normally suitable only for single component or small
production volumes.
G5593
No. 2 pp. 71–134
REFRACTORIES 2011,
6159
L VOL.
APRI VOL.
@
02•10 MAY
Z. 64 (2012)
[1] 3–74
0
2
2012
etallurgie
Pulverm
Messen &
Kongresse
m
program
Rahmen
EC 2012,
CERAMIT
n
Münche
Öfen für
Keramischer
Rundblick
che
sMarkt: Keramis
– Verband en
Industrie
der deutsch
umfrage
ft 2012
Wirtscha
Markt: Aktuelle und ihre
trends
die
Rohstoff
ungen auf
Auswirk
rie
mindust
Aluminiu
ium „Charak
Sympos
hren
ngsverfa
terisieru
hen
in der keramisc Erlangen
itung“,
Aufbere
ium
30. Sympos
e“,
etallurgi
„Pulverm
ung
Aus Forschik
und Techn
auf
che Einflüssealten
Klimatis
ungsverh
das Verdicht hen Granun
von keramisc
uniaxiale
laten beim
pressen
Trocken
her
keln keramisc
scher
Spiralwic
etallurgi
und pulverm
en
Grünfoli
-Forum
Technologie
iven
Produktion
h der kumulat
Vergleic
-Emissio
hen CO 2
spezifisc
g mit
Steinzeu
nen von
ffen am
Werksto
ng
anderen
der Herstellu
Beispiel
rrohren
von Abwasse
Keramischer
Rundblick
und Labor
etallurgie
für Pulverm
Retortenöfen
ierliche
für kontinu etrieb
Drehrohröfen
Batchb
und/oder
Prozesse
Prozessntrum zur
Kunden-Testze
Hagen
Feinkeramik.
1
KREUTZ
Evaluierung
sche
und Thermi
Katalytische öfen
rdöfen
Entbinderungs
nt an Standa
Breites Sortime it
Lieferze
en
mit kurzer
elle Lösung
Kundenindividu
Ausgereifte teme
Sicherheitssys
zsysteme
Enegieeffizien
50. Würzburg
er
Ziegel-Leh
rgang 2011
DKG-Jahre
stagung 2012,
Nürnberg
(Teil 1)
DKG-Fach
tagung
„Moderne
Verfahren
in
der Trocknung
stechnik“,
Eschenfel
den
FGK 2020:
Mit dem
Neubau in
die Zukunft
Technologie-Fo
rum
Thermosc
hockbestä
ndige
feuerfeste
Erzeugnis
se
mit geringem
Kohlenstoffgeha
lt
Zirkonoxid
-verstärkt
e
Metall-Ma
trix-Verbu
ndwerkstoff
e für hochbelastbare
Leichtbau
strukturen
ALOX ®
Grinding balls
Grinding rods
Linings
customs
calcinatio
n
CERAMITE
C
Aussteller
-Infos
EC
CERAMIT
er-Infos
Ausstell
n
www.ker
amische
-zeitschr
ift.info
CERAMITE
C-Ausgab
e
CERAMITE
C 2012,
München
&
Messen
Kongresse
Mahlkuge
ln
Mahlzylin
der
Ausmaue
rungen
Lohnkalzi
nation
KR EUT ZON
Zirkontrüb
ungsmitte
l
Zirconium
Opacifier
IT ®
ft 156x226.indd
$
LOHNVERMAHLU
NG
Führend in
der
und Mikronisie eisenfreien Vermahlu
ng
rung für die
chemisch
keramisch
e- und Feuerfest
e-,
-Industrie
.
Please visit KREUTZ
Pavilion 5, Hall 2 at
Visit us at
CERAMITEC 2012
Hall A6 - Stand 506
1–2
Leading in
ironfree grinding
and micronisin
g for the
chemicaland refractoryceramic-industry
Das führende Mahlwerk
lant
The leading Grinding-P
für das
.com
Vergießen
therm
von Stahl
9220
www.naber
Oxidkeram +49 (4298)
2012
+49
+49 (0)
lwerke.d
lwerke.de
(0)27
2773/94
73/9441-60
· Internet:
41-60
www.kre
www.kreutz-ma
utz-mahhlwerke
lwerke.d.de
e
erceram
as
Marble Stone Waste
Raw Material for AutoBricks
claved Sand-Lime
Ceramics
Forum
9&08&7.32
3+.1*&
6&2
.)+353
&,80&7.32
Technological Study
on Weathered Syenite
Raw Materi
Worldwide als
7*4*564
(&
Refractories
&(5$0,7
FSNBOZ
\
VOJDI(
7HDP'D
.
.BZTU
GPS SFGSBDUPSJFT GJOF
4IBQJOH UFDIOPMPHZ
BOEBEWBODFEDFSBNJDT
System
Building Materials
0DFKLQHVD
QG3ODQWV
IRU&HUDPLF
,QVXODWRUV
!75*2,7-
*-&9.38
53+
#2<5*)
*+5&(735.*
6
High-Perform
ance
Ceramics
7HFKQLFDO
&HUDPLFV
&HUDPLF7HF
Special Technologies
Influence of Nonlinear
Elasticity on the Accuracy
of Thermal Shock Damage
Evaluation by the Impulse
Excitation Technique
for
Laminated Multilayer
Thermal Shock Resistant
on the
Refractories Based
Material System Calcium–
Z
(FSNBO
.VOJDI
P
.BZ
#PPUI/
)BMM#
Synthesis and Characterization of Reaction
Sintered CaO Stabilized
ZrO2-Mullite Composites
The Influence of Fume
the
Colloidal Silica on
of
Phase Composition
the MgO–SiO2–H2O
Recycling of Glazed
Scrap
Floor Tile Industry
in Masonry Mortar
ance
High-Perform
7DEOHZDUH
&HUDPLFV
&XVWRPWDL
Ceramics
ORUHG
3ODQWVDQG
Microstructure, Mechanical
0DFKLQHV
and In-Vitro Properties
KQRORJ\LVRX
U3D
Glass
of Zirconia/Bioactive
Composites for Bone
VVLRQ
&XWWLQJHGJH
Remodelling
ZKLWH
VKDSLQJJOD]LQJGHF ZDUHV RU WHFKQLFDO
Effect of Different
FHUDPLF SURGXFWLRQ
QRZEHDFKLHYHGWKD RUDWLRQDQGILULQJZ
Agents on the
Nucleating
LWKSUHFLVLRQTXDOLW\ SURFHVV
IURP PDWHULDO
of Leucite
IRUFRPSOHWHSURGXFWQNVWRWKHVNLOODQG
Crystallization
FRQWURODW
SUHSDUDWLRQ
HYHU\VWDJHRISURG
WR
LRQOLQHVLQFRRSHUDWWHFKQRORJ\RI6$0$
of ZnO Addition
Effect
LRQZLWK5,('+$00IRUVSHFLD
OPDFKLQHVDQGVROXXFWLRQFDQ
on the Microstructure
(5DQG6$
WLRQVDQG
Microwave
and &0,,PROD
Dielectric
Aluminate
XJUI NPTU TUSJOHFOU
*O JOEVTUSJBM TFHNFOUT -"&*4 BSF DIBSBDUFSJ[FE
GSPN
RVBMJUZ
UPMFSBODFT QSPEVDUT
BOE DPOTUBOUMZ IJHI
CZ UIFJS SFNBSLBCMZ DMPTF DPPQFSBUJPO XJUI PVS
JO
GJOJTI 8F EFWFMPQ
FJEFBTUP
VTCSJOHJOHJOOPWBUJW
DVTUPNFSTBOEBSFUI UIJT JO DPNQMJBODF XJUI UIF
TFSJFT QSPEVDUJPO "OE
Z
CFTUQPTTJCMFFGGJDJFOD
SZPV
FFXIBUXFDBOEPGP
5BMLUPVTJOPSEFSUPT
XXXMBFJTFV
-"&*4(NC)
"N4DIFFSMFDL
-8FDLFS
-VYFNCPVSH
1IPOF 'BY
&.BJM JOGP!MBFJTFV
n
3XE6DPD2.LQGG
Expert Fachmedien GmbH
CO2
Interaction between
in Steel
Gas and Aluminium
Liquid
on the
Influence of Fibres
of
Technological Properties
in
Calcium Silicates Made
the Casting Process
Newly
Use of Innovative and
in
Developed Refractories
the Steel Industry
Linings for Claus Reactor
Reality
– Possibilities and
Insulating Silica –
and
Production, Properties
Application
Fields of
New Methods for the
Determination of Cohesion
of
and Friction Angle
Refractories at Elevated
Aachener Straße 172
D-40223 Düsseldorf
[email protected]
BSA 96
S I N T E R E D
E
A G G R E G A T
raw material. The homogeneous
new high alumina refractory
bauxite in monolithics
BSA 96 is an innovative,
fused alumina and
secure supply and
is an alternative to brown
sintered aggregate
European Region ensures
productions in the
and bricks. Almatis
short lead times.
www.almatis.com
Temperatures
10 10 11 16:07
TiO
Properties of BaxSr1-x 3
Ceramics
6FKLOOHUVWUDVV
H'
7HO
:HLVVHQVWD
)D[
GW*HUPDQ\
HPDLOLQIR#
VDPDRQOLQHF
RPZZZVD
PDRQOLQHFRP
ZZZVDFPL
-refractories.info
Review Papers
in
Review of Advances
Refractories
The Federation for
International Refractories
Research and Education
(FIRE) in China
Development of Ceramic
Shock
Tapes for Thermal
Resistant Calcium Aluminate
with
Refractory Materials
Graded Porosity
Fluidand
Thermochemical
of
Dynamical Investigations
Ladle
Refractory Wear by
Slags
High Density Refractory
Aluminosilicates
and
Process Innovations
Energy Saving in Cement
and Waste Combustion
Industries due to Alkali
RefracCorrosion Resistant
tories and Components
Raw Materials
Worldwide
3&56*.
64*56*)
&30.2'
7&.2*)7538,-
;)53(;(0
32.2,
www.interceram
Trade Fairs &
Conventions
UNITECR 2011, Japan
IREFCON 2012, India
0/&54)"1&
'"45"/%13&$*4&'03.*/(5
nfo
MATERIALICA 2012,
Germany
Refractories
/
0$18$
-review.info
FOR THE CERAMIC INDUSTRY
-review.i
Information
!.18
0&7.323+
&66
"5&26+*5
3*+<(.*276
*9&27+35
*0
*+5&(735;
%*&5
02 =!.=!.
3
2 –C
!-37(5*7.2
,&67&'0*
6
.(536758
(785*&2)
*+5&(735;
534*57.*6
3+800.7*
327&.2.2
,
&67&'0*6
++*(73+
3145*66
.9*
!75*2,7-
&2)351
&7.32
3+4&7.7*
32&23
.3
(31436.7
*6&57
www.int
CERAMITEC 2012,
Germany
CERAMITEC Exhibitors’
Trade Fairs
Conventions&
&5,*!(&
0*.(53:
&9*
!.27*5.2,
3+*5&1.
(
31432*
276
www.interceram
CERAMITEC Issue
LAEIS TECHNOLOGY
Trade Fairs &
Conventions
" 7&0;
#
!4
&.2
=.2&0
*4357
*5396/.7*
*5&1.(6
.,-0;3
5386*5&
1.(
!8'675&7*
6!8.7&'0*
+35
.31*).(&
0440.(&7
.326
-.4351
&7.32*(
-&
2.616.2
*(.453(&7.2,
5.2).2,3
+*5&1.(
&7*5.&06
G5593
03
2012
Includi
CERAMITE
C 2012, Germany
" Germany
Aus eigener
KREUTZO
®
Herstellu
ng KREUTZO NIT
NIT SUPER ®
KREUTZO
Our own
NIT SUPER
FF ®
KREUTZO
productio
NIT SUPER
n
EXTRA WEISS ®
PT-Keram ®
Litern
ik in der
R mit 600
industriell
°C
en Umsetzun LBVHT 600/24-G
von 2400
enofeng
mperatur
m-Retort
Multifunk
Lift-Botto
tionaleolumen und Maximalte
Filtersyste
Retortenv
me für die
Stahlschm
Made
elzefiltrat
M
ion
I
in
Aufbereite
K
n von
ny
KREUTZ
für isostatisch Massen
Germa
O
gepresste
N
Produkte
m.de
. contact@naberther
MAHL
. Fax 129
Rohstoff e W E R K E
. Tel
13:36:28
- Oxidkera
ik wieder
06.02.2012
mik
Germany
Mahlwe
Helmut
Bremen, im Trend – neue
rke-Kre
Kreutz
Werk. 28865 Lilienthal/
utz-Stra
Straßeße
stoffe für
Telefon:
Telefon:+49
· D-3570
die
· D-3570
rm GmbH
+49(0)(0)27
8 Haiger8 HaigerNaberthe
technik und Medizin27
73/94
73/94 41-0
E-Mail:
E-Mail:info@kre
Langena
Langen
industriell
info@kreutz-mah
ubach
· Telefax:
aubach
e
Anwendu
utz-mah
1
ngen
Professionelle nslösungen
Dokumentatio
n
c, Münche
Ceramite
.05.2011
22.05.-25
Stand 301/402
Halle A5,
=
>
PRI
L VOL.
59 61 (2012)
No. 1–2 pp.
3–82
Keram.
1
0
2012
nfo
chrift.i
e-zeits
ramisch
www.ke
INTERCERAM
B APRI
L 64. JAHRG
ANG
omniadvert.com
GANG
64. JAHR
No. 1–2 pp. 87–166
INTERCERAM 61 (2012)
FEB RUAR
Keram. Z.
64 (2012)
[2] 79–166
@ 09 05 12 16:41
FRP
www.keramische-zeitschrift.info
www.interceram-review.info
www.interceram-refractories.info