Global Dimming und Brightening: Einfluss der

Transcrição

Global Dimming und Brightening: Einfluss der
Global Dimming und Brightening: Einfluss der
Globalsonnenstrahlung auf den Massenhaushalt von Gletschern
Atsumu Ohmura
Institut für Atmosphäre und Klima
E.T.H. Zürich
[email protected]
www.iac.ethz.ch
Dieser Vortrag wurde mit der Hilfe von folgenden Kollegen ermöglicht:
Dr. Ingeborg Auer, Zentralanstalt für Meteorologie und Geodynamik, Wien
Prof. Dr. Gerhard Adrian, Deutscher Wetterdienst, Offenbach
Dr. Andreas Bauder, VAW, Eidgenössische Technische Hochschule, Zürich
Dr. Reinhard Böhm†, Zentralanstalt für Meteorologie und Geodynamik, Wien
Dr. Ludwig Braun, KEG, Bayerische Akademie der Wissenschaften, München
Dr. Heidi Escher-Vetter, KEG, Bayerische Akademie der Wissenschaften, München
Dr. Gerd König-Langlo, Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhafen.
Prof. Dr. Michael Kuhn, IMG, Universität Innsbruck, Innsbruck
Dr. Wolfgang Schöner, Zentralanstalt für Meteorologie und Geodynamik, Wien
Dr. Anatoly Tsvetkov, World Radiation Data Center, Sankt-Peterburg
Dr. Christian Vincent, Laboratoire de Glaciologie et Géophysique de l’Environnement, Grenoble
PD Dr. Michael Zemp, World Glacier Monitoring Service, Zürich
190
Annual mean global solar radiation for the longest series in Wm-2
180
170
160
150
140
130
120
110
100
90
80
1910
Davos
1920
1930
1940
Locarno-Monti
1950
Potsdam
1960
1970
Stockholm
1980
Wageningen
1990
Mean
2000
2010
2020
3 yr running mean
•
Ohmura, A. and Lang, H., 1988: Secular variation of global radiation in Europe.
Vortrag an International Radiation Symposium, Lille, August 1988.
•
Ohmura, A. and Lang, H., 1989: Secular variation of global radiation in Europe. In
Lenoble, J. and Geleyn, J.-F.(Eds.): IRS'88: Current Problems in Atmospheric
Radiation, A. Deepak Publ., Hampton, VA, 298-301.
• Nur negative Kommentare nach dem Vortrag!
• It is not possible. Radiation is the most stable meteorological element. You
must have measured the deterioration of the pyranometer-sensors.
• You must work with homogenized data series.
• The variation you are reporting is well within the uncertainty of the
instruments.
Budyko (1974)
What will happen, when the new discovery is made.
Total rejection
Long silence
After all, it was real and important.
You were not the first to touch this subject.
You can not write on this subject.
Annual mean global solar radiation for the 15 Alpine stations in Wm-2
15
10
5
0
-5
Deviation from 25 years mean: 1976-2000 in Wm-2
20
~ 140 Wm-2
Davos, Zurich, Locarno, Hohenpeissenberg, Würzburg, Trier, Graz, Salzburg, Innsbruck,
Sonnblick, Hradec, Zagreb/Putijarka, Montpellier, Nice, and Rennes
-10
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
1.15
Normalized course of annual global solar radiation for Europe, based on 27 long-term series
The red line is 5 year running mean.
1.10
1.05
123 Wm-2
1.00
0.95
0.90
0.85
0.80
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
Annual mean zenith transmittance at long-term observatories
1.00
0.95
Mauna Loa
0.90
0.85
Davos
0.80
Tiirikoja
Tartu
Fedosia
0.75
Moscow
Mean of 6 Japanese sites
0.70
Matsumoto
0.65
Pavlovsk
0.60
1900
1910
Pavlovsk
Payerne
1920
1930
Feodosia
Mauna Loa
1940
1950
1960
Moscow
Matsumoto
1970
1980
Tartu
Mean of Japan
1990
2000
Tiirikoja
Davos
2010
Gletscher mit Bw, Bs sowie Bn Messungen
Durchgeführt während mehr als 30 Jahren
Austre Brøggerbreen
Midre Lovénbreen
Engabreen
Storbreen
Gråsubreen
Hellstungubreen
Nigårdsbreen
Rembesdalsskåka
Ålfotbreen
Claridenfirn
Glacier de Sarennes
Vernagtferner
Storglaciären
Rabotsglaciären
3000
Mean mass balance of the Alpine glaciers (mm/a)
2000
Bw
1000
Bn
+5 mm/a2
1500 mm/a
0
-29 mm/a2
-1000
-800 mm/a
Bs
-2000
-2400 mm/a
-3000
-38 mm/a2
-4000
2009/10
2007/08
2005/06
2003/04
Annual net balance
2001/02
1999/00
1997/98
1995/96
1993/94
Summer balance
1991/92
1989/90
1987/88
1985/86
1983/84
1981/82
Winter balance
1979/80
1977/78
1975/76
1973/74
1971/72
1969/70
1967/68
1965/66
-5000
Bw,Bs, Bn: Sarennes, Vernagt, Wurten, Gries
Bn: Aletsch, Argentiere, Saint Sorlin, Silvretta, Hintereis, Kesselwand, Sonnblick, Careser
-2500
-4500
1914/15
1916/17
1918/19
1920/21
1922/23
1924/25
1926/27
1928/29
1930/31
1932/33
1934/35
1936/37
1938/39
1940/41
1942/43
1944/45
1946/47
1948/49
1950/51
1952/53
1954/55
1956/57
1958/59
1960/61
1962/63
1964/65
1966/67
1968/69
1970/71
1972/73
1974/75
1976/77
1978/79
1980/81
1982/83
1984/85
1986/87
1988/89
1990/91
1992/93
1994/95
1996/97
1998/99
2000/01
2002/03
2004/05
2006/07
2008/09
2500
Massenbilanz der Alpinengletscher (mm/a)
1500
Bw
500
Aletsch Bn
-500
Bn
-1500
Clariden Bs
Bs
-3500
Periode der letzten Abbildung
Bw (4 glaciers)
Bs (4 glaciers)
Bn (12 glaciers)
Aletsch Bn
Clariden Bs
1.0
°C
CRUTEM3v Global mean annual temperature (deviation from 1961-70 mean)
with 5 yr running mean
0.8
0.6
0.4
0.70 K/C
0.2
0.0
-0.2
-0.4
Mass balance observations
in the Alps
-0.6
-0.8
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
1950
1960
1970
1980
1990
2000
2010
2020
2.5
°C
2.0
1.5
Annual mean temperature: Global vs. Glacier regions in the Alps
Glacier relevant stations: Jungfraujoch, Sonnblick, Zugspitze, Säntis,
Gr. St-Bernardo, Patscerkofel, and Villacheralpe
1.0
0.5
0.0
-0.5
-1.0
-1.5
-2.0
1850
1870
1890
Global CRUTEM3v
1910
1930
5 year running mean
1950
1970
Alpine glacier region
1990
2010
5 year running mean
4
Mittlere Lusttemperatur im Sommer (JJAS) für vereisten Höhe von Alpen
Abweichung vom1941-1970 Mittelwert von der folgenden Sationen:
3
2
1
1.7 K/C
0
1810
1830
1850
1870
1890
1910
1930
1950
1970
1990
2010
-1
-2
-3
Massenbilanzbeobachtung
4000
Summer balance on Claridenfirn and summer temperature at Säntis J J AS 8°C
Bs in mm/a
3500
7
3000
6
2500
5
2000
4
1500
3
1000
2
500
1
0
1910
1920
1930
1940
1950
1960
Bs
1970
Säntis JJAS
1980
1990
2000
2010
2020
Energy balance equation for an infinitesimally thin surface:
where R: Net radiation
H: Sensible heat flux
LvE: Latent heat of evaporation
C: Conduction
M: Melt
Energy balance equation for an infinitesimally thin surface:
where R: Net radiation
H: Sensible heat flux
LvE: Latent heat of evaporation
C: Conduction
M: Melt
Solar radiation
Longwave in
Latent heat Ev.
Longwave out
Albedo
sensible heat
Subsurface cond.
Melt
Origin of long-wave atmospheric radiation
Ahlmann, H. W:son, 1924: Le niveau de glaciation comme fonction de láccummulation d’humidité sous forme solide.
Geogr. Ann., 6, 223-272.
P/T Diagram for observed ELA
P = Bw + measured summer P
T = free atmosphere T for JJA (DJF)
P
6000
y = 0.4844x3 + 2.7029x2 + 302.49x + 703.84
y = 344.86x + 669.8
5000
4000
mm/a
3000
2000
1000
0
-3
-2
-1
0
1
2
3
4
5
6
7
8
9
Free atmosphere T
-1000
ºC
10
On ELA the following relationship holds:
100
270
25
-5
-2
quasi Stefan-Boltzmann
very small
ε ≈0.87
̴ 100
but variable
(0.77-0.93)
309
90 Wm-2
quasi const.
precipitation
316
4000
P or M in mm/a
3500
3000
2500
2000
1500
1000
500
0
260
265
270
275
280
Mean temperature during the melt period in K
Mean solar radiation
plus 25 W/m**2
minus 25 W/m**2
285
290
P/T Diagram for observed ELA
P = Bw + measured summer P
T = free atmosphere T for JJA (DJF)
P
6000
5000
4000
mm/a
3000
2000
1000
0
-3
-2
-1
0
1
2
3
4
5
6
7
8
9
Free atmosphere T
-1000
ºC
10
Annual mean global solar radiation for the 15 Alpine stations in Wm-2
15
10
5
0
-5
Deviation from 25 years mean: 1976-2000 in Wm-2
20
-10
1930
~ 140 Wm-2
Davos, Zurich, Locarno, Hohenpeissenberg, Würzburg, Trier, Graz, Salzburg, Innsbruck,
Sonnblick, Hradec, Zagreb/Putijarka, Montpellier, Nice, and Rennes
1940
1950
1960
1970
1980
1990
2000
2010
2020
Aerosol direct effect
Baseline Surface Radiation Network (BSRN, WCRP/GCOS)
2.5 Wm-2/Decade
Decadal global change in radiation in Wm-2/Decade
Terrestrial
irradiance
1950-1990
1991-2008
+1.0
+2.5
Solar
irradiance
-2.5
+4.1
Total
irradiance
-1.5
+6.6
ΔT/ Δ R
[K/Wm-2]
0.060
0.053
Danke für Ihre Interesse und Geduld