Campinas WWT - Agence de l`Eau Seine Normandie

Transcrição

Campinas WWT - Agence de l`Eau Seine Normandie
WATER IN THE CITY &
URBAN SANITATION
June 23 rd and 24 th of 2008 – Paris (France)
NEW TECHNOLOGIES IN
SEWAGE TREATMENT USED
IN CAMPINAS, SP - BRAZIL
Hydrographic Basins of
São Paulo State
Minas Gerais
Mato Grosso
do Sul
Grande-Paraná
Aguapeí
Turvo
Grande
Baixo
Pardo
Sapucaí
Grande
Campinas
Pardo
Tietê-Batalia
Peixe
Tietê-Jacaré
Pontal do
Paranapanema
Médio Paranapanema
Mogi-Guaçú
Mogi-Guaçú
Piracicaba
Capivarí
Jundiaí
Paraíba do Sul
Médio Tietê
Sorocaba
Paraná
Alto
Tietê
Alto Paranapanema
Litorâneas
Ribeira do Iguape
Capital
Campinas
General Data
Jaguariúna
Pedreira
Paulínia
Sumaré
Campinas
Morungaba
Hortolândia
Monte Mor
Indaiatuba
Valinhos
•
•
•
•
•
•
1,04 millions inhabitants
796 km2 (309.2 square miles)
491 districts
568 industries
25.833 commercial establishments
3 universities
Anaerobic Systems
X
Aerobic Systems
BIOGAS (50 A 70%)
ANAEROBIC
REACTOR
EFFLUENT (10 A 30%)
ORGANIC
MATTER
C0D
100%
CO2 (40 A 50%)
SLUDGE (5 A 15%)
AEROBIC
REACTOR
EFFLUENT (5 A 15%)
SLUDGE (30 A 40%)
Anaerobic Systems
Advantage and
Disadvantages
Advantages
Disadvantages
•Low amount of solids generated;
•Anaerobic bacteria are sensitive on
inhibition by a large number organic
compounds;
•Aeration not is required, thus saving energy
cost, low operational cost;
•The start of the process can be slow in the
absence of the adopted sowing Sludge;
•Low area demand;
•A post-treatment form is usually necessary;
•Low construction cost;
•The biochemistry and microbiology in the
anaerobic digestion are complex and more
studies still in need to be done;
•Methane production, a combustion gas with
high heat capacity;
•Possibilities of bad smelling, but it can be
controlled;
•Possibility of biomass preservation, without
feeding the reactor for many months;
•Possibility of unpleasant effluent
generation;
•High organic matter tolerance;
•Unsatisfactory nitrogen, phosphorus and
pathogenic removal.
•Small and large scale applicability;
•Low consumption of nutrients.
Wastewater Treatment Plant Piçarrão
Wastewater Treatment Plant Piçarrão
ATTENDS
ATTENDS
221.130
221.130 inhabitants
inhabitants
33/h
Q
=2.002
m
QAA=2.002 m /h
Wastewater Treatment Plant Piçarrão
FIRST STEP
NaOH
RECIRCULATION
SLUDGE
EXCESS SLUDGE
PRELIMINARY
TREATMENT
UASB REACTORS
(4 modules)
SLUDGE
CENTRIFUGE
AERATION TANKS
Polymer
FLOTATION TANKS
DEHYDRATATE
SLUDGE
SLUDGE RECIRCULATION
EXCESS SLUDGE
Wastewater Treatment Plant Piçarrão
RAW WASTEWATER (Q)
0.28Q
0.72Q
UASB REACTORS
3 MODULES
SLUDGE
ANOXIC REACTOR
1 MODULE
AERATION TANK
CENTRIFUGE
FeCl3
FLOCCULATORS
POLYMER
DEHYDRATATE
SLUDGE
FLOTATION TANKS
UV DISINFECTION
SECOND STEP
Wastewater Treatment Plant Piçarrão
Aerial view of the wastewater treatment plant
(1st step)
1
8
7
12
11
6
9
4
5
10
3
2
1
Coarse screens and pumping
7
Aeration tanks
2
Preliminary treatment
8
Blowers
3
Sodium hydroxide
9
Flotation tanks
4
Three modules of UASB reactors in operation
10
Polymer dosing and saturation chambers
5
Module of UASB reactor, in construction
11
Sludge dewatering
6
Flares to biogas
12
Flow metering of effluent
UASB REACTORS
METHANE COLLECTORS
INSIDE THE UASB REACTORS
Wastewater Treatment Plant Piçarrão
UASB Reactor
Parameters
Volumetric
Organic
Loading
Hydraulic
Detention
Time
BOD Removal
Unit
Value
-1
-1
Kg.BOD.m³ .d
1,3
Hours
9,4
%
70
AERATION TANK
Wastewater Treatment Plant Piçarrão
FLOTATION
TANKS
Wastewater Treatment Plant Piçarrão
Operation data
Project Conditions
Value
Flotation Tank
Hydraulic Loading Rate
Average
(m3/m2.day)
Peak
52
88
Number of units
3
Solids Loading (KgTSS/m2d1)
Average
Peak (peak factor:1.7)
92.5
157.3
Area (m2)
1,246
Wastewater Treatment Plant Piçarrão
Operation main average results, concerning
the period from JAN/2007 until JAN/2008
Raw
Wastewater
Final
Effluent
Efficiency
(%) WWTP
Turbidity (NTU)
293
6,57
99,9
Colour (mg Pt-Co.L-1)
1471
98
99,9
BOD5,20oC (mg.L-1)
287,93
21,62
92,5
TKN (mgNH3-N.L-1)
28,73
17,66
38,5
Total Susp. Solids (mg.L-1)
309,15
8,66
97,2
5,0
0,01
1,6 x 1010
1,4 x 1003*
5,0 x 1006**
9,0 x 1009
1,4 x 1003*
1,7 x 1005**
Variable
Sedimentable Solids (mL.L-1)
Total Coliforms (MPN/100 mL)
Fecal Coliforms (MPN/100 mL)
Temperature in the period: (25.0±2.5)ºC / *Min. Value **Max. Value
Wastewater Treatment Plant Anhumas
ATTENDS
ATTENDS
263.181
263.181 inhabitants
inhabitants
33/h
Q
=4.320
m
QAA=4.320 m /h
Wastewater Treatment Plant Anhumas
NaOH
FIRST STEP
PRELIMINARY
TREATMENT
SLUDGE
EXCESS SLUDGE
UASB REACTORS
Polymer
FeCl3
FLOCCULATORS
FLOTATION TANKS
SLUDGE
CENTRIFUGE
DEHYDRATATE
SLUDGE
Wastewater Treatment Plant Anhumas
SECOND STEP
RAW WASTEWATER (Q)
0.72Q
0.28Q
SLUDGE
RECIRCULATION
EXCESS SLUDGE
EXCESS
SLUDGE
UASB REACTORS
3 MODULES
ANOXIC REACTOR
1 MODULE
AERATION TANK
FeCl3
FLOCCULATORS
FLOTATION TANKS
CENTRIFUGE
EXCESS
SLUDGE
DEHYDRATATE
SLUDGE
UV DISINFECTION
Polymer
UASB REACTOR
FLOTATION TANK
FLOTATION TANK IN OPERATION
Wastewater Treatment Plant Anhumas
WWTP Anhumas and Piçarrão
Second step objectives
Second step objectives
The Wastewater Treatment Plant will have to reach higher
levels of N, P and coliforms removal.
Based on the hypothesis of using one of the UASB module
as the denitrification unit, receiving part of the raw
wastewater as main source of organic carbon
Wastewater Treatment Plant Piçarrão
Conclusions
Conclusions
The Wastewater Treatment Plant Piçarrão is constituted by Up flow
Anaerobic Sludge Blanket Reactors followed by Aeration Tank and
Dissolved Air Flotation (dosing cationic polymer) is a very attractive
alternative to treat wastewater and eliminates the need of primary
sedimentation basin, thickener and sludge digester
Comparing the WWTP Piçarrão with a conventional activated sludge plant,
it is possible to reduce sludge production in 38% and global WWTP energy
consumption in 25%, considering this study case
The specifics costs for the WWTP Piçarrão are very attractive:
-€ 228,60 per thousand cubic meter treated
-€ 92,32 construction cost per inhabitant
0.5021kw per cubic meter treated including raw wastewater pumping
COVER
M ANHOLE OF GAS
COLLECTORS
M AIN
FLOW- DISTRIBUTION
EFFLUENT
1
1
EFFLUENT
GAS EXAUSTOR OF HEAD SPACE (TO TREATM ENT)
BIOGAS (TO FLARE)
ONE M ODULE OF UASB REACTORS (8 REACTORS)
M AIN FLOW DISTRIBUTION
FLOW DISTRIBUTION ( SECONDARY)
EFFLUENT COLLECTORS
Ø100 BIOGAS
2.80
6.00
GAS COLLECTORS
14.00
TO SECONDARY
FLOW DISTRIBUTION
14.00
FLOW INLETS
SECTION - 1- 1
Module of UASB reactors
GAS COLLECTORS
RESULTS AND DISCUSSION
Results from first step
The original project foresaw the construction of four
modules of UASB reactors, however only three were
completely built
With all four modules it would be possible to reach higher
stability for the characteristics of the unit’s effluents
Regarding the performance of the
anaerobic reactors
MEAN REMOVAL
BOD5,20
72.0%
TSS
70.7%
SS
92.4%
MEAN REMOVAL
Sulphate
100%
PO43- -P
20.6%
TKN
17.0%
Operation main
main results,
results, concerning
concerning the
the
Operation
period from
from Febr/2006
Febr/2006 until
until Jan/2007
Jan/2007
period
33 UASB
UASB modules
modules effluent
effluent
Variable
Results Average
wastewater (average)
(%)
Raw
pH
7.2-7.6
7.3-7.8
-
BOD5,20oC (mg.L-1)
257±30
72
72.0
22.5±7.0
37.1
-
47±15
39
17.0
NO-3-N (mgNO-3-NL-1)
1.9±0.9
ND
-
NO-2-N (mgNO-2NL-1)
0.04±0.02
ND
-
Solids Total susp. (mg.L-1)
266±70
78
70.7
Sedimentable solids (mL.L-1)
5.0±1.0
0.38
92.4
Ammoniacal-N (mgNH3-NL-1)
TKN (mgNH3-NL-1)
* * minimum and maximum values; ND: not determined; - not calculated; Temperature
in the period: (25.0±2.5)oC
Average operation/maintenance
operation/maintenance
Average
monthly costs
costs (2006
(2006))
monthly
USD/
month
€/
month
%
Garden
maintenance
2,875.56
2,195.88
1.582
General neatness
services
1,624.02
1,240.16
0.893
Security
7,878.23
6,016.11
4.334
190.48
145.45
0.105
30,707.66
23,449.48
16.892
Specific cost
origin
Other
consumption
Employees
TOTAL
COST/month
181,791.74
138,822.78 100.000
Cost of the cubic meter treated wastewater: USD 219,05/1000m3;
€ 167,27/1000 m3
Energy consumption to treat and pump (raw wastewater): 0.5233 kWh/m3
Reference: Febr/2007: USD 1.00 = R$2.10; € 1.00 = R$2.75; R$: Real,
Brazilian currency.
The costs include wastewater pumping to the WWTP (400HP)
WWTP Piçarrão
Operation main results, concerning
the period from JAN/2007 until JAN/2008
Results
Average
(%) WWTP
11±5
99.6
Colour (mg Pt-Co.L-1)
107±55
91.8
BOD5,20oC (mg.L-1)
22±13
91.4
TKN (mgNH3-NL-1)
25±13
46.8
Solids Total Susp. (mg.L-1)
16±8
94.0
Sedimentable Solids (mL.L-1)
≤ 0.7
≤ 0.7
Total Coliform (MPN/100 mL)
2.2x10316x106**
≥ 4 log
Fecal Coliform (MPN/100 mL)
1.4x1035.0x105**
≥ 4 log
Variable
Turbidity (NTU)
**minimum and maximum values;
Temperature in the period: (25.0±2.5)oC
Consultant Specialized in
Wastewater Treatment Systems:
Prof. Dr. José Roberto Campos
[email protected]
E.T.E.
INAUGURAÇÃO VAZÃO MÉDIA MENSAL
500,00 L/s
TIPO DE TRATAMENTO
Anhumas
2007
Samambaia
2001
Sta. Mônica
2004
Piçarrão
2005
330,00 L/s
UASB + LODO ATIVADO
Alphaville
2002
18,00 L/s
LODO ATIVADO POR BATELADA
Arboreto
2000
3,00 L/s
LODO ATIVADO POR BATELADA
CDHU-H
2000
4,00 L/s
TANQUE SÉPTICO + FILTRO
ANAERÓBIO
65,00 L/s
45,00 L/s
UASB + FLOTAÇÃO
LAGOAS AERADAS +
DEC. SECUNDARIO
UASB + LODO ATIVADO
E.T.E.
INAUGURAÇÃO
VAZÃO MÉDIA
MENSAL VAZÃO
MÉDIA MENSAL
Ciatec
1994
11,00 L/s
LAGOA AERADA
Costa e
Silva
1970
20,00 L/s
TANQUE SÉPTICO
Eldorado
2007
7,00 L/s
TANQUE SÉPTICO + FILTRO
ANAERÓBIO
Icaraí
1996
3,50 L/s
TANQUE SÉPTICO + FILTRO
ANAERÓBIO
Santa Rosa
1996
10,00 L/s
LODO ATIVADO POR BATELADA
São Bento
2007
9,00 L/s
TANQUE SÉPTICO + FILTRO
ANAERÓBIO
Paineiras
1965
3,50 L/s
TANQUE SÉPTICO
T. Do Barão
2004
7,00 L/s
LODO ATIVADO POR BATELADA
Vila Itália
1961
1,50 L/s
TANQUE SÉPTICO
Villa Réggio
2002
2,50 L/s
TANQUE SÉPTICO + FILTRO
ANAERÓBIO
TIPO DE TRATAMENTO
E.T.E.
Piçarrão
ESGOTO BRUTO
E.E.E. BRUTO
CENTRADO
TRATAMENTO
PRELIMINAR RESÍDUOS SÓLIDOS
CH4 (METANO)
REATOR
ANAERÓBIO
QUEIMADORES
POLÍMERO
TANQUES DE
AERAÇÃO
ÁGUA + AR
POLÍMEROS
FLOTADORES
PÓS AERAÇÃO
EFLUENTE FINAL
CORPO RECEPTOR
DESIDRATAÇÃO
DE LODO
(CENTRIFUGA)
RECIRCULAÇÃO
DE LODO
LODO
DESIDRATADO
Tratamento Preliminar
Objetivo: remoção de sólidos grosseiros e areia
grade
caixa de areia
medidor
de vazão
adaptado de VON SPERLING, 1996
Tratamento Primário
Objetivo: remoção de sólidos em suspensão sedimentáveis,
materiais flutuantes (óleos e graxas) e parte da matéria orgânica
em suspensão
lodo primário
Fonte: Aula do ProfºCarlos Augusto de Lemos Chernicharo
Departamento de Engenharia Sanitária e Ambiental - UFMG
Tratamento Secundário
Objetivo: remoção de matéria orgânica em suspensão não removida
no tratamento primário
contato entre os
microrganismos e o
material orgânico
contido no esgoto
participação de
microrganismos
matéria
orgânica + bactérias
O2
H2O + CO2 +
mais
bactérias
Fonte: Aula do ProfºCarlos Augusto de Lemos Chernicharo
Departamento de Engenharia Sanitária e Ambiental - UFMG
Ciliado Fixo: protozoário ciliado de hábito alimentar filtrador,
comum na comunidade dos lodos ativados.
Euplotes sp.: Ciliado predador de flocos de lodo ativado,
alimenta-se das bactérias que constituem o floco de lodo ativado,
contribuindo para a renovação da comunidade bacteriana.
Poteriodentron sp.: Colônia de flagelados.
Centropyxis sp: Tecameba (ameba que secreta ou constroí uma
carapaça) também comum no sistema de lodos ativados.
Floco bom: exemplo de floco de lodo ativado. Formado por
bactérias viáveis, bactérias mortas, material particulado
orgânico e inorgânico.
Levemente Curvado: os “fiozinhos” na foto são colônias de
bactérias filamentosas, cuja ausência ou crescimento em demasia
prejudica a eficiência do tratamento, por causar perda de sólidos
pelo efluente final.
Tratamento Terciário
Objetivo: remoção de poluentes específicos e/ou
remoção complementar de poluentes não
suficientemente removidos no tratamento secundário.
Ex: nutrientes , organismos patogênicos
Fonte: Aula do ProfºCarlos Augusto de Lemos Chernicharo
Departamento de Engenharia Sanitária e Ambiental - UFMG
E.T.E. PIÇARRÃO
Eficiência de Tratamento
EFLUENTE BRUTO
PARÂMETRO
EFLUENTE TRATADO
EFICIÊNCIA
RESULTADO
PARÂMETRO
RESULTADO
RESULTADO
DBO
229
DBO
21
91,03%
DQO
407
DQO
54
86,84%
SST
293
SST
14
95,40%
MÉDIA DE EFICIÊNCIA
91,09%
E.T.E. SAMAMBAIA
EFLUENTE BRUTO
EFLUENTE TRATADO
EFICIÊNCIA
PARÂMETRO
RESULTADO
PARÂMETRO
RESULTADO
RESULTADO
DBO
233
DBO
14
93,98%
DQO
418
DQO
52
87,65%
SST
253
SST
15
94,20%
MÉDIA DE EFICIÊNCIA
91,95%
E.T.E. STA. ROSA
EFLUENTE BRUTO
EFLUENTE TRATADO
EFICIÊNCIA
PARÂMETRO
RESULTADO
PARÂMETRO
RESULTADO
RESULTADO
DBO
371
DBO
16
95,69%
DQO
650
DQO
40
93,85%
SST
475
SST
13
97,26%
MÉDIA DE EFICIÊNCIA
95,60%
PRINCIPAIS FATORES QUE INFLUENCIARAM NA
ESCOLHA DA CONCEPÇÃO UASB + PÓS
TRATAMENTO COMPARATIVAMENTE AO
PROCESSO DE LODOS ATIVADOS
• Baixo consumo de energia elétrica
• Baixa produção de lodo
• Menor custo de operação e manutenção
COMPARAÇÃO DE CUSTOS
ETE
SAMAMBAIA
ETE PIÇARRÃO
ETE LODO
ATIVADO
(ESTIMATIVA)
PROCESSO
AERÓBIO
ANAERÓBIO
AERÓBIO
VAZÃO (l/s)
65
320
320
(VAZÃO MÉDIA ATUAL)
(VAZÃO MÉDIA ATUAL)
2.798.235 KWH
(Registrado/ano)
4.895.333 KWH
(Registrado/ano)
CONSUMO
DE
ENERGIA
ELÉTRICA
PRODUÇÃO
DE LODO
13.775.926 KWH
(Registrado/ano)
R$785.449,66/ano R$1.436.110,00/ano R$3.803.494,00/ano
4 t/dia
191.479,00
(R$/ano)
9 t/dia
430.828,00
(R$/ano)
22 t/dia
909.525,25
(R$/ano)

Documentos relacionados

RALF, Reator Anaeróbio de Manto de Lodo e Fluxo

RALF, Reator Anaeróbio de Manto de Lodo e Fluxo Na parte de cima do reator está localizada uma estrutura que direciona o biogás para os coletores de biogás(3). Parte dos sólidos(lodo) e líquidos são direcionados para os compartimentos de decant...

Leia mais