(.) § ffiu ucn o 0 FUTURO DA CULTURA CIENTÍFICA . THE

Transcrição

(.) § ffiu ucn o 0 FUTURO DA CULTURA CIENTÍFICA . THE
-
"
a:
o
-
0 FUTURO DA CULTURA CIENTÍFICA
THE FUTURE OF SCIENTIFIC CULTURE
José Mariano Gago
o
e,
<C
e,
Antonio Ruberti
0 FUTURO DA COMPREENSÃO DAS CIÊNCIAS PELO PÚBLICO
THE FUTURE OF THE PUBLIC UNDERSTANDING OF SCIENCE
John Ziman
Jon Miller
<(
w
u..
,_
..J
(.) 1§
NOVAS PERSPECTIVAS PARA O ENSINO DAS CIÊNCIAS
NEW TRENDS lN SCIENCE EDUCATION
Joan Salomon
1-
:J
ffiu
õ�
Martine Méheut
�
�
:J z
Daniel Gil-Perez
1-
w
..J
-
aul Gagliardi
:J (.)
ucn
u..
/
SIGNIFICADO E PROBLEMAS DA DIVULGAÇÃO CIENTÍFICA
MEANING ANO PROBLEMS OF POPULARIZING SCIENCE
Anne-Marie Laurian
Roger Lesgards
Michel Crozon
Paul Caro
<( o
c w
o a:
a: :J
:::>11- :J
:JU.
U. w
o�
0 FUTURO DA CULTURA CIENTÍFICA
. THE FUTURE OF SCIENTIFIC CUL"ÍtJHE
PRÁTICAS CORRENTES E NOVOS MEIOS DE COMUNICAÇÃO DAS CIÊNCiAS
CURRENT PRACTICE ANO NEW TRENDS OF COMMUNICATING SCIENCE TO THE PUBLIC
Luigi Campanella
Siegfried Hermann
Peter Anderson
Rui Trindade
CIÊNCIA E ANTI-CIÊNCIA: 0 FUTURO DA IGNORÃNCIA, DA SUPERSTIÇÃO E DO CEPTICISMO
SCIENCE ANO ANTI-SCiENCE: "IHE FÚTURE OF IGNORANCE, SUPERSTITION ANO SCEPTICISM
James Randi
Henri Broch
Fernando Gil
INSTITUTO DE PROSPECTIVA
O FUTURO DA CULTURA CIENTÍFICA
THE FUTURE OF SCIENTIFIC CUL TURE
José Mariano Gago (org.),
Antonio Ruberti, John Ziman , Jon Miller, Joan
Salomon, Rau l Gagliardi, Martine Méheut, Daniel
Gil-Perez, Ar�ne-Marie Lau rian , Roger Lesgards,
M ichel Crozon, Paul Caro, Luigi Campanella,
Siegfried
Hermann , Peter Anderson ,
Rui
Trindade, James Randi, Henri Broch, Fernando Gil
Sempre tinha imaginado que as pessoas d o ano
I had always anticipated that the people of the
Oitocentos e Dois Mil e qualquer coisa estariam
year Eight Hundred and Two Thousand odd would
incrivelmente
em
be incredible in front of us in knowledge, art,
conhecimentos, arte, tudo. Mas de repente uma
everything. Then one of them suddenly asked me
mais
avançadas
que
nós
question
that
showed
him
to
be
on
the
delas faz-me uma pergunta que corresponde ao
a
nível intelectual de uma das nossas crianças de
intellectual level of one of our
cinco anos -tpergunta-me se eu vim do sol dentro
children -tasked me, in fact, if I had come from
de um relâmpago!
the sun in a thunderstorm!
Por
momentos,
achei
que
tinha
construído
a
Máquina do Tempo em vão.
H.G.WELLS, A Máquina do Tempo
five-year-old
For a moment I felt that I had built the Time
Machine in vain.
H.G.WELLS, The Time Machine
A Conferência "O Futuro da Cultura Científica" que se realizou em Lisboa, em Novembro de
1 993, i ntegrada na 1 ª Semana Europeia da Cultura Científica (uma iniciativa da Comissão
Europeia) teve a seguinte Comissão organizadora:
The Conference on "The Future of Scientific Cultura" held in Lisbon, November 1 993, within
the first European Week for Scientific Cultura (an initiative of the European Commission) had
the following o rganizing committee:
Organizadores - Organizers: José Mariano Gago (Presidente do Instituto de Prospectiva, Lisboa;
Paul Caro { Délégué aux Affaires Scientifiques, CSI - La
Michel Crozon (Directeur à l'Information Scientifique du CNRS, Paris) Fernando Gil
Professor do Instituto Superior Técnico, Lisboa)
Villette, Paris)
(Directeur d'Études, Ecole de Hautes Études en Sciences Sociales, Paris; Professor da Faculdade de Ciências
Rui Trindade (Instituto de Prospectiva, Lisboa; Jornal Expresso,
José Vítor Malheiros (Editor Secção Ciência, Jornal Público, Lisboa) Michel Demazure (Director,
Palais de la Découverte, Paris) Luigi Campanella (Prezidente della Facoltá di Scienze Mat. Fis. Nat.,
Universitá degli Studi di Roma "La Sapienza"; President of MUSIS, Italia) Antonio Di Meo (Fondazione
Sociais e Humanas da Univ. Nova de Lisboa);
Lisboa)
Istituto Gramsci; MUSIS, Italia)
O Futuro da Cultura Científica, Coordenação de José Mariano Gago .
Lisboa: Instituto de Prospectiva, 1 994.
Instituto de Prospectiva
Av. Elias Garcia 14- P-1000 LISBOA - Fax.: (351 1) 793 46 31
0 FUTURO DA CULTURA CIENTÍFICA
THE FUTURE OF SCIENTIFIC CUL TURE
Í ndice Geral
PREFÁCIO
FOREWORD
INTRODUÇÃO
INTRODUCTION
José Mariano G ago
0 FUTURO D A CULTURA CIENTÍFICA
Antonio Ruberti
INTERVENTION À L A SÉANCE D'ÜUVERTURE
0 FUTURO DA COMPREENSÃO DAS CIÊNCIAS PELO PÚBLICO
THE FUTURE OF THE PUBLIC UNDERSTANDING OF SCIENCE
John Ziman
PUBLIC UNDERSTANDING O F SCIENCE: CONSTITUENCIES ANO STEREOTYPES
Jon M il ler
SCIENTIFIC LiTERACY: AN UPDATED CONCEPTUAL ANO EMPIRICAL REVIEW
NOVAS PERSPECTIVAS PARA O ENSINO DAS CIÊNCIAS
NEW TRENDS lN SCIENCE EDUCATION
Joan Salomon
SCIENCE EDUCATION ANO SCIENTIFIC CULTURE l N BRITAIN: INFLUENCES DURING THE LAST TEN YEARS
Raul Gagliard i
0UELOUES TENDENCES DE L'ENSEIGNEMENT DES SCIENCES EN EUROPE
Martine Méheut
L E RENOUVELLEMENT DES PROGRAMMES D E CHIMIE D E L'ENSEIGNEMI;NT SECONDAIRE FRANÇAIS
Daniel Gil-Perez
THE FUTURE OF SCIENCE EDUCATION OR WHY PUPILS REJECT IT?
SIGNIFICADO E PROBLEMAS DA DIVULGAÇÃO CIENTÍFICA
MEANING ANO PROBLEMS OF POPULARIZING SCIENCE
Anne-Marie Lau rian
TRADUCTION ET DIFFUSION DES SCIENCES E N EUROPE: PERSPECTIVE LINGUISTIQUE ET CONTRASTIVE
Roger Lesgards
"DE L'UTILITÉ CITOYENNE DES MUSÉES DES SCIENCES E T DES TECHNIQUES"
M ichel C rozon
IMPACT OF SCIENCE POPULARIZATION
Pau l Caro
A CLASSIFICATION OF LITERARY "TRICKS" USED lN SCIENCE POPULARISATION
PRÁTICAS CORRENTES E NOVOS MEIOS DE COMUNICAÇÃO DAS CIÊNCIAS
CURRENT PRACTICE ANO NEW TRENDS OF COMMUNICATING SCIENCE TO THE PUBLIC
Luigi Campanella
MUSIS - MUSÉE D E L A SCIENCE E T D E L'INFORMATION SCIENTIFIQUE
Siegfried H e rmann
EL INSTITUTO FEDERAL AUSTRIACO PARA E L CINE CIENTIFICO EN AUSTRIA: SUAS TAREAS, SUS METAS
Pete r Anderson
THE NETHERLANDS NATIONAL CENTER FOR SCIENCE AND TECHONOLOGY. A SCIENCE CENTRE l N CONTEXT
Rui Tri ndade
U M CORPO FRAGMENTADO - TECNOLOGIAS MULTIMEDIA E MUSEUS D E CIÊNCIA
CIÊNCIA E ANTI-CIÊNCIA: 0 FUTURO DA IGNORÃNCIA, DA SUPERSTIÇÃO E DO CEPTICISMO
SCIENCE ANO ANTI-SCIENCE: THE FUTURE OF IGNORANCE, SUPERSTITION ANO SCEPTICISM
James Randi
THE UNIVERSAL CREDULITY O F MAN
Henri Broch
l'APPROCHE ZÉTÉTIQUE DES PHÉNOMENES "PARANORMAUX":
UNE NÉCESSITÉ E N DIFFUSION D E LA
CULTURE SCIENTIFIQUE
Fernando G i l
CIÊNCIA E ANTI-CIÊNCIA: 0 FUTURO DA IGNORÂNCIA, DA SUPERSTIÇÃO E DO CEPTICISMO
PREFÁCIO
Este livro baseia-se nos textos revistos das com u nicações apresentadas à Conferência sobre
o Futuro da Cultura Científica que teve lugar em Lisboa em Novembro de 1 993.
A Conferência, concebida e proposta pelo Instituto de Prospectiva,foi aceite pela Comissão
Europeia como parte integ rante da primeira Semana Europeia da Cultura Científica, uma
iniciativa comunitária promovida pelo Comissário Europeu, Prof. Antonio Ruberti.
Os organizadores da Conferência desejam agradecer à Comissão Europeia todo o apoio
recebido, especialmente do próprio Prof. Antonio Ruberti e de Michel André (DGX II) . Também
querem agradecer à Culturgest e à Fundação Luso-Americana para o Desenvolvimento o seu
apoio a esta iniciativa.
Finalmente, gostariam também de expri m i r a sua g ratidão ao Presidente da República Mário
Soares que abriu a Conferência e aí teve ocasião de exprimir a sua firme convicção sobre as
relações profundas entre a cidadania democrática moderna e a apropriação social da cultura
científica.
E essa foi, de tacto, a nossa principal motivação neste trabalho.
FOREWORD
This publication is based on the revised texts ot the Commu nications presented at the
Conference on the Future of Scientific Culture, held in Lisbon, in November 1 993.
The Conference itself was proposed by the Instituto de Prospectiva to the European
Commission and accepted as part of the first Eu ropean Week for Scientific Culture, an
European i nitiative promoted by the Commissaire Prof. Antonio Ruberti.
The Conference organizers would like to thank the EC for ali its support, and specially Prof.
Antonio Ruberti h imself and Mr. Michel André (DGXII). They also wish to thank Cultu rgest and
the Fundação Luso-Americana para o Desenvolvimento for their support to the Conference.
Finally, we would also like to convey our gratitude to President Mário Soares who opened the
Conference and strongly expressed on that occasion his convictions about the deep interplay
between modern democratic citizenship and the social appropriation of scientific c ultu re. That
was indeed our main motivation in this work.
INTRODUÇÃO
INTRODUCTION
0 FUTURO DA CULTURA CENTÍFICA
0 FUTURO DA CULTURA CIENTÍFICA
JOSÉ MARIANO GAGO
INSTITUTO DE PROSPECTIVA
A abertura da Conferência sobre o Futuro da Cultura Científica (Lisboa, 22 e
23 de Novembro de 1 993) marcou, simu ltaneamente, o início da primeira
Semana Europeia da Cu ltu ra Científica e é emblemático que a iniciativa
comunitária ten ha começado por uma acção pública de reflexão sobre a
cultura cientí'fica e o seu futu ro -através de um debate internacional sobre
algu mas das suas principais vertentes: a educação científica, a comu nicação
e a divulgação científica, a comun icação e a divu lgação científicas, as nossas
relações com o pensamento não científico e a evolução da imagem que o
público tem das ciências.
Este livro tem por base as comu nicações apresentadas a essa Conferência e
posteriormente escritas pelos respectivos autores(1).
Os estudos sociais relativos à compreensão da ciência pelo público - e os
programas de promoção da cultura cientí'fica nele baseados - marcaram
consideravelmente a história das nossas preocupações neste domínio nas
últimas décadas. O trabalho pioneiro de alguns dos especialistas presentes
na Conferência permitiu acrescentar uma base empírica sólida a uma
imagem por vezes simplificadora que os meios científicos e educativos
frequentemente tinham da nebu losa social a que chamamos o público -isto
é, todos nós, e mesmo os próprios cientistas mal saem um passo fora do
território das suas especialidades. Que os indicadores oficiais do. estado da
ciência e da tecnologia em alguns países (mas infelizmente ainda não de
forma generalizada, nem à escala europeia) hoje dêem um lugar destacado à
educação científica e à compreensão e atitudes das populações face à
ciência é certamente um dos maiores sucessos operativos que os estudos
referidos tiveram ao colocar na ordem do dia instrumentos de análise
indicativos e parciais, mas úteis, de descrição da cultu ra científica -e ao
ligá-los desde início ao exercício contemporâneo da cidadania em
democracia.
(1)
Apenas três comunicações, a de John Durant, a de Jean-Marcel Schorderet e a de J. Vitor
Malheiros, não foram transformadas pelos seus autores em textos para publicação.
Por outro lado, e dada a sua natureza, as intervenções iniciais dos comentadores e os próprios
debates não foram passados a escrito, mantendo-se todavia arquivadas as gravações como
eventual objecto de estudo.
- 11 -
0 FUTURO DA CULTURA CIENTÍFICA
Uma outra fonte de pensamento nesta matéria vem da comun idade educativa
que se tem preocupado - j ustamente - com a própria razão da sua
actividade de ensino das ciências a populações cada vez mais vastas. Aqui,
a tónica moderna veio reforçar a nossa atenção sobre os sinais provenientes
da própria aprendizagem, sobre as competências adqui ridas pelo aluno,
sobre os bloq ueios e resistências, sobre as representações sociais q ue a
Escola da Ciência tem de entender se não qu ise r conti nuar cega, surda e
indiferente ao insucesso escolar gritante que, nuns países mais que noutros,
mas em todos de forma generalizada, acompanha o ensino general izado das
ciências q uando para ele se olha do ponto de vista estritamente cu ltu ral:
quando das ciências aprendidas se esquece quase tudo, o que fica afinal ?
Não se trata pois aq ui, especialmente , da compreensão das ciências pela
generalidade das pessoas (como na temática anterior) mas da sua própria
compreensão do mundo natu ral ou social .
J ulgo que a investigação
pedagógica teve um papel decisivo na abertu ra deste problema -q uer por
via do ensino generalizado das ciências nas escolas, quer por via de
programas de formação contínua particu larmente atentos à diversidade
cultural dos seus p(lblicos.
A investigação antropológica, a sociologia e a psicologia social , ao estudarem
essa diversidade e iniciarem um percu rso .de identificação de lin has de
passagem, de afrontamento de diálogo entre as representações provindas da
actividade científica em diversas épocas e o restante tecido de
representações sociais, contribuíram para uma visão actual porventura mais
equilibrada da cultura científica, da escola e do ensino generalizado das
ciências nas suas difíceis relações com as ciências e com o tecido cultural
complexo que nos liga quotidianamente e espontaneamente ao real.
A sessão fi nal da Conferência, a que demos o título Ciência e Anti-Ciência: o
Futu ro da ignorância, da Superstição e do Cepticismo, aborda este mesmo
u niverso de questões que a Escola expõe às ciências sociais de um modo
diurno, e que o peso cultural da astrologia e das chamadas paraciências
colocam de forma nocturna mas igualmente inescapável . Este lado nocturno
é certamente essencial para a compreensão do futu ro do pensamento e da
cultura científica da humanidade nas suas relações com as divisões sociais,
as liberdades, os anseios e os temores que nos atravessam e se cruzam no
caminho do conhecimento, da capacidade de discernimento e na
possibi lidade de escolha.
À divulgação científica e à comunicação cientí'f ica pública esteve também
reservado um largo espaço neste Encontro. A razão está à vista. A Escola, o
ensino das ciências enquanto fonte de pensamento científico vivo e não
enquanto recitativo mágico de autoritarismo formalista com origem,
caricatu ral , na linguagem das ciências, tem de estar no centro da nossa
acção em prol da cultura científica. Dela depende quase tudo o que vier a
seguir.
- 12 -
0 FuTURO DA CULTURA CENTÍFICA
Mas a auto-formação que, após a escola, a vida nos exige tem na
comunicação cientí'fica pública, e na divulgação científica, uma das suas
principais fontes de oportunidade. A riqueza desta oferta, a va riedade e
proximidade dos seus conteúdos, a sua capacidade de resposta não só ao
quotidiano e ·à notícia mas também aos g randes desejos h umanos de
eternidade , à vontade de entender o princípio e o fim, de exorcisar a morte e
o sofrimento, são essenciais na formação da cultura científica
contemporânea.
A divulgação científica está igual mente , e desde sempre, presente na própria
inquietação de que a ciência é feita e é parte cada vez mais central da sua
própria vida. É bom que assim seja e que à cidadania do cidadão mais
esclarecido e informado se ju nte a do cientista mais integrado na vida cultural
da cidade. O debate sobre o futu ro da comunicação científica com o público
passa assim pelos meios de comunicação; os espaços públ icos, os
modernos centros de ciência, ocupam , neste contexto, um l ugar cada vez
mais presente na relação física e simbólica da ciência com o público - como
espaços de verdadeira descoberta científica.
Outros dois temas, pensados inicialmente, não puderam ser incl uídos no
programa final da Conferência.
O primeiro, que deveria preceder a sessão consag rada à compreensão da
ciência pelo público, trataria dos contributos da antropologia cultural e da
história para o nosso entendi mento da formação da cultura científica e dos
saberes nas nossas sociedades contemporâneas.
O segu ndo, cujo debate talvez se pudesse situar após a sessão sobre o
ensino das ciências, trataria da "economia da ignorância" e do estado actual
do pensamento económico relativo ao saber e à ignorância - e, em especial ,
à cultura científica das populações.
Trata-se, como vêem, de um programa que tentou equilibrar o resultado da
investigação com a descrição de situações variadas; cruzar pontos de vista
que raramente têm ocasião de se questionar mutuamente; apelar para a
acção ao procu rar identificar prog ramas e reformas; - mas, sobretudo, não
ficar prisioneiro do presente mas situar-se , prospectivamente, face ao futuro.
O trabalho aqui apresentado abre assim um programa de pesquisa centrado
na problemática do futu ro da cultura científica (e da sua apropriação pela
generalidade das pessoas) que o I nstituto de Prospectiva conta poder levar a
cabo nos próximos anos, desdobrando e aprofundando cada uma das suas
vertentes.
Um debate, de natureza económica e social, sobre a nossa compreensão das
relações entre cu ltu ra cientí'fica, educação e emprego, terá lugar ainda em
1 994, no q uad ro da 2ª Semana Europeia da Cultura Científica.
- 13 -
0 FUTURO DA CULTURA CIENTÍFICA
Por outro lado, o estudo prospectivo da educação cientí'fica como vector da
formação da cultura científica dos cidadãos é hoje objecto de um extenso
trabalho à escala europeia que iniciámos e coordenamos. (A Ciência na
Escola e o Futu ro da Cu ltu ra Científica na Europa) sob a égide do Forum
Europeu da Ciência e da Tecnologia da União Europeia e hoje também com
o apoio da Fundação Calouste Gulbenkian.
Ao interrogarmo-nos sobre o futuro da cultura científica - u niversalmente
porque falamos de ciência; na Europa, porque foi europeu o quadro desta
iniciativa - não são apenas as linhas de transformação do presente que
procuramos seguir para diante, até onde alcança a nossa compreensão
actual das ciências e das sociedades. São os nossos próprios desejos que
interrogamos também: que futuro queremos afinal para a cultu ra científica ?
A citação de W�l ls que ousámos propôr-vos em epígrafe do p rograma fala
disso mesmo. E extraída de uma célebre novela, A Máquina do Tempo,
escrita há quase cem anos.
"Sempre tinha imaginado que as pessoas do ano Oitocentos e
Dois Mil e qualquer coisa estariam incrivel mente mais avançadas
que nós em con hecimentos, arte, tudo. Mas de repente uma delas
faz-me uma pergunta que corresponde ao nível intelectual de uma
das nossas crianças de cinco anos - pergunta-me se eu vi m do
sol dentro de um relâmpago ! Por momentos, achei que tinha cons­
truído a Máq uina do Tempo em vão."
Hoje, a nossa "Máquina do Tempo" é o pensamento e a reflexão conjunta
que soubermos fazer. Decerto não será em vão.
- 14-
0 FUTURO DA CULTURA CENTÍFICA
INTERVENTION DU
PROF. A. RUBERTI
VICE-PRÉSIDENT DE LA COMMISSION DES
COMMUNAUTÉS EUROPÉENNES
À LA CONFÉRENCE
"l'AVENIR DE LA CULTURE SCIENTIFIQUE"
Monsieu r le Président de la République, Mesdames, Messieurs,
C'est un três grand plaisir pour moi de participar à la séance d 'ouverture de
cette conférence sur " I 'Avenir de la Cultu ra Scientifique". Avant toute autre
chose, je voudrais expri mer mes plus vifs remerciements à M . Mário Soares,
d'avoir bien voulu accepter d'honorer de sa présence cette manifestation
organisée en collaboration avec la Commission des Commu nautés
européennes.
La conférence qui s'ouvre aujourd'hui est l'une des premiares manifestations
organ isées dans le cadre de la "Semaine Européenne de la Cultura
Scientifique". Ce n'est certes pas la moins importante .
Importante, cette rencontre l'est en effet au moins à un double titre . Elle l'est
tout d'abord par le contexte particu lier dans lequel elle prend placa, cette
"Semaine Européenne de la Cultura Scienti'fique" qui démarre aujou rd'hui.
Comme beaucoup d'entre vous le savent, la Communauté Européenne màne
depuis plusieurs années une politique de recherche propre. Conçue dans le
but de compléter et renforcer les efforts accomplis en matiàre scientifique et
technologique par les pays européens, cette politiq ue repose sur un principe
fondamental : on entreprend au niveau commu nautaire toutes les actions que,
pour des raisons de coOt, de complémentarité des compétences ou du fait de
la nature des problàmes concernés, ii est plus rationnel d'exécuter à l'échelle
eu ropéenne. Bâtie autour de l 'idée de coopération, cette politique se
matérialise pour l'essentiel seus la forme de prog rammes associant dans des
projets conjoints des u niversités, des centres de recherche et des laboratoi res
de pays eu ropéens différents.
Avec le lancement de la "Semaine Européenne de la Cultu ra Scientifique", la
Communauté prend pour la premiare fois une in itiative de taille significativa
dans le domaine, lié mais conceptuel lement distinct, de la promotion de la
cultura scientifiq ue: domaine de la connaissance et de la compréhension de
la science par le public; de la réflexion, aussi, sur la science et la technologie.
-
15
-
0 FUTURO DA CULTURA CIENTÍFICA
Dans I e cad re de la "Semaine Européenne" , une sene d'opérations de
communication sont simu ltanément organisées dans I'Europe entiêre. Pour
une bonne part, ii s'agit d'actions de diffusion des connaissances
scientifiques: des expositions, des films, des jou rnées portes-ouvertes, etc. A
côté de ces initiatives concrêtes, on trouve toutefois également u n certain
nombre de moments de réflexion, d'échanges et de débats. Réflexion su r la
science et la technologie, leur place dans la société, leurs impl ications
éthiques, etc. Mais réflexion, aussi, sur la place de la science dans la cu lture,
et sur la meilleure maniêre de la communiquer.
Plusieurs conférences sont consacrées à certains aspects particuliers de ces
questions: le rôle de !'industrie dans le développement de l'éducation
scientifique en Europe, à Amsterdam; les possibilités et contraintes de la
communication de la science par l 'intermédiaire de la presse et des médias, à
Genêve, etc.
La conférence d 'aujourd'hui aborde les problêmes liés au développement de
la culture scientifique dans une perspective plus globale, et ceei ne constitue
pas son moindre intérêt.
Tel est en effet le deuxiême aspect de l'importance de cette rencontre: la
portée des thêmes abordés, l'ampleur des enjeux pris en considération.
Affirmer qu'on part ici de rien serait i ncontestablement exagéré. Ce n'est
certes pas la premiêre fois que les problêmes l iés à l 'avenir de la culture
scientifique font l 'objet de discussions. Par le nombre et la variété des
participants, et le caractêre três complet du spectre de sujets abordés, cette
conférence représente toutefois une initiative particu liêrement remarq uable.
Des présentations et échanges de ces deux jours, je ne doute pas
q u'émergeront de nombreuses idées et propositions. En guise d'introduction à
vos travaux, je voudrais me livrer à quelques réflexions sur ce q u i me semble
constituer la signification profonde d'une entreprise comme celle ci. Je
partirai, pour ce faire, du titre de la manifestation .'
Réfléchir sur " I'Avenir de la cultu re scienti'fiq ue" dans le cadre de la " Semaine
Européenne de la Culture Scientifique" , c'est évidemment réfléchir sur l 'avenir
de la culture scientifique en Europe. Mais q u'entendre par là? A cette
expression, on peut je crois attribuer deux sens distincts: l 'avenir de la cultu re
scientifique dans les pays européens; son aveni r à l'échelle européenne.
Sur les aspects liés au premier sens, je ne m'attarderai pas beaucoup. Pour
quelles raisons est-il nécessaire d'améliorer, dans les pays européens, la
con naissance et la compréhension de la science par le public? Ces raisons
sont bien conn ues de l 'ensemble des participants à cette conférence.
Professionnels du domaine, ils consacrent à cette tâche une bonne partie de
leu r temps, une q uantité importante d'efforts, d'énergie et d'imagination.
-
16
-
0 FUTURO DA CULTURA CENTÍFICA
Améliorer la connaissance de la science par la population européenne est
nécessai re, fondamentalement, pour des raisons de caractere politique.
Chaque jour, des grands choix politiques sont effectués en matiere de santé,
d'énergie ou d'environnement, qui impliquent une forte composante
scientifique. Dans une société démocratique, ii est indispensable q u e de tels
choix pu issent être appréciés et jugés en connaissance de cause par la
population. Sans exiger de chacun un brevet de spécialiste, ii faut donc faire
en sorte que les citoyens maltrisent une q uantité suffisante de con naissances
scientifiques; qu'ils saisissent bien , plus particu lierement, le sens même de la
méthode scientifique.
A côté de cette dimension politique, on mentionnera une dimension
économique et sociale. De maniere croissante , I'Europe va avoi r besoin dans
les années qui vien nent de chercheurs et d'ingénieurs. Les carrieres
scienti'f iques et tech niques font cependant aujourd'hui l'objet d'une
incontestable désaffection. 1 1 faut leur restituer tout leur attrait, en ran imant
l'intérêt général , et p l us spécialement cel u i des jeunes, pour la science.
Les troisiemes raisons sont de natu re proprement culturelle: la science et la
technologie jouent un rôle trop important dans I'Europe d'aujourd'hui pour ne
pas retrouver, à côté de la Litterature ou des Beaux-Arts, la place qu 'elles
avaient autrefois dans la culture de "I'Honnête homme".
Je voudrais ici attirer l'attention sur un point particu lier. 11 n'est pas in habituel
d 'entendre présenter certaines actions de promotion de la culture scienti'f ique
comme destinées à remplacer l'enseignement des sciences à l'école, et
affi rmer que la transmission des connaissances ne peut s'opérer q u'en
dehors de celle-ci .
De telles vues ne sont pas justifiées. Comme l'a soul igné le P rofesseu r José
Mariano Gago au récent "Sornmet européen de la science" organisé à
Bruxelles par le Parlement E u ropéen, la seule variable nettement correlée
avec la présence, dans la connaissance commune, de représentations
scientifiques, comme avec l'i ntérêt pour la science et l'ouverture à la vision
scientifique du monde, est le niveau de scolarité. Davantage, ii apparait que
l'on profite d'autant plus, et assimile d'autant mieux l'information transmise par
les magazines, les livres ou la télévision, que l'on dispose d'une base de
connaissances scientifiques scolaires solide.
Responsables de musées, directeu rs de collections et producteurs de
télévision doivent donc concevoir leur action en complémentarité plutôt q u 'en
concu rrence avec celle de l'école. Davantage, ils doivent chercher toutes les
possibilités de collaboration avec le systeme d'enseignement, et mettre en
oeuvre avec lui des projets conjoints. l ls le font certes déjà et de nornbreux
exemples pou rraient être donnés d 'actions de ce type. Toutes les possibilités
existantes sont toutefois loin d'être exploitées. Le potentiel considérable
-17-
0 FUTURO DA CULTURA CIENTÍFICA
représenté par la dimension européenne est surtout ici loin encore d'être
utilisé.
Avec cette réflexion, j'aborde ce qui constitue le deuxiême sens de
l'expression "Cu lture scientifique en Europe": celui de la dimension
proprement européenne des problêmes et des enjeux. La question ici n'est
pas: pourquoi chercher à améliorer la connaissance de la science en Europe?
Elle est: pourquoi agir, dans ce domai ne, à l'échelle européenne? Les
raisons, lorsq u'on y ré'f léch it, ne manquent pas. Ce sont à la fois des raisons
de principe, et des raisons liées aux exigences de l'action.
Raisons de principe, tout d'abord. S'il convient d'agi r dans ce domaine au
niveau européen, c'est que la science, pour une large part, possêde
aujourd'h ui une réalité européenne. Par l'u niversalité de ses méthodes, et
l'identité des objectifs poursuivis, la science, bien sOr, ·est internationale.
Depuis le surgissement, au XVII Iême et X IXême siêcles, des Etats Nations,
son organisation et son financement présentent d'autre part un caractêre
largement national.
Mais la science possêde aussi incontestablement une dimension
spécifiquement européenne. Une telle dimension , elle l'avait déjà dans le
passé. La science n'est pas seu lement née. en Europe . Elle est aussi née
eu ropéenne. Se développant sur base des échanges de correspondances et
de la circulation des grands savant par delà les frontiêres, elle s'est épanouie,
durant les Temps Modernas, dans u n contexte cosmopol ita à l'échelle du
continent. Un espace scientifique européen a existé pendant longtemps, que
nous sommes à present occupés à reconstituer.
Depuis une trentaine d'années, I'Europe de la science est en effet occupée à
se bâtir. Autour, d'une part, des grandes installations de recherche
fondamentale du CERN, de I'ESO ou ce I'EMBL, et des programmes
technologiques de I'Agence Spatiale Européenne; par l'intermédiaire, d'autre
part, des réseaux mis en place dans le cadre des programmes
communautaires ou de l'i nitiative E U R EKA.
Parallêlement, l'observation montre l'existence d'u ne spécificité dans la
natu re des rapports entretenus, en Europe, par la Science et la Culture.
Celle-ci se manifeste sous deux aspects. Le premier est lié à une maniêre
particuliêre de concevoir la nature de la connaissance scientifique. Aussi loin
que l'on remonte, le progrês des con naissances, en Europe, s'est
indissociablement trouvé lié à la réflexion su r la natu re et sur les racines de la
pensée scientifique. Dans une large mesure, cette réflexion était le fait des
scienti'f iques eux-mêmes. Comme aime à le sou l igner le Professeur l lya
Prigog ine, une conception proprement européenne de la science e� iste
indubitablement, q u i retient en elle quelque chose de ce que l'on appela1t au
siêcle dern ier la " Ph ilosophie de la Natu re". Cette conceptio n prévaut-elle
encore aujourd'hui? N'est-elle pas menacée par le développement d'une
- 18 -
0 FuTURO DA CULTURA CENTÍFICA
vision utilitarista et pragmatique? Répondre à ces questions est exactement
l 'objet d'u ne autre conférence organisée à Paris dans quelques jours dans le
cadre de la "Semaine Européenne de la Cu ltura Scientifique".
La spécificité des rapports de la Science et de la Cultura en Europa se
manifeste également d'u ne seconde maniàre. Comme le rappelle souvent le
paléontologue et três justement renommé écrivain scienti'f iq ue américain
Stephen Jay Gould, les plus grands savants eu ropéens n 'ont jamais hésité à
utiliser le langage ordinaire pour commu niquer leurs vues. Galilée, déjà,
décidait d'utiliser l'italien plutôt que le latin pou r publier ses découvertes; et
Darwin , lorsqu'il s'est agi de présenter la théorie d� l 'évolution, à choisi pou r
ce faire !e moyen d'ouvrages de grande diffusion. A ces noms, o n ajoute rait
sans difficulté plusieurs dizaines d'autres: en physique, ceux de Poincaré ou
d'Einstein; en biologia, de Medawar ou d'Haldane, etc. Tous se sont montrés
capables et soucieux d'exprimer les résu ltats de leurs travaux dans u n
langage commun, sans pour autant simplifier ou dénaturer l e s concepts.
Dans plus d'un cas, le produ it de cet effort est de surcroit d'une extrême
qualité littéraire.
La deuxiàme catégorie de raisons d'agir à l'échelle européenne dans le
domaine de la promotion de la cu ltura scientifique, tient à des considérations
de caractàre pratique. lei aussi , oeuvrer en collaboration permet en effet
d'obtenir u n impact impossible à atteindre en agissant à l'intérieur des
frontiàres d'un seul pays. Dans le contexte de la discussion des accords du
GATT, comme vous le savez, ii est beaucoup question dans la Communauté
de la "spécificité culturelle" , et du meilleur moyen de défendre la cultura
européenne face aux produits d'Outre-Atlantique. Les considérations émises
à ce sujet en général s'appliquent également au domaine particulier de
l'information et de la communication scientifiques. lei aussi, dans bien des
secteurs, l 'offre américaine ten d en effet à s'imposer.
Face au grand professionnalisme des responsables américains des musées,
de l'édition ou des télévisions, engager des mesu res de caractàre
exclusivement défensif serait inefficace et peu indiqué. Dans ce domaine
également, c'est positivement q u'il faut réagir. Exploiter, tout d 'abord . les
,
possibilités offertes par le grand marché européen en train de se const1tuer,
en mettant en place des systàmes de traduction mutuelle d'ouvrages
d'information scientifique, ou d'échanges de programmes télévisés. Et
améliorer la qualité de l'offre, par des échanges d'information et d'expérience
entre professionnels des différents pays.
La dimension européenne, c'est de su rcroit la mise en valeur de cet atout
unique que possàde notre continent: cette variété de styles, de culturas et . de
visions qui fait sa richesse et sa spécificité. A l'occasion de la "Sema1ne
Européenne de la Cu ltura Scientifique", des n uméros spéciaux des revues
ALLIAGE et " Public Understanding of Science" ont été publiés sur le thàme
"Science et Cu ltura en Europa". Leur propos est de dresser un bilan de la
-
19
-
0 FUTURO DA CULTURA CIENTÍFICA
situation , en Europe , des rapports entre Science et Cultura, plus
particul iêrement de la situation en matiêre de promotion de la connaissance
scientifique par le public. Le tableau émergeant de cette double publication
spéciale est frappant par sa variété: perspectives, outils de prédilection ,
institutions impliquées, chaq ue pays possêde ses traditions. Cette diversité
constitue un capital précieux, qu'il i mporte à la fois de préserver et de mettre
en valeur- .
Tel est três précisément l'objectif de la "Semaine Européenne de la Cultu ra
Scientifique". , L'ambition fondamentale de cette initiative est de démontrer
que, dans ce domaine également, i i est à la fois possible et nécessaire
d'opérer au niveau européen. Dans l'action concrête, et pou r la mise en
oeuvre de projets dans les différents secteu rs; dans la réflexion, aussi, sur la
science et sa place dans la société, comme sur la meilleure maniêre de la
fai re con naltre.
La "Semaine Européenne de la Cultura Scienti'f ique" n 'a en effet pas
seulement pour ambition de rapprocher du public la science comme telle. Elle
veut faire mieux connaitre la science dans sa dimension eu ropéen ne: la
coopération scientifique européen ne d'une part, telle qu'e l le est menée par
les grands organismes européens de recherche et la Communauté; la
science, d'autre part, dans les autres pays européens: d'autres institutions;
d'autres grands chercheu rs; d'autres maniêres, aussi, de percevoir la science
et de la présenter.
·
Européens dans leur contenu, tous les projets de la "Semaine E u ropéenne de
la Cultura Scientifique" le sont aussi dans leurs conditions de mise en oeuvre,
puisq u'ils sont préparés conjointement par des organismes de pays différents.
Et en associant à u n stade três précoce les medias, c'est u n public eu ropéen
q u'on a cherché à atteindre.
Depuis q uelques années, les initiatives visant à améliorer la con naissance et
la compréhension de la science par le public tendent à se développer un peu
partout en Europe. La formule de "Semaines de la science", plus
particuliêrement, tend à se répandre. De telles i nitiatives existent à présent en
ltalie, en France, aux Pays-Bas, en Grande-Bretagne, en Suêde. Depuis cette
année, une "Semaine de la science" est également organisée au Portugal.
Toutes possédent leur personnalité et leur style - expression de la spécificité
des cu lturas des pays qui les organisent. Entre ces manifestations, comme
entre cel les-ci et la " Semaire Européenne" , d'incontestables possibilités de
synergies existent, qu'il conviendrait d'identifier et d'exploiter.
Les 8 et 9 décembre p rochains, se tiendra à Bruxelles la Conférence de
clotu re de la premiare " Semaine Européenne de la Cu ltu re Scientifique" . Son
objectif principal est de dresser le bilan de cette opération de caractêre pilote.
Corollairement, ii s'agi ra de commencer à examinar la maniàre dont ces
initiatives d'objectif et de natu re semblables pou rraient être mutuellement
- 20 -
0 FUTURO DA CULTURA CENTÍFICA
valorisées; de débattre , plus généralement, de la façon dont pou rraient être
combinés dans l'intérêt commun tous les efforts menés en Europa pour mieux
fai re connaitre et comprendre la science.
Une telle tâche représente une entreprise de grande ampleu r, qui ne sera pas
menée à bien en un jour. SOr qu 'au delà des q uestions techniques ou de
fond, les débats de cette conférence sur "I'Avenir de la cultura scientifique"
apporteront sur ce point d'utiles analyses et suggestions, je ne puis, pour
conclu re, que vous souhaiter d'excellents travaux.
Je vaus remercie de votre attention.
-
21
-
FUTURO DA COMPREENSÃO
DAS CIÊNCIAS PELO PÚBLICO
THE FUTURE OF THE PUBLIC
UNDERSTANDING OF SCIENCE
0
0 FUTURO DA CULTURA CIENTÍFICA
PUBLIC UNDERSTANDING OF SCIENCE: CONS1"1TUENCIES ANO STEREOTVPES
JOHN ZIMAN
EMERITUS PROFESSOR OF PHYSICS
UNIVERSITY OF BRISTOL, ENGLAND
SUMMARY
"The Public Understanding of Science" involves four different constituencies:
- The general public encompassing the great majority of the
popu lation, with no special education or involvement in science;
.The attentive public, broadly interested or vocationally involved in
scientific activities;
-The scientific community, actively "doing" science, or reacting di rectly
to scientific messages;
- Mediators and metascientists, presenting views on the natu re and
social role of science.
Each constituency has different opinions about the other groups. Differing
ideas about how science shou ld be "u nderstood" reflect differing g roup values
and interests.
-Scientists have a deficit model of the general public, stereotyped as
lacking cognitive u nderstanding;
- The scientism prevalent amongst scientists is mirrored i nversely as
anti-scientism in the general public, stereotyping scientists as lacking
ethical u nderstanding;
-Scientists use a linear model of technological change, distancing
themselves from the instrumental u nderstanding favou red by the
attentive public;
- Many metascientists now promulgate constructivist stereotypes of
science, emphasizing the cultural relativism ot ali " u nderstanding".
These stereotypes are neither quite false nor completely i rreconci lable. But
their conflicting interpretations and objectives make this an area of intrinsic
intellectual and social tension.
- 25 -
0 FUTURO DA CULTURA CIENTÍFICA
"PUBLICS UNDERSTANDINGS OF SCIENCES"
"What do people think about science?". lt seems a simple question . lt ought
to have a straightforward answer. But with in a few hours you will be find
yourself talki ng about " Publ ics Understandi ngs of Sciences", and then
explaining why your answer only refers to one combination of the many items
'from three different lists: diverse "publics"; several distinct senses of
" understanding"; a vast range of heterogeneous scientific and tech nological
activities.
People differ profoundly in their reactions to scientific messages. These
differences can easily be explained by their social situation. People who have
to deal very freq uently with such messages - in the extreme case,
professional research scientists - are bound to develop qu ite different views
about them than people for whom scienti'fic news stories are occasional and
marginal.
These different "publics" are not separable from one another around their
edges. Although they can be classified according to many different criteria,
such as prior ed ucation , calling, social status, or personal wealth , these
classes always overlap or merge at their bou ndaries. Some people may even
find themselves in different publics at different times, accord ing to
circu mstances.
Various groups and sub-groups of the general public define themselves more
by the attitudes that thei r mernbers take to science than by their objective
circu mstances. For example, they may be distinguished by their emphasis on
one or other of the several forms of "understanding" . Scientists and teachers
of science tend to emphasize the cognitive interpretation - "What do you
know?": societal activists concentrate on ethical attitudes - " Do you approve
of it? ": politicai economists are interested in the instrumental aspects - "What
can it do for you?": people with a philosophical bent ask - "What does
science mean ? " . People who apparently understand science very wel l in one
of these dimensions may not do so at ali in other important ways.
"Science" itself, as everyone knows perfectly wel l , is a word that is often
applied narrowly to a limited nu mber of discipli nes, or very broadly to i nclude
almost any orderly body of codified knowledge. lt has proved almost
i mpossible to give a formal criterion for testing whether any particular body of
information, technique or theory is "scienti'fic". Even amongst the academic
disciplines recog nized as sciences in the narrow "Anglo-Saxon " tradition,
there are very large differences of subject matter, approach and method .
Many professional natural scientists ought to classify themselves as "lay
persons" when it comes to the social sciences, or even i n relation to
neighbouring scientific fields where they have no personal expertise.
-
26
-
0 FUTURO DA CULTURA CIENTÍFICA
THE GENERAL PUBLIC
One of the principal difficu lties in this field of study is that the largest and
most important social group that it deals with is defined negatively. For many
purposes, it seems sufficient to reter to "the publ ic" , o r "the general public" as
including everybody, you ng or old, rich or poor, who is not in some more
specific way connected with science. By a religious analogy, they are often
referred to as "lay persons" , thus indicating their individual lack of particular
bodies of expert, usually esoteric and special ized , knowledge.
The concept of a general public is thus attached to the notion of residual set
without any properties except the lack of a particular property. lt does not
follow that any particular member of the general public is otherwise deficient
in technical scientific knowledge, uninterested in scientific developments, or
alienated from science and technology. lt is important to avoid a circular
defin ition that would automatical ly imply tl1at ali members of such a group are
ignorant and disaffected in relation to science.
lt may be that a statistical ly typical member of the general public could be
described in such terms, but such a crude and negative stereotype should
not be taken to represent the very wide range of "understand ings" that
people have on such matters. lt might suggest, for example, a strong
correlation between knowledge of science and approval of particu lar scientific
developments, wh ich is certainly not justifiable a priori.
THE ATTENTIVE PUBLIC
Politicai analysts tal k about the attentive public for politics - that is, the
fraction of the population in a democratic country who regu larly fol low and
care about politicai developments in some detail , without actually holding or
seeking office in a politicai organization. This is obviously a very vague
concept, with great u ncertainty both about what constitutes "politics" and
what should be counted as "attention " . The sarne vagueness applies to the
corresponding group for science.
A large number of callings obviously involve some element of science, if o_n ly
as a sou rce of practical knowledge. This would include most people work1ng
in medical and engineering organizations, as wel l as in some "societal"
services such as u rban planning and the provision of welfare. Large public
and private organ izations employ managers, advisers, policy analysts and
communications experts who need to be aware of scientific developments
that might impinge on their technological or ad min istrative arrangements.
The trouble is that this criterion could be interpreted loosely to cover most of
the adu lt popu lation. Farmers, police officers, industrial workers - even shop
assistants, car drivers and parents - have to use sophisticated equipment
-27-
0 FUTURO DA CULTURA CIENTÍFICA
derived from the science of. a few years back and could wel l be helped by
knowledge of the latest findi ngs. But much of this equ ipment is desig ned to
be "use r friendly", and can be operated by anyone who can acquire the
necessary competence in practice. Some types of employment do indeed
require more than a smattering of basic scientific knowledge , and more than
casual information about cu rrent scientific developments. But to assume that
ali such callings imply an active interest in science would beg the question of
how much scientific knowledge they actually need .
A formal educational criterion would beg another important question.
Something more than basic literacy would normally be required for somebody
to become "attentive to science". But many people in this g roup have had
very little formal education in science, whilst there are many, many others
who almost thankfu l ly drop ali the science that they have been laboriously
taught at school. This would even apply to most of the teachers responsible
for the general education of children in primary schools.
Nevertheless, th. e concept of an "attentive public", vague as it m ust be, is a
continuai reminder of the diversity and heterogeneity of i nterests and
knowledge concealed u nder the blanket term "the public". lt is wrong to
assume that everybody who is not clearly a member of the scientific
community is passive, indifferent or hostile to science as a whole. A
signHicant proportion of the population - perhaps a few per cent - take
positive steps to follow what is happening in science, even if it is only through
occasional television prog rammes, newspaper articles or popular science
magazi nes. This group may not differ appreciably in other respects from "the
general pu blic" . lts members are not conscious of belonging to a
"community" , except through the innumerable specialized interests they may
share
in
smaller groups,
as computer buffs,
conservationists,
hypochondriacs, and so on. But they do, in a sense, add up to a
"constituency" for science - even when they are protesting against its
misapplications!
THE SCIENTIFIC COMMUNITY
The term "public u nderstanding of science" would be q u ite meani ngless
u nless there were a group of people with quite a different u nderstanding of
science from "the public" . This is not a mere qu ibble. One of the features of
science is that it is " knowledge without a knower " . That is to say, it resides in
the libraries and in the experience of innumerable practitioners, rather than in
any single human mind. Nobody understands ali of science at once, and
even the most learned scientists would freely admit that they only u nderstand
partially what is " known" within their own special ized fields.
This constituency should therefore be defined qu ite broadly, to include
everybody who is active in "doing" or " making" science, or reacting di rectly to
- 28 -
0 FUTURO DA CULTURA CIENTÍFICA
scientific messages. The social stereotype of "the scientist" is constructed
around the images of the u niversity professor winning fame for his
fundamental discoveries and of the industrial research worker producing or
developing useful inventions. But the First Circle of people with Ph D's, or
equivalent professional qualifications, is su rrou nded by a mass of research
assistants, postgraduate students, tech nical staff, and the like, ali involved in
the pursuit or application of scientific knowledge.
Certain other professional practitioners, such as medical doctors, engineers,
and other technological experts, might also be included, since they have to
study science nearly up to the research levei before they are qualified . The
sarne applies to people who teach science subjects in high schools and
further education col leges: they not only need science degrees to start their
careers, but are also expected to keep in touch with further developments as
the years roll by.
lt is convenient to reter to this constituency, very loosely, as "the scientific
community" . But even the tech no-scientific First Circle does not form a
coherent social group with a common pu rpose. The division between the
natural scientists and the social scientists is notorious, not only as perceived
by the general public but also in the understanding of each group by the
other. The distinctions between the groups engaged in different academic
disciplines - for example, between researchers in the biological and physical
sciences, or even between physicists and chemists often go deeper than
mere friendly rivalry. There are similar internal fissu ras between the
researchers who make basic scientific discoveries and the tech nologists that
apply them . Again , there is little equal ity or fratern ity within the " Republic of
Learning" between those who make careers in research and those who are
fully employed in teaching. To put this another way: public u nderstanding of
the supposed inte llectual u nity and social solidarity of "science" is itself a
matter for questioning.
MEDIATORS ANO METASCIENTISTS
l n principie, ali members of the scientific community should take some
personal responsibility for maki ng their work intel ligible to the public. l n
practice, this turns out to b e such a demanding task that i t i s usually handed
over to full-time experts. The emergence of a professional body of scientific
mediators - jou rnalists, broadcasters, authors, museum staff, et alia - is a
major feature of the relationship between science and the public.
Although this group is not very large in size, and not at ali coherent, its role is
clearly important and delicate. There is a narrow line between scorn ing
genuine scientific val ues and being as incomprehensible as the scientists
themselves when they try to explain science to "ordinary" people. The
mediators should not be regarded as a passive instru ment of comm u n ication,
-
29
-
0 FUTURO DA CULTURA CIENTÍFICA
but as an active "constituency" , whose distinctiveness and independence
req uire careful consideration.
Another small but influential group consists of people who have reflected on
and/or publicised views on the nature and social role of science. This is a
general theme with many different aspects. Academically speaking, it can be
approached phi losophically, sociological ly, historically or political ly. Some of
these works celebrate the ach ievements of science; others d isparage or
condemn them. Some of them are deeply scholarly in the professional sense;
others are amateu rish and superficial .
Metascience has outgrown its acadernic origins in the history and phi losophy
of science, and now occupies a substantial multid isciplinary area
comprehensively labelled "Science and Tech nology Studies" . This activity is
beginning to exert an influence on science education, and claims advisory
authority in science policy, research management and the economics of
technological innovation. But it is also the stamping ground of worki ng
scientists and science writers with a variety of opinions about science and
SOCiety.
These findi ngs and opinions can not be discon nected from accou nts of the
actual achievements of scientific research and technological development.
Working scientists often consider that metascientists convey q u ite false
impressions about science to the public, and regret that they are given so
much serious attention in i ntel lectual and politicai circles. B ut this is the
scene of much activity with its own internal dynarnic. l n many ways,
therefore, the metascientists belong with the mediators in a broad
constituency that occupies the interface between the scientific community
and the public.
IDEOLOGIES ANO STEREOTYPES
Public understanding of science is only i nteresting as a dynamic process.
The q uestion is: how does it develop, and how can that development be
influenced? Communication is a two-way process of social i nteraction,
involving the interplay of ideas as wel l as of groups of people. lt is a drama
whose interpretation depends on the views that each group has of itself, and
of the other g roups. These views are not mere by-products of the i nteraction.
People do not become attentive to science, or even to particular items of
scientific information, as if they were becoming aware of a an u nsuspected
New World: science is with them from childhood as an existential feature of
the world around them. Even if they have very little personal contact with it,
they acq u i re conceptions of it from their parents, their teachers, their friends,
and especially the audio-visual media.
-3 0 -
0 FUTURO DA CULTURA CIENTÍFICA
These stereotypes are just as il l-defined and d iversa as the constituencies
within which they are cu rrent. But they are social institutions, not personal
constructs. People don ready-made garments of opinion on this subject. The
child or adult who bu ilds up an idiosyncratic image of science and scientists
is rare indeed .
The idea that public u nderstanding of science is distorted or limited by such
stereotypes is a commonplace in the scientific community. But this idea is
itself stereotypical. lt is part of a general ideology held by scientists
concerning their own relationships to society at large. Public understanding of
science is also severely distorted and limited by the scientists" stereotypes of
"the public" , as wel l as by other general ised attitudes cu rrent amongst
mediators and metascientists.
Much of what is said about public u nderstanding of science is little more than
a u ncritical recitation of views derived from one or another of these
stereotypes, ignoring the contradictions between them or asserting that these
could be resolved decisively by a straightforward change of attitude. But it is
not enough to expose the fal lacies, reconcile the contradictions and conflate
the stereotypes into a general consensus. Many of the familiar difficu lties of
taki ng action in this field arise from the genuine interests that u nderlie these
conflicting ideologias. To make any sense of this subject, it is essential to
consider at least fou r widely held but different conceptions of the natu re and
social role of science, and to see how these reflect the views of the different
constituencies about themselves and each other.
THE DEFICIT MODEL
The simplest reading of the phrase "public u nderstanding of science" derives
directly from a deficit model. Science is defi ned as a body of knowledge that
is understood by scientists. People who are not scientists Jack this
knowledge. The i mplication is that they should make good this deficiency.
Naturally enough, this is the unquestioning view of most scientists. Their
stereotype of the public is summed up in one attribute: "ignorance". They find
it deeply reg rettable, if not downright scandalous, that people in general do
not know even the simplest scientific facts and that they completely
misunderstand the most elementary scientific theories. They are appalled
when the processes and resu lts of research are misrepresented. This model
therefore generates an unfavourable stereotype of the mediators, who are
supposed to be responsible for conveying scientifically correct informa� ion to
the public. The attentive public, on the other hand, have a favou rable 1 mage
in the scientific community, because they share with " real" scientists an
appetite for scientific knowledge, and h umbly seek to cure their ignorance.
-
31
-
0 FuTURO DA CULTURA CIENTÍFICA
This cognitive interpretation of " u nderstanding" scarcely needs further
j ustification. Nobody disputes that scientific knowledge plays a very important
part in human affairs. Most of this knowledge is highly specialised, and
req uired only occasionally for the exercise of correspondingly specialised
expertise. But many qu ite general social roles can only be performed
satisfactorily by people who already have at their command certain basic
elements of this knowledge, or have easy access to these when needed . l n
the end, it must surely be better for one to know, rather than not to know,
something that might turn out to be relevant to ones health , wealth or
happiness, or to the welfare of the society in which one lives.
Nevertheless, this type of arg ument conceals some questionable
assumptions. lt takes it for granted that "science" is cognitively privileged that is, that one of the pecu liar feature of an item of scienti'f ic knowledge is
that it comes with a label telling us quite precisely whether it is valid or not. l n
other words, the deficit modal i s based o n a belief that science has a way of
arriving at "facts", o r "truths" that are for ali practical pu rposes indisputable,
and hence must be given massive weight wherever they apply.
Unfortunately, as philosophers have been demonstrating for centuries, this
general belief is itself highly disputable, even in the weak form that freely
admits scientific u ncertainty and fallibility. l nsoluble problems also arise when
any attempt is made to demarcate knowledge worthy of this label from other
forms of relevant information or speculation . lt turns out to be i mpossible to
defend the notion that "science" denotes an essentially u nitary body of
knowledge derived by a common method . Needless to say, scientists
themselves are in no better position than any other lay person to assess the
"scientificity" of knowledge outside their specialities.
On the face of it, the deficit modal is an objective accou nt of an easily
recognisable social situation . But it is basically m uch weaker and more self­
serving than its supporters claim . lt obviously favou rs the communal i nterests
of scientists to be viewed as the proprietors or gatekeepers of a specially
valuable resou rce. This is a fundamental featu re that appears very clearly
whenever the formal credentials of science are challenged in social life. The
general public begin to doubt the credibility of ali science, and of the
_
_ fellow
scientists who i mmodestly foster this unflattenng
stereotype of the1r
citizens.
·
SCIENTISM ANO ANTI-SCIENTISM
The official pronouncements of the scientific commun ity take no more than a
modest pride in its capabilities, and express little more tha � si � cere regret
that these are not given wider employment. But many sc1ent1sts actually
believe that science is far and away the best of obtaining reliable knowledge
about the world, whether for contemplation or action. ln their , eyes. 1 1 has a
-
32
-
0 FUTURO DA CULTURA CIENTÍFICA
unique status. When this knowledge is available, it automatical ly tru mps ali
other sou rces of information or u nderstanding. Even when it is not available,
they insist that it should be sought zealously, for nothing is certain without its
support.
Dogmatic, fundamentalist scientism is no longer a fashionable public
doctrine, and now has few systematic exponents. But it u nderlies many less
extreme beliefs that are held very widely in society at large. "Scientific
methods" of observation, testi ng, inference, therapy, invention , desig n , etc.
are supposed to be exceptionally efficacious. "Scientific experts" are
supposed to be exceptionally knowledgeable. The "scientific attitude" is
admired for its cool objectivity and freedom ·from bias. Taken together, these
beliefs add up to an ideology that plays an important part in the public
u nderstanding of science.
This influence is often benign. lt shifts the spotlight from scientific knowledge
as a product to scientific activity as a process. lt suggests that a basic
understanding of the nature of science is more significant - and perhaps
more attainable by the non-scientist - than a scientific u nderstanding of
Nature. l n effect, it gives weight to the val ues at the heart of our most
cherished ·politicai traditions, such as d ispassionate analysis, attention to
empirical facts, distrust of "authority" , open discussion of controversial
issues, and so on.
l n many ways, scientism is the ethical cou nterpart of the deficit model . The
moral aspects of science are idealised in the interests of the scientific
community. The attentive public, in particular, are fed glowing accou nts of the
heroic virtues of famous scientists, and are not told very much about their
cowardly vices. ln reality, science is a social activity, with its inevitable share
of fraud, greed, vanity and exploitation. The mediators and metascientists
have not been than ked for drawing public attention to such disillusioning
"pathologies".
Scientism also evokes its converse - the cornplementary ideology of anti­
scientism. Many people hold that science exerts an undue, even pernicious
influence in h uman affai rs. lt is believed to be esoteric, aloof and i n human. lt
is said to support u nnatural views of the world, and to be a major source of
grave damage to l ife, art and the h uman spi rit. lts magic is described as
black, rather than white - and so on.
This view of science is by no means irrational. lt can be supported by
reference to many of the ills of our day, in a life-world that has been reshaped
by science. lt is frequently aired by the media, and is the theme of much
serious metascientific analysis and prognostication .
Anti-scientism also has its subtleties and inversions. For example, many
people support modes of thought and action for which they claim scientific
- 33 -
0 FUTURO DA CULTURA CIENTÍFICA
status, even though these are ostentatiously in opposition to the teachings of
"official" science. This dialectical relationship between scientism and anti­
scientism is obviously of great importance in any analysis of public attitudes
to science, and their futu re evolution.
lHE LINEAR MODEL O F TECHNOLOGICAL INNOVATION
Scientists often complain that public attitudes to science are largely directed
towards technology. People value the benefits, and/or deplore the
disbenefits, of radical innovations in the activities and goods that featu re in
modem civilized life. These day to day manifestations of scientific prog ress
are so cornpelling that they fill the screen for most people when science is
mentioned .
The scientists really have little cause to complain about this apparent lack of
public interest in science as a body of knowledge, abstracted from its
practical applications. After al i , they put a great deal of effort into persuading
people that science has indeed been the essential element in these
marvellous developments, and that it ought therefore to be supported
strongly in the future. The pursuit of knowledge has produced usefu l things
like atomic bombs and penicillin. Society is willing to spend billions on things
like atomic bombs and penicillin. Therefore society ought to spend at least a
few rnillions su pporting the further pursuit of yet more knowledge .
Unfortunately, this argument is two-edged . Responsibility for the humane
uses of penicillin cannot be dissociated from responsibility for the inhumane
misuses of atomic bombs. ln the long run , it is safer for the scientific
community to distance itself from crimes and follies for which science might
be directly blamed . This is achieved by another ideological scheme - the
linear model of technological innovation
relating to the instrumental
u nderstanding of science.
-
The essential element in this model is a distinction in principie between
science and technology. The scientific cornmunity u ndertakes research ,
which produces discoveries. These are transferred into the realm of
technology - for example, engineering and pharmaceutical fi rms where they
become the basis for practical inventions. After a lengthy and expensive
process of technological and commercial development, novel products
eventually reach the marketplace, the hospital or the battlefield. l n its most
elementary form, this is conceived of as a one-way trickle down process,
whereby "pure" research has such unforeseeable practical consequences
that it bears no moral responsibility for them .
Needless to say, this model i s quite unrealistic. lt takes no account of the
feedback from prospective applications into the programming of basic
research. lt ignores the concerns of the attentive public about the
- 34 -
0 FUTURO DA CULTURA CIENTÍFICA
opportun ities and risks of technological innovation. lt erects an i maginary
barrier between technological ly-oriented science and science-based
technology. lt tries to maintain outmoded social divisions between a narrowly
defi ned community of academic scientists, whose only goal is supposed to be
the pursuit of knowledge, and the much larger body of researchers,
designers, practitioners and managers - many of whom might best be
considered members of the attentive public - who are su pposedly concerned
solely with the applications of that knowledge. These naive stereotypes of
individuais, institutions and constituencies clearly play a vital part in the
public u nderstanding of science.
CONSTRUCTIVISM
The final system of attitudes affecting public u nderstanding of science is
more sophisticated . Until recently, the philosophers of science generally
supported more or less scientistic views about the status of science as a
body of knowledge, whilst the historians were principally concerned with
chronicling scientific and technological progress in the spirit of the deficit and
linear models. But these traditional metascientific themes are n ow being
challenged by serious scholars, whose views are becoming q u ite influential in
·
the other constituencies.
These views do not add up to a coherent or comprehensive accou nt of the
nature of science and its social role, but they are convincingly criticai of many
established attitudes. Specialists in the sociology of scientific knowledge
draw attention to the social elements within the research process, and
emphaslze that ali scientific knowledge is socially constructed. For that
reason, they argue that it is culturally relativa, to the extent that it primarily
expresses the interests of groups of scientists struggling for power amongst
themselves, or against larger forces in society. l n other words, they provida
i ntellectual grounds for a h ighly sceptical attitude towards the claims of
science as a unique, or privileged sou rce of truth about the world.
This critique is not entirely u nj ustified. lt draws attention to the variety of
personal interests, institutional demands, cultural conventions and other
factors that play a part in the actual shaping of scienti'fic ideas. We have
al ready adopted this viewpoint in presenting some of the social attitudes of
scientists as essentially ideological stereotypes. The deficit model, in
particular, is very vulnerable to this type of analysis.
Nevertheless, the general argument that science is "no different from any
other body of organ ised information about the world" is far from proven . I �
the interests of their own discipline, the sociologists of knowledge and the1r
assorted academic allies might be seen as the sou rce of yet anothe r ideology
concerning the public u nderstanding of science. Many members of the
general public - especially intellectuals with lirnited scientific education - are
-
35
-
0 FUTURO DA CULTURA CIENTÍFICA
happy to pick up the sceptical implications and transform them into a
rationale for strongly anti-scientific attitudes in ali th ree dimensions.
Conversely, most scientists are outraged by what they see as a damaging
misrepresentation of their activities, and are beginning to tar ali metascience
with the sarne brush . The mediative role of this important constituency in the
public u nderstanding of science is thus being seriously comprornised .
SCIENCE AS A CULTURAL FORM
The call for greater "public understanding of science" is evidently much more
of a pol iticai slogan than the statement of an educational problem. lt can be
interpreted in many different ways, suggesti ng that it covers an area of social
life where wel l-entrenched ideologias are in confl ict. The contrasti ng
stereotypes that it evokes are not likely to be driven out by g reater public
access to attested scientific information , or by more persuasiva presentations
of scientific explanations.
Does this imply that the placa of science in European cultura is suspect and
precarious? Not at ali. lt only means that scienc é , like ali other aspects of that
cultura is polycentric, heterogeneous, diversa, and many-valued. We
celebrate these pluralities in our ·f ine arts, our literatu ras, our pol iticai
traditions, our laws, our religions, and our distinctive ways of life . As it
happens, modern science does not differentiate itself along national frontiers.
Each of the constituencies and sub-constituencies - especially the
disciplinary groups that make up the scientific community - now spreads
across the whole continent. But considered as a cultu ral form , science is not
spi ritually, intellectually or instru mentally monolit�1 ic. lt must nevar present
itself as a modern claimant to the empty throne of the Universal Church .
Our plea for "public understanding of science" should be seen as no more
than an affi rmation of the m ultifarious significance of scientific knowledge,
attitudes, applications, modas of enquiry, and tech niques within European
cultu ra. This af'fi rmation not only emphasizes the "placa" of science in that
cultu ra: it also plays an important part in making and remaking it.
Constructivism, strangely enough, is a deficit modal, a linear modal, a
scientistic doctrine, in relation to the scientific u nderstanding of society. We
are ali in an interactive situation, where "doing science" and " u nderstanding
science" are themselves processes that restructure the social environ ment
that shapes them. To issue and respond to that plea, whether positivistical ly
or sceptically, selfishly or disi nterestedly, boldly or timidly, is to take an active
part in the creation and recreation of the whole cultural tradition of "ou r
common European home" .
- 36 -
0 FUTURO DA CULTURA CIENTÍFICA
SCIENTI FIC LITERACY :
AN U P DATED CONCEPTUAL ANO E MPIRICAL REVIEW
JON 0. MILLER
VICE-PRESIDENT
THE CHICAGO ACADEMY OF SCIENCES
There is g rowing recognition in the industrial ized world that scientific literacy
is an important component of long-term economic growth and of effective
citizenship. l n recent years, virtually every major industrial ised nation has
examined its science and mathematics education system, and many nations
have taken steps to improve the scope and quality of scie ntific and
mathematical understanding among secondary school graduates.
There is a strong belief that matu ring economies will be increasingly
dependent on information-based technologies and that new economic
realities will demand an increasi ngly sophisticated work force. The pervasive
impact of computers in financial and i nformation processing ill ustrates the
speed and scope of recent changes. Presently, every industrialized economy
has a shortage of skilled computer-literate workers and a surplus of workers
without those skills.
The growi ng impact of science and technology on our economies and our
lives has brought an increasing n u mber of scientific and technological issues
into national politicai agendas. The issue of nuclear power has been a topic of
continuing politicai dialogue i n the Un ited States and most European
countries for the last two decades. The impact of acid rain and the condition
of the ozone layer are increasingly subjects of both media attention and
politicai discussion in industrialized nations throughout the world . The issue of
the safety of genetically-engineered hormones in meat has complicated trade
negotiations between the United States and the European Community.
Unquestionably, the nu mber and cornplexity of scientific and techn ical issues
reaching the public policy agenda during the next centu ry will increase
markedly.
Ten years ago, in an article in Daedalus (Miller, 1 983) , I proposed a simple
th ree-dimensional typology for thinking about the kinds of information that
citizens of modern industrial nations would need to understand and
participate effectively in the resolution of science and technology policy
disputes. Using a data set from a 1 979 national study<1 > of American adults, I
(1 )
The 1 979 and 1 992 studies were supported by contracts from the National Science Foundation.
The 1 985, 1 988, and 1 990 studies were supported by grants from the National Science
Foundation. The use of these data i n this analysis reflects the ideas and work of the author and
does not necessarily reflect the views of the National Science Foundation or its staff. Copies of
ali of these data sets are available from the Archive of the l nternational Center for the
Advancement of Scientific Literacy, Ch icago Academy of Sciences 2001 North Clark St. ,
Chicago, I l l inois 6061 4 . The I nternet address i s I CASL @ MCS.COM .
- 37 -
0 FUTURO DA CULTURA CIENTÍFICA
proposed an initial set of estimates of the proportion of the adu lt popu lation of
the United States that met a minimal set of criteria on each of the th ree basic
dimensions that I proposed. l n the decade since my original article, I have
collected additional data sets in the United States; engaged in a joint study of
the United States and Britain with Geoffrey Thomas and John Durant; and
have worked with Canada, China, the European Community, Japan , and New
Zeland in the design and col lection of additional national surveys that have
uti lized a core set of questions that link to my own work in the U n ited States.
ln a series of articles, chapters, and papers, I have attempted to improve the
measu rement of each of the three dimensions used in my estimates of civic
scientific literacy.
When I published my original article in 1 983, I expected that other scholars
would offer alternative conceptualizations and sets of measu res and that a
lively intellectual discussion might ensue that would lead to the evol ution of
better measu res of scientific literacy for civic and other pu rposes.
Unfortunately, in my view, that kind of reaction has not occurred . Some critics
have challenged the basic literacy construct, arguing that it is inherently elitist
and not representative of the real distribution of scienti'fic u nderstanding
(Ziman , 1 99 1 ; Wynne, 1 99 1 ) At the other end of the spectru m , another
scholar has argued that science in inherently too complicated to be really
understood by the public and that the very concept of scientific literacy is
wishful thin king (Shamos, 1 988) . One analyst has challenged the coding
procedu res used in recent scales (Bauer and Schoon, 1 993; Mi ller, 1 993) .
No one has proposed an alternative set of measures of the levei of public
u nderstanding for citizens or other pu rposes.
.
At this point in time, I think that it would be useful to restate the basic
arg ument for the concept of civic scientific literacy, the rationale for the three
dimensions that I have utilized , and the measure strategies for estimating
these th ree dimensions. I will present u pdated estimates from a 1 992 study of
American adults and offer comparative data from the Eu robarometer. I will
present some simple models to estimate the relative i nfluence of education,
gender, and age on the attain ment of a minimal levei of civic sci entific literacy
in the United States and the European Commun ity. Final ly, I will offer some
suggestions for future research in this area.
THE USES OF SCIENTIFIC KNOWLEDGE
lt is necessary to begin with a discussion of the uses of scientific knowledge
and to place civic scienti'fic literacy with in this broader context. Some of the
critics of the basic concept of scientific literacy seem to equate the construct
with leveis of understanding appropriate to professional scientists or
engineers, while others have thought the construct too limiting.
First science and the lang uage of science are the products of working
scie �tists. ln the most fundamental sense, science is what scientists do. The
- 38 -
0 FuTURO DA CULTURA CIENTÍFICA
basic theories and models from any discipline are only a reflection of the
cu rrent paradigm of the scientists working in that field , recognizing, of cou rse,
that not ali disciplines will have the single dominant paradigm that is
characteristic of modern physics. ln this respect, then , the first and primary
use of scientific knowledge is the contin uation and advancement of scientific
work itself. The basic natu re of scientific theories and discourse will continue
to be shaped by the processes of science and not by the information needs of
non/scientists.
Second, there are a large n u mber of other workers in scientific and techn ical
fields and organizations who need scientific knowledge , but who are not
scientists themselves. within the scientific enterprise itself, there are h u nd reds
of thousands of research assistants, techn icians, programmers , designers,
fabricators, and other workers who need a high levei of scientific
u nderstanding, often in a limited area, but not at the sarne levei as a scientist.
ln the appl ied sciences and the health sciences, tl1ere are addition hund reds
of thousands of physicians, n u rses, therapists, and technicians who need a
high levei of u nderstanding of selected areas of science, but still at a lower
levei than a .practici ng scientist(2). And , there are yet additional hundreds of
thousands of workers in clerical , sales, and related positions in corporations,
hospitais, u niversities, and similar institutions that require a high levei of
u nderstanding of specific scientific an� techn ical areas.
Third , in our increasingly scientific and technological society, it is important
that consumers have a moderate levei of understanding of a wide range of
basic scientific and technological constructs. Today, consumers face a
growing array of choices from home computer systems to pharmaceuticals to
household cleaning chemicals that may requi re , or at least benefit from, some
u nderstanding of relevant science and technology. The need for a moderate
to high levei of scientific u nderstanding is even move important for medical
consumers.
Fourth, it is essential that citizens have a sufficient u nderstanding of science
and technology to be able to u nderstand and assess competing arguments
about public policy disputes that involve scientific or technical issues.
Undoubtedly, the number of public policy disputes involvi ng issues like
n uclear power, radioactiva waste disposal, the thinning of the ozone layer,
and the appl i cation of genetic modification tech nologies will i ncrease in the
decades ahead . Building on previous work by Shen (1 975) , I have referred to
the levei of scientific and technological u nderstanding needed for this
citizenship role as scienti'fic literacy, or civic scientific literacy. T � e ne�t
section of this paper wil l focus on civic scientific literacy and descnbe th1s
work.
(2)
ln this regard, a medical researcher should be thought of as a scientist, while a cli nical
p ractitioner might be thought of as an applied scientist. While the old d ichotomy of knowle � ge
producers and knowledge users may blur i n the middle, it is a useful analogy for u nderstandmg
the point of this distinction.
- 39 -
0 FUTURO DA CULTURA CIENTÍFICA
Final ly, it has been argued that a broader u nderstanding of the nature of
science is an important part of our cultural heritage, no less important than an
understanding of the poetry or novels or history of our times. Snow's (1 959)
argument is perhaps best known in this area, although he was actually making
the case for a broader, or more balanced , education at un iversities like Oxford
and Cambridge. This basic argument has been echoed often, and has been
revived recently in the context of the Hirsch (1 988) definition of cultural
literacy.
ln this context, then , it should be clear that there are a variety of uses for
scientific knowledge, rang ing from the conduct of science itself to the
enhancement of our u nderstanding of our cultura. Each of these uses of
scientific knowledge is important for the groups and reasons outli ned above ,
but the need for a higher proportion of scientifically literate citizens is
especially important. l ncreasingly, the support of science itself and the uses of
scientific knowledge and its applied technologies are major topics of public
policy disputes. The recent public debate in the United States about the
construction of a superconducting super col lider is a good example. While
most science policy decisions wi ll continue to be made with in the legislativa
and executiva processes by reasonably competent staff and advisors, some
issues will inevitably be u nresolvable within these processes and develop into
larger public pol icy disputes that wil l require broader citizen participation.
Without a sufficient number of scientifically literate citizens, both the qual ity of
the policy outcomes and the health of the democratic process itself may be
endangered.
CIVIC SCIENTIFIC LITERACY
To u nderstand the concept of civic scientific literacy, we must begin with a
thorougl1 understanding of the concept of " literacy" itself. We must seek to
understand both the historie origins and contemporary measurements of basic
literacy.
The levei of skil l or ability in reading and writing should be viewed as a
continuum, ranging from virtually no skills to the most sophisticated of writers.
For most pu rposes, we characterize this kind of distribution with means,
medians, and standard deviations. While we sometimes report the median
reading or skill levei for school populations, that kind of measure is rarely
used to characterize adu lt popu lations.
ln contrast to a contin uous distribution, literacy is a threshold measu re. The
basic idea of literacy is to define a rninimum levei of reading and writing skills
that an individual must have to participate in written communication. Literacy
is most often presented as a dichotomy - literate versus ill iterate - precisely
because it is a threshold measure. The focus on a min imal knowledge levei is
inherent in the concept of literacy.
-
40
-
0 FuTURO DA CULTURA CIENTÍFICA
H istorically, an individual was thought of as literate if he or she could read and
write their own name. The person who had to sign his or her name with an "X"
was defined as "il literate" . ln recent decades, there has been a redefinition of
basic literacy skills to include the ability to read a bus schedule, a loan
agreement, or the instructions on a bottle of medicine. Adu lt educators often
use the term "fu nctional literacy" to reter to this new definition of the minimal
skills needed to function in a contemporary industrial society. The social
science and educational literatura indicates that about a quarter of Americans
are not "functionally literate" .
The changing definition of literacy suggests some important characteristics of
the basic concept. first, the levei of skills needed to be considered literate
changes over time. lt is inherently a relativa measure - not an absoluta
standard.
Second, given the diversity of social and economic systems on this planet, the
sarne definition of functional literacy would not be appropriate for both
advanced industrial societies and third-world agricultu ra! societies. Any
definition of literacy is inherently relativa to the character of the society in
which it is used .
Finally, the selection of a threshold levei for the definition of literacy is not an
exact sc1ence, but rather a judgment by those who u nderstand a subject
about the minimal acceptable levei of knowledge or skill required to function in
some set of roles in a specific society. l n regard to basic literacy, for example,
the literatura indicates that there are several different tests or measures of
functional literacy, reflecting the perceptions of each test author about the mix
of skills necessary to function in society. A comparison of several of those
tests, however, reveals that ali are testing a common domain of skills and that
there is a fai r consensus on the kinds of skills and knowledge needed to be
classified as functionally literate.
l n this context, civic scientific literacy should be viewed as the levei of
u nderstanding of science and technology needed to function minimally as
citizens and consumers in our society. The definition of a threshold levei of
civic scientific literacy does not represent an ideal levei of u nderstanding, but
rather the minimal levei necessary for a citizen to participate effectively in the
resolution of public policy disputes involving scientific or technical issues.
A THREE-DIMENSIONAL MEASURE OF SCIENTIFIC LITERACY
l n my origi nal article in 1 983 and subsequently, I ha�e é!l�gued that c!vic
scientific literacy demands ( 1 ) a basic vocabulary of sc1ent1f1c and techmcal
terms and concepts, (2) an u nderstanding of the process or methods of
science for testing our models of reality, and (3) an u nderstanding of the
i rnpact of science and technology on individuais and on society. Although
some of these dimensions are inherently easier to de'f ine and measure than
- 41 -
0 FUTURO DA CULTURA CIENTÍFICA
others, a decade of experience in working with these dimensions has
reinforced by conviction that civic scientific literacy is a m ultidimensional
process and that these th ree di mensions are essential components of the
total construct.
UNDERSTANDING BASIC SCIENTIFIC TERMS AND CONCEPTS.
The first requirement for scientific literacy is an u nderstanding of basic
scientific and techn ical terms and constructs. lf an individual can not
comprehend basic concepts like atom , molecu le, cel l , gene, gravity, or
radiation, then it would be difficult for that person to follow and participate in a
public policy controversy on a scientific or techn ical issue. Several points
need to be made about the role of vocabulary in the participation in modern
politicai systems.
First, the specific scientific or techn ical issues that become controversial have
changed from time to time in the past and will u ndoubtedly conti nue to change
in the future. Since it is not possible accu rately anticipate wh ich issues or
areas will become involved in public policy disputes during the adult life of a
citizen, it is not possible to provide a vocabulary custam fitted to each
potential controversy. And since the lead time for the development of a
controversy may be months, rather than years, it is not possible to rely on
adult education or media resou rces to respond the vocabulary needs of
citizens in a timely manner. lf a citizen is to be ready to fol low the emergence
of a public policy dispute involving a scientific or techn ical issue , it is
necessary for that citizen hold an existing vocabulary of basic terms and
concepts that can be applied to understanding emerging disputes.
An example may be usefu l. ln 1 957, the National Association of Science
Writers (NASW) sponsored a national study of public attitudes toward and
knowledge about science and tech nology. lt is a land mark study because the
interviews were completed only a few weeks before the launch of Sputnik,
providing a baseline set of measu res immediately prior to the beginning of the
Space Age. About 20 years later, I decided to replicate selected portions of
the 1 957 NASW study, and found that virtually none of the knowledge items
used in the 1 957 study were relevant by the end of the 1 970's. The 1 959
study had collected information about the levei of u nderstanding of strontiu m
90, polia vaccine, and fluoridation . The items were too closely related to the
immediately controversies of the mid-1 950's and became i rrelevant with the
passage of those particular controversies.
ln recog nition of the need for a set of more general concepts, I have
conceptualized the vocabu lary dimension in my typology as consisting of
basic items that would likely remain true, and perhaps relevant, for decades.
Concepts like the structure of the solar system, the operation of plate
tectonics, or the relative speed of light and sound a re necessary
underpinnings for u nderstanding more specHic issues, and these concepts
- 42 -
0 FUTURO DA CULTURA CIENTÍFICA
may be equally useful and relevant over a much longer period of time than
more specific terms related to a particular policy issue.
Using this approach, I have selected nine terms and concepts that 1 have
used to estimate the levei of vocabulary u nderstanding in the United States
and other countries. l n both the 1 990 and 1 992 studies in the United States
respondents received one point for a "true" response to each of the followin g
items:
The oxygen we breathe comes from plants. Is that true or falsa?
Electrons are smaller than atoms. Is that true or falsa?
The continents on which we live have been moving their location for millions
of years and will continue to move in the future Is that true or falsa?
The un iverse began with a h uge explosion. Is that true or falsa?
H uman beings, as we know them today, developed from earlier species
of animais. Is that true or falsa?
Respondents received one point for each "falsa" response to the following
items:
Lasers work by focusing sound waves. Is that true or falsa?
The earliest human beings lived at the sarne time as the dinosaurs. Is
that true or falsa?
ln addition, respondents received one point for indicating that light traveis
faster than sou nd and one point for a pai rs of answers indicating that the
Earth traveis around the Sun once each year.
Looking at the results from the United States for 1 990 and 1 992, it is apparent
that a substantial portion of the adult population misunderstand a substantial
number of basic scientific and technical terms and concepts (see Table 1 ) .
While th ree or four American adu lts gave a correct response in regard to the
oxygen, plate tectonics, and speed of l ight items, a majority of Americans do
not know that the Earth traveis around the Sun once each year or u nderstand
the nature or seq uence of evolution on this planet. Despite the growing use of
lasers for pu rposes ranging ·from precise cutting to entertainment systems,
only slightly more than a third of Americans have a sufficient u nderstanding of
lasers to reject the idea that they are composed of focused sound waves.
Using a cut-off point of six correct, which would be barely passing in most
classrooms, only 36 per cent of the U . S. respondents in 1 990 and 40 percent
in 1 992 were able to answer six or more of the nine items correctly (see Table
1 ) . lt is a disappointing result and points to the substantial barriers that exist to
effective communication with the public of scientific information and
arguments. And, as noted below, this difficu lty may be magnified when
-
43
-
0 FUTURO DA CULTURA CIENTÍFICA
opposing argu ments are presented by cornpetent spokespersons for each
viewpoint.
ln assessing the adequacy of these items for this purpose, it is important to
recognize that tl1is is only a sarnpling of relevant concepts, not an exhaustive
listing of those concepts. Further, in the U nited States, these data are
collected from national samples of adu lts, using telephone interviews. Most
adu lts are rel uctant to take an extended science examination of 40 to 50
items, as are used with student popu lations. Even in studies that use personal
in-home interviews, a substantial proportion of adu lts are reluctant to take an
extended examination , even when offered payment for doing so. Th is short
sampling of selected scientific concepts may be the best levei of
measu rement available from adu lt popu lations.
TABLE 1
UNDERSTANDING OF SELECTED SCIENTIFIC TERMS ANO CONCEPTS,
1 990, 1 992
1 990
1 992
85%
86%
77%
79%
Which traveis faster: light or sound?(lig ht)
75%
75%
Knows the Sun goes around the Earth once a year
48%
46%
47%
45%
45%
45%
Electrons are smaller than atoms (true)
41 %
46%
Lasers work by focusing sound waves (false)
37%
37%
The universe began with a huge explosion (true)
32%
38%
Percentage answering six or more items correctly
36%
40%
2033
200 1
The oxygen we breathe comes from plants (true)
The continents on which we live have been moving thei r
location for millions of years and will continue to move in
the future (true)
The earliest humans lived at the sarne time as the dinosaurs
(false)
H uman beings, as we know them today, developed from
earlier species of animais (true)
N=
- 44 -
0 FUTURO DA CULTURA CIENTÍFICA
UNDERSTANDING THE PROCESS OF SCIENCE.
A second requirement for civic scientific literacy is an u nderstanding of the
process of science, or the natu re of the scientific approach. The criticai
question is whether a citizen knows enough about the process of scientific
investigation to be able to distinguish between science and pseudo-science.
ln the fluoridation controversies of the 1 950 s and 1 960's, for example, there
was a conti nuing dispute over who spoke for the scientific community, or
whether the scientific commun ity spoke with one voice on this matter. While
the number of controversies of this kind has been relatively small in the
Un ited States , it is important that a scientifically literate citizen be able to
recognize when a study or report is based on science and when it represents
other ways of thinking or knowing.
The systematic study of the public u nderstanding of scientific thinking
emerged in the 1 930's as a resu lt of Dewey's article "The Supreme
l ntellectual Obligation", in which he declared that
the responsibility of science cannot be fulfilled by methods that are
chiefly concerned with self-perpetuation of specialized science to the
neglect of i nfluencing the much larger number to adopt into the very
makeup of their minds those attitudes of open-mindedness, intellectual
integ rity, observation, and interest in testing their opinions, that are
characteristic of the scientific attitude (Dewey, 1 934) .
Reflecting Dewey's basic charge, I . C. Davis, a prominent science educator of
the period , defined the scientific attitude:
We can say that an individual who has a scientific attitude will (1 ) show a
willingness tó change his opinion on the basis of new evidence; (2) will
search for the whole truth without prejudica; (3) will have a concept of
cause of effect relationships; (4) will make a habit of basing judgments
on fact. . . (1 . C. Davis, 1 935) .
Virtually ali of the work on the development of tests of this attitude has
focused on school populations.
The first major effort to measure this attitude occurred in the 1 957 NASW
study. l n that interview, each respondent was asked to assess whether, when
reading a magazine or newspaper article about a scientific study, they would
have a clear u nderstanding of what it means to study something scientifically,
a general sense of what it means, or little u nderstanding of what it means (R
C. Davis, 1 958). Those respondents who reported in the 1 957 study that they
had a clear u nderstanding of the mean ing of scientific study were then asked
to describe in their own words what it means to study something scientifically.
A six-tier coding classification was developed . The first th ree categorias (an
u nderstanding
of science
as theory development
and
testing,
-
45
-
0 FUTURO DA CULTURA CIENTÍFICA
experimentation, or systematic comparative study) reflect essentially correct
answers, wh ile the second three (science is measurement, science as
classification, and don't know) were treated as incorrect responses.
ln my th ree-dimensional typology of scientific literacy, I have utilized the
NASW item, with the minor modification that ali respondents claiming either a
clear understanding or a general sense of scientific study are asked the open­
ended probe. This modification was used in the 1 979 Science l nd icators study
on a experimental basis, and, after carefully analysis of the open-ended
responses from those respondents who had claimed a clear u nderstanding
and those who had reported a general sense, we concl uded that there were a
sufficient number of cases of individuais who had reported a general sense in
response to the screening question and who had been able to give a correct
response to the open-ended q uestion that the 1 979 study and subsequent
studies should incorporate the wider follow-up option (Miller, P rewitt, and
Pearson , 1 980) .
At the sarne time, after repeated readings of the open-ended responses, it
was apparent that some óf the responses being coded as "correct" where
thin, often includir19 only a one-word answer like "experiments". To improve
the validity of this response, it was necessary to look for some additional
confirming evidence of an understanding of the scientific process. For my
1 983 Daedalus article, I decided to use each respondent1 s independent report
concerning whether astrology was very scientific, sort of scientific, or not at ali
scientific. lt is a useful and appropriate cou nter balance to the open-ended
question in that it req ui res a respondent to apply the general defi nition of
scientific study offered to a real life situation for most daily newspaper readers
and recognize that astrology is not scientific. While it eliminates only a small
proportion of the cases that are classi'fied as correct in response to the open­
ended ite m , it does eliminate many of those that appeared to be marginal in
the original reading of the open-ended responses. Having now used this set
of items in several national studies in the United States and having analyzed
data from other countries using the sarne set of items, I believe that it
provides a reasonably accu rate and useful indicator of the proportion of adults
who could recognize the scientific or non-scientific character of a study if they
were to encounter a description in a newspaper story or magazine article.
Following this procedu re, the results from the 1 990 and the 1 992 studies
indicate that about 1 3 or 1 4 percent of American adults have a minimal levei
of u nderstanding of the process of science (see Tabl e 2) . this result is
comparable to earlier studies, and , sadly, nearly that sarne as the 1 2 percent
estimated by Withey (1 959) from the 1 957 NASW study. Wh ile we have been
fortunate that tew public policy controversies involving science and
technology have hinged on the ability of citizens to discern the scientific basis
of competing arguments, the finding that barely one in ten cou ld make that
determination is not comforti ng.
- 46 -
0 FUTURO DA CULTURA CIENTÍFICA
TABLE 2
UNDERSTANDING THE PROCESS OF SCIENCE,
1 990, 1 992
1 990
1 992
a clear understanding of scientific study
33%
31 %
a general sense of scientific study
47%
50%
little understanding of scientific study
20%
21 %
Percent able to give an acceptable open-ended definition of
the meaning of scientific study
1 8%
21 %
Percent indicating that astrology is not at ali scientific
60%
62%
1 3%
1 4%
2033
200 1
Percent reporting :
as
a
minimal
qualifying
having
Percent
understanding of the process of science
levei
N=
of
UND ERSTANDING THE IMPACT OF SCIENCE AND TECHNOLOGY.
The third dimension of the civic scientific literacy typology requires an
understanding of the impact of science and technology on society broadly and
on the daily life of individuais as consumers, parents, and citizens. As
i mplemented in previous studies, this dimension h as been measu red with a
series of items that might be thought of as "tech nological literacy". While the
items in the vocabulary dimension are important in understandin g a wide
range of scientific and technical material , the u nderstanding of the origin of
the un iverse or the time location of humans and dinosau rs would have little
i mpact on the daily lives of most people. l n contrast, some knowledge about
computers or antibiotics might assist an individual in both uti lizing avai lable
technologies or u nderstanding cu rrent public pol icy issues.
For contin uity with previous U.S. studies and to facil itate comparisons with
other countries, a simple i ndex was constructed to measure a social i mpact of
tech nology dimension. Each respondents received one point for recog nizing
that antibodies do not kill vi ruses, one point for a correct understanding of the
p robability mean ing of one-in-four, and one point for indicating that ali
radioactivity is not man-made. A fourth point was awarded to those
respondents who indicated that they had a clear u nderstanding of the term
"compute r software". ln the 1 988 study, a fol low-up probe asked the
respondent to demonstrate their knowledge by providing an open-ended
- 47 -
0 FUTURO DA CULTURA CIENTÍFICA
definition, and subsequent analysis of those results indicated that there was a
very high correspondence between the self-assessment and the actual levei
of respondent knowledge about computer software, thus the probe was not
employed in the 1 990 or 1 992 studies.
Those citizens who were able to score three or more points on this simple
index were classified as having a min imal understanding of the impact of
science and tech nology on society. Using this index, 26 percent of American
adults met this standard in 1 990, and 31 percent qualified in 1 992 (see
Tablet3) . This component of the typology has remained relatively stable over
the last decade.
Unlike the vocabulary dimension, which has been designed to reflect basic
scientific concepts that may be expected to remain relevant for decades, the
items included in this dimension must reflect current technologies and the
impact of those technologies on society. ln some previous comparativa
analyses, it has been necessary to restrict the n umber of items included i n
this dimension to assure comparability across different national surveys, but
with the inclusion of a wider set of environmental and tech nology q uestions in
both the U . S. Science l ndicators studies and the E u robarometer studies, it will
be possible to explore the expansion of the items used in estimating this
dimension .
TABLE 3
UNDERSTANDING OF THE IMPACT OF SCIENCE ANO TECHNOLOGY
ON SOCIETY,
1 990, 1 992
1 990
1 992
Ali radioactivity is man-made (false)
63%
73%
Probability interpretation of one-in-four
52%
55%
Antibiotics kill viruses as well as bacteria (false)
30%
35%
"computar
25%
25%
of
levei
minimal
a
having
as
qualifying
Percent
understanding of the impact of science and technology on
26%
31 %
2033
200 1
Percent correct response to:
Reports
a
clear
understanding
of
the
term
software"
SOCiety
N=
- 48 -
0 FUTURO DA CULTURA CIENTÍFICA
AN INDEX OF CIVIC SCIENTIFIC LITERACY.
To be scientifically literate it is necessary for a citizen to have a minimal
understanding of scientific terms and concepts, a minimal understanding of
the processes of science and a minimal understanding of the impact of
science on society. Combining the three separate dimensions, approximately
seven percent of American citizens q ualified as scientifically literate in the
1 990 and 1 992 studies (see Table 4).
The 1 990 and 1 992 estimates of the levei of scientific literacy in the United
States shows little improvement over the results of previous studies in 1 979,
1 985, and 1 988. l n each of those years, similar national studies were
conducted and the estimated levei of scientific literacy varied from five to
seven percent over the decade of the 1 980's. G iven the likely range of
measurement errar around these estimates of civic scientific literacy, it is safe
to say that the levei of civic scientific literacy among American adu lts ranged
between five and seven percent throughout the last decade.
A COMPARABLE ESTIMATE FOR THE EUROPEAN COMMUNITY.
Using the sarne three-dimensional typology, the data from the 1 989
E u robarometer indicates that approximately 4.4 percent of E .C. citizens wou ld
qualify as scientifically literate (see table 4). Unfortunately, d ue to the
omission of some items from the 1 992 Eurobarometer, it is not possible to
make a similar estimate for 1 992.
ln the computation of the estimate for the European Community for 1 989, it
was possible to utilize identical items, with the exception that the open-ended
item on the meaning of scientific study was not available for coding for ali
countries. Accordingly, the proportion of E.C. citizens who u nderstand the
process of science was estimated on the basis of those respondents who
indicated that they had a clear u nderstanding or a general sense of the
meaning of scientific study, and who knew that astrology is not at ali scientific,
and who indicated that scientists or engineers when trying to study the
efficacy of a drug should use the experimental method .
The essential point is not the minor differences between the E u ropean
Community and the United States, but the enormous commonalties. Over 90
percent of the citizens of both the U.S. and the E.C. do not display a sufficient
levei of understanding of civic scientific literacy to be able to participate
effectively in a public policy dispute involving science and technology. Even
with the recognition that there are important differences in the ways that
citizens participate in the resolution of public policy disputes in congressional
and parliamentary systems, these results pose serious long-term issues about
the ability of democratic politicai systems to make science and technology
policy with a meaningful level of citizen participation.
-
49
-
0 FuTURO DA CULTURA CIENTÍFICA
CIVIC SCIENTIFIC LITERACY lN AN AGE OF SPECIALIZATION.
B efore tuming to the distribution of civic scientific literacy, it is important to
_
d1scuss
briefly the impact of specialization on modem politicai systems and
the threshold nature of this typology.
TABLE 4
CIVIC SCIENTIFIC LITERACY lN THE UNITED STATES (1 990,
ANO THE EUROPEAN COMMUNITY (1 989)
EC89
Estimate of civic scientific literacy
Understanding of scientific terms and concepts
Understanding of scientific process
Understanding of the impact of science and
technology
N=
1 992)
US90
US92
4.4%
6.9%
6.5%
36.5%
35.7%
39.7%
8.6%
1 3.3%
1 4.0%
42.2%
26.4%
31 .2%
2033
2001 .
First, it is essential to u nderstand that the growing complexity of modem life
makes it i mpossible for any individual to sustain an i nformed i nterest in more
than a small n u rnber of topics or policy areas. Is it possible today for a citizen
to claim to be interested in and informed about foreign policy, economic
policy, education policy, science policy, housing policy, i ntemational trade,
and agricultu ra! policy, to say nothing about literatu ra, music, art, and sport? lt
is. inevitable that ali individuais must focus their time and energy on some
segments of the range of possible interests. Studies in the United States have
fou nd that few individuais follow more than th ree areas of public policy, and
that many elect to focus their energias on areas totally outside of politics and
public policy.
ln this context, we would not expect that ali citizens who have a high levei of
i nterest in science and technology policy matters, and we wo uld not expect
that most citizens would qualify as scientifically literate. Neither would we
th ink that most citizens would qual ify as lite rate about ag ricu ltu ra! pol icy, or
foreign policy, or intemational trade issues. The real q uestion iS whether the
proportion that d o elect to follow a given set of public pol icy issues and who
become literate in regard to those issues is suf'ficiently large to insure a
- 50 -
0 FUTURO DA CULTURA CIENTÍFICA
mean ingful levei of public participatio n . l n earlier works ( M i l ler, 1 983b), 1
have argued that i n this age of specialization , democracy does not
necessarily req u i re majority participation on every issues, but that it does
req u ire a sufficiently large n u mber o·f participants to involve major seg ments
of society. lt is unclear as to what the minimum levei of citizen participation
that is requ ired , but it seems to be that it must be significantly h igher than
tive percent.
ln this context, the use of a "deficit model" label for this typology of civic
scientific literacy by Ziman (1 991 ) and others seems to ignore the substantial
impact of specialization on the formulation of public policy in modern politicai
systems. By the very process of selecting -- overtly or u nconsciously -- some
areas on which to focus our time and attention , we then neglect large
n umbers of other areas. When I think about the development of policy literacy
in specialized areas, I think of it as the result of individual choices, framed ,
perhaps, by occupational and other parameters. Ziman (1 991 ) on the other
hand, appears to be reacting to the label of " i lliteracy" and feels that the
public is being slandered . ln this age of specialization, ali citizens are ill iterate
about large segments of public policy matters and the scope of our illiteracy
will only grow with increased specialization.
·
,
l n this regard , it is important to recogn ize that the civic scientific literacy
typology is a threshold measure, thus is expressed as a dichotomy: literate or
not literate. The typology was originally constructed to provide an estimate of
the proportion of citizens who would be able to listen to the arguments of
competing factions, as Madison would say, and to reach a j udgment about the
policy matter in dispute. Nel kin and others have provided useful descriptions
of the difficulties faced by citizens when confronted with well-formulated
arguments by n uclear power policy opponents. lt is not an easy standard . l t
i s , however, important for the scienti'fic community a n d for the leaders of our
politicai systems to have a reasonable estimate of the proportion of citizens
who have a sufficient knowledge base for effective participation in public
policy disputes involving science and technology. And, I think that it has
served that purpose.
THE DISTRIBUTION OF CIVIC SCIENTIFIC LITERACY
An examination of the distribution of civic scientific literacy in the United
States and the European Community indicates a high levei of cornmonalty.
For both populations, the central role of education is apparent. Citizens with
limited formal schooling did not qualify as scientifical ly literate in either the
United States or the European Community (see Table 5), while those citizens
with the higher leveis of ed ucation were significantly more likely to be
classified as scienti'fically l iterate. An examination of the distribution by gender
-5 1 -
0 FUTURO DA CULTURA CIENTÍFICA
within leveis of education suggests that there are no systematic gender
differences.
One note of caution is important in interpreting the education differences
between the United States and the Eu ropean Commun ity. The Eurobarometer
does not ask respondents for their actual deg ree or levei of completion, but
asks the age at which the individual was last a full-time student. For this
comparison, those respondents who reported that they were full-time students
at age 20 or later were classified in the high education g roup. l n the U.S.
data, the high education group is composed of individuais who reported a
baccalaureate (4-year college or u niversity degree) or h igher degree. When
the resulting educational distribution is compared with numbers from the
OECD, it appears that this classification may have included some European
respondents in the high educational classification who did not actually
complete a u niversity degree.
To provide a more precise estimate of the relative influence of age, gender,
and education on the distribution of civic scientific literacy, three simple log­
linear logic models(3) were constructed for the data from the 1 989
Eu robarometer, the 1 990 U.S. study, and the 1 992 U.S. study. l n ali th ree
models, the levei of formal education accounted for at least th ree-quarters of
the total mutual dependence(4) in the model (see Table 6). Gender differences
accounted for only five percent of the total mutual dependence in the E.C.
data and about fou r percent in the 1 990 U S data Age differences accounted
for only minor amou nts of mutual dependence in either the European
Community or the United States. Combined, the main effects of age gender
and education accounted for over 90 percent of the mutual dependence in ali
th ree models indicating a very good fit.
These resu lts confirm the observations from the distribution table. The levei of
formal education completed by an individual is the single most important
factor associated with the development of civic scientific literacy, accounting
for about 80 percent of the total mutual dependence. With the levei of
education and age control led, the gender difference nearly disappeared. And,
with gender and education held constant, the impact of age on civic scientific
literacy was su bstantively insignificant.
(3)
A log-linear logit analysis is similar to a regression analysis, except that the logit analysis seeks
to predict cell frequencies in contingency tables rather than individual case scores. The
Coefficient of Multiple-Partial Determination (CMPD) is analogous to a multiple R2 in a
regression analysis. For more information about these techniques, consult Goodman (1972a,
1972b, 1978) or Fienberg (1977).
(4)
Mutual dependence is a term suggested by Goodman to signify the amount of association or
relationship between categorical variables. lf two categorical variables are unrelated, we reter to
them as being independent. Although mutual dependence may be viewed as analogous to
variance in interval data there are important technical differences and Goodman (1978)
suggests that mutual dependence may be a useful term for this purpose.
-
52 -
0 FUTURO DA CULTURA CIENTÍFICA
TAB LE5
CIVIC SCIENTIFIC LITERACY lN THE UNITEO STATES
(1989),
(1990, 1992) ANO THE
EUROPEAN COMMUNITY
BY AGE, GENOER, ANO LEVEL OF EOUCATION
N
Percent
EC89
Low Education
Mal e
Female
1%
0%
1 8-34
1
o
35-54
2
55+
Female
Ali adults
Note:
US90
US92
495
403
o
408
67
56
o
o
692
45
49
1
2
o
891
1 19
86
1 8-34
1
o
o
423
61
54
35-54
1
. o
o
992
54
52
<1
o
o
1 1 19
1 49
1 07
4
4
3
4 098
1 1 79
1 202
1 8-34
6
6
4
756
264
242
35-54
5
6
3
624
1 65
205
55+
5
3
o
547
1 02
1 01
1 8-34
3
5
4
910
285
252
35-54
4
2
4
696
207
249
55+
3
5
1
564
1 56
1 53
12
24
23
2 298
359
396
1 8-34
12
31
18
583
73
65
35-54
18
30
26
41 6
96
1 06
55+
11
18
16
293
32
41
18-34
7
16
23
486
68
68
35-54
13
22
22
331
63
86
55+
12
13
14
1 89
27
30
1 0 920
2 033
2 001
High Education
Male
EC89
4 524
Medium Education
Female
US92
1%
55+
Mal e
US90
4.4
6.7
6.6
For the European Community, low education was defined as persons who were
aged 1 5 or less in their last year of full-time study and high education was defined
as persons who were aged 20 or more in their last year of full-time study. For the
United States, low education was defined as persons who did not graduate from
-
53
-
0 FuTURO DA CULTURA CIENTÍFICA
high school or earn a GED certificate and high education was defined as persons
who earned a baccalau reate or higher degree.
A RESEARCH AGENDA
Looking to the future, what should our research agenda include in regard to
the public understanding of science broad ly and in regard to the specia.l
needs of citizens? Let me suggest th ree areas of emphasis that I think ought
to be encouraged .
First, I think that it is essential that the serias of national and Eu ropean
Community studies be contin ued and that they retain a core set of measures
of the public u nderstanding of science . I would encourage alternativa
formulations of science knowledge needs for citizenship, but I would hope
that new approaches would be compared to previous approaches. We are
reaching the point in several data sets that we have the beginning of a useful
time serias and investigators should take care to build data bridges to make
orderly bridges from older sets of measu res to newer sets of measu res.
Second, we need to study the linkages between prior leveis of scientific
literacy and actual participation in public policy disputes. To some extent; this
may require alert investigators with ready resources, or qu ick funding
agencies, but it is important to think about these q uestions when major public
policy disputes are emerging in any politicai system. lt wi l l also be important
to look at citizen participation in local policy disputes as wel l as national public
policy debates.
Finally, it is essential that scholars in this area begin to think about
establishing longitudinal paneis of adu lts to study and mon ito r change over
longer periods of time. Having studied school popu lation with both cross­
sectional data and with longitudinal data, it is clear that we can examine many
of our hypotheses about changes in attitudes and behaviors only through
longitudinal studies. Cross-sectional studies tend to suppress the levei of
change or vibration in change data and to create a false i mpression of
stability.
Longitudinal studies will cost even more than the national su rveys in which
several of us have been engaged, but the information that we will gain about
the patterns of change in attitudes and behaviors wil l more than justify the
costs.
-
54 -
0 FUTURO DA CULTURA CIENTÍFICA
TABLE 6
ESTIMATES OF THE RELATIVE INFLUENCE OF AGE, GENOER ANO EOUCATION ON THE DISTRIBUTION
OF CIVIC SCIENTIFIC LITERACY lN THE UNITEO STATES ANO THE EUROPEAN COMMUNITY.
CMPD*
EC89
US90
US92
Unique effect of levei of formal education
.82
.77
.85
Unique effect of gender
.05
.04
.00
Unique effect of age
.02
.03
.05
Combined effects of education, gender, and age
.98
.92
.97
* Coefficient of Multiple-Partial Determination
-55-
0 FUTURO DA CULTURA CIENTÍFICA
REFERENCES
Barber, B. 1962. Science and the Social Order. New York: free Press .
Buros, O. K. 1 965. The Sixth Mental Measurements Yearbook. Highland Park, New Jersey:
Gryphon Press.
Davis, I. C. 1 935. «The measurement of scientific attitudes». Science Education 19: 1 1 7-122.
Davis, R. C. 1 958. The public impact of science in the mass media. (Monograph No. 25) Ann
Arbor, Michigan : University of Michigan Survey Research Center.
Dewey, J . 1 934. «The suprema intellectual obligation». Science Education 1 8: 1 -4.
Fienberg, S. E . 1 977. The Analysis o f Cross-classified Categorical Data. Cambridge, Mass. :
Massachusetts l nstitute o f Technology Press .
Goodman, L. A. 1 972a. «A modified multiple regression approach to the analysis of
dichotomous variables». American Sociological Review 37:28-46.
1 972b. «A general model for the analysis of surveys». American Journal of
Sociology.
1 978. Analyzing Qualitative/categorical Data. Log-linear models and latent structure
analysis. Cambridge, Mass. Abt Books.
Hoff, A. G. 1 936. «A test for scientific attitude». School Science and Mathematics 36:763-770.
Hirsch E. D. Jr. 1987. Cultural Literacy: What every American needs to know. New York:
Houghton I in.
Miller, J . D . 1 983a. «Scientific literacy: a conceptual and empirical review» . Daedalus
1 1 2(2):29-48.
1 983b. The American People and Science Po/icy. 1\lew York: Pergamon .
1987. Scientific literacy i n the United States. ln, Evered D . and M O'Connor (Eds.),
Communicating Science t o the Pub/ic. London:
1 989. Scíentifíc literacy. A Paper presented to the 1 989 annual meeting of the
American Association for the Advancement of Science, San Francisco, California.
1 99 1 . The public understandíng of scíence ín the United States. A paper presented
to the 1 991 annual meeting of the Americans Association for the Advancement of
Science, Washington, D.C.
1 992. The orígíns and consequences o f scientífic literacy í n industrial societies. A
paper presented to the 1 992 l nternational Conference of the Public Understanding of
Science and Technology, Tokyo, Japan.
Miller J. D . , K. Prewitt, and R. Pearson . 1 980. The Attitudes of the U.S Public toward Science
and Technology. A final report to the National Science Foundation. Chicago:
National Opinion Research Center.
-
56
-
0 FUTURO DA CULTURA CIENTÍFICA
Noll,
V . H . 1935. «Measuring the scientific attitude». Journal of Abnormal and Social
Psychology 30:145-154.
Schwirian, P. M. 1968. «On measuring attitudes toward science». Science Education 52:172179.
Shamos, M. 1988. «The lesson every child need not learn». The Sciences 28(4):14-20.
Shen, B. 1975. «Scientific literacy and the public understanding of science•• . ln S. Day (Ed.),
Communication of Scientific information. Basel: Karger.
Withey S. B. 1959. «Public opinion about science and the scientist••. Public Opinion Quarterly
23:382-388.
Wynne, B. 1991. «Knowledges in context••. Science, Technology and Human
Ziman,
J . 1991. «Public understanding of science••. Science, Technology and Human Values
16(1):99-105.
- 57-
NOVAS PERSPECTIVAS PARA
O ENSINO DAS CIÊNCIAS
NEW TRENDS lN SCIENCE
EDUCATION
0 FuTURO DA CULTURA CIENTÍFICA
SCIE NCE E D U CATIO N ANO SCIENTIFIC CLI L TU R E lN BR ITAI N:
I N FLU ENCES D U R I N G THE LAST T E N YEARS.
JOAN SOLOMON
DEPARTMENT OF EDUCATIONAL STUDIES
OXFORD UNIVERSITY
The extent to which the public u nderstands science, or even claims to do so,
may not be very great. l ndeed many who have themselves had little education
in it feel quite intimidated by science. The sarne, however, is n ot true of
education. Almost everyone cares about education and has strong views on
how it should be carried out. For this reason I shall begin by lookin g at three
of the general aims for education.
T HE AIMS OF EDUCATION l N OUR CULTURE
For some people the purpose of education is simply to pass on to the next
generation the cultu re of the past. This view of education is often called
'cultu ral transmission'. ln terms of science education this means that our
bright young people must be taught, for example, the laws of motion, of
evolution and of kinetic theory. These are the hard-won basics that students
would need later, as scientists, in arder to make any contribution to the
archive of knowledge. Isaac Newton is famous for having said (or being
thought to have said) "lf I h�ve seen further than other men it is because I
h ave stood on the shoulders of giants." Scientific research always begins
from this vantage point, so in as far as science education is charged with
maintaining the cutting edge of research this must be at least one of the aims
of science education. We need to hoist our brightest students on to the
shoulders of the scientific giants of the past. Scientific culture must be passed
on for the sake of the continuing enterprise. This is the perspective which
leads to finding out by how much members of the public fal i short of this ideal.
Others concentrate less on education in terms of past knowledge. For them
the point of education is to help ali our chi ldren in the present. lt is to be used
for vocational pu rposes, in both technological and personal senses. This more
instrumental view of education is particularly strong for science. Members of
the British government, for example, often speak of science education as
though it were no more than a weapon in their economic arsenal for
competing in the market place. Science is the sou rce of invention and
industrial innovation so it is the patriotic duty of science teachers to turn out a
good supply of 'Qualified Scientists and Engineers' (QSE). At the present time
a new cou rse of vocational science (G NVQ) is being developed for our 1 6-1 9
-
61
-
0 FuTURO DA CULTURA CIENTÍFICA
year olds. lt has been stimulated partly to make science more relevant for
youngsters who are thinking about getting a job in science, and partly by an
anxiety about countries which are our industrial competitors. Germany is
thought to train its young people better, and that this may accou nt for thei r
greater economic success.
But there is a third aim of education which has noth ing to do with the practice
of science as research or as a vocation. This is science education for citizens
who may need it, even if they do not consciously feel such a need, as a
backg round to their values to inform thei r thinking about social and politicai
issues. Some measu re of scientific l iteracy is req u ired in order to u nderstand
the technological processes of today and to alter them for tomorrow in
accordance with our hopes and values.
This process has sometimes been called education for 'societal
reconstruction' . Some politicai activists may work very hard to change society
in one direction or another, but most of us just make private decisions about
how we will live and about how we feel about matters of concern.
Nevertheless the sum total of such small decisions and feelings do affect the
general shape of the cultura in which we live and which we pass on to our
children . Science and technology now 1oom quite large in the context of what
we think and feel; they also figu re in certain politicai controversies. That
means that this broad educational aim is important for science and for society.
SCIENCE, TECHNOLOGV ANO SOCIETY EDUCATION
Ten years ago, in 1 983, a set of eight small school readers about the public
issues connected with science were published by the Association for Science
Education. These were the outcome of some twelve years of activity in the
SISCON movement which aimed to teach 'Science l n a Social Context'. lt had
begu n by developing materiais for u niversities and col leges which looked at
the philosophical, politicai and social context of modern issues in science.
The SISCON-in-Schools booklets carried this intention into schools. lt began
in a small way and met with some disapproval . Looking back just one decade
we can only marvel how cornparatively simple it then was to influence
secondary schools to make some change in the manner and even the context
of their science teaching. The advent of the British National Cu rriculum fou r
years later was to set the clock back in some respects, but i t has not been
able to wipe out completely this new facet of science teaching, even through
its advocacy of backward-looking "back to basics".
l n terms of the analysis of the aims of education presented in the fi rst section
of this paper it is easy to see this as education for 'societal reconstruction'.
Whether it was nuclear weapons, or chemical pol lution which was being
studied, not only the basic scientific concepts, but also the possibility of civic
action were included. This intrusion into the classroom of concerns and
- 62 -
0 FuTURO DA CULTURA CIENTÍFICA
values appropriate to the outside world was not found to be easy to handle by
ali teachers. For the first time in science education teachers had to deal with
the students' feelings about the subject matter of science. Of course citizens
do need to 'feel' about what is right for thei r society and it is their educated
feelings and beliefs, as well as their knowledge, which constructs or
reconstructs the 'culture' of the day. lt was interesting to note that the use of
these controversial issues in the classroom called for reflection and thought
about the nature of justice in society at the sarne time as increasing the
u nderstanding of what was public in science.
When science teachers first allowed thei r students to argue about science­
based issues they encountered feelings about scientific issues and thinking
about the injustices of society. Both were u nexpected and even disconcerting.
Nevertheless both were and are inevitable in the context of public concern
about science and its effects u pon society.
THE PUBLIC UNDERSTANDING OF SCIENCE
Two years later, in 1 985 , the Royal Society produced a very infl uential report
on the Public Understanding of Science. Remarkably enough it had l ittle to say
about education beyond the one phrase that the public u nderstanding
depended upon "a proper education in science". U nfortunàtely it fai led
completely to explain what this kind of education mig ht entail.
Fol lowing this report the Economic and Social Research Council funded a
programme of research into the public U nderstanding of science. Just one of
the eleven projects in this programme was about school science. This one,
The Discussion of lssues in School Science (the DISS project) , built upon the
STS education which had al ready begun. lt set up classroom situations where
1 7-year old students in thei r schools viewed television excerpts and then
discussed the issues they presented, from their own perspectives in small
groups. l n this way it was hoped to discover how much school knowledge was
used both to u nderstand the science-based issues and to reflect u pon them.
The topics discussed included kidney donation for transplants, n uclear power,
genetic disease, chemical effluent, and Third World medicine.
The detailed conclusions of this research are to be found elsewhere. Just a
few general poi nts may be noted here.
1. General familiarity with terms rather than detailed knowledge was
req uired for discussions (which were largely ethical in natu re) .
2. Lack of such familiarity with science terms stopped ali discussion.
- 63 -
0 FUTURO DA CULTURA CIENTÍFICA
a.
Feelings of impotence about the possibility of action in the face of
risk, and evidence that they were den ied access to knowledge,
caused anger.
4. Students' opinions on topics which had been the subject of such
discussions showed significantly more change than d id those on
cu rrent issues not discussed.
Previous research based on questionnaire su rveys had claimed that young
people gained most of their information about scientific issues from the
television. This project was able to describe how they did this i n more detail.
Previous research had also suggested that the television knowledge was
often sedimented in the minds of the viewers by talking it through informally
with family or friends. This research, which seemed to recreate the world in
microcosm within the classroom, supported this aspect of what may well be
the public's favou rite mode of u nderstanding science.
Other research projects on the Public Understanding of Science confirmed
this close connection between public acceptance of knowledge about science
and the possibility of their taking action.
THE NATURE O F SCIENCE AS SPECIFIED l N THE NATIONAL CURRICULUM
1 987 was a landmark year. That was when, for the very first time, Britain
acquired a mandatory National Curricu lum. There is no need to go into the
preparations for this and its many failures, changes, improvements and
modes of assessment. As far as science was concerned it made three new
moves which, it seems fai r to guess, may have substantial effects on the
Public Understanding of Science.
lt introduced compulsory science for ali - biology, chemistry and
physics - up to the age of 1 6.
lt introduced science into the primary schools to be studied by
children from the ages of 5-1 1 .
lt made reference to teaching about the Natu re of Science.
This last point raised a lot of interest. At 'fi rst it was linked to teaching about
the history of science and became a separata part of the science curriculum.
Then later it became amalgamated with the part for doing practical
investigations and largely lost its historical navou r. One important legacy of
this early part of cu rricul um development was the intensa interest displayed
by many sections of the public in how the nature of science sho'uld be defined
for the pu rposes of education. The resulting paragraph, wl"lich still remains in
-
64
-
0 FUTURO DA CULTURA CIENTÍFICA
the National Curricu lum, bears witness to the efforts and additions made by
politicai, religious, and academic interests.
The Nature of Scientific ldeas
Pupils should be given opportunities to develop knowledge and
understanding of how scientific ideas change through time and how
their nature and the use to which they are put are affected by the
social, moral, spiritual and cultural contexts in which they are
developed. ln doing so they should begin to recognise that, while
science is an important way of thinking about experience, it is not
the only way.
Another important development was the research which was funded into this
new area of the curriculum during the couple of years in which it seemed to
occupy a central position in the science curricu l um. What do young, and not
so you ng, children u nderstand the nature of science? There is no room here
to go into the results of this work in detail except to report that it did show how
much better children remembered science concepts, and u nderstood how
they had been discovered, when they were embedded into a story with
h uman interest and a recognisably h uman scientist. More recent work makes
the point that the connection of theory with practical work gives the students
u nderstanding of the role of prediction, modelling and explanation in the
epistemology of science. These are aspects of the public's u nderstanding of
the nature of science which many previous researchers have pointed out as
being particularly poor. Although it may be hardly surprising that the lay public
understand little about the epistemology of science, this lack of knowledge is
important. Should children and adults remain of the opinion that science is
value-neutral and concerned only with discovering 'facts' and 'truths' then the
gulf between science and the cultura of the public must continue to be very
large indeed in both the psychological barrier it sets u p, and i n the deficit
model of knowledge which it supports.
HOME SCHOOL LINKS lN SCIENCE
For my last example of interesting developments in science I wish to point to
one which is very small, but h ighly significant for this conference. l n 1 990 a
small project was launched to support the beginning of science teaching in
primary schools by sending home simple science activities which could be
done with parents. The resu lts of these were then brought back to school to
be shared with the rest of the class. During the next two years three books of
these activities were published. At the sarne time a researcher went into a
sample of homes to watch the activities in action. l ndeed it should be
admitted that although there was a serious intention to help the schools and
their pupils, another important aim of this project was to introduce science into
the homes of those who might otherwise never encou nter it.
- 65 -
0 FUTURO DA CULTURA CIENTÍFICA
Once again it is not possible to list ali the resu lts of the research. l ndeed any
data which consists of fragments of talk and action about science, comment
about good behaviour, laughter about mishaps, encouragement, worry over
conclusions and simple del ight at strange things happen ing, is very hard
indeed to systematise. Nevertheless one interesting conclusion can be drawn.
Science was different in every home. Homes clearly have thei r own cultu res,
albeit on a very smal l scale. ln this research the general flavour of this culture
became apparent th rough casual conversation with the researchers as wel l as
how the science activity was approached. How both science and education
were interpreted depended crucially on those u nspoken networks of family
val ues which we might call mini-cultu res. Whether on not the family
considered the activities 'homework' in the traditional sense, they ali changed
the intention of the activities which their children did.
This general finding, that different people or sections of the population
construct science differently, was to be fou nd in the other research findings of
the programme set up to explore the Public U nderstandi ng of Science by the
ESRC, as described before. old age pensioners thinking about keeping there
houses warm. apprentices in the British nuclear reprocessing plant, and those
having thei r homes monitored for the presence of radioactiva gas, ali built up
and acted upon slightly different pictu res o f the science involved.
VISION ANO VALUES
The path of education, like that of true love, is rarely smooth (as the proverb
says). And the two activities are alike in other ways, too. 8oth concern ali the
public, whether or not they are experts; both are valued very highly. l ndeed as I
left Britain to talk at this conference yet another collection of what we sometimes
call, not without irony, 'the Great an'd the Good' had just brought out a long report
on education. The authors were not members of the government. Many had little
to do with organised education of any kind. However they ali felt strongly about
education, its power for good and its importance to the country. ln the last
sentence of their "Vision" document they affirmed the central importance of
education to the continuing changes of culture in the following way:
lt
is the role of education both to interpret and pass on the values
of society and to stimulate people to think for themselves and to
change the world around them.
The "vision" document of the N ational Commission for Education. 1993
That statement spells out once again the belief that education changes
culture, for good or for iii. This can leave us in no doubt that science
education, a small part of this greater whole, also strongly affects the public's
scientific cultu re whether expressed in the home or in the wider society. lt
also affirms that this culture is linked to personal action and to personal
values in a way that traditional science has not been thought to do.
-
66
-
0 FuTURO DA CULTURA CIENTÍFICA
Q U ELQUES TEN DANC ES DE L'E NS E I G N E M E NT DES SC I E NC ES E N E U ROPE
RAÚL GAGLIARDI
UNIVERSITE DE GENEVE
BUREAU INTERNATIONAL DE L'ÉDUCATION-UNESCO
L'UNIVERSITE DE PAVI E.
LA DEMANDE DE LA SOCIETÉ À L'ENSEIGNEMENT DES SCIENCES
Avant d'analyser les tendances de l'enseignement des sciences en Europe, ii
est utile d'analyser d'abord quelle est la "justification sociale" de
l'enseignement des sciences, q uelle est la "demande sociale" pour
l 'alphabátisation scientifique de l'ensernble de la popu lation .
Pourquoi u n citoyen qui ne ráalise pas u ne activitá scientifique doit-il
apprendre des sciences ?
Quels sont les con naissances scientifiques qu'il doit construi re ?
Quelles sont les capacitás "scientifiques" qu'il doit dávelopper ?
Pou rquoi les institutions de formation - et l'ácole en particulier- doivent
organiser des activitás áducatives dans le domaine scientifique?
Si on peut donner u ne ráponse à ces questions, ii sera possible de voi r si les
rásultats de l 'enseignement des sciences sont en accord avec les demandes
de la sociátá. Sinon , ii sera nácessaire d'envisager des transformations
profondes.
Phánomênes comme la dág radation des systêmes de l'envi ronnement, les
transformations industrielles (introduction des sciences de l'information dans
les chaines de production, i ntroduction des systêmes de Gestion de Qualitá
Totale, etc.) et les transformations áconorniques et sociales (montáe des
fondamentalismes, chômage, violence dans les villes, drogue, etc. ) posent
des demandes nouvelles à l 'enseignement des sciences.
Ces demandes ne s'addressent pas seu lement à l'acquisition de nouvelles
connaissances, mais su rtout à l'acq uisition de nouvelles capacitás et au
dáveloppement de nouvelles attitudes des álêves, par exemple la capacitá de
comprendre des systêmes complexas, la capacitá de continuar à apprendre,
la flexibilitá, la capacitá de rásoudre des problemas concrets, la
responsabilitá, la solidaritá, etc.
-67-
0 FuTURO DA CULTURA CIENTÍFICA
Prenons l'exemple du marché du travail. U n étudiant qui finit ses études et qui
arrive au marché du travail doit posséder les capacités req uises pour les
différents emplois. S'il veut accêder aux emplois dans !'industrie de pointe, ou
dans !'industrie automobile, ii devrait être capable de travai ller dans les
systêmes dit "de gestion par la qual ité totale" (total quality management),
dans lesquels le travailleur doit être capable d'apercevoir des signaux de
basse intensité, de comprendre l'ensemble du sub-systême de production
dans lequel ii travail le, de comprendre quelles sont les sou rces d'erreurs et
d'être responsable de la fabrication d'une piêce ·fi nalisée. Ces capacités ne
sont pas liés aux "informations scientifiques", mais el les sont liées à un
développement de la capacité d'observation et d'analyse et à la capacité de
compréhension des systêmes en réseaux qui peuvent três bien être
développés dans l'apprentissage des sciences.
Ce nouveau citoyen doit participar dans la prise de décisions de son pays. 1 1
doit voter, i i doit décider au niveau person nel et au niveau global. La capacité
de prise de décision consciente est un développement de la person nal ité qui
est fondamentale pour la participation dans des sociétés démocratiques.
Cette capacité est liée à la capacité de comprendre les risques et les profits
de chaq u'une des possibilités en jeu . La compréhension des systêmes dans
son ensemble et la compréhension des détails des sous-systêmes sont deux
éléments fondamentaux pour la prise consciente des décisions. Ces deux
capacités devraient être développées dans l'ensejgnement des sciences.
L'étudiant qui a fini ces études doit aussi améliorer la qualité de vie, proteger
l'environnement, proteger sa santé. Ces activités impliquent des
connaissances scientifiques concrétes et le développement de la capacité de
compréhension des systêmes complexas, constitués par des réseaux de
processus causais.
11 lui faudra aussi , a notre hypothétique étudiant, être capable d'éviter les
piêges des sol utions simplistas. La montée du racisme et de la xénophobie
en Europe, ainsi q ue la montée des tensions sociales, sont des éléments qui
montrent que de grands secteu rs de la population sont en train de "chercher
des boucs émissaires" au lieu de chercher les causes des problemas et les
solutions possibles.
Les éléments mentionnés déterminent des nouvelles sol licitations à
l'enseignement des sciences. L'i ndustrie demande des travailleurs avec de
nouvelles capacités, la situation sociale demande des citoyens capables de
réflech ir et de prendre des décisions fondées sur des analyses précises, la
protection de l'environnement demande un engagement fondé sur la
compréhension des systêmes complexas.
U ne autre pression provient des transformations théoriques et de l'emergence
de nouveaux champs scientifiques ainsi que de la production de don nées à
une vitesse chaque fois plus grande (entre 1 mill ion et 2 mil lions d'articles par
-
68
-
0 FUTURO DA CULTURA CIENTÍFICA
année) . Cette production des connaissances est aussi u n des éléments de la
transformation technologique três rapide ainsi que de la transformation des
méthodes de production et des modes de consommation. En d'autres mots,
les programmes sont - et seront - toujou rs· en retard par rapport à la
production scientifique et les transformations de la technologie.
11 y a aussi le développement de la technologie par la gestion de l'information.
La possibilité d'accéder facilement à des enonnes banques de don nées, les
systemes audio-visuels, les systemes informatisés permettent - à cel ui qui
sait comment les utiliser - d'obtenir u ne énorme quantité de don nées
scientifiq ues.
l'ENSEIGNEMENT DES SCIENCES N'A PAS ENCORE
DONNÉ
DES RÉPONSES AUX DEMANDES
DE LA SOCIETÉ.
L'enseignement des sciences n'a pas encore donné des réponses à ces
sollicitations. Au contraíre, la grande majorité des éleves n'apprennent pas
(ou apprennent três mal) la plupart des connaissances scientifiq ues
transmises à l'école.
L'analyse des con naissances scientifiques des étudiants des premieres
années d'université a permis de savoir q ue la grande majorité des étudiants
n'ont pas des con naissances scientifiques de base qui ont été enseignées à
l'école élémentai re et moyenne. En d'autres mots, ce que les étudiants ont
apparemment appris, et qu'ils ont été capables de répéter dans les examens
est três vite oublié apres l'école. Des connaissances sur la santé, la
physiologie h umaine, la physique, la chi mie, la biologia . . . ont été "perdues".
Des confusions entre "neu rone" - "hormone" et "chromosome" sont
fréquentes.
Quelles sont les solutions possibles ?
D'abord changer les prog rammes. Ne pas donner une énorme quantité
d'informations sur les détails, mais concentrar l'activité en classe sur le
développement des réseaux conceptuais de base et des capacités
d'utilisation des con naissances, ainsi que le développement de la motivation
et la capacité de contin uar à apprendre et à util iser les différentes sou rces
d'informations existentes.
Deuxiement changer les méthodes d'évaluation. Mesu rer les capacités de
résolution des problemas et d'utilisation des connaissances et non mesu rer la
capacité de se rappeler des détails.
Troisiement centrer l'enseignement sur l'éleve et non sur l'information
scientifique à transmettre. 11 faut "aider les éleves à constru ire et à uti liser
-69 -
0 FUTURO DA CULTURA CIENTÍFICA
leurs connaissances" et non "leur transmettre des informations" q u'ils ne
peuvent pas intégrer.
Ces solutions ne sont pas valables sans u ne transformation des enseignants.
Le nouveau enseig nant des sciences doit être un chercheu r, qui analyse
contin uellement les conceptions des éléves, leu rs idées, croyances, et
con naissances préalables. Avec ces i nformations, ii doit analyser quelles sont
les obstacles à l 'apprentissage (obstacles logiques, cogn itifs ou affectifs) et ii
doit trouver les moyens pou r aider les éléves à surmonter ces obstacles. Ces
analyses sont aussi d'excellents instruments d'évaluation.
Le nouveau enseignant doit maitriser les connaissances scientifiques et être
capable d'analyser et de comprendre ses éléves. 1 1 doit être centré su r le
développement des capacités des éléves et non sur leur répetition des bribes
d'information isolées.
Un aspect important des nouvelles tendances de l'enseignement des
sciences est le changement des enseignants eux mêmes. Cependant, ce
changement a peu de valeu r s'ils travail lent de façon isolée. L'i ntégration du
travail des enseignants de science doit se réaliser à deux niveaux:
l'intégration des résu ltats, des analyses, des conceptions, des éléves et
l'intégration de l'enseignement en lui-même.
Quand on analyse les conceptions des éléves et leurs obstacles a
l'apprentissage ii y a une q uestion importante à résoudre:
Est-ce-que ces conceptions sont individuelles, ou y-a-t-il des similitudes
entre les conceptions des différents éléves ?
Les recherches sur les conceptions des éléves et leurs obstacles ont
donné deux résultats importants:
- Sur un sujet don né ii n'y a pas beaucoup de conceptions différentes,
qui sont exprimées avec des mots différentes.
- Les éléves de différents pays d' Europe ont des représentations
similaires.
Ces résu ltats sont encouragea.nts parce qu'ils indiquent qu'il est possible de
faire u ne analyse systématiq ue et comparativa des conceptions des élàves
en toute I'Europe, qui peut être la base pou r l'élaboration des prog rammes
d'étude et pou r la détermination des stratégies et méthodes d'enseignement.
La participation massive des enseignants dans ces activités peut permettre
d'améliorer leu r propre enseignement et d'établi r des réseaux d'enseignants
qui analysent les conceptions des éléves sur un sujet précis. Des catalogues
des conception peuvent permettre d'analyser l'évolution de la pensée des
- 70 -
0 FUTURO DA CULTURA CIENTÍFICA
étudiants pendant leurs études. Ces catalogues peuvent permettre aussi
d'analyser l'évolution de la pensée entre les successives générations.
Différentes institutions de recherche et de formation des enseignants sont en
train d'uti liser ces idées dans la formation concreta des enseignants et dans
la formu lation des propositions pou r l'enseig nement des sciences. Des
groupes de travail à Geneve, Pavia, Milan , Paris . ... sont en train de former
des enseignants en développant leu r capacité d'analyser les problemas des
éleves et de leur chercher des solutions. Certai ns de ces groupes sont en
train aussi d'analyser les problemas de l'enseignement mu ltidisciplinaire (en
particulier en intégrant les différentes disciplines autour de l'étude du territoire
et son uti lisation en différentes époques), pendant que d'autres chercheurs
des mêmes groupes s'occupent des problemas théoriques tels que les
mécanismes de construction des connaissances par les éleves, l'uti lisation de
l'histoire des sciences dans l'enseignement des sciences, l'introduction de
l'épistémologie comme u ne des disciplines de l'école, la compréhension des
processus de causalité en réseau , ou les concepts structurants (les concepts
qui détermi nent une transformation de la pensée et le développement de
nouvelles capacités). Ces recherches ont un but commun : comprendre mieux
les éleves et la société dans laquelle ils devront vivre pour pouvoir les aider à
développer des capacité.s nouvelles.
-
71
-
0 FUTURO DA CULTURA CIENTÍFICA
L E R E N OUVELL E M E NT DES P ROGRA M M ES DE CH I M I E
D E L'E NS EI G N E M E NT S ECONDAI R E FRANÇAIS
MARTI NE MÉHEUT
MAiTRE DE CONFÉRENCES À L' IUFM
DE L'ACADÉMI E DE CRÉTEI L
1
-
INTRODUCTION
En 1 990, le Ministêre de I'Education Nationale a demandá à des groupes
techniques disciplinaires (GTD) de rédiger de nouveaux programmes pour
l'enseignement secondaire (collêges et lycées) .
Cette demande intervient dans un contexte de relativa désaffection des
lycéens et des étudiants à l'égard de la physique et de la chimie. Cet effet
paraTt accentué, sinon provoqué, par l'enseignement; les élêves de collêge
manifestent en effet de l'intérêt pour ces discipl ines (Vanel, 1 993), intérêt qui
semble s'émousser au cours des années d'enseignement, particu liêrement
d'enseignement u niversitaire (Sornarei, 1 99 1 ).
Le travail mené par R. Boyer et A. Tiberghien (1 989) offre des éléments
d'interprétation de ce phénomêne surprenant. 11 met en particu lier en
évidence u n décalage entre les finalités déclarées et les pratiques réelles des
enseignants. La majorité des enseignants déclarent en effet affecter à
l'enseignement de la physique et de la chimie une double final ité: ouverture
sur l'environnement scientifique et tech nique conternporain d'une part,
acquisition de connaissances et de méthodes propres à la discipline d'autre
part. Par contre, lorsqu'il est fait directement référence à leur pratique
d'enseignement, ii apparait qu'une majorité des enseignants privilégient la
seconde au détriment de la premiêre . Sans doute faut ii voir là une des
sources de désaffection pour ces disciplines, que l'on trouve classées aprês
les mathématiques, les langues, les lettres, dans l 'échelle d'intérêt des
lycéens. C'est aussi ce que donnent à penser les justifications don nées par
les lycéens de leur faible intérêt pour les sciences tel les q u'elles sont
actuellement enseignées et la priorité qu'ils attribuent, dans leur grande
majorité, à la compréhension de leur environnement par rapport à la
préparation d'une carriêre scientifique.
-
73
-
0 FUTURO DA CULTURA CIENTÍFICA
C'est dans ce contexte préoccupant q u'a été créé le G roupe Technique
Disciplinaire de Chi mie. Ce groupe (voir annexe 1 ), constitué et présidé par
J.-M. Lefour, maitre de conférences à I' Ecole Polytechnique, comprend
actuellement dix professeu rs enseignant à différents niveaux, du collêge à
l'enseignement supérieur, u n représentant des industries chimiques et une
philosophe, historienne de la chimie.
1 1 est entouré d'une dizaine de
personnes, enseignants et industrieis dans la réalisation des nornbreuses
tâches qui lui ont été confiées .
2
-
LIGNES DE FORCE DE LA CONCEPTION DES PROGRAMMES
Les finalités prises en compte dans la conception de ces programmes sont
non seulement la préparation aux métiers de la chimie, mais aussi la
formation des citoyens au contrôle de leurs interactions "chirniques" avec leur
environnement et à la participation aux choix de société dans lesquels la
con naissance et l'activité chimiques se trouvent impliquées. Nous avons
souhaité que cette con naissance et cette activité soient, au même titre que
d'autres composantes des activités humaines, situées dans le temps; c'est
pourquoi nous avons intégré à ces programmes des travaux concernant
l'histoire de la chimie.
Ces perspectives repren nent pour une part importante celles qui ont présidé à
la mise en place, et au succês, dans le cadre d'une collaboration entre le
systême éd ucatif et les industries chimiques, des 0/ympiades Nationales de
la Chimie. Elles semblent susceptibles de répondre aux attentes des lycéens
et étudiants évoquées ci-avant.
2.1
-
Porter un regard "informé par la chimie" sur son environnement et sur ses
interactions avec cet environnement
La prise en considération de cette finalité se traduit en particulier par une
approche "thématique" de l 'enseignement (tableau 1 )
.
Le thême choisi pour le programme de la classe de quatriême, par exemple,
concerne les eaux et les boissons. Composition des eaux naturelles, normes
de potabilité sont abordées au cou rs de cette troisiême année de
l'enseignement secondaire qui est actuellement en France la premiêre année
d'enseignement de la chimie (depuis la suppression, en 1 99 1 , de
l'enseignement de cette discipline en classe de sixiême et de cinquiême).
C'est aussi l'occasion d'un travai! sur la signification des mots pur, nature/, et
chimique. Le langage courant est en effet portéliK cJ.'une part d'une opposition
- 74-
0 FUTURO DA CULTURA CIENTÍFICA
entre nature/ et chimique, d'autre part d'une assimilation entre pur et nature/
(Barboux et ai, 1 987) , et on sait l'importance que revêtent de telles
assimilations ou oppositions abusives dans certains discours et publicités.
L'enseignement de la chimie en classe de troisiame a pour thame l 'étude des
propriétés des matériaux, en relation avec leurs usages. Matériaux
métall iques, organiq ues et céramiques sont répertoriés; les réactions avec
l'oxygane, les solutions acides et basiq ues sont étudiées, dans une
perspective de compréhension des phénomanes d'altération de ces
matériaux. Les retombées sur l'environ nement de leur élaboration et les
problames de recyclage ne sont pas oubliés.
Le programme de la classe de seconde traite de la gestion des ressources
naturel les:
analyse de plantes et de sois, composition des engrais,
fabrication d'un engrais, font l'objet d'une premiare partie du programme,
sans négliger les problames écologiques associés à leur utilisation;
composition et raffinage des pétroles, propriétés des hydrocarbures sont
étudiés dans une autre partie du programme, en relation avec les utilisations
et les possibles produits de remplacement de ces ressources naturelles
comme sources d'énergie ou comme bases de synthases organiques.
Les aspects énergétiq ues des réactions chimiques sont abordés en classe de
premiare scienti'f ique. Les relations entre réactions chimiques et "énergie
électrique" sont étudiées dans une premiare partie à propos des piles,
accu mulateurs, et phénomanes d'électrolyse . Pouvoir calorifique de
combustibles et d'aliments, polluants associés à la production d'énergie par
combustion sont traités dans la deuxiame partie: Réactions chimiq ues et
"énergie thermique".
·
La photographie, les colorants, sont l'occasion d'étudier (option de premiare
scientifique et enseignement de terminale littéraire) les interactions entre
lumiare et matiare, en termes de propriétés spectroscopiques et d'effets
photochimiques
Boissons naturelles et synthétiques, parfums et savons, sont au programme
des classes de premiare et terminale; in utile d'insister sur la richesse de la
"flore" organ ique que l'on y rencontre : alcools, acides carboxyliques et
fonctions dérivées, esters, savons, acides aminés, .protéines, oses .. .
-
75
-
0 FUTURO DA CULTURA CIENTÍFICA
TABLEAU
CLASSE
1
THEME
Cyc/e d'orientation
•
quatrieme
•
troisieme
•
seconde
Chimie et alimentation: eaux et boissons
- un constituant des boissons: l'eau
- l'eau et le dioxyde de carbone, produits chimiques naturels
et de synthêse
- le goQt et la couleur des boissons
La compétition des matériaux
- propriétés et utilisations des matériaux qui nous entourent
- comportement chimique des matériaux dans notre
environnement
- le choix d'un matériau pour un usage donné
Ressources naturelles, chimie, environnement
- la chimie dans les champs et les jardins
- les éléments chimiques du globe et de l'univers
- pétroles et gaz naturels: les brQier ou les transformar?
Filiere scientifique
•
•
premiere scientifique
Enseignement commun
Chimie et énergie:
- réactions chimiques et "énergie électrique"
- réactions chimiques et " énergie thermique"
- oxydation des composés organiques
Option
Chimie et lumiêre: au choix
-les colorants
-couleurs et concentrations
-les complexes colorés
-la photographie
terminale scientifique
Enseignement commun
(en projet)
Les moléculas de l'hygiêne, de la beauté et de la santé
- étude d'antiseptiques
- parfums et savons
- médicaments: l'exemple de l'aspirine
Enseignement de spécialité
Etude chimique des boissons synthétiques et naturelle: au choix
-vins et boissons alcoo/isées
-boissons svnthétiques et naturelles non alcoolisées
Filiere littéraire
•
premiere littéraire
au choix
-Chimie et santé:
chimie des aliments: l'exemple du lait
médicaments: l'exemple de l'aspirine
-Approche chimique des problemes de l'environnement
les pollutions de l'air: origines, solutions
les pollutions et traitements des eaux
•
terminale litt éraire
au choix
-/'art de la photographie
-l'art de la vinification
-chimie des vêtements
-l'art de la parfumerie: des fleurs aux produits de svnthese
(en projet)
-
76
-
0 FuTURO DA CULTURA CIENTÍFICA
2.2
-
S'approprier techniques, concepts et modeles de la chimie
C'est dane à partir de questions ayant une sign ification dans un u nivers autre
que celui de l'école que sont formu lées des questions "de chimie": séparer les
constituants d'un mélange, purifier une substance, la reconnaitre , étudier ses
propriétés physiques et chimiq ues, ses modes de synthêse ... La résolution de
ces problemas rend nécessaire l'apprentissage de tech niques de séparation,
d'identi'fication et de mesure; c'est aussi dans ces contextes que sont
progressivement développés et précisés concepts et modeles.
Apprentissage de techniques
Dês la classe de quatriême, sont mises en oeuvre par les élêves des
techniques de séparation: décantation, filtration, distil lation , chromatographie,
avec des matériels encare peu sophistiqués;
ces techniques peuvent
également être rnises en oeuvre par l'enseignant, avec un matériel plus
élaboré. Elles sont reprises dans les classes u ltérieures.
Des tests de recon naissance d 'espêces chimiq ues sont pratiqués par les
élêves: recon naissance d'espêces moléculaires et ioniques dês le collêge;
tests de groupes fonctionnels organiques à partir du lycée.
Mesures de masse, de volume et de pH sont abordées au collêge, mesures
calorimétriques en classe de premiêre.
Mesures de concentration par
spectrophotométrie, dosages par pH-métrie ou utilisant des indicateurs
colorés sont pratiqués dans les classes de premiêre et terminales.
L'approche thématique favorise la "mise en perspective" des tech niques
utilisées dans le cadre scolaire par rapport à celles qui sont mises en oeuvre
dans les structures industrielles de production, de contrôle de q ualité et de
recherche.
Développement de concepts
La notion de corps pur, ou d'espêce chimique, sans laquelle ii parait difficile
de "parler chi mie", et en particulier de se poser des problemas de chirnie, fait
l'objet d'une attention particu liêre. Elle est abordée sous différents angles:
constitution de "cartes d'identité" rassemblant les propriétés étudiées,
techn iques de séparation, tests de reconnaissance .
Le catalogue des "cartes d'identité" s'élargit au cours de la scolarité
secondaire, chacune d'entre elles s'enr ic�1it de nouvel les propriétés.
Températures de changement d'état et propriétés salvantes interviennent
dês la classe de quatriême; les propriétés conductrices apparaissent en
classe de quatriême pour être précisées en troisiême. Les propriétés
chimiques se diversifient et se précisent au fur et à mesure des expériences;
les propriétés spectroscopiques sont étudiées dans l'option de premiêre
scientifique et l'enseignement de spécialité en classe terminale.
-77-
0 FUTURO DA CULTURA CIENTÍFICA
La notion de réaction chimique est abordée lors de la premiare an née (classe
de quatriàme) dans une perspective de différenciation des transformations de
la matiàre en transformations physiques et ch irniques, les dissolutions n'étant
pas abordées dans ce premier temps. Le champ des réactions chimiques
s'enrichit en classes de troisiàme et seconde avec l'étude de réactions
d'oxydation, d'addition, de craquage, de reformage . . . 11 se spécifie ensuite;
dans la filiàre scientifiq ue, l 'oxydo-réduction est approfondie en classe de
premiare, les réactions acido-basiques le sont en classe terminale (annexet2).
Les aspects quantitatifs des réactions chimiques sont progressivement
développés: conservation de la masse et des atomes en classe de q uatriàme
et troisiàme, lecture d'une équation-bilan en quantités de matiàre (moles) à
partir de la classe de seconde.
Thermodynamique et cinétique sont l'objet de premiares
respectivement en classe de premiare et terminale scientifiques
approches
Développement de modeles
Les choix effectués quant à la progression dans la complexité de ces
modeles reposent sur une vision instrumentaliste (avant d'être réal iste) des
modeles scientifiques. Autrement dit, nous avons privilégié non pas le
caractàre observable des molécules et des atomes, mais le caractàre
hypothétique et évol utif des modeles de structure de la matiàre construits
pour. . . expliquer de façon u ni'fiée, prévoir, provoquer et contrôler les
phénomànes.
Pourquoi ce choix?
D'une part, parce que dans les premiares an nées de l'enseignement
secondaire, le caractàre observable des molécules, des atomes ou ions ne
peut être qu'affirmé, les théories sous jacentes à cette "observabil ité" n'étant
ni con nues, ni aisément accessibles aux élàves. De plus, la seule
"observation" ne peut permettre de justifier nombre de propriétés affectées à
ces particules.
D'autre part, parce que cette approche des modeles comme outils
intellectuels élaborés pour répondre à des exigences spécifiques nous
semble refléter de façon intéressante certains aspects des démarches de la
science; elle offre un cadre de réflexion fructueux pour envisager le
développement d'activités scientifiques et cela, à différents niveaux
d'enseignement.
Ainsi (annexe 2) , en classe de quatriàme, la structure de l'atome n 'est elle pas
abordée ; la fonction essentielle des modeles est l'interprétation d'aspects
qual itatifs et quantitatifs de la conservation de la matiêre, dans des
phénomànes physiq ues et chimiques. Ce n'est qu'à propos de réactions
d'oxydo-réduction et de propriétés électriq ues des matériaux que la structure
-
78
-
0 FUTURO DA CULTURA CIENTÍFICA
de l'atome (noyau et électrons) est présentée. La structure du noyau et celle
du cortege électronique apparaissent, en classe de seconde, pour expliquer,
et prévoir, quelques aspects de la classification périodique des éléments. La
structure du cortege électronique intervient également, dans l 'option de
premiere scientifique, en référence aux propriétés spectroscopiques.
3
-
PRODUCTIONS O U GTD
Le libellé des programmes comporte différentes rubriq ues. Outre les contenus
(phénomenes et conceptual isations visés), sont suggérées des activités
expérimentales et documentaires, et les objectifs de ces activités. Ces
objectifs sont de différente nature: objectifs de connaissance mais aussi de
savoir-faire , de méthode et d'attitude. On trouvera, à titre d'exemple, u n
extrait du programme d e classe d e seconde e n annexe 3 .
La formu lation des objectifs tient compte des temps caractéristiques des
apprentissages visés. Certains de ces apprentissages peuvent s'effectuer à
court terme;
les compétences associées peuvent faire l'objet d'exigences
immédiates. Citons par exemple la connaissance de formu les chimiq ues, de
tests de reconnaissance , l'uti lisation d'appareils de mesure . D'autres
demandent davantage de temps, les exigences peuvent être graduées et
réparties sur plus d'une an née. C'est le cas en particul ier d'objectifs de
méthode tels que "savoir rassembler une docu mentation sur u n sujet donné"
ou encore "proposer u n dispositif expérimental et élaborer u n plan de travail"
pour résoudre u n probleme expéri mental .
Les propositions faites pour les activités expérimentales et documentaires
dépassent volontairement les possibi lités ouvertes par les horaires
d'enseignement; ii s'agit en effet d'offrir à l'enseignant un certain choix parmi
ces activités en fonction de sa propre démarche pédagogique. Ces activités
sont développées, précisées dans le document qui accompagne chaque
programme. Ce document destiné aux enseignants comporte des protocoles
expérimentaux, des exemples de planification de séquences expérimentales,
de travaux documentaires, des exemples de situations d'évaluation, une
bibliographie et les listes de logiciels et matériel nécessaires, ou utiles, à la
réalisation du programme. Le sommaire du document correspondant au
programme de la classe de seconde est donné, à titre d'exemple, en
annexe 4.
Un des problêmes posés par une approche thématique est la structuration
des connaissances (Eijkelhof & Kortland, 1 988) et leur décontextualisation .
Afi n de favoriser cette structuration, chaque programme comporte des phases
visant la généralisation et la formal isation de concepts abordés de façon três
contextualisée dans les parties thématiques.
-79 -
0 FUTURO DA CULTURA CIENTÍFICA
Ainsi, par exemple, la premiare partie d u programme de seconde, consacrée
à la "chimie des champs et des jardins" est-elle su ivie d'une partie plus
théorique, qui reprend les connaissances acq uises à propos de quelques
éléments (azote en particu lier) et les integre dans le cadre général de la
classification périodique des éléments. La troisiàme partie apparait alors
comme un approfondissement de la chimie de l'élément carbone, dans le
contexte de l'utilisation des pétroles et des gaz naturels.
De façon analogue, le programme de premiare comporte, en ce qui concerne
l'électrochimie, une "entrée en matiàre" constituée par une analyse des
caractéristiques de différentes piles, en relation avec leurs usages; cette
premiare partie est su ivie d'une étude plus systématique de l'oxydo-réduction.
Les connaissances acqu ises
au cours de cette phase sont ensuite
réinvesties dans l'étude de procédés uti l isant l'électrolyse et dans une
analyse des différents types de piles non plus en termes d'usages mais en
fonction des réactions chimiq ues mises en jeu.
4
-
PERSPECTIVES ET QUESTIONS
Les programmes de q uatriàme et de seconde ont été mis en place en
Septembre 1 993, ainsi que l'option de premiare scientifique. Suivront, à la
rentrée 1 994, les programmes de troisiàme, de premiare scientifique
(enseignement commun) et l'enseignement de spécialité de terminale
scientifique. Enfin , les programmes de premiare littéraire et de terminale
scientifique entreront en vigueur en Septembre 1 995.
La mise en place de ces programmes sou làve quelques questions, questions
d'autant plus vives que ces programmes n'ont pas fait l'objet
d'expérimentations.
Un premier ensemble de questions concerne les moyens rendus nécessaires
par la volonté de donner à l'expérimentation et à l'appre ntissage des
techniques la place qui leur revient dans l'enseignement d'une discipline
expérimentale: groupes d'effectif raisonnable et dotation minimale en matériel
sont les conditions premiares de la réussite de cette rénovation des
programmes.
U n deuxiàme groupe de questions concerne l'évolution des pratiques
d'enseignement. Différents caracteres de l'approche choisie constituent des
ruptures par rapport aux traditions de l'enseignement scientifique trançais:
- structuration du programme par des thàmes et des questions et non
seulement par des concepts;
- approche plus instru mentaliste que réaliste des modeles de structure
de la matiàre;
- 80 -
0 FuTURO DA CULTURA CIENTÍFICA
- importance donnée à la pratique expérimentale des élàves, que ce
soit en termes d 'acquisition de savoir-faire ou de démarches de
résol ution de problemas.
Formulation de problemas, en particulier de problemas expérimentaux;
développement d'activités de documentation,
gestion d'approches
interdisciplinaires sont des tâches encore peu familiares aux enseignants
trançais de physique et de chimie. Les outils d'évaluation de ces activités sont
encore peu développés. Des acquis existent, en ce qui concerne l 'approche
thématique, qui a déjà fait l'objet de travaux dans le cadre de l'enseignement
en classes de premiare et terminale non scientifiques (Ministàre de
I'Education Nationale, 1 987) . L'évaluation des activités expérimentales est à
l'ordre du jour des travaux de commissions ministérielles.
Nous souhaitons maintenant pouvoir effectuer u n suivi de la mise en place de
ces programmes, dans le but de mieux définir les aides nécessaires et de
cerner de plus pràs les besoins en formation . 11 nous parait également
i mportant que soient évalués leur impact sur la motivation des enseignants et
des élàves et leurs effets par rapport aux objectifs que nous nous sommes
donnés.
5
-
BIBLIOGRAPHIE
BARBOUX M . , CHOMAT A. , LARCHER C. &
MEHEUT M. ( 1 987). Modele particulaire et
Paris, IN RP.
activités de modélisation en classe de quatrieme.
BORNAREL J . ( 1 99 1 ) . L'enseignement de la physique en premier cycle universitaire. Paris,
Société Française de Physique.
BOYER R. & TIBERG H I EN A. ( 1 989). Des opinions de professeurs et d'élêves sur
l'enseignement des sciences physiques au lycée. Bulletin de I'Union des Physiciens, no
71 2 , pp. 305-321 .
EIJKELHOF H. M.C. & KORTLAND K. ( 1 988} . Broadening the aims of physics education. l n
P . Fensham (Ed): Development and dilemnas in science education. London , The Falmer
Press pp. 282-305.
M IN ISTERE DE L'EDUCATION NATIONALE ( 1 987). Sciences physiques en premieres A et
B. Objectifs et procédures d 'évaluation. Paris, Direction des lycées et collêges.
VANEL F. ( 1 993). Enquête-bilan sur la perception des sciences physiques par les élêves de
cinquiême. Bulletin de I'Union des Physiciens, no 753, pp. 577-580.
- 81 -
0 FUTURO DA CULTURA CIENTÍFICA
ANNEXE 1
COMPOSITION OU
GROUPE TECHNIQUE DISCIPLINAIRE DE CHIMIE
Président
M . J.-M. Lefour
Maitre de conférences ( Ecole Polytechnique)
Membres
M.
A. Bazin
Professeur (College d'Etouvie, Amiens)
Mme B. Bensaude - Vi ncent
Maitre de conférences (Université Paris X, Nanterre)
M. B. Bigot
Professeur (Ecole Normale Supérieure, Lyon)
M. J . Bottin
lnspecteur G énéral de I ' Education N ationale
M.
Professeur (College A. Fournier, Clamart)
A. Ch omat
M. J . -C . Depezay
Professeur (Université R. Descartes)
M. J . -P. Foulon
Professeur (Lyoée Henri IV, Paris)
Mme J. Fournier
Professeur (lnstitut Universitaire de Technologie, Angers)
Mme M. G offard
Professeur (Lycée Henri IV, Paris)
Mme C. Lehman
Professeur (Lycée E. Delacroix, Maisons-Ai fort)
Mme M. Méh eut
Maitre de conférences (I U FM de l'académie de Créteil)
M. J . -P. Parenteau
Directeur du Département Scientifique de I'Union des
I ndustries C h i miques
Membres Associés au GTD
•
pour les programmes de college
Mmes H adamcick et Vi ncent
Mme Mesmi n
M. Etienne
•
pour les programmes de lycée
Mmes Féore, Maire, Mercier et Rué
M. Laguilli er
Mrs Bernard, Bettencourt, H ui , et Lej eune
•
Professeurs
Professeur
I ndustrieis
pour l'histoire des sciences
Mme Ribaud et M. Fi llon
M. Charlot
-
Professeurs
Principal de collêge
I ndustriei
82 -
Professeurs
lnspecteur pédagogique régional
ANNEXE 2
TABLEAU 1
Conceptualisation macroscopique
PhénomEmes
Qualitatif
1
Structure de la matiE�re
Qualitatif
Quantitatif
Quantitatif
lons
Classe de quatrieme
:
entités portant une charge
électrique, positive (cations) ou
négative (anions)
Conduction dans une solution
Moléculas
entités
électriquement neutres
Changements d'état
Transformations physiques
Conservation de la masse
Conservation des molécules
Conservation des corps purs
Décomposition et synthese de
l'eau
Réactions chimiques
Combustion du carbone
Réactifs et produits
Atomes : spheres du res
assemblages
Moléculas
Synthese d'un ester
Equation- bilan
d'atomes
Conservation de la masse
Conservation des atomes
Ordres
de
grandeur
de
dimensions et masses
Classe de troisieme
Réactions des métaux avec le
dio�<ygene
Combustions
matériaux
de
Atomas
:
spheres dures
Métaux : empilements ordonnés
d'atomes
organiques
Réactions
d'autres
marbre . . . )
des
métaux
matériaux
avec
et
(calcaire,
l'eau,
solutions acides et basiques
les
Atoma
lon
:
:
noyau
+
électrons
neutralité électrique
assemblage
comportant
un
d'atomes
exces
ou
un
défaut d'électrons
Conduction métallique
Mobilité
des
dans un métal
électrons
libres
I
Masses et charges électriques
de l'électron et du noyau
ANNEXE 2
TABLEAU 2
Conceptualisation macroscopique
Phénomenes
Qualitatif
Clâsse de seconde
Cycles de réactions illustrant la
conservation
des
éléments
1
Structure de la matiere
Qualitatif
Quantitatif
I Conservation des éléments
Noyau
Quantitatif
Charges du proton et du neutron
I Ordres de grandeurs relatifs des
: protons et neutrons
chimiques
Analogias
masses de l'électron, du proton
de
propriétés
Répartition
des
la
classification
électrons
en
I et du neutron
couches
éléments d'une même colonne
de
des
périodique
des éléments
Liaison de covalence
lsomérie de constitution
Propriétés des hydrocarbures
Stéréoisomérie Z,E
Stoechiométrie
Etude quantitativa d'une réaction
chimique
Classe de premiere
Action des solutions acides sur
les métaux
Oxydo-réduction
Electrolyses, piles
Couple oxydant-réducteur
Potentiel standard
Transfert d'électrons
Degré d'oxydation
Réactions d'oxydo-réduction par
voie sêche
Combustions,
pouvoir
comparaison
calorifique
du
Energie de liaison
Chaleur de réaction
de
combustibles ou de carburants
Oxydation
ménagée
de
Dissolution
de
Aspects énergétiques des
réactions chimiques
composés organiques
composés
ioniques et moléculaires
Chaleur de dissolution
Liaison ionique
Echelle d'électronégativité
Polarité d'une molécula
Liaison
�yd rogêne
ANNEXE 2
TABLEAU 3
Conceptualisation macroscopique
Quantitatif
Qualitatif
1
PhénomEmes
Classe de termina/e
Mesures
d'acide
de
pH
de
solutions
chlorhydrique
et
I
pH
entre
Relations
Acides et bases forts
concentrations
de
Structure de la matiere
Qualitatif
Quantitatif
1
en
et
ions
hydroxonium et hydroxyde
soude
Dosage d'un produit domestique
contenant
de
l'acide
chlorhydrique ou de la soude
I Réactions acide-base
Transfert de proton
Dosages acido-basiques
Dosage d'un comprimé d'aspirine
Constante d'acidité
Couple acide-base
Groupement
Exemples
homogêne,
de
catalyses
acide
Vitesse
de
formation
d'un
produit,
de
disparition
d'un
réactif.
hétérogêne,
enzymatique.
fonctionnel
carboxylique
Exemples de réactions lentes
Notion de catalyseur
lnterprétation
d'une
catalyse
d'oxydo-réduction
Odeurs
Stéréochimie, méthode VSEPR
lsomérie
de
constitution,
de
configuration, de conformation
Groupe fonctionnel ester
Estérification et hydrolyse
Saponification
Notion d'équilibre chimique
Caractêre
Catalvse acide
électrophile
nucléophile,
0 FUTURO DA CULTURA CIENTÍFICA
ANNEXE 3
EXTRAIT OU PROGRAMME DE SECONDE
3.5
-
Les pétroles et les gaz naturels comme sources d'énergie et de matieres
premiêres
Contenus
Compétences exigibles ou en cours
d'apprentissage*
Sources d'énergie
Ecrire
combustion des hydrocarbures ;
combustion et d'addition.
produits de remp/acement.
l'équation
bilan
des
réactions
de
Connaftre l'état physique des réactifs et ce/ui
des produits de la combustion apres retour à
Matieres premieres :
la température ordinaire.
craquage et reformage catalytíques ;
réactions
d'addition
Savoir
a/cenes
des
(hydrogénation, halogénation et hydratation).
que
les
réactions
de
combustion
peuvent être explosives.
Connaftre
la
définition
des
termes
"craquage" et "reformage".
Savoir que /e craquage et /e reformage sont
des opérations industriel/es qui permettent
d 'obtenir
une
multitude
de
nouveaux
un
corps
produits.
Expériences
pratiques
Combustion
de
cours
complete
et
et
travaux
incomplete
Reconnaíssance
Chauffer
et
faire
brO/er
en
respectant /es consignes de sécurité.
d'alcanes, fuel, paraffine.
de
produíts
des
combustion.
Test à /'eau de brome et au permanganate
Décrire et réa/iser un test de reconnaissance
de potassium dilué /égerement basique.
des hydrocarbures insaturés.
Propríétés
adsorbantes
des
noirs
de
carbone.
Activités de documentation
Analyse d 'une documentation concernant les
Résumer par écrit ou par oral /e contenu
procédés d 'extraction et de transformation
d'une documentation.
des pétro/es.
Les produíts combustibles de remplacement:
"bio-éthanol,
méthanol,
"diester",
dihydrogene.
Com menta ires
Le test de reconnaissance des composés insaturés sera effectué avec l'eau de brom e
ou avec
une solution
aqueuse
de
permanganate
de
potassium
légàrement
basique.
L'utilisation d'une solution de dibrome dans le tétrachlorométhane n ' est pas recommandée
compte tenu de sa toxicité. D ' une façon générale, on évi tera d'utiliser les solvants ch lorés .
- 86 -
0 FUTURO DA CULTURA CIENTÍFICA
ANNEXE 4
SOMMAIRE DU
DOCUMENT D'ACCOMPAGN EMENT
DU PROGRAMME DE SECONDE
I - Présentation
11
- Programme
III - Tableaux synoptiques des concepts de la quatrieme à la terminale
IV - Exemples de déroulement
V - Activités expérimentales
V. 1 t-tliste et obj ectifs des travaux pratiques; description sommaire de quelques
manipulations
V.2 - Apprentissage et évaluation des savoir faire expéri mentaux
V.3 - Tableau des savoir faire expérim entaux
V.4 - Fiches expérimentales
- Tests d'i dentification de quelques ions
- Quantité de matiàre, mole
- Etude quantitativa d'une réaction chimi que
- I'Jotion de stoechiométrie
- Disti llation
- Reconnaissance de matiàres plastiques
VI - Activités de documentation
Vl. 1 - Buts
V l . 2- Objectifs
Vl.3- Moyens
V l .4- Evaluation
Vl.5- Exemples d'activité
V l . 6- Exemple d'uti lisation d'un texte historique
VIl - Evaluations
VIII - Bibliographie
IX - Quelques logiciels
X - Matériel particulier
-
87
-
1
I
0 FUTURO DA CULTURA CIENTÍFICA
T H E FUTU R E OF S C I E N C E E D U CATI ON
OR
WHY P U P I LS R E J ECT I T ?
DANIEL GIL-PÉREZ
UNIVERSITAT DE VALENCIA
SPAIN
SCIENCE EDUCATION: A BROKEN HOPE
?
To understand the future of science education we need to analyse briefly its
past and present. We must remember that the introduction of science studies
in the compulsory curriculum took placa quite recently, thanks to the pressure
of the most dynamic social forces. For instance, the great French physicist
Paul Langevin wrote in 1 926:
" l n recognition of the role of Science Education in the struggle for
human rights, the revolutionary movement makes a considerable
effort to introduce science education in the general cultura of ali
citizens".
Science Education was conceived as a relevant component of the citizens'
culture, with a high motivational capacity in a world where science and
technology became omnipresent. This optimistic view of the educational
capacity of science was shared not only by scientists but by most
philosophers and educators (Dewey 1 945).
What is the situation 70 years later ? There has been a clear recognition of
the importance of science education and science has today an important
placa in compulsory education, but... We have to recognise that pupils'
interest in science is not as h igh as it was expected; on the contrary: "Th e
more years our students en rol/ in science courses, the less they like it "
(Yager and Penick 1 986) . Even worse , science is not seen any more as a
liberating agent, but as a closed and dogmatic (!) body of knowledge and the
cause of environmental pollution, limitation of freedom (computerised
control. .. ) and destruction of the Earth (nuclear weapons . . . ) .
WHAT COULD B E THE CAUSES O F PUPILS REJECTION
?
A possible explanation is that sciences are difficult subjects for many pupils.
This could be the reason for a rejection that increases with the degree of
difficulty.
- 89 -
0 FUTURO DA CULTURA CIENTÍFICA
l n fact, not every pupil has a negative attitude and it seems that this attitude
strongly depends on pupils' characteristics: many studies have shown , for
instance, that girls have a much more negative attitude towards physical
sciences than boys . . . and the difference increases with the number of science
courses (Erikson and Erikson 1 984) .
May be, after al i , Langevin , Dewey . . . and s o many scientists a n d educators
were wrong and science is not a suitable subject for everybody.
To accept this explanation and this concl usion we should be quite sure of our
judgements about pupils' characteristics and of its influence on pupils'
achievements and attitudes. We need , therefore, to look more closely, for
instance at, the differences between boys and girls.
ARE G IRLS AS GOOD AS BOYS
?
At the begin ning of the 80's Margaret Spears, a researcher interested in sex
differences in science education conceived an interesting experiment that can
be su mmarised as this (Spears 1 984) : she gave the sarne exam to about 300
teachers, presenting half of the copies as answered by a boy and the other
half by a girl . Teachers had to evaluate 1 5 different aspects and give their
opinion about the capacity of the boy (or the girl) to pursue scie ntific studies.
What were the resu lts?
l n ali the 1 5 aspects evaluated , the "boy" got higher marks than the "gi rl" and ,
of course, the boy was considered as being better prepared to pursue higher
science studies.
This resu lt was interpreted, logically, as evidence of sex discrimi nation but, is
it j ust a question of sex discrimination? Let us analyse another difference,
much clearer and free of the bias of se.x discrimination : namely the difference
between good and poor pupils.
I T I S S O EASY T O DISTINGUISH BETWEEN A GOOD A N O A POOR STUDENT !
We have done a study similar to that of Spears, giving a copy of a sarne exam
to different teachers (Aionso, Gil and Mtnez-Torregrosa 1 992) . Each copy had
a short introduction that suggested, very sl ightly, that the exam belonged to a
good student or to a poor one. The teachers had to assess the exam and to
make some comments to help the student to improve his knowledge.
The differences between the marks got by the "good" student and the "poor"
one were now astonishingly high (near two poi nts over ten) and, what is more
important, the comments of the teacl1ers were radically different: they
supported the "good" pupil and despised the "poor" one.
-
90 -
0 FUTURO DA CULTURA CIENTÍFICA
What is interesting about those results? They are important i n many aspects:
they affect our ideas about assessment and show the importance of teachers'
expectations. l n any case, results such as those shown by Spears or
ourselves put into question the interpretation of ach ievement in science
learning and attitudes towards science as a consequence of pupils'
characteristics: we cannot wonder, for instance, if girls have less interest in
physica.l sciences than boys when we are rejecting them, tel ling them that
they are not good enough . lt is necessary to accept that our attitudes and
ways of teaching have a strong influence on pupils' achievements and in their
attitudes towards science. As a matter of fact, research in Science Education
shows a growing consensus over the need for profound changes in science
teaching to make possible a criticai scientific literacy (Hodson 1 992) and
enable students " to assume the social responsibilities of attentive citizens or
key decision makers " (Aikenhead 1 985) .
N EW TRENDS lN SCIENCE EDUCATION
What are the main changes suggested by science education research? We
cannot review here the long process of science education renewal that started
in, the 50's with the learning by discovery movement (Gil 1 993) . We shall limit
ourselves to the presentation of three propositions which are generating a
growing consensus. Ou r first proposition affirms that:
lt is not possible to separate these three elements (Hodson 1 992) :
and theoretical knowledge),
understanding of the nature
and methods of science and awareness of the complex interactions
between science and society) and Doing science (engagi ng in and
developing expertise in scienti'fic inqui ry and problem solving) .
Learning science (acquiring conceptual
Learning about science (developing an
l n fact it is possible to make this separation. Science teach ing usually does it,
practising what we can call a conceptual reductionism (Duschl and Gitomer
1 99 1 ) which limits science education to learning science. The trouble is that
this reductionism doesn't work and pupils don't experience the expected
conceptual change. Besides, they acquire deformed views of science and,
very particularly, of the interactions between science and society.
On the contrary, recent research in science education is showing that
"Students develop their conceptual understanding and learn more about
scientific inquiry by engaging in scientific inquiry, provided that there is
sufficient opportunity for and support of reflection " (Hodson 1 992).
- 91 -
0 FUTURO DA CULTURA CIENTÍFICA
lt is true that this is an old intuition, as old as the learn ing by discovery
movement which , as has been repeatedly shown (Ausubel 1 968; Gil 1 983;
Hodson 1 985; Millar and Driver 1 987 . . . ) didn't work too wel l . However, today's
proposals are different in two fundamental aspects. l n first place - and this
constitutes our second proposition:
lt is necessary to stress that we are not thinking of pupils as
practising scientists, working in frontier domains. This metaphor,
used by severa! authors against the treatment of pupils as simple
receivers, has many limitations and can not give a useful view of
how to organise pupils' work. A metaphor that presents pupils as
novice researchers gives, in our opinion , a better appraisal of the
learning situation .
Effectively, any researcher knows that when someone joins a research team,
he or she can catch up quite easily with the standard levei of the team . And
that does not happen by verbal transmission, but through the treatment of
problems in domains where his or her more experienced col leagues are
experts.
The situation changes, of cou rse , when problems which are new for every
member of the team are considered . l n this case, the prog ress - if there is
any - becomes slow and sin uous.
This is, of course, just a metaphor and we do not forget the serious
differences between a pupil and a real novice researcher; but it is a better
metaphor, we think, than those which present pupils as simple receivers or as
practising scientists.
This metaphor is associated with three basic elements of what we can call a
11 radical
social - constructivist orientationll for science learning: open
problematic situations, scientific work in cooperative groups and interactions
between the groups and the "scientific community", represented by otheí
pupils, the teacher and the text books (Gil and Mtnez-Torregrosa 1 987;
Wheatley 1 99 1 ) .
l n other words, the teaching strategy that seems to u s most consistent with
the constructivist cognitiva approach ànd with the characteristics of scientific
reasoning, is to organise learning as a treatment of problematic situations that
pupils can identify as worth th inking about.
This strategy (summarised in table 1 ) aims basically to involve pupils in the
construction of knowledge, giving to pupils' activity the characteristics of
oriented research.
-
92 -
0 FUTURO DA CULTURA CIENTÍFICA
TABLE 1
TEACHING STRATEGI ES FOR 0RGANISING LEARNING
AS A RESEARCH ACTIVITY
1.
Conceive problematic situations that, taking into account the ideas, world view,
skills and attitudes of pupils, generate interest and provida a preliminary
conception of the task.
2.
Propose the qualitative study of the problematic situations, taking decisions - with
the help of the necessary bibliographic researches - to define and delimit concreta
problems (an activity during which pupils begin to make their ideas explicit in a
functional way) .
3. Guide the scientific treatment of the problems, which implies, among other
things:
- lnvention of concepts and forming of hypotheses (occasion for using alternativa
conceptions to make predictions)
- Elaboration of possible strategies for solving the problems, including, where
appropriate, experimental designs to check hypotheses in the light of the body of
knowleqge.
- Carrying out the strategies elaborated , and analysing the results - checking them
with those obtained by other pupils and by the scientific community - which can
produce cognitiva conflicts between different conceptions (taking ali of them as
hypotheses) , requiring the formation of new hypotheses.
4. Propose the application of the new knowledge in a variety of situations to
deepen and consolidate them , putting special emphasis on the S/T/S relationships
which trame the scientific development, and leading ali this treatment to show the
nature of coherent body of knowleclge of every science.
Favour particularly synthesis activities (schemes, reports . . . ) and the elaboration of
products which help to give sense to the task and increase the interest in it and the
conception of new problems.
The effectiveness of this orientation - and this constitutes our third
proposition - demands breaking with many reductionisms and
distortions of the nature of science transmitted by science teaching
as a consequence of teachers' spontaneous epistemology.
Here we are touching upon the second big difference between today's
proposals and the preceding essays of organising science learn ing as a
scientific research : the attention given to those reduction isms and distortions
-
93
-
0 FUTURO DA CULTURA CIENTÍFICA
of the nature of science transmitted by science teaching (Bell and Pearson
1 992; Gil 1 993; Meichtry 1 993.
TRANSFORMING TEACHERS' VIEWS ABOUT T H E NATURE OF SCIENCE
As Bell and Pearson (1 992) have pointed out, it is not possible to change
what teachers and pupils do in the classroom without transforming their
epistemology, their conceptions about how knowledge is constructed, their
views about science. This is not just a question of the wel l known extreme
inductivism so many times denounced : we have to pay attention to many
other distortions (Gil 1 993) . We have tried to summarised them in table 2.
TABLE 2.
SOME DISTORTIONS OF THE NATURE OF SCIENCE USUALLY
TRANSMITTED BY SCIENCE TEACHI NG
Extreme inductivism, enhancing "free'' observation and experimentation ("not subject to a
priori ideas") and forgetting the essential role played by hypotheses making and by the
construction of coherent bodies of knowleqge (theories).
On the other hand, in spite of the great importance verbally assigned to experimentation ,
science teaching remains quite frequently purely bookish, with very few practical works. For
this reason, experimentation keeps the glamou r of an "unaccomplished revolution".
This inductivist vision underlies the orientation of learning as discovery and the reduction of
science learning to the process of science.
A rigid view (algorithmic, exact, infallible . . . dogmatic). "Scientific Method" is presented as a
linear sequence of stages to be followed step by step.
Quantitative treatments and contrai are en hanced, forgetting - or even rejecting everything related to invention, creativity, tentative constructions...
scientific knowledge is presented in its "final" state, without any reference neither to the
problematic situations which are at its origin, its historical evolution , the difficulties
overcomed. . . nor to the limitations of this knowledge, which appears as an absolute truth,
not subject to change.
An exclusively analytical vision which enhances the necessary parcelation and
simplification of the studies, but neglects the unification efforts in arder to construct wider
bodies of knowledge, the treatment of "border" problems between different domains.
ln the opposite direction there is today a tendency to present the unity of nature, not as a
result of scientific development but as a starting point.
-
94-
0 FUTURO DA CULTURA CIENTÍFICA
A merely accumulative vision. Scientific knowledge appears as the result of a linear
development ignoring crisis and deep restructuring.
A "common-sense" view which presents scientific knowledge as clear and "obvious" ,
forgetting the essential differences between the scientific strategies and the common-sense
reasoning (characterised by quick and very confident answers, based on "common-sense
evidences"; by absence of doubts or consideration of possible alternativa solutions; by lack
of consistency in the analysis of different situations; by reasoning which follows a linear
causality sequence . . . )
.
The "conceptual reductionism" of most science teaching contributes to this common-sense
view forgetting that a conceptual change can not take place without a simu ltaneous and
profound epistemological and attitudinal change.
A "velled" and elitist view. No special effort is done to make science meani ngful and
accessible; on the contrary, the meaning of scientific knowledge is hidden behind the
mathematical expressions.
ln this way , science is presented as a domain reserved for specially gifted minorities,
transmitting poor expectations to most pupils and falling into ethnic, social and sexual
discriminations.
An individualistic view. Science appears as the àctivity of isolated "great scientists" ,
ignoring the role of co-operative work and of interactions between different research teams.
A socially "neutral" view. Science is presented as something elaborated in "ivory towers",
forgetting the complex STS relationships and the importance of collective decision making
on societal issues related to science and technology.
ln contrast to this vision of science out of context, there is today an opposite tendency, i n
the Secondary School, to a "sociological reductionism" , which limits t h e science
curriculum to the treatment of STS problems and forgetting the search for coherence and
other essential aspects of science
This teachers' spontaneous epistemology constitutes a serious obstacle to
the renewal of science teaching in as much as it is accepted critically as
"common-sense evidence". However, it is not difficult at al i, in our opinion (G il,
Carrascosa, Furió y Mtnez-Torreg rosa 1 99 1 ; Gil 1 994), to generate a criticai
attitude towards these common-sense views: when teachers have the
occasion for a collective discussion about possible distortions of the nature of
science transmitted by science teaching, they become easily aware of most of
the dangers. l n other words, the real danger seems to be the lack of attention
to what is usually transmitted as common-sense evidence.
-
95
-
0 FUTURO DA CULTURA CIENTÍFICA
CONCLUSION
We could summarise our analysis of the future of science education by saying
that a significant improvement of the teaching/learning process is absolutely
necessary if we want to stop the serious pupils' rejection of science and
science learning.
ln fact the recent development of science education research allows us to
expect such an improvement (Gil 1 994) : we are now prepared for a better
understanding of the difficu lties. We know that the question : why do pupils
reject science education ? is related to: aren 't we obstructing knowledge of
science? (with our teaching, with our expectations . . . ) . We know that pupils'
interest in science is not a q uestio(l of pupils characteristics but, main ly, of
teaching orientation. in other words, we teachers and researchers are
responsible for the future of science education . Fortunately, we begin to
know what to do to beriefit (both pupils and ourselves) from the potential
creativity of science education . let it be!
REFERENCES
A I K E N H EAD G . S . , 1 985. Collective decision making in the social context of science. Science
Education 69 (4) , 453-475.
ALONSO M . , G I L D. y MTN EZ-TO RREG ROSA J., 1 992, Concepciones espontáneas de los
profesores de ciencias sobre la evaluación. Obstáculos a superar y propuestas de
replanteamiento, Revista de Ensefíanza de la Física, 5(2) , 1 8 38.
AUSUBEL D . P . , 1 968, Educational psychology. a cognitiva view. (Holt, Rinehart
New York)
& Winston:
BELL B.F. y PEARSON J., 1 992, Better Learning, lnternational Journal of Science Education,
1 4(3) , 349-361
DEWEY, J. 1 945. Methods in Science Teaching. Science Education, 29, 1 1 9- 1 23.
DUSCHL R . y G ITOM E R D . , 1 99 1 , Epistemological Perspectives on conceptual change:
implications for educational practice, Journal of Research in Science Teaching, 28 (9) ,
839-858.
G I L D . , 1 983. Tres paradigmas básicos en la enseíianza de las ciencias. Ensefíanza de las
Ciencias, 1 (1 ) , 26-33.
G I L D . , 1 993, Contribución de la H istoria y Filosofía de las ciencias ai desarrollo de un
modelo de enseíianza/aprendizaje como investigación, Ensefíanza de las Ciencias,
1 1 (2) , 1 97-2 1 2 .
G I L D . , 1 994, Diez aíios d e i nvestigación e n didáctica d e las ciencias : U n a década
prodigiosa, Ensefíanza de las Ciencias ( Pendiente de publicación)
-
96
-
0 FUTURO DA CULTURA CIENTÍFICA
GIL D . , CARRASCOSA J. FURIO C. y MTNEZ-TORREGROSA J . , 1 99 1 , La ensefíanza de las
ciencias en la educación secundaria. (Horsori: Barcelona).
G IL D. y MTN EZ-TOR REG ROSA J., 1 987, Los programas - guia de actividades: u na
concreción dei modelo constructivista de aprendizaje de las ciencias, lnvestigación en
la Escuela, 3, 3- 1 2.
HODSON D, 1 985. Philosophy of science, science and science education. Studies in Science
Education, 1 2, 25-57.
HODSON D, 1 992, ln search of a meaningful relationship: an exploration of some issues
relating to integration in science and science education, lnternational Journal of Science
Education, 1 4(5) , 541 -566.
LANGEVIN P . , 1 926. La valeur éducative de l 'h istoire des sciences. Bulletin de la Societé
Francaise de Pedagogie, 22. Diciembre de 1 926.
MEICHSTRY Y., 1 993, The impact of science curricula on students views about the nature of
science, Journal of Research in Science Teaching, 39 (5), 429-443.
M ILLAR R. y DRIVER R . , 1 987. Beyond processes. Studies in Science Education, 1 4, 33-62.
SPEARS M . G . , 1 984. Sex bias in science teachers' ratings of work and pupils characteristics.
European Journal of Science Education, vol . 6, 369-377.
WH EATLEY G . H . , 1 99 1 , Constructivist perspectives on Science and Mathematics learning,
Science Education, 75(1 ), 9-2 1 .
YAG ER R.E. y PENICK �I . E . , 1 986. Perception of four groups towards science classes,
teachers and value of science. Science Education, 70 (4) , 335-363.
- 97 -
S I G N I F I CADO E P ROBLE MAS
DA DIVU LGAÇÃO C I E NTÍFICA
M EAN I NG AND PROBLEMS OF
POP U LARIZ I N G SCI ENCE
0 FuTURO DA CULTURA CIENTÍFICA
TRADUCTION ET DIFFUSION DES SCIENCES EN EUROPE:
PERSPECTIVE LINGUISTIQUE ET CONTRASTIVE
ANNE-MARIE LAURIAN
C.N.R.S.- STRASBOURG
I.
LES MULTIPLES TRADUCTIONS DE LA VULGARISATION SCIENTIFIQUE.
11 est deux sortes de traductions. Si l'on prend le mot au sens restreint, ii
s'agit d'un transfert d'un code linguistique dans un autre, d'une langue à une
autre. Si, par contre, on admet un sens élargi du vocable, ii y a aussi
traduction lorsque l'on opere un transfert linguistique d'un niveau de langue à
un autre, d'un type de langage à un autre.
1. LA REFORMULATION MONOLINGUE.
Les nouvelles expériences, les découvertes, les théories innovantes, donnent
généralement lieu à des publications écrites. Celles-ci impliquent de la part du
chercheur une formulation linguistique de réalités qui ne le sont pas (sauf
dans certains cas des sciences humaines et sociales ou le langage est lui­
même objet d'étude). Le compte-rendu de l'observation d'un phénomene
nature! ou produit en laboratoire est une premiare "traduction" d'un domaine
physique, chimique, ou autre vers un champ linguistique. lndépendarnment
des considérations sur les terminologias ou sur les langages spécialisés, le
processus de passage de faits observés à des productions orales ou écrites
est une mise en forme linguistique.
Dans une seconde étape, les discours spécialisés sont transférés vers les
discours vulgarisés. Cela implique une reformulation (nouvelle mise en forme,
déformation, ... ).
En effet les textes dits primaires, produits par les
chercheurs eux-mêmes et destinés en général à leurs collegues, peuvent être
"
utilisés par les journalistes pour produire d'autres textes. Ceux-ci
s'échelonnent des plus scientifiques aux plus sociaux, ces deux types de
discours publiés dans la presse apparaissant comme les deux pôles d'un
continuum d'écriture(1) . Bien évidemment le contenu n'est pas exactement le
même, ii ne saurait l'être. Au cours de telles transformations, les signifiés
évoluent: plus on tend vers le pôle social plus les textes contiennent des
adjectifs et des marques d'appréciation de l'énoncé, c'est-à-dire diversas
modalités des jugements de valeur, et plus ils tendent à orientar l'opinion du
(1)
cf. DJacobi et AM.LL, Du discours scientifique au discours social, une analyse /inguistigue de la
continuité, C E D EL, 1985, 67 p. (rapport pour le CNRS: ATP "Science-Technologie-Société").
-
101
-
0 FUTURO DA CULTURA CIENTÍFICA
lecteur en fonction de ses angoisses fondamentales, ou de celles que le
journaliste lui prête. Même si l'intention reste de transmettre des
connaissances, plus on vulgarise, moins ces connaissances sont "brutes de
décoffrage" et plus les interventions personnelles sont nombreuses dans le
texte. Cela explique que si les Compte rendus de I'Académie des Sciences
fassent généralement deux à trois pages, avec un ou deux schémas, tandis
que les articles de vulgarisation de La Recherche ou de Pour la Science eux,
s'étendent généralement sur une dizaine de pages. Font exception les
"nouvelles breves" qui s'apparentent à l'actualité et les articles du type de
ceux de Science et Vie qui pratiquent une sorte de "zapping" scientifique
assez proche de la revue d'actualité.
Cette traduction s'accompagne de nombreux éléments iconographiques:
dessins, photos, graphiques. Les illustrations sont de préférence en couleur,
quel que soit le domaine scientifique. Elles sont à la fois des éléments
'
d'accroche du lecteur (une belle photo suscite la curiosité et pousse à la
lecture) et des éléments constitutifs du message (la visualisation des données
explicite le texte). Les pages de couverture "à grand spectacle" s'expliquent
ainsi par la nécessité publicitaire non seulement de la revue mais aussi de la
science elle-même. Dans les expositions scientifiques les éléments visuels
prennent une importance encore accrue car ce sont eux qui créent la
motivation d'interêt du visiteur. Etant debout et pressé, le visiteur doit recevoir
des "chocs" pour s'arrêter s'intéresser de pres à un sujet, à un panneau, à
une vitrine. Dans les revues comme dans les expositions, la traduction
sociale de la science joue un rôle important dans le sens ou la science trouve
actuellement sa justification dans un certain nombre de choix sociaux.
2. LES TRADUCTIONS - EXPLICATIONS.
La reformulation des concepts scientifiques a généra.lement pour but de les
rendre plus explicites, plus clairs, plus simples, pour un public différent de
celui pour lesquels ils ont été formulés originellement. Pour être expliqués les
concepts sont reformulés. Souvent les définitions ont la forme de traductions
d'un langage dans un autre, d'un vocabulaire dans un autre. (lnversement,
d'ailleurs, une explication n'est bien souvent qu'une définition).
Mais lorsqu'on change de type de langage, de registre de vocabulaire,
exprime-t-on encore la même réalité? Lorsqu'on change de public, et qu'on
change de registre, peut-on transmettre les mêmes connaissances? Du point
de vue scientifique, ii est évident que toute reformulation déforme et que toute
nouvelle mise en forme "désinforme". Mais la rnise en récit de la science est
la rançon de sa popularisation, de sa large diffusion. Et la nécessité de cette
diffusion ne peut. être mise en cause: c'est un choix de la société actuelle.
Les publics ont des vécus et des "connus" différents. Leur compréhension
des textes qui leur sont proposés, leur interprétation des messages mis à leur
-
102
-
0 FUTURO DA CULTURA CIENTÍFICA
disposition, seront-elles identiques pour tous? Si la diffusion publique des
sciences s'appuie sur un fond cultural considéré comme commun à tous,
toutefois ii ne faut pas perdre de vue que les acquis scolaires et para­
scolaires sont três différents d'un individu à un autre, d'un groupe à un autre,
à plus forte raison d'une nation à une autre.
3.LA REFORMULATION MULTILINGUE.
Un certain nombre de revues scientifiques sont actuellement publiées en
plusieurs langues. Ainsi Pour la Science est traduit de Scientific American, est
publié également en espagnol, en italien, en russe, en japonais, etc. La
Recherche a une version espagnole: lnvestigación y Ciencia. Sauf les
publicités et les nouvelles locales, et sauf un article par volume, les articles
de fond sont supposés être les mêmes. Ce sont "les mêmes" en effet. Mais
leur étude contrastive détaillée révêle de nombreuses différences(2).
Si les panneaux des musées scientifiques s'adressent à des publics
globalement similaires d'un côté ou de l'autre de la Manche par exemple, ils
utilisent cependant des
moyens linguistiques et sémiolinguistiques
sensiblement différents. Ainsi, par exemple, les discours mis en oeuvre au
Science Museum de Londres et à la Cité des Sciences et de !'Industrie de La
Villette à Paris sur des sujets similaires sont três differents.
Dans le contexte actuei de la construction européenne, ii devient essentiel de
bien connaitre les modalités de la diffusion des connaissances scientifiques
dans chacun des pays. C'est à cette condition que l'on pourra envisager de
produire des revues ou des expositions qui seront susceptibles d'être
traduites et exportées pour circular dans divers pays européens.
Pour l'instant on ne peut que s'interroger sur les produits existants. Comme
devant toute traduction, on se demande quelles sont les raisons des choix
linguistiques, quelles sont les intentions des traducteurs ou des rédacteurs et
quels sont les effets créés auprês des lecteurs. Les culturas fondamentales
de chaque nation fournissent des éléments de réponses, mais cela est
insuffisant. Seules des études systématiques sur les cultures scientifiques
liées à chaque langue pourraient renseigner véritablement. En attendant une
(2}
cf. A.M.L.L "Ou l'indécius au précis se joint", in Prob/emes théoriques et méthodologiques de
l'analyse contrastive, Publications de la Sorbonne Nouvelle, 1988, pp. 227-243, et "La
vulgarisation scientifique traduite" in Sciences et Médias, Didier-Erudition, 1989, pp. 137-144 et
aussi "La face cachée de la vulgarisation à la lumiêre de la traduction" in Traduction
etTerminologie, C.C.E., 1991, pp. 151-160.
-
103
-
0 FUTURO DA CULTURA CIENTÍFICA
II .UN EXEMPLE DE COMPARAISON DE PANNEAUX: LONDRES/PARIS: LA PHYSIQUE NUCLEAIRE.
1.
LE SCIENCE MUSEUM DE LONDRES.
Le premiar panneau que l'on rencontre dans la sectioFJ de Physique Nucleaire
du Science Museum dit ceei:
(1)
lntroduction
ln this first section of the gallery we have tried to give a brief and
simple introduction to a very difficult subject. Vou may find words
and ideas which are new to you.
Vou will learn about atoms, the tiny particles of which everything is
made.
Vou will see some of the ways atoms behave.
(... ) Vou will learn about radiation, where it comes from and how
much there is of it around us.
On remarque que ce panneau introduisant à la section Physique du Musée
des Sciences de Londres donne assez précisément les objectifs de
l'ensernble du musée scienti'fique. Le sujet (la physique) est very difficult.
D'une façon générale, tous les sujets scientifiques sont considérés comme
difficiles. Les discours muséaux doivent être brief and simple afin que le
visiteur-lecteur ne se lasse pas en lisant les textes et afin qu'il comprenne
quelque chose. La science rapose sur des concepts (ideas) et un vocabulaire
(words) qui sont en général nouveaux (new) pour le visiteur, c'est exact.
C'est d'ailleurs dans ce cas que le visiteur aura le sentiment d'apprendre
quelque chose: la nouveauté est l'un des mobiles de l'interêt du public. Cest
aussi un fondement didactique: s'appuyer sur ce qui est connu pour
enseigner ce qui est inconnu. Vou will /earn indique bien qu'il y a un propos
didactique dans ce musée. Cet apprentissage ou du moins cette acquisition
de connaissances nouvelles, ne va pas pourtant sans divertissement. 11 passe
par la vision (you wi/1 see), ce qui n'est pas à interpréter comme une
métaphore (cf. "ce que nous verrons au chapitre suivant" ou ii n'y a rien à voir
concràtement). La lecture est une activité visuelle, certes, mais entre voir une
expérience ou une photo et voir un texte, ii y a une différence de type de
compréhension et un appel à différentes formes d'interêt (plus émotif ou plus
intellectuel).
(2)
Atoms and molecu/es
Just as building may be made out of thousands of bricks, ali matter,
including living things, is made of a large number of atoms.
The atoms of each of the chemical elements, iron, oxygen or silicon
for example, are unique.
-
1 04
-
0 FUTURO DA CULTURA CIENTÍFICA
Atoms combine together to form molécules which in tum can
interact with other molecular groups to form everything which
makes up our world.
Parmi les premiers panneaux de cette section, celui-ci offre une définition des
éléments de base. La définition de l'atome fait appel à une comparaison avec
ce que le lecteur connalt déjà, son environnement quotidien, à une autre
échelle: les bâtiments. Lorsqu'on parle des édifices atorniques, on a la même
comparaison implicite. On note l'inclusion des êtres vivants dans cette
définition, ce qui est assez rare: à ce niveau d'abstraction, on oublie
généralement les distinctions de genres (rninéral I végétal I humain, ou vivant
I non vivant). La définition est de type fonctionnel(3) : on indique à quoi
servent les atomes, mais c'est aussi le miroir d'une définition analytique (id.)
dans la mesure ou on trouve les atomes si on analyse la matiàre. Cest la
matiàre premiare au sens strict. Une caractérisation des atomes compléte la
définition.
La deuxiàme partie de la définition porte sur la combinaison des atomes: les
molécules, puis la combinaison de ces combinaisons. On passe d'une
dimension à une autre, des atomes aux molécules jusqu'au monde total (our
world). C'est là encore une image miroir d'une définition analytique: le monde
est divisible en molécul-es.
(3)
Some molecules are very simple, for example, two atoms of
hydrogen and one atom of oxygen combine to form water.
(. . )
ln living plants and animais a molecule known for short as DNA is
responsible for transferring the inherited or genetic information from
one generation to the next. lt has a very special molecular structure
in which two large molecular chains are intertwined in a double
helix.
.
La définition reçoit maintenant une illustration de la vie quotidienne: l'eau. Les
photos représentent: en fond la Tamise, dans des cercles inscrits: un robinet,
une image de la molécule. Apràs quelques développements sur les éléments
métalliques, on a l'exemple le plus spectaculaire parmi les découvertes
modernes: la molécule d'ADN et sa double hélice. On passe ainsi de
l'élément de base (cf. les quatre éléments de I'Antiquité) à l'organisation la
plus compliquée du monde vivant. Et ceei sur trois paragraphes et quelques
photos. Le panneau répond aux ambitions de l'exposition: ii est simple et bref
sur un sujet di'fficile.
(3)
cf. A.M.L L. "Typologie des discours scientifiques: deux approches", Études de Linguistique
App/iquée, Didier- Erudition, 1993, no 51, pp. 8-20 et "Les définitions dans la vulgarisation
scientifique, à paraltre, printemps 1994, Lexicologie Française, INaLF, CN RS.
- 105 -
0 FUTURO DA CULTURA CIENTÍFICA
(4)
The nucleus and electrons
An atom consists of a minute central core called the nucleus
surrounded by a cloud of small particles known as electrons. The
diagram shows the arrangement of electrons around the nucleus in
a typical atom.
lei on observe une définition par dénomination (called) et par analyse des
constituants (consists of). Un schéma s'ajoute au texte: la visualisation aide la
compréhension. En effet la "fonction imaginativa" joue un rôle important dans
la diffusion des sciences. C'est ce qui donne leur importance aux
métaphores(4) et aux comparaisons. Si l'on peut en critiquer l'usage au nom
de la pureté scientifique ou de l'accês à. l'abstraction scientifique, cependant ii
faut admettre que pour nombre de personnes "un schéma vaut mieux qu'une
longue explication" et que la photo ou l'image sensibilise plus que le texte.
Mais la question peut quand même être posée de savoir si la science doit
avoir recours à des moyens sensibles ou non.
(5)
Fission
The splitting of the nucleus of an atom like uranium 235 is known
as nuclear fission.
Ces lignes breves sont au sommet d'un panneau qui représente avec un
diagramme três évocateur l'explosion ou la fission d'un atome. 11 y a toujours
définition (is kown as) mais aussi traduction graphique du terme défini.
(6)
Chain reaction
A chain reaction happens when the neutrons released by one
uranium 235 fission go on to split other uranium 235 nuclei. The
process releases yet more neutrons, which in turn can split further
uranium nuclei and so on. The number of fission rapidly increases
and a large amount of energy is released.
Les mouvements de l'illustration vont s'amplifiant du haut vers le bas du
panneau, du texte vers un graphisme montrant une explosion totale, énorme.
2.
LA CITÉ DES SCIENCES ET DE L'INDUSTRIE DE LA VILLETTE, PARIS.
A Paris, à la Cité des Sciences et de !'Industrie de La Villette, section
Energia, on lit:
(4)
cf. A.MLI., "Métaphorisation dans le discours scientifique trançais de vulgarisation ", à paraltre
dans Langue Française, Larousse, no 1 01, février 1994.
-106-
0 FUTURO DA CULTURA CIENTÍFICA
(7)
L 'uranium et la fission
Du grec Ouranos, ou du latin Uranus: nom du pere du dieu
Saturne. L'uranium est un métal gris, dur, présent dans plusieurs
minerais. Les Etats-Unis, le Canada, I'Australie, I'Afrique du Sud en
sont les principaux producteurs. (. .. )
L'uranium naturel est faiblement radioactif. L'uranium 235, contenu
en faible proportion (0,7 %) dans l'uranium naturel, est dit "fissile":
sous le choc d'un projectile (un neutron), son noyau atomique se
casse en deux, libérant une énergie considérable: une tonne
d'uranium fournit autant d'énergie que 9.000 tonnes de pétrole.
La fission d'un atome d'uranium 235 émet aussi des neutrons. Si
un neutron rencontre un autre atome d'U 235, celui-ci peut
fissionner à son tour: c'est la réaction en chaine, três rapide dans
une bombe atomique, contrôlée dans un réacteur nucléaire.
On note immédiatement la présence d'éléments étymologiques, donc
historiques dans ce panneau.
Cette histoire ne concerne pas l'uranium en
·
tant qu'objet scientifique mais sa désignation linguistique. On a ensuite des
données géographiques sur les lieux de production de l'uranium. 11 n'y a pas
de définition au sens strict, on indique seulement une propritété de l'uranium
(radioactif) sans définir la radioactivité. Cependant le mot fissile est expliqué.
Mais la définition tourne rapidement à sa conséquence: la production
d'énergie. On observe une comparaison entre l'uranium et le pétrole. 11 s'agit
davantage de l'énergie au service de la société ou de !'industrie que de
l'uranium minéral objet d'étude.
Le neutron n'est pas défini, et la réaction en chaine ne l'est que de façon
rapide. Ce qui intéresse le rédacteur, à l'évidence, ce sont plutôt les deux
types de réactions en chaine, qui opposent la bombe atomique et le réacteur
nucléaire. Et ce à quoi ii souhaite intéresser le lecteur sera la production
d'énergie nucléaire et la sécurité des centrales, comme on le verra plus loin.
(8)
L'hydrogene et la fusion
Comme la fusion d'atomes lourds, la fusion d'atomes légers libere
une énorme énergie. Mais les noyaux des atomes légers, tels que
l'hydrogene, se repoussent du fait de leurs charges électriques
positives. Une seule solution: leur fournir une énergie suffisante
pour vaincre cette répulsion. Comme dans les étoiles, une
température de 100 millions de degrés permet de réaliser cette
condition.
A une telle temperature, la matiere est à l'état de "plasma": les
structures moléculaires et atomiques sont disloquées, réduites à un
mélange de noyaux et d'électrons qui sont animés de vitesse
considérable /sic/. lls peuvent alors fusionner... à condition de se
rencontrer.
(. . . )
- 107 -
0 FUTURO DA CULTURA CIENTÍFICA
lei comme précédemment, des données scientifiques sont évoquées, mais
non définies précisément. Le caractêre positif des charges électriques n'est
pas expliqué. La comparaison avec les étoiles parle plutôt a l'imaginaire
(l'astronomie est toujours três populaire). L'important c'est la présence du
grand nombre, les données chiffrées étant considérées comme des marques
spécifiques du discours scientifique dans les textes de grande diffusion(S) . 11
faut évoquer une três forte température pour faire sentir les três fortes
énergies liberées par la ·fusion ou la fission.
Le "plasma", comme précédemment la fission, reçoit un aperçu de définition
aprês les deux points. On remarque le vocabulaire banal utilisé ici (disloquer,
mélange, vitesse considérable). On note aussi les points de suspension au
milieu de la phrase: linguistiquement, sauf dans le cas d'une énumération
inachevée, ils marquent une appréciation, une intervention de l'affectivité.
(9)
L'électricité
C'est l'étincelle qui fit jaillir le monde moderne. Elle lui donna son
impulsion et continue de l'animer. Eclairage, chauffage, transports,
industrie, médecine, défense... toutes les activités des hommes ont
besoin d'elle.
Variées sont les sources qui naus la fournissent: vent vagues,
soleil, riviêres, charbon, uranium. Pour notre bien-être et parce que
naus avons le génie de l'invention.
Alors qu'aprês l'introducteur c'est, on s'attend à une dé'finition, on trouve sur
ce panneau une sorte de jugement en forme d'évaluation. lmmédiatement on
(5)
L'accumulation de données chiffrées est fréquente sur les panneaux d'expositions scientifiques.
cf. A.M.L.L. "Les connaissances scientifiques et le discours muséal", La Lettre de I'OCIM,
Université de Bourgogne, Dijon, no 28, juillet-aoOt 1993, pp.16-23. En voici un exemple tiré de
l'exposition Vive /'Eau de la Cité des Sciences et de !'Industrie de La Villette, Paris:
Le volume d'eau douce sur Terre est três réduit par rapport à la masse des océans: ii représente 36 020 000 km3,
soit 2,61 % du volume total d'eau. Ce pourcentage est contitué essentiellement par les calottes glaciaires, les
icebergs et les glaciers (2,01 %). Restent 0,058% pour les eaux souterraines et l'humidité des sois, 0,02% pour les
lacs et les riviêres et 0,001 % pour l'atmosphêre. Le pourcentage de l'eau contenue dans les minéraux, les végétaux
et les animaux, est de l'ordre du milliardiême ... Si mini me soit-elle, la quantité réellement disponible et accessible, 9
000 km3 par an, devrait suffire largement
inégalement repartia...
à
satisfaire les besoins de l'humanité. Malheureusement, elle est três
et la version anglaise voisine:
The volume of fresh water on earth is very low compared with the mass of the oceans: it only represents 2,61 %of
the total volume of water. This minute percentage consists essentially of the glacial caps, icebergs and glaciers
(2,01 %). There remains 0,058%for underground and soil humidity 0,02%for lakes and rivers, 0,01 %for the the
atmosphere. The percentage of water contained in minerais, vegetables and animais is of the arder of one thousand
mil/ionth.
The volume of fresh water, 36,020,000 (with the oceans occupying 1,348,000 km3, ie., 97,39 %) should be largely
sufficient to satisfy humanity's requirements. But the quantity actually avaí/able and accessible is only 9,000 km3
per year and in addition is very unequally distributed.
-
108
-
0 FUTURO DA CULTURA CIENTÍFICA
sent qu'on va assister à la glorification de l'électricité plutôt qu'à une
description de sa nature ou à l'explication technique du fonctionnement
d'appareils qui l'utilisent. Science et technologie s'entremêlent souvent dans
les musées scientifiques. lei l'aspect social prend le dessus(6).
Le second paragraphe donne une image de Mêre Nature fournissant le lait
nécessaire au bien-être de l'enfant. Plus exactement la bonté généreuse de
la nature se trouve associée a la créativité de l'homme, ce génie inné et
commun à tous les hommes de ce monde modeme.
(1 O)
De l'usage aux ressources
·
Et si depuis toujours les énergies n'existaient que pour satisfaire
tous les désirs des hommes? Du plus vital au plus sophistiqué.
Comment s'y prennent-ils pour que cela dure?
Ce panneau renforce le précédent: Mêre Nature a pour principal souci de
rendre heureux son petit. La premiêre phrase de ce panneau contient une
vision téléologique et une interprétation de la nature en fonction des finalités
posées par les hommes dans ce monde moderne avec leur génie de
l'invention. La question rhétorique fournit au lecteur une interprétation des
faits liés à I' Energie .qui va Ie guider aans son interprétation globale des textes
des panneaux.
La permanence de la satisfaction du désir est une préoccupation
certainement fondamentale chez l'homme, et qui remonte à sa plus petite
enfance. On peut dês lors se demander s'il ne ·fréquente pas le musée
scientifique, section Physique, pour se rassurer plus que pour s'instruire, pour
y trouver la réponse à ses craintes, voire ses angoisses, plus que pour
développer ses connaissances (à moins que le développement des
connaissances ne soit une condition à réaliser pour calmer les angoisses).
(11)
Les centrales françaises sont-elles plus süres?
Les trois pays qui comptent le plus de réacteurs nucléaires sont les
Etats-Unis (111), la France (56), et I'Union Soviétique (48). La
France est donc, proportionnellement, le pays le plus nucléarisé au
monde. Les Etats-Unis ont connu l'accident de Three Mile lsland
(1979), I'Union Soviétique la catastrophe de Tchernobyl (1986).
Est-ce au tour de la France? Ce n'est en rien inéluctable. La sOreté
(6)
Cet aspect n'est pas absent de certains panneaux du monde anglo-saxon qui à l'entrée des
musées, dans une salle indifférenciée, glorifient le travail des chercheurs en fonction d'une
image du Progrês. Reste à savoir s'il va s'agir du progrês de l'humanité ou du progrês de la
société. cf. A.M.L.L., "Le musée bilingue: science ou culture?", La Tribune lnternationa/e des
Langues Vivantes, A ELPL, Paris, 1989, n° 12, p. 1 1.
-109-
0 FUTURO DA CULTURA CIENTÍFICA
nucléaire n'est pas une loterie, mais une question de moyens et de
vigilance.
(. . . )
Le pare nucléaire trançais dispose d'un atout majeur: toutes ses
centrales sont construites sur le même modele. Une amélioration
de sOreté mise au point pour une centrale bénéficie à toutes les
autres.
La sOreté des centrales françaises ne peut être mise en doute. La question
naturelle que l'on se pose en pensant au proverbe "jamais deux sans trois"
est ici immédiatement déjouée par la réference à la vigilance et à la logique
(par opposition implicite à la loterie). Et pour rendre plus acceptable
l'affirmation, on la module, on la fait précéder d'une pointe de soupçon: on ne
prétend pas à l'impossibilité d'une catastrophe (ce n'est en rien inéluctable).
Mais tout le reste du discours va tendre à faire la preuve du contraíre. Le jeu
est serrá, même à la fin du ·texte, lorsqu'il mentionne l'amélioration de süreté.
Cela signifie clairement que la sOreté peut être améliorée, donc qu'elle n'est
pas parfaite, donc qu'un accident peut effectivement avoir lieu. lmplicitement
on fait référence à des statistiques et à des probabilités et l'on affirme que la
probabilité d'un accident est três faible.
(12)
Qu'est-il prévu en cas d'accident?
Malgré toutes les précautions, un accident nucléaire, bien que três
improbable, n'est pas impossible. Dans l'hypothêse d'un accident,
le Préfet du departement prend la direction des opérations. 11 met
en oeuvre le plan particulier propre à l'installation. - le PPI - qui fait
partie integrante du plan de secours radiologique départemental
(plan ORSECRAD).
Des PPI sont été établis pour toute les centrales françaises. lls
visent à protéger la population en se plaçant dans l'hyptohêse la
plus pessirniste: une pollution de l'environnement par les produits
radioactifs rejetés par le réacteur. lls prévoient le "confinement"
d'une partie de la population jusqu'à environ 1O km du lieu de
l'accident.
( . .)
Un bon confinement vaut mieux qu'une évacuation désordonnée.
.
Continuant a être "réaliste" c'est-à-dire pessimiste, le rédacteur nous
présente ici les plans prévus en cas d'accident. On pourra noter que les
informations sont de nature três administrative et peu matérielle. Les sigles y
ont une forte présence. lls sont certainement rassurants.
Le texte se termine sur une sentence, ce qui est un style spéci'fique des
panneaux ·francophones(7) . Pour convaincre on a utilisé les proverbes, c'est­
à-dire la sagesse populaire, même dans les domaines scientifiques.
(7)
cf. article paru dans La TIL V mentionné ci-dessus.
- 1 10 -
0 FUTURO DA CULTURA CIENTÍFICA
3. RETOUR AU SCIENCE MUSEUM DE LONDRES.
Sur le même theme, le Science Museum de Londres nous donne un autre
type d'informations:
(13)
Chernobyl
ln April 1986 there was a major accident involving .a reactor at the
nuclear power station at Chernobyl in the Ukraíne. The radioactive
material released during the accident caused severe contamination
in parts of the Soviet Union, and less harmful contamination in
Britain and Western Europe.
What happened afterwards?
A large amount of fuel in the reactor was damaged and fission
products (radioactive material) were released into the atmosphere.
As a result a large area of the Soviet Union was severely
contaminated and about 100 000 people had to leave their home
and be resettled elsewhere. However many more may eventually
move. lt is not yet certain how many people will suffer from
radiation induced illnesses or what the long term health and
environment effects will be.
(. . )
.
Le rapprochement des textes 'français et anglais ne justifie pas ici
d'observations supplémentaires.
CONCLUSION
La cornparaison ou mise en constraste linguistique de productions anglaises
et françaises dans un domaine similaire nous permet de voir clairement un
certain nombre de différences dans les manieres d'aborder un thême
scienUfique. L'analyse du contenu, même rapide, des textes donnés à lire aux
visiteurs anglais et aux visiteurs trançais laisse apercevoir des différences
culturelles importantes.
Pour que des expositions puissent circuler d'une contrée dans l'autre ii
faudrait les remodeler en fonction de chaque public et de chaque culture.
Cela signifie qu'une simple traduction linguistique ne suffirait pas. 11 faudrait
envisager une "traduction culturelle".
Peut-on espérer trouver un moyen terme un mode d'expression cornmun à
tous les pays européens? Peut-on imaginer (ou souhaiter) que les mentalités
petit a petit se modifient au point d'atteindre à une communauté des formes
- 1 1 1-
0 FUTURO DA CULTURA CIENTÍFICA
d'appréhension des réalités scientifiques et techniques? Des textes
convenant à tous pourront-ils un jour être produits? Si une industrie culturelle
européenne doit être mise sur pied, et si cette culture prend en compte les
sciences et les techniques, alors ii faudra bien mettre au point des moyens
d'expression qui permettent de faire circuler les connaissances et ses
supports. Le multilinguisme, et les réflexions approfondies qu'il impose
permettrait certainement de conserver à chaque culture sa spécifié:ité tout en
rendant possible des échanges en matiêre de culture scientifique.
- 1 12 -
0 FUTURO DA CULTURA CIENTÍFICA
IMPACT OF SCIENCE POPULARIZATION
MICHEL CROZON
C.N.R.S.
PARIS, FRANCE
For many people, science has been experienced at school as a difficult
matter, plenty of numbers, formulas, abstract schemes, tricky exercises and
theories more or less contradictory with common sense. The result is that, in
spite of the fact that sciences and techniques are present in almost ali
aspects of our life, people feel excluded of scientific knowledge. This is, in my
opinion, particularly true in a country like France where, due to the cartesian
tradition, there is a confusion between mathematics (i.e. abstraction, puzzling
formulas) and the whole of the scientific knowledge. As a antidote to this lack
of scientific literacy in a large part of the population of my country there have
been a long tradition of tools and attempts to popularize science. Even
without evoking d'Aiembert, or Voltaire, one can recall in the 19° century:
-·
numerous magazines partially or entirely devoted to science and its
applications;
- many science and natural history museums being built in large towns;
- also there have been a lot of imaginativa enterprises, like theater
plays, novels (Jules Verne is the most famous science novelist..),
scienti'fic fairy plays, science hawkers ... ln many aspects, the end of
the nineteen century has been a prosperous period for popularisation
of science. At that time, the emphasis was put on the marvels of
science: electricity, strange phenomenas, optical illusions were used
to demonstrate the "miracles" of science, and to give the hope that
those miracles will be useful to everybody and that in the future,
science will give happiness to everybody.
This tradition has been continued with more or less intensity during the first
half of twentieth century, but with a less optimistic view, because of the
invention of "scientific" weapons like poison gas.
During the "Front populaire" period, in 1936, Jean Perrin, a physicist, founded
the Palais de la découverte, a new kind of science museum where
experiments, demonstrations, explanations by lecturers try to introduce
everybody to the basic laws of nature. Science is then considered by
progressist people as the common property of human kind, and scientific
knowledge is expected to give freedom and prosperity.
-
1 13
-
0 FUTURO DA CULTURA CIENTÍFICA
After world war 1 1, in spite of a huge development of techniques, science
popularisation has known a large decline. Atomic bomb and ali scientific
weapons have probably given a bad reputation ·to science. And also
philosophical, ideological and politicai disputes largely ignored the scientific
activity and the scientific knowledge, as much as the role of techniques.
lt is mainly after 1975 that a new impulse has been given to promoting
science. Without being exhaustive, I can mention:
- an important development of science magazines like: La Recherche,
Science et Avenir, Ça m'interesse, Science et vie, etc.;
- the large success of books dealing with scientific questions. Several
publishers propose scientific series ans some of them get a large
success in fields like astrophysics and cosmology;
- creation, in a growing number of large towns of "centres culturels
scientifiques et techniques" (CCSTI) which are places devoted to
spread scientific knowledge through various media: movies,
exhibitions, lectures, meetings with scientists, technical collective
projects, experiments etc.;
- new development of science museums, like "la cité des sciences et
de !'industrie" in Paris, and the renewing of the old ones;
- the development of science clubs, mainly for young people. They can
make and send rockets, observe the sky through telescopes, study
the ecosystem of rivers, make robots or other technical objects, play
with computers. There are also clubs dealing with mathematics,
physics or chemistry in which they introduce themselves to those
sciences in a non-academic way;
- more generally, the care of what we call "culture scientifique et
technique" has become a concern for many people and public
institutions like towns, regions, industries.... Curiously, television have
not followed this tendency, and their programs appear rather poor in
scientiHc topics. ( as far as I know this is different in countries like
ltaly, or Great Britain).
Ali this activity around science has received a large publicity and
development through the "Science en Fete" . Created in 1992 by the
ministery of research "Science en Fete" is a 3 days period in May or June
(Friday, Saturday and Sunday) in which ali the partners of "culture scientific
et technique" listed above, but also universities, public or private laboratories,
research institutes, industries etc. unify their efforts in order to give a large
public a living view of science and scientific activity. lt has been estimated
that several millions of people have participated to at least one of the
numerous initiatives during these 3 days.
-
1 14
-
0 FUTURO DA CULTURA CIENTÍFICA
Ali this activity around science rests on 3 main messages which can be
simply summarised:
- science is interesting and can give you a good time . Through simple
experiments, or games, or interesting talks, stories, papers or movies
or even plays, or visiting exhibition, you can be introduced in a
pleasant way to an understanding of modern science and enjoy it;
- science is useful. ln the present context of economic crisis and
competition between countries, it is necessary to be introduced to the
scientific and technical knowledge. There is no other way if we wish
to maintain our position in the world and our standards of living
- science is important for citizens. New techniques in biology and
medicine, problems concerning global and local environments and
non renewable resources, new possibilities of modern techniques,
present ethical, politicai or ideological issues which require enlighted
citizens in order to support the best solutions.
As we have seen, various method are used to help people being more
familiar with scienti'fic questions. Without entering into details, I would like to
mention:
- direct access to experiments, manipulations, practical works;
- contacts an discussions with scientists and high-level engineers;
- public debates in conferences, radio or TV shows;
- games, competitions, rallies etc...
The efficiency of this large panei of means is not well known. We lack tools to
estimate it. What is the impact of a TV show ? how can we measure it, in the
short term ? What is the long term efficiency of such a policy ?
More fundamentally, does it exist a best way to transmit scientific knowledge
? Can we identify the keyfactors and obstacles ? Language and wording ?
Practical works ? Use of tricks like science thrillers or narratives ? Is history of
science a good vehicle of scientific knowledge ? What is the importance of
cultural or traditional backgrounds ? What are the common features and the
differences between countries of western Europe. As a consequence, can we
make common products, which could be used in several countries ? Or,
starting with the sarne raw material, to which extent do we have to cloth it, to
set it out in different ways ? From the answers to those questions we can
deduce different policies, concerning, for instance video documents and TV
programming
-
115
-
0 FuTURO DA CULTURA CIENTÍFICA
For these reasons, I believe that there is a strong need for a research
program about ali these questions. lt could be proposed by research
agencies, TV companies, science museums and similar establishments and,
of course, european agencies. lt will be a multidisciplinary program, including
scientists, human and social scientists, experts in language, in pedagogics, in
mass-media, TV production.... ln such a field, work has to be both practical
and theoretical. I have not yet a clear idea of the way to organize this
research, but I think that a meeting like this one is a good place to discuss
this question, and I thank warmly the European Commission and our friends
from Lisbon to have given us this excellent opportunity to discuss these
questions.
-
1 16
-
0 FUTURO DA CULTURA CIENTÍFICA
A
CLASSIFICATION OF LITERARY 11 TRICKS11 USED lN SCIENCE POPULARISATION
PAUL CARO
CITÉ DES SCIENCES ET DE L'INDUSTRIE
PARIS, FRANCE
I
-
HUMAN FIGURES
ln this category the composition is centered on a character who basically is a
leading human Figure whose activity is essential to the plot whatever the
scientific content he is manipulating. The attention of the reader, or viewer is
mostly focalized on him.
THE GUIDE.
The explainer who introduces to the world of science. A very classical figure
from the early time of science popularisation. For instance in "Entretiens sur
la pluralité des mondes, 1686" and in numerous books in the 18th century
especially for ladies. Now the "Guide" deals more often with children. He can
be also a well known scientist giving his advice to laymen on a variety of
subjects. He can be the anchor man in science television shows, usually then
a science journalist. The literature archetype is Virgil in Dante's Comedy.
Across the mythologies he is the lnitiator.
THE FOUNDING fATHERS,
whose word and work are considered as establishing a truth previously
untold. A basic example is Einstein.
THE TRANSGRESSING HEROES.
Those are the scientists who have fought, with success against scepticism.
They carne back from a long and difficult travei with a precious treasure (the
recognition). Example: the story of the discovery of high criticai temperature
superconductors. A common theme in many legends and tales: the hero
should fight against natural difficulties and enemies, like Orpheus coming
back from Inferno or Jason with the Golden Fleece.
-
1 17
-
0 FUTURO DA CULTURA CIENTÍFICA
THE DETECTIVE.
He is the hero of a story with a puzzle to solve. There may be many
contributions of different scientists or branch of sciences. lt is a good
opportunity to travei everywhere around the world, this makes beautiful
touristic pictures, Very common in newspapers stories or TV series. Exarnple:
Who killed the dinosaurs ?
THE MAO SCIENTIST.
A classical theme for movies and cartoons. Concerned nowadays with genetic
manipulations and frauds. The literary archetypal example is Faust. He is
breaking the rules of the world by gaining some power over natural
processes, or by treachery. He may be also a trickster, this is common in non
scientific TV series using science as a source for dramatic effects (the Villains
in the Batman series have very often laboratories, as does the Good Hero
also... )
THE FIGHTING SCIENTIST.
He is the hero facing a dragoon. He may be facing the evil (he is then the
valiant opponent of the preceding category) but also he may be the maverick
alone against ali members of the scientific community. May be he is right ? A
romantic drama common in pathological episodes in science. Attract press
coverage because of the psychological emotional charges and the fact that
very often the results support irrational beliefs although carried by an
authentic scientist.
GULLIVER.
Today he works through images ·from the microscopic world to galaxies. lt
takes the audience on a travei through scales of space. Using new
technologies it is possible to travei inside a living body. Used in
documentaries or backbone of TV science show. Very easy to build a traveller
as a computed character with modem techniques of handling images
THE PRIEST (THE STORV TELLER).
This is the scientist who tells science stories with a religious background (like
the creation stories in astrophysics or prehistory). He is, himself, the subject
of a cult as a priest. Sometimes his prestige is enhanced because of physical
characteristics. Sometimes in tales the crippled person has the knowledge of
truth (the Fisher King in the Round Table stories).
- 118-
0
FUTURO DA CULTURA CIENTÍFICA
THE SCIENTIST AS VICTIM.
More likely to be used against an historical background. lt is the case of
Galileo. But martyrdom for scientists is not common.
11
-
THE SUPERHUMAN FIGURES
Those are figures which involve a degree of belief. They are not only
attractive as components of a good story, they can involve a real emotional
experience which go beyond the esthetic pleasure or a cunning interest.
THE FAIRIES.
Those are responsible for miracles. Very common in medical stories as "good
doctors". Archetypal scientific figure is Pasteur. They are Founding Fathers
with a miraculous practical efficiency similar to magic.
THE SORCERERS.
The sarne but working on the evil side. They invented atomic bombs and
today are playing with gnome (they have a chance in so doing of changing
categories ... ). Sometimes they feel guilty: that makes a dramatic romance
THE GOOD DEVILS.
Mostly materiais, chemical products most often naturais drugs (penicillin),
vitamins. Are hidden in Nature, especially in food. They help who can
recognize them. This an old trick of pre-scientific thought. The equivalent of
country Saints or blessed water sources. Common in weekly magazines for
women and popular newspapers.
THE BAD DEVILS.
The reverse, inhabit industrial wastes hidden by treachery to harm innocent
people, insidious invisible poisons in air water or soil. Example: dioxin or
radioactive wastes. Can create real emotional problems. A theme frequently
used by the press or news magazines.
THE GENIUS lN THE BOTTLE.
Like Gulliver it is part of a change in scale scheme but with terrific
consequences, not simply travei. lt is an energy liberated in a single event. A
powerful hidden force. Has carne into reality from tales with the invention of
-
119
-
/
0 FUTURO DA CULTURA CIENTÍFICA
the atomic bomb but is also involved in the rhetorics around oil resources. Lay
behind technological progress. Used in the official propaganda as a good
fellow helping humans. lmportant in science issues for society.
THE MASTER OF ANIMALS.
Takes us back at a time when humans and animais where equals. Feeling of
usurpation of rights. Animais are wise and know how to use the Earth. Some
very close to us. We had an alliance with them (totems). Classical in tales,
where animais speak. Basic in anthropological stories. Lessons diffused by
animal series on TV, children' magazines, ecological stories or propaganda.
III
-
MEANS ANO PLACES
Here comes the scenery where stories are taking place and the extraordinary
means used by the protagonists, human or surperhuman, to deal with the
world or to understand it, sometimes through simulation.
THE ARTIFICIAL OR AUTOMATIC BEING.
Golem, robots, androids, monsters intelligent machines, thinking computers,
modem fighting aeroplanes, genetic engineering products, patented life,
mentally disabled people with astonishing capacities, drugs manipulated
brains, etc.... Many of those are more or less the product of human capability
for imitation (simulation) (such as the search for artificial life).
TOOLS.
They are objects which prove the existence of a power, totems, flags or signs
of achievement. Many of them weapons and/or vehicles. Examples: rockets
submarinas, big aeroplanes, trucks, satellites, sophisticated weaponry.
Objects which combine severa! technologies. They are not autonomous
though (as the preceding category may be): they depend on a Master.
Frequently exhibited in science museums, very numerous as fantasmatic
objects in James Bond's style movies or trickster's TV series.
Communications: ACTION AT A DISTANCE 1.
Through rays. Light is involved From the archetypal image of the lightning
bolt. Laser is the favourite modem embodiment, can be beneficial or deadly
(from medicine to theatrical shows to weapons). Sarne for radioactivity.
- 120 -
0 FUTURO DA CULTURA CIENTÍFICA
Communications: ACTION AT A DISTANCE 2.
Through a three dimensional field, magnetism is the model, but sound or
music is also a vector. as a consequence associated sometimes to
"vibrations". Perfumes or other molecules support messages (pheromones).
Very often, associated to marvellous stories bordering with irrational.
Communications: TRANSPORT AT DISTANCE.
lnstantaneous transportation through space and time is a classic theme in
science-fiction from the beginning (to the Moon in 17th century novels).
Efficiency of transportation systems is a common argument of triurnphant
technical literature in behalf of fast trains or aeroplanes. Submarines and
balloons go to strange places. ln popular science TV shows, fantasy vehicles
travelling through space and time are cornmon theatrical machines (like in
classical operas or science-fiction space-operas... ).
COMMUNICATIONS: SEX.
A physiological and social problem which always arise a great interest in
viewers or readers. May be the occasion of ceremonies or fights. Descriptions
cover the whole range of living beings.
MAGIC FORMULAE.
Are classical tricks in fairy tales. They appear in science stories as self
evident marvels explaining at a single stroke a lot of things. Example: E=Mc2
(but it may be the Maxwell equations !). Sometimes to be found in chemistry
stories.
HIDDEN SYMBOLIC FORCES.
Those are mostly embodied by numbers, sacred numbers or basic numbers
rational or not. is a favourite mystery. Gold nurnber is known to architects.
Numbers are an ordinary background to the world for the activity of theorists
in science (through arithmetics and group theory). But it may be also shapes:
triangles or circles or icosaedron.
THE ABSOLUTE PRIMARY LAW, INITIAL GERM, UNIVERSAL CAUSE.
To he embodied in an ultimate formula which contain the explanation of
everything lt can be an object. This is then the Philosophical Stone, or the
most elementary of elementary particles, or the unifying force. A speciality of
the mind of western world: everything derives from a unique cause. Deeply
rooted in the activity of scientists.
-
121
-
0 FUTURO DA CULTURA CIENTÍFICA
THE SACRED PLACES.
Where common people should show some respect. This is the way the
laboratories are presented: disordered places but where people think and
work seriously with a concentrated and meditativa mind as in churches and
secluded from society. No places for sex and/or fantasies (few worrien and if
any, with no sex appeal. .. see many American or British Science TV series,
"Nova" or "Horizon").
lHE HIDDEN TREASURES.
Treasure hunt is a favourite play for children, but also the theme of countless
adventure stories. Scientists in novels, newspaper articles TV series, are very
often hunting a treasure, looking for clues, resolving enigma, physically
moving earth to dig. Covers ali field of science.
lHE DESERT.
lt is a special sacred place, "out of the world" and very extended where the
conditions are hostile to man but it may be also a sanctuary. ln ali traditions, it
is a place to be purified (it may be a forest as well). There nature dominates,
her forces are wild. Teaching can be derived from their contact. There may be
the home of dangerous monsters as well. Modern deserts are for example
high mountains, caves, tropical forests, saharas islands and the poles
inlandsis. Scientific expeditions are sent to theses places (it is less well
known that tour operators are going there as well. .. ). The oceans and the
bottom of the seas are another example of "desert" difficult to explore and
inhabited by strange beings or phenomena ("black smokers").
IV
-
BASIC MYTHOLOGICAL COMPONENTS
Mythologies are built as collections of fantastic tales with some archetypal
roots in common. Those roots are powerful incentives to build interest for
science popularisation stories.
METAMORPHOSIS.
An usual trick of bad devils in old legends or novels. Science gives some
credit to it, from natural history of course, but also from stories like the
evolution theory (is man deriving from apes ?) or the alchemy of
transmutation in radioactivity.
-
1 22
-
0 FUTURO DA CULTURA CIENTÍFICA
MONSTERS.
Man had to fight "monsters" to establish himself on Earth. Those are mostly
animais, but can be fantastic imaginary creatures like dragoons. Anything
which gave a body to monsters will be awfully attractive, from strange insects
to dinosaurs.
FATALITIES.
Vou cannot escape your fate. it is written somewhere. The theology of entropy
says the sarne... Or the announced death of the sun as a Red Giant..
CURSES.
Those derive from bad behaviour. Especially if Nature's Gods have been
neglected: the world would be doomed. Very ancient tradition: Deluge,
Apocalyptic stories, end of the world, pollution, nuclear winter. They generate
strong emotional reactions. Ozone hole and greenhouse effects, believed to
be man-made are seen as fierce attacks on the Cosmic Egg or Primeval Egg
(the Earth) and are perceived in physiological, not rational way.
CATASTROPHES.
When they are man.-made, they are more or less curses. But many are purely
natural: Hoods, earthquakes, volcanic eruptions, tsunami, tornados... They
arouse a passionate interest because they break the continuity of everyday
life. Their announcement is exciting. Contrary to curses, which are projected
in a far-away future, they may happen immediately.
PARADISE LOST.
The nostalgy of a golden age, when everything was better. A common feeling,
not supported in general by historical science. A psychological mood Very
good for historical museums, exhibiting old technologies showing ancient way
of life or ethnographic museums (the lndians the good salvages, the good life
of primitiva tribes... ). lnvolves as a component the tear of uprooting: the lost of
identity through amnesia.
STORIES OF THE 0RIGIN.
Those are creation tales, the most famous of ali mythologies. Science
produces a lot of them, told by astrophysicists or pre-historians or biologists.
They are the most easily popularised pieces of scientific knowledge. They
may be presented to enhance religious connections, hut usually they provida
a few good lessons in hard science. Favourite subject.
- 123 -
0 FUTURO DA CULTURA CIENTÍFICA
V-
LANGUAGE
An important literary component is language. lt may be very efficient, if it is
poetic, because contrary to the usual dry and precise language of science,
there is something to he perceived in between words. This is the essence of
poetry. Words can popularize otherwise obscure and difficult parts of science,
because they create in the mind variety of images.
CHAOS
QUARKS
VACUUM
(as acreativebody)
BIG BANG
FRACTALS
DINOSAURS
BLACK HOLE
DARK MATTER
FREE ELECTRON
NON-EQUI LI BRI UM
STRANGE ATTRACTOR
INFLATING UNIVERSE
"CATASTROPHE" THEORY
(R. Thom- instead of "theory of singularities of differential equations)
DISSIPATIVE STRUCTURES
CONCLUSION
Many ordinary science stories in newspapers, books or TV shows will use a
combination of one or several of the components described as shown from
examples taken ·from the Paris press last week.
This is generally attractive for the readers. However, it covers only a very
small range of knowledge as it is practised by scientists. Just because most of
their research is not easy to fit into one of the literary categories described.
Popularisation then will only depends on the success of didactic methods,
which lay out of the range of show business techniques... This is a very
serious problem.
-
1 24
-
PRÁTICAS CORRENTES E
NOVOS MEIOS DE
COMUNICAÇÃO DAS CIÊNCIAS
CURRENT PRACTICE ANO
NEW TRENDS OF
COMMUNICATING SCIENCE TO
THE PUBLIC
0 FUTURO DA CULTURA CIENTÍFICA
MUSIS - MUSÉE DE LA SCIENCE ET DE L'INFORMATION SCIENTIFIQUE.
LUIGI CAMPANELLA
UNIVERSITÁ DI ROMA "LA SAPIENZA"
ROMA, ITÁLIA
Le projet est né en 1991 pour répondre à l'intérêt croissant et à la forte
demande de diffusion de la culture, de la recherche et du considérable
patrimoine scientifique de la ville de Rome.
Rome n'a pas encore un Musée de la Science, ce qui est une évidente
contradiction vu l'énorme variété des "lieux" et des traditions scientifiques
dont la ville est riche.
Le Ministàre de I'Université et de la Recherche Scientifique a donc lancé le
projet MUSIS.
Ce qui est extraordinaire c'est que la réalité du projet, les nombreuses
initiatives que je vais vous présenter, et les résultats obtenus, bien que dans
un court délai, ont largement depassé toutes prévisions.
Ce que l'on n' avait pas prévu, en effet, c'est que la méthode du projet conçue
pour répondre à une exigence de la ville de Rome, puisse devenir exportable,
mais c'est exactement ce qui s'est verifié et maintenant nous avons deux
filiales:
(1) MUSIS MAGNA GRECIA; au sud de l'ltalie, dans les régions ou les
anciennes civilisations autochtones et grecques se sont mêlées
donnant lieu à d'extraordinaires résultats culturaux, qui ont depassé
les siàcles.
(2) BABY MUSIS; un projet de musée pour les enfants et les plus jeunes
citoyens.
Mais je vous parlerais de ça, nos derniàres frontiàres.
Le projet s'est donc rapidement transformá en un objet concret et présent au
lieu d'un objet (le Palais de la Science) abstrait et absent.
L'absence, on le sait, est décevante et paralysante. Nous avons donc choisi,
coordonné par le prof. Luigi Campanella, président de MUSIS, de ne pas
nous soumettre à elle, et bâtir le projet marchant à grands pas, outrepassant
les pas de la désillusion.
- 1 27 -
0 FUTURO DA CULTURA CIENTÍFICA
L'idée de base du projet MUSIS est que le futur musée soit constitué d'une
structure centrale - à réaliser - et d'une série de pôles scientifiques situés en
plusieurs endroits de la ville, dont le nom de "Musée Multipolaire".
Cette constellation, diffusée dans le territoire de la ville de Rome et de sa
province, répond au premier objectif du projet, qui est de procéder de façon
concrête.
La structure centrale, étant encore en phase de réa.lisation, nous avons
commencé par les pôles scientifiques, constitués par des laboratoires de
recherche scientifique et tecnologique, que nous avons ouverts au public
pour la premiêre fois et par des petits musées existants parmi le territoire
urbain à revitaliser et à coordonner; comme je l'ai dit, la ville de Rome et sa
province sont três riches en "lieux" scientifiques souvent méconnus.
Nous avons jeté par dessus l'épaule tous commentaires sur les possibles et
éventuelles réalisations architectoniques et, au lieux d'épater l'auditoire avec
des projets milliardaires, que nous n'avions pas, nous avons réalisé, avec
seulement deux milliards de lires, cinquante initiatives principales, articulées
en cinq lignes opératives:
{I) (étude du) projet de réalisation de la structure centrale dans le
"campus" de la seconde Université de Rome;
{2) prototype représentatif des coordonnées du futur musée;
(3)
expositions scientifiques (nous en avons réalisé quatre et dans
différents domaines de la science) pour sensibiliser la population aux
problêmes scientifiques et sociaux;
{4) itinéraires
scientifiques
culturellement
homogênes,
cycles
thématiques des séminaires et conférences, qui préfigurent la
structure multipolaire de MUSIS, particuliêrement adressés aux
étudiants.
En effet, la demande d'information scientifique est três forte et les
itinéraires donnent la possibilité de rapprocher les jeunes des
problématiques qui ont été patrimoine des spécialistes, loin du grand
public.
11 est ainsi possible de développer parmi les nouvelles générations
une différente conscience critique, désormais hors des banalités
d'une divulgation superficielle;
(5) nombreuses initiatives de divulgation, formation et information (nous
avons édité des livres, des publications specialisées et chaque
année, pendant la semaine de la culture scientifique, le rendez-vous
avec les itinéraires scientifiques est devenu permanent).
-
1 28
-
0 FUTURO DA CULTURA CIENTÍFICA
Le professeur Luigi Campanella, président du projet MUSIS, a souligné
plusieurs fois que les initiatives solidement bâties dans le présent ont bien
plus, que les projets futuristas, de fortes chances de prévoir, planifier et
organiser le futur.
En effet, la naissance d'un tel genre d'entreprise avec la présence dans le
projet de trois Universités de la ville de Rome met un accent particulier sur un
aspect três important, celui des nouvelles professions nécessaires à la
gestion et au développement futur de l'initiative.
Les jeunes ont plusieurs fois montré un intérêt croissant et une grande
disponibilité à l'égard des thématiques des musées, leur histoire, gestion et
développement. 11 ne fallait pas décevoir leur enthousiasme; nous avons donc
conjugué au travail d'organisation et strictement propositif une activité de
formation et divulgation dans laquelle le rôle des trois Universités est
évidemment prioritaire.
Convaincus que ces deux aspects doivent marcher d'un même pas, quoique
dans certains cas, par des réalisations partielles, mais qui soulignent quand
même le début d'un plan d'action unitaire, nous avons institué un doctorat de
recherche en Sciences Muséographiques, une Ecole de Spéciàlisation en
Muséologi� Scientifique et un Diplôme pour Techniciens de Gestion de
Musée.
Mais en même temps, nous avons proposé au grand public des conférences
et des cycles de séminaires sur les thàmes de la divulgation scientifique, de
l'expérimentation didactique, de l'histoire et la philosophie des sciences, de
l'archéologie industrielle et sur la transformation de l'existant par I'Art et la
Science.
Le projet MUSIS ne s'est jamais isolé dans un effort titanique, admirable peut-être, mais séparé du reste de la population - nous n'avons jamais voulu
lever le rideau pour épater le public avec nos wunderkammer, à la trompeuse
et redoutable recherche d'une épiphanie de la Science.
11 s'est vérifié que la méthode du projet loin d'être un habitt provisoire, valable
jusqu' à la réussite de l'entreprise, est devenue structure portante.
11 faut dire que même entre ceux qui travaillent pour le projet, certains étaient
atteints au début d'une sorte de presbytie intellectuelle; ils ne voyaient pas ce
qui était sous leur yeux: l'importance de la méthode du travaiI.
MUSIS s'insàre dans un processus, désormais en cours dans notre Pays,
ainsi que dans beaucoup d'autres societés industrielles, envisageant un
progressif rééquilibre de la balance de la recherche scientifique et
tecnologique, qui a été trop longtemps déplacée sur le front de la production
au détriment du développement culturel et social.
-
1 29
-
0 FUTURO DA CULTURA CIENTÍFICA
Ce processus détermine un intérêt croissant pour les archives et les
collections d'instruments scientifiques considerées non seulement comme
une simple documentation, mais essentiellement représentatives d'une
discipline ou la théorie et l'expérimentation, les idées et les faits sont en
corrélation étroite.
Dans ce quadre les deux nouveautés du projet MUSIS sont:
(1) Le MUS É E MULTIPOLAIRE, au lieu du Musée Unipolaire (comme je
disais, autour du probleme, ii y a eu un débat paralysant sur le lieu ou
le bâtir et le projet architectonique à choisir).
Le Musée Multipolaire au contraire privilegie la récupération et la
transformation de l'existant et l'organisation des programmes
opérationnaux plutôt que les structures et les études de faisabilité.
(2) Les ITIN É RAIRES SCIENTIFIQUES; ils ont perrnis à MUSIS de
s'ouvrir sur deux fronts, celui de l'école (ou nous avons eu aussi
l'efficace collaboration de l'lnspection Académique de la ville de
Rome) et celui de l'interaction avec !'industrie; un exemple: l'itinéraire
" La chimie vers de nouvelles frontieres" avec la collaboration d'une
industrie pharmaceutique.
Au projet ont collaboré aussi les plus grands Organismes de Recherche
italiens et internationaux: le CNR (Centre National de la Recherche), I'EI'JEA
(Organisme National de I'Energie Alternative et de I'Environnement) et I' INFN
(lnstitut National de Physique Nucléaire), dans ce quadre ii faut souligner la
particularité de cette interaction: ii ne s'agit pas d'un sponsorat, mais plutôt
d'un partenariat, quelques exemples: selon les lignes scientifiques et
opératives, du projet MUSIS, I'Organisme National de I' Energie Electrique
(ENEL) et l'lnstitut National de Physique Nucléaire (INFN) ont diffusé des
informations capillaires, parmi les professeurs des écoles secondaires et le
grand public des expositions, réalisant la soudure entre " Les MUS É ES
UNIVERSITAIRES" et le "MUS É E D'ENTREPRISE".
Nous sommes de l'avis que seulement dans cette seconde hypothese, celle
du partenariat, ii soit possible une collaboration fructueuse et durable.
Nous avons été favorisés sur ces réalisations par l'exceptionnelle richesse
des possibilités offertes par la ville: A Rome nous avons employé pour la
recherche scientifique 25% des dépenses nationales; nous avons trais
Universités avec un total d'environ 200.000 (deux cents mille) étudiants;
environ 25.000 (vint cinq mille) rechercheurs des plus grands Organismes de
Recherche italiens et internationaux y trava.illent; Rome posséde, enfin,
d'importantes Académies et industries bénéficiant de tecnique de pointe.
- 1 30 -
0 FUTURO DA CULTURA CIENTÍFICA
11 est significatif que cette interaction soit obtenue à travers d'initiatives qui
partent d'écoles secondaires. Nous sommes parvenus à deux résultats
importants:
(1 ) L'école secondaire supérieure (20 institutions) s'est ouverte à
l'extérieur, réalisant grâce aux techniques de pointe: démonstrations
de laboratoires, visites guidées, conférences, expositions et
rencontres avec la population.
(2) Nous avons réalisé la jonction, entre l'école secondaire et l'école
primaire avec leur participation conjointe aux itinéraires scientifiques
et à l'élaboration autonome des prochains itinéraires.
Le résultat est la naissance d'une nouvelle sensibilité à l'égard de la science
et de ses corrélations avec la vie quotidienne. Voici quelques titres des
itinéraires et des expositions déjà réalisés, pour vous donner une idée de
l'éventail des arguments explorés:
ITIN É RAIRES:
(1)
(2)
(3)
(4)
(5)
"De l'atome au quark"
"Herbes, remedes, médicaments"
"La cl'limie pour la production et les monuments historiques"
"Energia: sources alternativas et économie"
"Un voyage parmi les étoiles"
EXPOSITIONS:
(1)
(2)
(3)
(4)
(5)
"Communiquer la science"
"Les couleurs de la chimie"
"Les 3 dinosaures: de la Chine a I'Europe"
"Les chercheurs de masse"
"Tous parents, tous différents"
Actuellement, nous avons dans le Comité Scientifique et d'Organisation de
MUSIS des représentants des trois Universités de Rome, d'autres Universités
de la région, de deux Ministàres, le Ministàre de I' Université et de la
Recherche Scientifique et le Ministàre des Monuments Historiques et de
I'Environnement, des Administrations politiques locales: Région, Province,
Commune, des principales Académies Scientifiques de la ville, de la
Confédération des É coles Secondaires et des principales Associations
Nationales de !'Industrie.
Quelques mots, en conclusion, sur les nouvelles filiales MUSIS MAGNA
GRECIA et BABY MUSIS, sur les collaborations scientifiques avec des
Musées étrangers, notamment avec le Musée de I'Homme avec l'exposition à
Rome de "Tous parents, tous différents", sur la diffusion du Projet à travers Ie
territoire national et sur les ltinéraires Scientifiques Européens.
- 13 1 -
0 FuTURO DA CULTURA CIENTÍFICA
Le premiar ltinéraire Scientifique - Artistique M USIS MAGNA GRECIA - est en
cours de réalisation. Le fil conducteur s'étend de I'Ecole Pythagoricienne de
Crotone à travers les lieux histo riques, qui ont caracterisés pendant des
siecles l'histoire du Sud de l'ltalie sur les thématiques du rapport entre la
science, l'art et le territoire jusqu' aux actueis problemas de l'impact entre
!'industrie et l'environnement.
Pour BABY MUSIS est en cours de réalisation un projet de prototype de "Ville
des enfants" caracterisé par plusieurs ateliers ou les plus jeunes citoyens se
familiariseront avec les tecniques et les ressources de notre époque: énergie,
environnement, communication, à travers du jeu de simulation et de
manipulation. Pour ce projet nos partenaires du côté de l'entreprise vont de la
plus grande coopérative alimentaire italienne (COOP) jusque ALITALIA.
L'inauguration est prévue pour le printemps 1 994.
La collaboration avec le Musée de I'Homme, enfin nous a porté à réaliser la
premiere version à l'étranger de l'exposition "T9us parents, tous différents" et
je veux encare remercier ici, le professeur André Langaney, Ninian Hubert
Van Blijenburgh, Mme Jacques de Beaumarchais, Présidente de la Societé
des Amis du Musée de I'Homme et I'Ambassadeur de France en ltalie Mr.
Philippe de Cuviller. Toutes ces forces conjointes et l'enthousiasme de nos
collaborateurs ont porté l'exposition à un extraordinaire succes.
Les prévisions sont que ceei va continuar dans les prochaines villes de l'ltalie,
ou l'exposition se déplacera.
Les derniers projets en cours de réalisation sont les ITIN É RAIRES
SCIENTIFIQUES EUROP É ENS déjà acceptés dans la COMMUNAUT É
EUROP É ENNE. Le premiar: "Tout le sei de I'Europe: de la Mer Mediterranée
à la Mer du Nord" se développe de la Magna Grecia jusqu' à Bruxelles,
suivant le fil du rapport qui lie les philosophes de la nature du VI siecle A. C.
aux actuelles recherches sur le temps et l'espace, mais ces problemas
universaux, sont declinés concrétement à travers de leurs liaisons historiques
et l'impact de l'art et de la science sur la transformation de l'existant.
Ce projet est encare ouvert et peut s'enrichir d'autres collaborations: Le
problema du rapport entre la science et l'environnement est un des principaux
de notre époque, et les pares scienti'fiques et tecnologiques sont les lieux ou
le débat et la recherche peuvent mieux se développer. Nous vous proposons
une collaboration et je suis à votre disposition pour tous renseignements.
Nous avons déjà envisagé le prochain itinéraire qui ira de l'ltalie aux pays de
I'Afrique du Nord, I'Espagne et la France.
Au mois de Septembre 1994 est aussi prévu l'inauguration d'un programme
de collaboration didactique avec I'Administration de la Province de Rome. 11
s'agit d'un systeme articulé d'expositions itinérantes, vidéos, programmes
-
132
-
0 FUTURO DA CULTURA CIENTÍFICA
interactifs, publications et questionnaires sur les themes de I'Art et de la
Science, particulierement destinés aux citoyens qui ont été forcés à
abandonner les études.
Je voudrais conclure avec une observation qui souligne en même temps les
erreurs du passé, les problemas du présent et les espérances du futur; tout le
monde sait qu'en ltalie, ii se passe à présent une sorte de révolution nommée
"MAI\JI PULITE". Nous sommes entrain de nous débarrasser d'un systeme
politique et industriei sérieusement cornpromis par les scandales
économiques.
Même dans le domaine de la culture et notamment dans le sponsorat cultural
ii y a eu des scandales.
En ce moment ce que MUSIS a fait avec un minimum de ressources
matérielles et un maximum de ressources et d'énergies intellectuelles et de
forces sociales, ces résultats, ces initiatives représentent vraiment une
possibilité concreta, l'autre face de la médaille et ii faut dire, selon un
proverbe africain "Un arbre qui tombe fait plus de bruit, qu'une forêt qui
pousse".
-
1 33
-
i
j
0 FUTURO DA CULTURA CIENTÍFICA
E L INSTITUTO FEDERAL AUSTRIACO PARA EL CINE CIENTIFICO
EN AUSTRIA: SUAS TAREAS, Sus METAS
SIEGFRIED H ERMANN
AUSTRIAN FEDERAL INSTITUTE FOR
SCIENTIFIC FILM
VIENNA, AUSTRIA
El Instituto Federal Austriaco para el Cine Científico es una central de cine y
de video producciones científicas en Austria.
A través dei video el trato dei cine científico ha tenido positivas experiencias.
AI darse un apropriado uso entre el cine y el video, estos dos sistemas se
complementan de una manera ideal. La larga vida dei material filmado y las
sucesivas experiencias relacionadas con el video, posibilitan en el futuro
considerables ahorros en ambos casos de aplicación.
Las tareas dei Instituto Feaeral Austriaco para el Cine Científico son:
- El archivo y el préstamo de películas científicas, tanto nacionales
como extranjeras. (Airedor de 3686 películas en el stand de archivo).
- La producción propria de cine científico para las Universidades y
centros de lnvestigación austriacos.
- La ejecución de coloquios científicos para dar a conocer los medios
audiovisuales.
Para los colaboradores dei Instituto Federal Austriaco para el Cine Científico
se pedirá que:
- Tengan una visión general en la preparación de films científicos para
las Escuelas Superiores; y que además estén dotados para llevar
estas funciones en la práctica.
- Han de estar facultados para extenderse a otras profesiones; asi
como estar capacitados para renovarse continuamente.
1 . EL CINE CIENTÍFICO EN AUSTRIA
Pocos anos después de que Eugen Dupont presentase el 27 de marzo de
1896 la primera proyección cinematográfica en Viena, se ponen a trabajar
- 1 35 -
0 FUTURO DA CULTURA CIENTÍFICA
conocidos investigadores y un numeroso grupo de inventores austríacos, en
lo que seria "la evolución de las técnicas para el cine científico". Para muchos
aqui, el representante ha de ser August Musger, quién en 1904 viene a
instalar y a patentar "un aparato en serie con ruodas y espejos". En principio
fue esta la primara camara a ralentí siendo construída en 1914 en la fábrica
de Ernamann en Alemania. No obstante, August Musger, nunca logró sacar
partido en la utilización de este modelo de cámaras, o de otras ideas
parecidas. (1)
Por la misma época el Antropólogo Rudolf Põch conduce la realización de un
Film en Kalahari y en Nueva Guinea. A él debemos la primara película
científica sonora dei mundo, exibida por primara vez el 24 de agosto de 1908.
Este documento cinematográfico fue encontrado por casualidad por el
Instituto Federal Austríaco para el Cine Científico (ÓWF) en 1984. De esta
forma, el documento científico. fue renovado et revitalizado, tanto por
nosotros como por el archivo Fonográfico Austríaco, y por el Instituto para la
lnvestigación dei sonido de la Academia Científica Austríaca. (2)
Alrededor de 1920 Otto Storch lleva a cabo una realizaciónn cinematográfica
en el campo de la microcinematografia. En aquélla epoca solicita estar
dispuesto a seguir trabajando en la preparación de películas en la area de la
ensenanza superior. En el Congreso de la "AICS" celebrado en Florencia,
Otto Storch, presenta un informe en donde desarrolla su idea de un museo
"Cinamtográfico de los animales". Dandose la circunstancia de lo que anos
más tarde seria la Enciclopedia Cinematográfica, llevada a cabo en
Gottingen. (3)
Adolf Lorenz, de 1922 a 1924,.produce los primeros films médicos en la
Universidad para la Cirugía Ortopédica de Viena. De los anos 30
conservamos una película de la fábrica austríaca de Styer-Daimler, la cual
muestra la completa construcción de un automóvil.
Inédito es casi que desde 1922 Austria poseía un laborâtorio de prácticas de
cine. Este laboratorio estuvo dirigido por Paul Schrott, en la Escuela Superior
Técnica de Viena. A partir de 1933 fue la primara escuela superior técnica dei
mundo para el cine científico. Sin embargo, esta Escuela, fue clausurada en
1946. (4)
En 1945 se pone en marcha "La Central Estatal para la Fotografía y el Cine
Educativo". Su Director fue A. Hübl. Uno de sus logros fue la de asociarnos a
la "lnternational Scientific Association" (ISFA). Con la constitución en 1957 de
124 películas enciclopédicas científicas, se puso base para la composición
dei Archivo Enciclopédico Austríaco. Se logrô, gracias a ello, el ingreso en el
comité de redacción de la Enciclopedia Cinematográfica. A partir de 1963 se
pasó a ser un archivo completo de esta asociación internacional científica.
-
1 36
-
0 FUTURO DA CULTURA CIENTÍFICA
En 1962, la Central Estatal para la Fotografia y el cine Educativo, pone en
marcha la sección Cine Científico, cuya constituciónn y dirección corre a
cargo de D.G. Burkert. En 1972 recebiamos el nombre de Central Estatal
Federal para la Cinematografia Científica (BHWK).
Fui nombrado Director de este Departamento en 1983. Y desde 1984
r�cibimos el nombre de Instituto Federal Austriaco para el Cine Científico
(OWF).
1 .1 . La producción de Medios Audiovisuales Científicos
Realizamos para las Universidades: Cine de lnvestigación, Películas
Documentales Científicas y Cine de Enseflanza Universitaria. Empleamos, en
nuestros trabajos, los medios de cine; de video; y cando es necesario, nos
apoyamos con animación computarizada. El producto final es siempre una
película en 16mm. Si se da el caso, se puden hacer copias de cine a imagem
en video. AI mismo tiempo, las imagenes en video se pasan a película de
16mm.
Nuestras producciones son tratadas de una manera profesional..
Próximamente tendremos la posibilidad de utilizar video-discos digitales.
Nuestros 'films poseen la e·ficacia de la educación de nuestros colaboradores
y un grado de innovacón en el campo de la instrucción didáctica. Para los
colaboradores de este Instituto tiene mucho significado una enseflanza
permanente.
A menudo se da en el cine científico secuencias de una duración de , 1O, 20,
30 segundos. La posibilidad de mazelar imagen en movimiento, o fotogramas
aislados, en combinación con información y sonido, hace fue necesariamente
los cineastas dei cine científico estén capacitados con las técnicas de la
enseflanza.
Nuestros colaboradores están cualificados con los nuevos métodos de la
docencia. En afecto, ellos ayudan en la redacción de los comentarias para las
películas de enseflanza. Se requiere, asi también, que esteén preparados en.
utilizacón de programas de ordenador, para los sistemas interactivos de
imagenes.
1 .2.
La Filmoteca Científica (Videoteca)
Tenemos, actualmente en nuestro arc�1ivo, aproximadamente 3686 películas.
En nuestra film-videoteca, poseemos unas 70 horas de material para
visionar. De todas estas películas el Instituto Federal Austriaco para el Cine
Científico tiene todos los derechos (estos derechos estan claramente
explicados).
- 1 37 -
0 FUTURO DA CULTURA CIENTÍFICA
Principalmente el destino final de nuestras producciones audiovisuales tiene
lugar en las Universidades. Además estas producciones se emplean como
ampliación de conocimientos y en la enseiianza para licenciados. Los
arnbitos de la Biologia, la Medicina, la Etnologia, y el de las Ciencias
Técnicas, se van continuamente renovando, con la adquisición de nuevos
films o con la producción de películas proprias.
Nuestros contactos con el exterior se llevan a cabo a través de la
lnternational Scientific Association (ISFA), de la cual el ÓWF es un miembro
en pleno. De esta manera tenemos conocimiento sobre la situación dei cine
científico a nivel mundial. En esta organización internacional, representamos
los intereses; de los investigadores austriacos, además de hacer contactos
que conducen a una estancia de investigación en Universidades extranjeras
2. LA 0RGANIZACIÓN DEL INSTITUTO FEDERAL AUSTRIACO PARA EL CINE CIENTÍFICO
Para la puesta en marcha de un film científico, el trabajo se divide en:
DIRECCIÓ N, PRODUCCIÓ N Y ADMINISTRACIÓ N.
La Dirección se encarga de la organización central - es la Dirección de
Producción -, ella posee una visión general de los proyectos en fase de
preparación, de los que se ruedan y de los que ya están acabados. Las
fechas de trabajo se hacen saber a todos los colaboradores. De esta forma
se posibilita una mayor coordinación entre las personas que participan en el
film. La Dirección, en una primera fase, decide sobre los proyectos que se
lllevarán a cabo. Se trata de averiguar si pueden se realizables en un lapso
do tiempo determinado y con una garantia financial. Hemos de atenernos, por
tanto, a nuestro marco presupuestario .
La Producción incluye a todos los colaboradores relacionados con el film
(guión, realización, operador de câmara, auxiliar de câmara, montaje y
producción ejecutiva). Ha de tenerse en cuenta que el staff de produç_ciàn
esta preparado para extenderse a otras profesiones. En el futuro el OWF
trabajará en los campos relacionados con la cuestión de la video-teconologia,
video-disco interactivo y apoyo computarizado.
La Administracion trabaja junto a los colaboradores en las tareas de
organización o en las administrativas.
Secretaria, archivo, prestamo y contabilidad forman el otro complemento de
esta administración.
- 1 38 -
0 FUTURO DA CULTURA CIENTÍFICA
2.1. Procedimento para poner en marcha una producción
Para poner en marcha una producción hay que tomar en consideración una
seria de tareas que deben realizarse en los diferentes proyectos fílmicos, por
las personas debidamente capacitadas para ello. Por esto, las diferentes
películas se dividen entre: Cine de lnvestigación, Documental Científico y
Cine de ensenanza. El Departamento adecuado se encarga de hacer los
contactos con el autor científico. También le corresponde hacer las pesquisas
necesarias relacionadas con el proyecto. Por ejernplo, lo primero seria
disponerse a visionar películas parecidas ai tema planteado; asi también, se
verá la posibilidad de buscar contactos com terceras personas; y por último,
quiénes serán los posibles interesados en el 'film. Con relación a la
realización, el Director dei film ha de compobar que las ideas dei autor
científico se acoplan a las técnicas de la ensenanza y a las técnicas
cinematográficas.
En cada proyecto fílmico se redactará con el autor científico el treatment o
guión de la película. AI mismo tiemP.o, tendrá lugar con los colaboradores los
cálculos dei presupuesto, su disposición, las fechas de rodaje y el plazo de
entrega. Hay que tener en cuenta que los plazos de entrega se tienen que
coordinar con outros proyectos dei OWF. La confección dei grupo de trabajo
es determinada junto a la Dirección. El Realizador controla y encamina el
rodaje dei film y su finalización. El es el único responsable de los contenidos
que suponen la realización fílmica.
El experto científico es responsable dei contenido de la película. A el le
corresponden làs siguientes tareas: redactar la exposición dei tema; junto con
el asesor dei ÓWF, discutir la posible realización dei proyecto; profundizar el
treatment o guión con el Realizador; pone en conocimiento los objetivos dei
film y se preocupa de todas las autorizaciones y derechos que pueden
derivarse. Antes de comenzar el rodaje será necesario una nueva reunión
con los colaboradores dei ÓWF. Son tareas fundamentales dei autor
científico: la presencia en el rodaje dei film; la participación en la selección
dei material rodado y la deliberación dei montaje; facilitar el texto para el
comentaria; redacción de un artículo para la revista; redación de prospecto
que se entrega con la película; y un pequeno texto para el catálogo.
El ÓWF proporciona toda la infraestructura dei film: operador de camara, su
asistente, la iluminación, el so_r1ido, el productor y el montaje. Si se da el
caso, los colaboradores dei OWF están capacitados para llevar a cabo
distintas facetas relacionadas con el film.
2.2.
Producción de un film científico
El tema de la película se propone a. la Dirección dei ÓWF por un Instituto
Universitario, designado para ello a un autor científico. Condición necesaria
- 1 39 -
0 FUTURO DA CULTURA CIENTÍFICA
es que la solicitud se formule por escrito; además de seíialar la necesidad dei
proyecto, en la que por lo menos se haga una exposición dei film que se
quiere realizar. No obstante esto último se puede hacer llegar más tarde. En
caso de cine de investigación, hay que redactar una corta descriptión dei
proyecto, dar información de los problemas que se plantearán y por último
proporcionar métodos para resolverias.
Es tarea de la Dirección, entregar esta solicitud ai consejero dei film. El se
pondrá a indagar sobre la existencias de producciones paralelas y verá la
posibilidad de co-producciones. En reuniones sucesivas se aclarará con
cuales medios se llevará a cabo el proyecto: cine; video; sistemas especiales
de roda,je, como termovisión o video de alta frecuencia. Las decisiones
tomadas se someterán a deliberación con el Director.
En caso de que el proyecto se lleve a cabo, el Director propone a un
Realizador. A partir de ese momento, éste es la ú nica persona responsable
de los aspectos cine-didácticos y técnicos dei film. Todas las personas dei
equipo de rodaje están coordinadas por él.
El Realizador dei film es, junto ai autor científico, responsable dei guión; y
junto ai Director, dei tamaíio y composición dei equipo de rodaje.
La redacción dei guión pude llevarse a cabo por una tercera persona. Dado
este caso, el guión ha de tener la aprobación dei autor cientí'fico y la
delrealizador. En el caso que la película sea comentada, el guión a de tener
un boceto dei texto a comentar. Si el film es un documental científico, y si no
es posible la redacción de un guión, es necesario entregar por lo menos un
treatment dei film. Dado este último caso se pone en conocimiento de que en
el trancurso dei film pueden haber considerables desvios.
AI mismo tiempo la Dirección toma las medidas oportunas para los costos dei
proyecto. La base de esto se evidencia de la experiencia de producciones
similares, más las dei guión. Es indispensable de que toda la contabilidad dei
film se entregue detalladamente. A continuación se entregarán todos estos
gastos a la sección de finanzas dei OWF.
..
La Dirección da cuenta de todos estos gastos para su repartición entre el
ÓWF, los Institutos Universitarios, el autor científico, etcétera. En una nueva
reunión con el staff de producción y el autor científico: se presentará el guión,
los cálculos dei proyecto y como se repartirán estos costos. De esta forma se
decidirá, de una manera definitiva, si el proyecto se realiza, como se
financiará y cuando será el plazo de entrega. Para una información más
detallada, existe un gráfico de producción. (5)
-
140
-
0 FUTURO DA CULTURA CIENTÍFICA
3. CONCLUSION
El espectro dei cine científico es ancho: comienza desde una filmación, una
evaluación científica, o el de dar a conocer nuevos inventos. El 90% de
nuestros trabajos necesitan de una camara especial. Este Instituto trabaja en
la esfera de la cinematografía de alta frecuencia, con frecuencias que van
desde las 100 a las 10.000 imagenes por segundo. También ya estamos
contemplando la adquisición de camaras de muy alta frecuencia: de 10.000
hasta imillón de fotogramas por segundo.
Las películas de tipo Etnológicas, son una considerable tarea que !levamos a
cabo para poder conservar nuestro especffico patrimonio cultural. Son
documentos que en estas momentos no están dei todo valorados. Demos por
ejemplo la realización artesanal de un rastrillo de madera, ste se
documentará de la misma forma que la realización de un film sobre el traje
típico austriaco.
Las películas científicas poseen un alto grado de innovación. Si
consideramos a un no-biólogo observando el proceso de golpeo de la
Soltado Syntermes Molestus (camara lenta a 100 f/s) se quedará fascinado
de la cornbinación entre el cuerpo de la termita y sus delgadas articulaciones.
Con una filmación con un objectivo macro, se pueden descubrir las
articulaciones dei insecto y sus movimientos.
En nuestro archivo se encuentran una serie de films sobre Arquitectura..
Gamara con dispositivo de movimiento retardado, ilustra la conducta de las
personas en las habitaciones donde se desenvulven. Este tipo de películas
se revelan como un gran servicio hacia el arquitecto. AI mismo tiempo son un
instrumento necesario en la investigación dei stress. En suma, estas
películas se extienden a otras profesiones, ayudando de esta forma en la
planificación de nuevas construcciones.
Para un eficaz cineasta científico, no hace falta sólo un considerable
conocimiento y talento en cuestiones técnicas, sino que también facultad en
asuntos económicos. El habitual "sino dei descubridor" es trabajar de una
forma modesta y sin la posibilidad de poder contar con los medias
audiovisuales. Sin embargo tiene la satisfacción personal de haber
descubierto algo nuevo.
Los medias audiovisuais estan cobrando un significado hasta ahora
desconocido. Por desgracia, la afición a leer se esta perdiendo cada vez
más. Por el contrario, estas personas utilizan ese tiempo para adquirir
material audiovisual. Asi, el cine científico, toma un mayor impulso. En afecto,
el cine científico no queda de esta forma tildada como una afición superfloua.
- 141 -
0 FUTURO DA CULTURA CIENTÍFICA
BIBLIOGRAFIA
(1) N I EDE RH U EME R, R. : A ug ust M usg er und di e Er findung der Z eit l upe, W iss. F ilm Nr. 25;
1 980 S. 7-1 3.
(2) SPI NDLE R, P .: D ie F ilmaufnahmen v on Rudol f Põch; A nn. N at urhi st or isches M useum
W i en, N r. 78, 1 974, S. 1 03-1 08.
(3) MALETSCH EK, E .: A us den A nfã ng en der w issenschaft lichen K i nemat ologr aphi e - l n
M emor iam Pr of. Ott oSt orch ( 1 886-1 95 1 ) ; W iss. F i lm Nr. 36/37, 1 987, S . 1 67-1 72.
(4) STOITZNE R, W alt er K.: Pr of. Dr. P aul Schr ott und das l nst ti ut fur K i nemat ogr aphi e an
der T echnischen H ochschul e i nW ien, W iss. F ilm Nr. 29; 1 982, S. 8-1 4.
(5) H E RMANN , S . : Richt l i ni en bei der Pr odukt ion w i ssensc).l aft licher F ilme am
ó st err eichischen B undesinst ti ut fü r den W i ssenschaft l c
i her F i lm (OWF) Stand 1 985;
Wiss. Film Nr. 34/35, 1986, S. 1 8-25.
- 142 -
0 FuTURO DA CULTURA CIENTÍFICA
THE N ETHERLANDS N ATIONAL CENTER FOR SCIENCE ANO TECHNOLOGY .
A SCIENCE CENTRE lN CONTEXT.
PETER ANDERSON
TECHNOLOGI E MUSEUM NINT
AMSTERDAM, NETHERLANDS
GENERAL:
A new science centre will be built in the middle of Amsterdam's inner harbour,
straddling the entrance to the tunnel under the river IJ. Planned to open at
the end of 1995, the centre will have about 4.000 M2 of exhibits in a building
of over 11.000 M2 total area. The building will also contain a large-screen
theatre (not IMAX), a smaller live "science theatre" and a centre for careers
and study planning.
CHARACTER:
The new centre intends to have a character which is related to and reflects its
home in Amsterdam, the Netherlands and Europe. Amsterdam and the
Netherlands have long traditions of technological and scientific innovation
which, stimulated often by commercial interests, grew within an eclectic,
outward-looking and tolerant intellectual and social setting. Science and the
industrial revolution developed in the Netherlands in a cultura already
seasoned and well-developed, so that these new disciplines and skills had to
make their places beside ali the other cultural elements. As in Europe
generally, science and technology are integral with other aspects of life.
We will surely draw in a number of ways on excellent science centre
exhibitions and education programs developed by our North American and
other colleagues. We are, however, determined to set the science and
technology in its historical, social and commercial context to an outstanding
degree.
THE BUILDING:
The building itself, designed by Renzo Piano of Genoa, will be novel and
modem, yet it will meet the old town with an exterior of the traditional
materiais copper and sandstone - warmer in feeling than the current trend
toward the colder steel and glass. The building further relates itself very
intentionally to its immediate context: visitors entering it will see the harbour
-
143
-
0 FUTURO DA CULTURA CIENTÍFICA
on both sides of the building, the se\tenteenth century buildings of the
waterfront and customs dock, and the still-developing section of the Nieuwe
Herengracht. A visit to the restaurant or the "piazza" on the roof will give a
striking view of the city. Seerning at first very solid, the walls will be
perforated and partly transparent so that those inside can look out; at night,
the insides will be visible outside.
What we call the Water Works will be striking features on the roof - ali the
paraphernalia for containing, restraining and moving water, so characteristic
of the Netherlands. Elements of these will continue down into the exhibit
areas, maintaining a continuity between inside and out which we hold very
important.
THE PROGRAMS:
We seek 'first of ali to enhance people's competencies in the most general
sense. We see the broadest role of the National Center for Science and
Technology as a interest-stimulator and an intellectual confidence-builder
which will bring closer together the general public, science, technology and
industry. To realise this, we intend to change people's attitudes and
behaviours - especially their beliefs in their own abilities to comprehend
science and other aspects of life in the ways and to the degrees that they
need to. We seek also to build needed bridges between the many sectors of
Netherlands life - the scientific and industrial communities and the broad
public.
The programs will ali be integrated, but will be organised as exhibition
including live demonstrations, school programs, the ''virtual science centre"
including various outreach activities, and a centre for careers and further
education.
EXHIBITION:
The exhibition, above ali, reflects our view of ourselves as changers of
attitudes. We are planning our exhibits to effect changes of feeling, and
therefore of behaviour. They will, of course, contain much of science and
technology. We have every intention that our visitors will gain exciting
insights, but we want these primarily to serve to raise their leveis of self
corrfidence and interest. Our criterion of success is that the visitors will be
motivated to learn more after leaving our doors (and, of course, return to visit
us again).
We intend to effect these things by planning the exhibits appropriately. We
will have about fifteen themes which, for reasons o� visitar orientation, will be
grouped into five thematic zones:
Energy; Technology;
Humankind;
Communication/Mobility!Transactions; and Phenomena. As we plan the
- 144 -
0 FUTURO DA CULTURA CIENTÍFICA
exhibit t!nits in the several themes, we are grouping them by their
predominant qualities: drama; personal relationships; various categories of
cognitive and kinesthetic units. Then, we are arranging them so that, as
people move through the exhibits they have constantly changing types of
interactions. ln this way, we expect to sustain high leveis of ·attention. By
placing some emphasis on the units stressing drama, personal relationships
and kinesthetic experiences, we seek to build the affective side of the visitar
experience.
INFO-LINKS:
Recognising that exhibition is essentially an affective medium which conveys
concepts only with difficulty, we are now actively developing "lnfo-Links,"
electronic-based information systems to carry much of the information and
cognitive content, so that we can keep that out of the exhibit texts - which in
The Netherlands must be in more than one language. The lnfo-Links are
based on CDI technology (a Netherlands invention, by Phillips), so they will
be available for the school programming, for outreach (our "virtual science
centre") and for general sale. The system is also capable of driving the mini­
theatres in the exhibition areas.
EDUCATION PROGRAMS:
We are fortunate in the Netherlands in having an effective school system
which is under constant review and improvement. That leaves us free to
pursue our core policy: making science and technology intensely interesting
and meaningful to our young visitors, so that they will learn more than they
would have otherwise, and so that more will choose scientific and
technological careers.
We plan to set up "highlight tours" through the exhibits so that individuais or
school groups can pursue specific topics across the thematic boundaries.
Thus, for instance, a highlight tour on "waves" could include the water area,
light and sound, parts of energy and communication. While our exhibits and
programs will not be driven by school curricula, curricular highlight tours could
be devised to assist teachers.
The education group which will run the school programs will also provide live
demonstrations and other live programming for the general public visitors.
STUDY ANO CAREERS:
The department of the Netherlands government which advises studijnts on
career possibilities and appropriate courses of study will operate a Study and
Careers centre in the NCST. ln addition to personal counselling, the careers
- 145 -
0
FuTURO DA CULTURA CIENTÍFICA
centre will use the lnfo-Links technology to make large databases available
directly to students, both in the building and remotely. Already the careers
information is being set up in forms meaning'ful to the young target audience
and entered into the database.
THE VIRTUAL SCIENCE CENTRE:
ln this term we include many activities and products which extend our
activities outside our walls. ln particular, we see the city around us as rich in
learning opportunities.
lt is said that 80% of our learning comes to us
informally, and we look upon cities as large informal learning environments in
which science centres should take active parts. We would like to explain to
people how a tram works - as they are riding in it. How can we show the
great mass of services which run under our streets? We want to find ways of
telling people what went on in the house where Descartes stayed (or
Huyghens or Linnaeus or Comenius) - as they stand looking at the house.
We know of the "science in the city" work of the 1\Jew York Hall of Science;
we would like to extend it.
EVALUATION:
As we develop our new directions, we wonder how to evaluate our success in
the different programs. There exists a body of useful visitor studies which
help us in a number of specific ways, but we are not aware of tried methods of
measuring the affective, motivational, attitudinal and behavioural changes
which we seek to effect.
We are very interested in the development of
techniques for measuring these things, and we invite our colleagues here
today to help us in this endeavour.
-
146
-
0 FUTURO DA CULTURA CIENTÍFICA
UM CORPO FRAGMENTADO
TECNOLOGIAS MULTIMEDIA E MUSEUS DE CIÊNCIA
RUI TRINDADE
INSTITUTO DE PROSPECTIVA
JORNAL EXPRESSO
A presença das tecnologias de informação e comunicação nos espaços
museológicos contemporâneos, sejam ou não de ciência, tem aumentado,
significativamente, em anos recentes. Tendo começado por assumir um
lugar periférico, circunscrito à dimensão administrativa, elas vieram,
progressivamente, a transformar-se em peças importantes quer no apoio à
concepção das exposições quer como elementos integrantes das próprias
apresentações museológicas. Esta sua, literal, entrada "em cena", assumindo
um protagonismo próprio, tem suscitado uma ampla e interessante reflexão
(1), tanto mais controversa quanto a sua presença no museu choca com uma
lógica tradicional de representação em que os "objectos" não são supostos, à
partida, possuirem um valor de uso extra-museológico.
No entanto, como nota David Bearman (2), apesar do embaraço com que as
tecnologias de informação e comunicação ainda são, muitas vezes, olhadas,
a maior parte das suas utilizações actuais não vai além de uma "sofisticação"
ou "actualização" dos suportes existentes (catálogos, slides, fotografias etc.).
Isto não quer dizer que as modalidades de acesso e consulta da informação
(escrita, sonora ou visual) criadas pelas tecnologias "multimedia" não abram
um campo de possibilidades inovador. Podemos mesmo considerar que as
suas utilizações actuais têm demonstrado que elas estão longe poder ver
reduzida a sua funcionalidade a uma mera vocação de "suporte".
Na verdade, elas introduzem na estratégia comunicacional das exposições
um outro "sistema de comunicações" o qual, ao multiplicar os níveis e a
profundidade dos registos de informação, implica um redesenhar dos
conceitos expositivos primitivos.
Há mesmo quem, como Joel de Rosnay (3), veja nas aplicações multimedia o
instrumento privilegiado para o desenvolvimento de exposições cuja
plasticidade e diversidade constituiriam o paradigma de uma "ergonomia
intelectual" que os museus deveriam, de futuro, assegurar.
Se é indesmentível que a crescente implicação destas tecnologias nos
espaços museológicos obrigam a uma revisão das abordagens
convencionais no tratamento dos materiais e das exposições - e sugerem a
- 1 47 -
0 FUTURO DA CULTURA CIENTÍFICA
'
necessidade de uma reflexão inovadora sobre a sua relação com os
visitantes-espectadores - não é menos verdade que, para retomarmos a
tese de David Bearman, apesar de todas as mudanças enunciadas, o espaço
físico onde tudo se desenrola continua a ser, basicamente, o mesmo de
sempre.
Existem hoje, no entanto, algumas expenencias que começam a pôr em
causa esse confinamento territorial do museu, utilizando, nomeadamente, as
redes electrónicas de comunicação, para estabelecer ligações à distância de
um novo tipo. Para Bearman, são estas experiências - mais do que as
aplicações multimedia no interior dos museus - que contêm o potencial
necessário para instaurar uma ruptura na lógica actual do seu
funcionamento.
0 TELE-MUSEU
De que tipo de ruptura estamos a falar? Vejamos dois exemplos, ambos com
origem nos Estados Unidos. O primeiro desencadeado pelo oceanógrafo
Robert Ballard, o segundo lançado pelo "Exploratorium", de S. Francisco, um
dos mais importantes museus de ciência do mundo.
Procurando aproveitar o protagonismo mediático ganho nas campanhas para
a recuperação do "Titanic", o famoso navio afundado na sua viagem
inaugural, o oceanógrafo Robert Ballard viria a montar uma operação
designada por "Jason Project" - ainda em curso - com objectivos
essencialmente pedagógicos e de estímulo ao desenvolvimento das
actividades científicas por parte dos mais jovens.
Apropriando-se de uma lógica de comunicação de tipo televisivo, Ballard
montou um pequeno estúdio no seu navio oceanográfico e organizou,
durante um determinado período de tempo, transmissões em directo, via
satélite, para várias escolas e museus não só dos Estados Unidos como da
América Central e da Europa. Com imagens captadas no fundo dos mares,
por um pequeno submersível automatizado, as emissões assumiam as
características normais e facilmente identi'ficáveis de um qualquer "directo"
televisivo, com intervenções de Ballard e outros membros da sua equipa
comentando as imagens, estabelecendo o diálogo com estudantes a bordo, e
mesmo respondendo a perguntas feitas pelas diferentes audiências das
escolas e museus.
Por seu turno, durante o período das emissões - aproximadamente duas
semanas - as escolas e os museus organizavam "sessões" ao longo do dia
permitindo, assim, que um número alargado de estudantes pudesse partilhar
a experiência. Este sistema envolvia ainda a produção de diversos trabalhos
complementares por parte dos estudantes.
- 148 -
0 FUTURO DA CULTURA CIENTÍFICA
Embora o "Jason Project" não passe, por enquanto, de uma ocorrência
sazonal (realiza-se uma vez por ano) - o que lhe limita o impacto e a
ambição - é óbvio que o seu maior interesse reside, desde já, na hipótese
que prefigura: a de uma globalização/planetarização da dimensão
museológica.
O que, parecendo inevitável, não deixa de levantar algumas questões
essenciais, como veremos, na configuração do museu do futuro.
Não sendo possível, no contexto deste trabalho, dar conta da variedade das
acções e reflexões provocadas por este projecto não é, no entanto, difícil
imaginar o quanto ele exigiu de todos os técnicos e responsáveis
museológicos envolvidos, nomeadamente no que diz respeito à adequação
das estruturas e das lógicas tradicionais de funcionamento dos museus a um
projecto deste tipo.
Uma mesma exigência tem atravessado um outro projecto: o do
"Exploratorium". A experiência, aqui, tem passado, por um lado, pela ligação
do museu às redes electrónicas, nomeadamente à Internet, facilitando o
acesso, "em linha", a quem o desejar, a todos os materiais produzidos pelo
museu (textos, programas, indicações práticas relacionadas com exposições,
etc.).
Por outro lado, o "Exploratorium" está a desenvolver projectos de ligação
permanente às escolas da zona, através dos suportes electrónicos, não
apenas com o intuito de apoiar alunos e professores, mas estimulando a
realização, em conjunto, de diversas iniciativas (videoconferências, produção
de materiais audiovisuais, criação de BBSs, etc.) A ideia é não só explorar as
possibilidades abertas pelos novos "media" electrónicos para aprofundar o
gosto dos mais novos pela ciência como permitir que estes se familiarizem de um modo criativo e não meramente consumista - com as tecnologias
dominantes nas sociedades avançadas.
Estas experiências - a do "Jason Project" e a do "Exploratorium" - são
apenas dois exemplos, entre outros possíveis, de iniciativas que "deslocam"
as fronteiras consagradas dos museus, desdobrando, por assim dizer, o seu
espaço e a sua existência física numa outra "virtual".
A ESTRATÉGIA CONSUMISTA
Esta introdução das novas tecnologias de informação e comunicação nos
museus - em particular no dos de ciência, que são os que aqui nos
interessam - tem alimentado sentimentos contraditórios, que oscilam entre a
aceitação entusiasmada, o compromisso envergonhado e a recusa, mais ou
menos, "sustentada". Há, em muitos sectores, de um modo talvez difuso, a
- 149 -
0 FuTURO DA CULTURA CIENTÍFICA
ideia de que a sua utilização está a contribuir para a descaracterização dos
museus, para uma perda da sua identidade.
Se para alguns, o seu potencial lúdico e as suas vantagens educativas são
evidentes e não carecem de demonstração, para outros, está-se perante um
conjunto de aplicações tecnológicas cuja contribuição para o objectivo central
destes museus - a promoção e a difusão dos conhecimentos científicos não é ainda clara. Há mesmo quem considere que, em muitas situações, o
seu uso não faz mais do que acentuar um "efeito de prestidigitação" sem
qualquer relevo, antes pelo contrário, para a vertente educativa.
Muitas destas reticências são compreensíveis e não devem ser descartadas
levianamente. Pode-se, com efeito, temer que um uso indiscriminado e pouco
criterioso das novas tecnologias, acentuando uma abordagem "consumista"
dos espaços museológicos, contribua para um desvirtuamento dos seus
objectivos fundamentais.
Ao multiplicar-se a sua presença nos museus e espaços de ciência existe, de
algum modo, o perigo que o "efeito de reconhecimento" provocado no
visitante (pela far.:niliaridade que o reencontro com a tecnologia pode suscitar)
ao invés de representar uma mais-valia promova, pelo contrário, um
sentimento de indiferenciação, sem vantagem, como é óbvio, para o museu.
Esta preocupação é tanto mais legítima quanto se tem assistido, nos últimos
anos, ao desenvolvimento de uma reflexão em torno da utilização das
tecnologias multimedia nos espaços públicos que assenta no pressuposto de
que existe uma lógica funcional, basicamente idêntica, na sua aplicação aos
mais diversos ambientes (museus, bibliotecas, parques de diversões,
aeroportos, edifícios públicos, etc.) (4 ) . A questão que se coloca, portanto, é a
de saber até que ponto a disseminação destas tecnologias pelos espaços
urbanos não irá implicar uma despersonalização e descaracterização de
todos eles.
Vários indicadores parecem, aliás, apontar neste sentido. Para dar apenas
um exemplo, Margaret Crawford, ao analisar em "The World in a Shopping
Mali" (5 ) , a evolução dos centros comerciais, nos Estados Unidos, refere que
a tendência hoje dominante é a transformação destes espaços em
"complexos" integrados onde a par do consumo tradicional se promovam
outras actividades, nomeadamente culturais e de diversão. Isto significa, que
os centros comerciais irão passar a dispôr de "centros de entretenimento
familiar dotados de equipamentos de realidade virtual, e outros, que
permitam experimentar as últimas tecnologias". Para Crawford, esta evolução
aproxima os centros comerciais da lógica dos parques temáticos já existentes
- sendo que as propostas conceptuais e as estratégias de "marketing"
destes últimos são já hoje facilmente discerníveis em muitos outros domínios
urbanos (hotéis, edifícios p1.Jblicos, zonas históricas, etc.). Um bom exemplo
desta abordagem "integrada" é hoje claramente visível numa cidade como
-
1 50
-
0 FUTURO DA CULTURA CIENTÍFICA
Las Vegas - em especial num espaço como o do Luxor, u m novo e
gigantesco hotel, que combina zonas de comércio com zonas de lazer, sendo
que estas integram as mais modernas salas de espectáculos "virtuais"
existentes nos Estados Unidos.
A não existir, portanto, da parte dos museus de ciência uma base sólida de .
reflexão própria e uma clara noção dos seus objectivos estratégicos, que
permita fazer um uso inteligente e criativo das novas tecnologias, há
obviamente o risco da sua individualidade se dissolver no "continuum" dos
espaços públicos emergentes.
Trata-se de um desafio complexo tanto mais que o crescimento do sector dos
novos espaços museológicos de ciência levou a uma certa estandardização
de modelos ou, nas palavras de Melanie Quin (6), ao aparecimento de
nu merosos "clones" que tornam a visita a certos museus - à semel hança do
que se passa com os aeroportos - um ritual repetitivo e potencialmente
indiferenciado.
AS UTOPIAS NO MUSEU
Independentemente da eventual justeza de algu mas das observações mais
críticas respeitantes ao emprego das tecnologias multimedia nos museus,
parece claro, no entanto, que o seu emprego e generalização neste contexto
não faz senão acompan har a tendência dominante nas sociedades
tecnologicamente desenvolvidas de crescente articu lação social através dos
novos suportes electrónicos.
A retórica recente sobre o desenvolvimento das "auto-estradas de
informação" - lançada pela administração Clinton e pressurosamente
seguida por europeus e japoneses - só vem , aliás, acentuar ainda mais
esta dimensão, ao propôr um modelo de interligação electrónica total entre os
espaços estratégicos da vida urbana moderna (habitação, escola, hospital,
empresas, administração pública etc.).
Há, certamente, nesta retórica um iniludível apelo " utópico" em que, como
bem notou Philippe Breton (7), o paradigma da "comunicação" aparece como
o elemento simbólico central . Tratar-se-ia de, através dela, garantir um ideal
de "transparência" social capaz de assegu rar aos cidadãos u ma equ itativa e
democrática partilha do bem comum.
Perante o afu ndamento das ideologias e a crise das "grandes narrativas" a
comunicação aparece, assim, neste final de sécu lo, investida de um
poderoso imaginário utópico, único referencial de valor remanescente e
garante ú ltimo do justo equ i l íbrio do sistema.
- 151 -
0 FuTURO DA CULTURA CIENTÍFICA
Do ponto de vista dos museus de ciência, seria interessante, aliás, ver até
que ponto este ideal utópico - em que a tecnologia assume um papel
determinante - se casa com outros ideais, não menos utópicos, por eles
actualmente veicu lados (8).
Mas, para além dos desíg nios mais ou menos utópicos que a proposta das
"auto-estradas de informação" contém, existe a realidade de uma meticulosa
" recombinação" industrial dos sectores mais directamente envolvidos
(telecomunicações, computadores, televisões) (9).
Se a configuração final resultante de todas estas modificações parece ainda
difícil de discernir há, desde já, no entanto, a evidência de uma alteração
qualitativa, por agora em esboço, nos modos de funcionamento e de
articulação nas sociedades avançadas - e que i rá afectar radical mente, se é
que o não faz já, a produção dos bens materiais, as formas de transmissão e
apropriação dos conhecimentos, as representações sociais, os modelos de
comun icação, etc.
No que aos museus diz respeito, esta é u ma área de reflexão ainda
praticamente virgem - e, no entanto, é vital compreender q uais as
implicações e os desafios q ue se colocam à estrutu ra museológica de modo
a que esta possa ·f u ncionar e corresponder às expectativas sociais geradas
neste novo contexto. Um contexto marcado, nomeadamente, pela redefinição
dos espaços urbanos.
A REINVENÇÃO DOS ESPAÇOS PÚBLICOS
Alguns dos contributos mais interessantes - e relevantes - para o
equacionar do futuro dos museus encontram-se , precisamente, nas
discussões relativas à evol ução dos espaços u rbanos. Numa intervenção
recente, em Linz, na Á ustria, durante o festival Ars Electronica, o arquitecto
norte-americano Michael Sorkin, retomando algumas ideias avançadas no
seu livro "Variations on a Theme Park: The New American City and the End
of Public Space" (10), considera existi rem, entre várias outras, três
características que sobressaem particularmente na "construção" do novo
modelo u rbano: em primeiro l ugar, o desenvolvimento de uma dimensão
"ageográfica", resultante da crescente interligação social proporcionada pelos
suportes electrón icos. Ou seja, ao lado e em paralelo com as cidades
tradicionais assiste-se hoje, cada vez mais, à constituição de u ma "cidade
u niversal" electrónica, uma espécie de "corredor" invisível de ligação entre
pessoas e institu ições que, rompendo com a lógica 'fixa dos espaços
convencionais, está a defin i r o modelo de uma outra forma de " u rbanidade" ,,
imaterial , virtual e ageográfica.
- 152-
0 FuTURO DA CULTURA CIENTÍFICA
Em segundo lugar, e acompanhando as análises de Mike Davis relativas à
cidade de Los Angeles, contidas no livro "City of Quartz" (11), estariamos
perante o desenvolvimento de uma tendência - já visível nalguns sítios,
ainda difusa noutros - de crescente privatizaçãó/militarização dos espaços
urbanos.
Isso
seria
patente,
nomeadamente,
no
desaparecimento
progressivo - dos centros urbanos - dos espaços públicos tradicionais,
abertos e conviviais, em favor de novos espaços - surgidos em sua
substituição - com uma lógica mercantil e em que a tecnologia teria um
papel não desprezável no consagrar de novas formas de segregação e
controle social.
Finalmente, o modelo urbano parece cada vez mais desenvolver-se como
uma justaposição de parques temáticos, em que a "vida urbana" se organiza
e se "dá" em espectáculo, "apagando", tanto quanto possível, todas as
disfunções e conflitos que lhe eram características. Estaríamos perante uma
tentativa de "orquestração" da realidade, de artificialização dos ambientais
naturais (tal como em qualquer Disneylândia) (12), o que, em paralelo, com a
privatização dos espaços públicos, aponta para uma ideia de "normalização"
não apenas funcio.nal mas dos imaginários contemporâneos.
Embora se trate de uma perspectiva controversa, e que não cabe aqui
aprofundar, tem, pelo menos, o mérito, de evocar um conjunto de
problemáticas que os museus terão de incorporar na sua reflexão se
quiserem sobreviver enquanto estruturas culturais actuantes na viragem para
o próximo século.
Partindo embora de um outro campo de análise, mas mantendo uma linha de
convergência com estas reflexões, seria interessante averiguar até que os
museus partilham ou não, neste momento de recomposição urbana e
respectivos imaginários, das características que Marc Augé definiu como
próprias dos "não-lugares" da sobremodernidade: "A hipótese aqui
defendida, diz Marc Augé, é a de que a sobremodernidade produz não­
lugares, ou seja, espaços que em si mesmos não constituem lugares
antropológicos e que, ao contrário da modernidade baudelairiana, não
integram os lugares antigos: inventariados, classificados e promovidos a
"lugares de memória"
estes ocupam naquela um lugar circunscrito e
específico. Um mundo onde se nasce na clínica e se morre no hospital, onde
se multiplicam, em modalidades luxuosas ou inumanas, os locais de trânsito
e as ocupações provisórias (...) onde se desenvolve uma rede compacta de
meios de transporte que são também, espaços habitados, onde o utente
habitual dos grandes centros, dos multibancos e dos cartões de crédito recria
(...) um mundo votado à individualidade solitária, à passagem, ao provisório e
ao efémero, oferece ao antropólogo, e aos outros, um objecto novo cujas
dimensões inéditas há que medir, antes de perguntar de que olhar será
passível" (13).
·
-
153
-
0 FuTURO DA CULTURA CIENTÍFICA
A CRISE DE IDENTIDADE
Se são leg ítimas as interrogações sobre o estatuto dos museus na "era da
com unicação" - i mporta saber, no limite, se há ainda algu ma justificação
para a sua existência ou, pelo menos, se a designação que mantêm é
minimamente adequada - essas interrogações só fazem sentido tendo em
atenção o contexto mais vasto das modificações actualmente em curso.
Se as tecnologias multimedia "descaracterizam" os museus fazem-no na
mesma medida em que "descaracterizam", no seu conjunto, as sociedades
contemporâneas. É à luz, porventu ra, desta - digamos assi m "descaracterização global" das sociedades avançadas que a crise dos
museus, portanto, deve ser pensada.
Mas a verdade é que, por outro lado, os museus de ciência tem vindo a
evidenciar sinais de atravessarem uma profu nda crise de identidade. A
q uestão "tecnológica" só veio tornar mais evidentes os sinais dessa crise.
A crise de identidade dos museus tornou-se, em anos recentes, uma
evidência assinalada - e meditada - por vários autores. Roger Si lverstone
(14), por exemplo, escreve o seguinte: "O museu já não é, se é que alguma
vez o foi , uma instituição apenas inocentemente empenhada na recolha,
conservação, classificação e exibição dos objectos. Pelo contrário, é uma das
muitas componentes de uma complexa rede de indiJstrias culturais e de
entretenimento . " Esta realidade faz com que o museu "já não esteja certo do
seu papel, seguro na sua identidade". É que, acrescenta, Si lverstone, "ele já
não é imune às pressões pol íticas e económicas ou à explosão de imagens e
sign ificados que estão , indiscutivelmente , a transformar as nossas relações,
nas sociedades contemporâneas, com as noções de tempo , espaço e
realidade" .
Do mesmo modo, Melanie Quin, ligada à rede europeia de museus de ciêocia
ECS ITE, é clara quando escreve (15) que "as instituições (museológioas)
vivem hoje na incerteza" . Donde vêm então estas incertezas e a
"insegurança" a que se referia Roger Si lverstone ?
Em primeiro lugar, de uma "crise de convicção" . É preciso recordar que os
primeiros grandes museus de ciência e tecnologia nascem num contexto de
euforia - de que as grandes Exposições Un iversais são o símbolo eloq uente
- em que a fé nos avanços da ciência e da tecnologia se associam à
glorificação da ideia de um P rogresso imparável e inelutável.
I ndependentemente das "crises de confiança" que i rão, n u ma fase posterior,
abalar as relações entre a ciência e a tecnologia, por um lado, e a sociedade,
por outro , importa sublinhar que as novas gerações de museus de ciência
( Palais de la Découverte, Exploratorium, etc.) vão conti nuar a manifestar um
mesmo "optimismo" em relação às "virtudes" da ciência e da tecnologia e -
- 154 -
0 FuTURO DA CULTURA CIENTÍFICA
como os seus predecessores - também eles "confiam" que a
"popularização" - agora rigorosa e não "glorificada" - serve os interesses e
as necessidades mais profundas da sociedade.
A inexistência de estudos aprofundados sobre o "universo" popu lacional
atingido pelos museus e a pouca atenção dada, durante mu ito tempo, às
relações visitante-museu permiti ram, no entanto, ali mentar algumas ilusões.
Ora, vários aconteci mentos, em anos recentes, vão obrigar a uma
moderação, senão mesmo, a uma reavaliação radical de algumas ideias tidas
como adq uiridas, abrindo assim brechas em "convicções" fortemente
en raizadas.
·
O aparecimento da televisão e a posterior explosão do u n iverso audiovisual
(vídeo, jogos, informática, etc) cria uma concorrência implacável aos museus
não apenas no sentido, restrito, de provocar uma eventual diminuição de
visitas, mas sobretudo porque as imagens - e a universalidade da televisão
- têm um poder de sugestão imbatível perante a convencionalidade da
representação museológica. Como notou Alan Morton (16), a maior parte dos
grandes museus nasceram numa época em que dominava a informação
escrita (livros, jornais, etc.). Neste contexto a oferta dos museus tinha um
poder de atracção indiscutível, oferecendo a possibilidade de u ma "imersão"
n uma realidade a três dimensões. Hoje a "imersão" oferecida pelos museus
é, sobretudo se comparada com a oferta audiovisual, pobre.
Mas para além do poder simból ico hoje investido no "paradigma da
comunicação', tornou-se também claro que, perante o u niverso populacional
atingido pela televisão, as veleidades dos museus - alimentada ao longo de
décadas - de poderem contin uar a ser os "popu larizadores" , por excelência,
da ciência e da tecnologia, tiveram de ser reequacionadas.
Não só "o público dos museus é limitado" - como escrevem Roger Miles e
Alan Tout (17) - "se o compararmos com as audiências dos jornais, rádio e
televisão" como também é escassamente representativo da sociedade no
seu todo:" Centenas de estudos em todo o mundo ocidental mostraram que
os visitantes (dos museus de ciência) tendem a ter uma melhor ed ucação e a
serem provenientes de grupos socio-económicos mais elevados do que os
não-visitantes" . Assim, acrescentam Miles e Tout, "está fora de questão
pensar que o público da ciência nos museus seja representativo da
população no seu conjunto".
O recon hecimento e a aceitação desta real idade teve, porém, de ser ainda
ajustado a uma outra evidência, porventura mais pertu rbadora: a de que o
"público" não é uma entidade u niforme - como durante mu ito tempo foi
ol hado - mas um composto de vários elementos com estratégias bem
diferenciadas. As impl icações desta "descoberta" no trabalho museológico -
- 155 -
0 FUTURO DA CULTURA CIENTÍFICA
da concepção à promoção das exposições - obrigaram, também elas, a
rever muitas práticas tidas como adquiridas.
Os PÚBLICOS DO MUSEU
Temos assim, portanto, que os museus de ciência para além de se verem
confrontados com a evidência da sua posição relativa na "complexa rede de
indústrias cultu rais e de entretenimento" contemporânea - para usar a
expressão de Roger Silverstone - tiveram, também, prog ressivamente, de
encarar o facto de o "seu" público não ser uma soma de iguais mas sim um
conju nto heterogéneo, diverso e plural.
Estas constatações foram acompanhadas por outras, porventura mais
d ramáticas: a "mensagem" museológica não seria recebida de forma
ineq u ívoca pelo(s) público(s) visitante, mas sim "interpretada" de acordo com
as prioridades próprias e os n íveis culturais desse(s) público(s) (18).
·
Isto é, não existe uma leitura unidimensional dos conteúdos museológicos,
deles não decorre uma "verdade" que, como no pressuposto da divulgação
científica tradicional , cumpri ria ao leigo. se "apropriar" , o que acontece é
antes uma " negociação" complexa em que o "sentido" do que está exposto é,
em larga medida, o produto de uma "construção" em que a "agenda" de
interesses e preocupações trazida pelo visitante é determinante.
Por outro lado, como todos os estudos incidindo sobre o comportamento dos
visitantes "casuais" tem demonstrado, não só as opções - o que observar,
o que experi mentar, o que ler - se revestem de um carácter aleatório
(seg undo dados citados por Roger M iles, um terço dos visitantes dos grandes
museus, no mundo ocidental, não chega sequer a entrar na zona de
exposições) como ainda, estas opções são, muitas vezes, determinadas por
factores conjunturais importantes (estar ou não em grupo, influência do ru ído
ambiente, características da arquitectura, etc.).
Finalmente, e para somar aos factores que, de algum modo, têm contribuído,
para a actual "crise de identidade" dos museus de ciência, é de referir que se
é seguro que a sua contribu ição para a sensibil ização do público para a
ciência e tecnologia é indiscutível , não está provado, por outro lado, que a
sua acção tenha implicado uma qualquer "aprendizagem" directa por parte
dos visitantes "casuais" (exclui ndo, claro, todos os p1Jblicos "cativos" de
estudantes, professores etc.) (19).
·
Todos estes estudos têm implicado, portanto, a revisão de mu itos critérios
tradicionais relativos à concepção das exposições e do trabalho museológico,
em geral, pois o que sobressai, nestas análises, é que as estratégias do
visitante "casual " são, como nota Melanie Quin, essencialmente, as de um
"consumidor de lazeres" .
- 156-
0 FuTURO DA CULTURA CIENTÍFICA
É interessante verificar como, de certa forma, esta incorporação da
componente "público" no trabalho de concepção das exposições não tem
feito mais do que trazer para o interior do modelo museológico - ainda de
que uma forma não totalmente expl ícita - alguns valores hoje dominantes
nas sociedades avançadas.
Analisando, por exemplo, todo o trabalho de concepção e implantação da
exposição " Food for Thought" , do Science M useum, de Londres, Sharon
Macdonald (20}, pôde observar como as ideias de "participação" - hoje
determinantes na abordagem expositiva moderna - bem como a opção por
um dispositivo exibicional "não-dirigista" - deixando ao visitante a liberdade
de "escolher" os seus itinerários - apontam para um conju nto de referências
tipicamente contemporâneas em que sobressai o lugar decisivo do
"indivíduo" e da sua "performance" como modelos a defender.
Estabelecendo um paralelo entre as atitudes dominantes no i n ício do século,
em que o tratamento do "corpo de visitantes" no museu era encarado
segundo uma lógica discipli nadora (visitas "gu iadas" e em grupo,
unidirecionalidade das visitas, limitações rigorosas às suas movimentações,
etc.), e o modelo contemporâneo , que apela a . uma acção individual e
estimula a flexibilidade e errância dos visitantes, Sharon Macdonald chama a
atenção para a convergência destas atitudes com os conceitos pol íticos,
económicos, sociais e cu ltu rais dominantes em cada um destes períodos.
Nesta perspectiva, a ideia moderna do museu - q ue melhor corresponderia
à fase de "capitalismo tardio" em que nos encontramos - é a que aponta,
simbolicamente, para a de um "corpo fragmentado" em que o indivíduo como já David Le Breton tivera ocasião de referi r (21)- entregue a si próprio
é, no limite, impelido a gerar os seus próprios valores e a constru ir,
solitariamente, o seu u niverso de referências.
A AMEAÇA DO ESPECTÁCULO
Apesar de, em muitas circunstâncias, ser visível um esforço de adequação
por parte dos museus a este novo tipo de problemáticas, Roger M iles nota
que os preconceitos ainda existentes - relativos a uma concepção das
exposições que tenha em atenção esta diversidade dos públicos - são ainda
fortes. Ter em atenção o "públ ico" é visto, em mu itos casos, como o potencial
i n ício de uma estratrégia que só pode conduzir a uma adu lteração dos
princípios, fundamentalmente educativos, que os museus de ciência devem
manter. Por isso, as exposições - de acordo, por exemplo, com um
responsável museológico britân ico, citado por Melanie Quin - devem poder
ser divertidas sem terem de alin har, necessariamente, num imaginário próprio
do mundo da "diversão". Segundo ele, nos espaços de ciência há uma
componente de "esforço intelectual" que tem de estar sempre presente .
- 157-
0 FUTURO DA CULTURA CIENTÍFICA
Esta posição, que se insere no que se poderia chamar a tendência "pura e
dura" dos museus de ciência, vê-se, no entanto, cada vez mais confrontada
com a 'filosofia do "consumidor de lazeres" e com a lógica de mercado que,
sobretudo nos ú ltimos anos, tem vindo a obrigar os museus a recon hecer que
têm de competir, para sobreviver, no u niverso mais vasto - e exigente - da
oferta cultural contemporânea. As posições de resistência ao "mercado"
acabam, por outro lado, por surgir, paradoxalmente, como pouco científicas,
já que tendem a ignorar a análise objectiva da realidade envolvente. O que
leva, por exemplo, alguém como Rogar Miles a dizer que, em ú ltima análise,
"os cientistas devem ( . . ) conceber (as exposições) não para si próprios e
para os seus pares, mas para o público tal como ele é, e tal como ele " usa"
os museus"(22).
.
·
Esta atitude - de bom senso - tem em conta não apenas os inú meros
estudos que têm vindo a ser realizados em anos recentes como resulta
também, julgamos, da constatação de um outro factor que se tem vindo a
afi rmar como uma "ameaça" no horizonte para muitas instituições dedicadas à
divulgação científica. Referimo-nos ao aparecimento de n umerosos projectos
que, oriundos das indústrias de diversão, procuram, em muitos casos,
legitimação e credibil idade recorrendo a temas de ciência e tecnologia.
Estes projectos não podem ser olhados com sobranceria nem ignorados com
ligeireza como se não tivessem qualquer relação com o mundo "sério" dos
museus. Convi rá recordar que a "indústria do entretenimento" se tornou, nos
anos noventa, nos Estados U nidos, de acordo com a revista " Business
Week" , um dos sectores l íderes do crescimento económico, suplantando
indústrias tradicionais, como a do automóvel . Ela é, al iás, actualmente, a
maior geradora de emprego neste país (23).
Para dar apenas um exemplo, que dá bem conta da sua importância,
sublin he-se o facto de o número de visitantes nos pri ncipais parques .
temáticos ter duplicado nos ú lti mos dez anos, atingindo agora os 1 40 mil hões
anuais. Na verdade, só o sector dos parques temáticos gera, presentemente,
receitas su periores às da indústria cinematográfica norte-americana (24).
Segundo diversos analistas, esta é uma tendência que se irá não só manter
nos próximos anos como, muito provavelmente, se deverá intensificar. E
que, por um lado, o actual processo de convergência industrial em torno das
"auto-estradas de informação" envolve claramente também as indústrias do
entreten imento (e, em especial , Hollywood) - é de prever, portanto, a
exploração de todas as sinergias entre estes sectores.
Por outro lado, há que contar com a "explosão" de um factor que já hoje é
sensível e verificável : as necessidades de reconversão das indústrias
militares está a levar ao aparecimento de filiais "civis" que procuram novas
apl icações para determinadas tecnologias (é o caso de mu itos dos
"simuladores" disponíveis nas salas de jogos e nos parques de diversões).
Ora, se tivermos em conta a tradicional sofisticação "da indústria militar no
-
158
-
0 FuTURO DA CULTURA CIENTÍFICA
campo tecnológico, é de prever que a sua "transposição" para a esfera civil
irá ter um impacto muito significativo na qualidade média do "entretenimento"
até agora disponível.
Por todas estas razões, os museus de ciência serão, inevitavelmente,
obrigados a não descurar uma reflexão profunda sobre o seu futuro.
MUSEU MúLTIPLO
Como será o museu de ciência do prox1mo século? Tendo em mente a
enorme variedade de questões que marcam a sua envolvência - e a
complexidade da maior parte delas - será possível, desde já, discernir um
qualquer modelo ?
Arriscamo-nos a pensar que a tendência, doravante, será a de implicar níveis
cada vez mais so-fisticados de diversidade nas estratégias museológicas. Só
assim, parece, será possível áos museus responder às necessidades cada
vez mais elaboradas das estruturas sociais em que se inserem.
Esta é, por exemplo, a convicção de Goéry Delacôte (25), director do
"Exploratorium" quando defende que as instituições museológicas do futuro
devem garantir a "públicos diversos" uma multiplicidade de funções: "É
possível que tais instituições - diz ele - aliando diversas funções, como as
de biblioteca, museu, centro experimental, laboratório aberto, centro de
comunicações etc. possam desempenhar um papel complementar, cada vez
mais importante, na sua relação com e ao serviço das instituições existentes
(escola, meios de comunicação, etc.) ajudando-as a abrirem-se e a
evoluírem". Sem recusar a herança específica de que são portadores, os
museus e centros de ciência devem saber diversificar as suas estratégias. E
"abrir-se" à pluralidade· das problemáticas e das expectativas das sociedades
contemporâneas. Para Delacôte, os museus têm, à partida, as condições
ideais para o fazerem, porque "são, antes do mais, o ponto de cruzamento de
pessoas de competências e disciplinas diferentes, mas (porque) são também
lugares vocacionados para o acolhimento de indivíduos, famílias e grupos,
onde se propõe formatos de actividades muito diversificadas (visitas livres,
autoguiadas, sessões de trabalho, formação de longa duração) com
"agendas" variadas que podem ir da diversão à aprendizagem".
Finalmente, se a tudo isto se juntar o potencial introduzido pelas novas
tecnologias de informação e comunicação, a diversidade de funções poderá
ainda ser reforçada tornando-se o museu um lugar simultaneamente físico,
material, e ao mesmo tempo, virtual, o que permite combinar a "relação que
cada um pode ter a partir do seu domicílio com uma outra que permite o
encontro e a socialização no próprio lugar".
Num mesmo sentido parecem apontar também as reflexões de Melanie Quin
(26). Diz ela: "A chave do futuro dos museus de ciência reside na nossa
-159-
0 FUTURO DA CULTURA CIENTÍFICA
capacidade de compreender as diferentes necessidades e d iversas
expectativas dos visitantes" . Assim, e usando três metáforas, ela propõe que
o museu de ciência do futu ro possua uma série de "qualidades" que se
poderiam sintetizar do seguinte modo:
(a) como
um " restaurante", o museu deve oferecer " u ma intensa
sensação de presença". Não se trata aqui tanto de evocar a
qualidade eventual da "alimentação" mas de garantir, como muitas
vezes acontece neste tipo de experiências, que o visitante tenha "a
sensação de partilhar um momento excepcional" quando visita o
museu. Isto significa ter um cuidado acrescido com a arq uitectura, o
desenho dos espaços e das exposições, a interacção com outras
formas de expressão artística etc . , de modo a tornar visita um
momento ún ico;
(b) como um "jardim", em que as pessoas passeiam, descansam, lêem
um livro, apreciam uma escu ltu ra ou visitam uma estufa, o museu
deverá ser "um foyer de actividades" dive rsas. Para isso, o museu
terá de estar no "centro de uma rede ligando as escolas, as
u niversidades, as bibliotecas, os editores bem como os museus
científicos, os jardins botânicos e zoológicos";
(c) como um
"agora"' o museu do futu ro deve ser u m lugar de
" interacção social " em que seja "encorajada a discussão" , o que
sign ifica que a sua estrutu ra arquitectónica deve prever os lugares
próprios, formais e informais, para que o encontro entre as pessoas e
o debate seja facilitado.
Resumindo, o museu do futu ro deverá privilegiar "a qualidade da experiência"
do visitante, quando este a ele se desloca, mais do que " a eficácia da
transmissão dos conhecimentos e das competências científicas".
De modo, porventu ra, algo paradoxal será precisamente a capacidade de
assegu rar a "qualidade da experiência" - isto é o seu carácter inconfund ível
- que fará com que a individual idade do museu de ciência seja assegurada
num futuro em que os factores de inderenciação tenderão a multiplicar-se.
Sendo certo que a ciência e a tecnologia contin uarão a marcar o destino das
sociedades avançadas em modalidades cada vez mais complexas, é
imprescindível que os museus de ciência se saibam colocar no centro da
reflexão e dos debates. Para que isso possa acontecer, terão, precisamente,
de saber construi r o seu l ugar próprio junto dos seus diversos "públ icos"
potenciais os quais, na sua ausência, serão atraídos e absorvidos pelas
estruturas do "entreten imento" de massas.
A "qualidade da experiência" deverá ser, por isso, poder significar, sobretudo,
a "qualidade da diferença".
- 160-
0 FUTURO DA CULTURA CIENTÍFICA
NOTAS
1-
"Hypermedia and lnteractivity in Museums" , ed. Archives and Museum lnformatics
Technical Report, nº 14, 1991;
"lnteractivity in American Museums", Stephanie Koester, ed. Archives and Museum
lnformatics Technical Report, nº 16, 1993;
2- "lnteractivity in American Museums", David Bearman, texto da conferência "Actif et
lnteractif", Paris, 1993;
3- "lntellectual ergonomics and multimedia exhibitions", Joel de Rosnay, em "Museums and
the Public Understanding of Science", ed. John Durant, Science Museum and Committee
on the Public Understanding of Science, 1992;
4 - "Multimedia in Public Space", Rob Semper and Kristina Hooper Woolsey, em "Multimedia
in Public Space - Technical Report", ed. Apple Multimedia Lab I Exploratorium, S.
Francisco, 1989;
�
5- "Th� World in a Shopping Mali", Margaret Crawford, em "Variations on a Theme Park:
The New American City and the End of Public Space", de Michael Sorkin, ed. New York:
Noonday Press, 1992;
6-
"Clones, Hybrides ou Mutants?", Melanie Quin, em "AIIiage", nº16-17, 1993;
7- "A Utopia da Comunicação", Philippe Breton, ed. lnstituto Piaget, 1994;
8- "Écrire la Science", Yves Jeanneret, ed. PUF, 1994;
9- "Autoroutes et fenêtres électroniques", Pierre Musso; e "Autoroutes électroniques:
recherche de grands travaux", Jean Louis Peytavin, em "Quaderni" nº 23, 1994;
à la
10- "See you in Disneyland", Michael Sorkin, em "Variations on a Theme Park: The New
American City and the End of Public Space", de Michael Sorkin, ed. New York: Noonday
Press, 1992;
11- "City of Quartz", Mike Davis, ed. Bantam Books, 1991;
12- "The Cultura of Nature - North American Landscape from Disney to Exxon Valdez",
Alexander Wilson, ed. Blackwell, 1992;
13- "Não-Lugares - Introdução a uma Antropologia da Sobremodernidade", Marc Augé, ed.
Bertrand Editora, 1994;
14 - "The Medium is the Museum: on Objects and Logics in Times and Spaces", Roger
Silverstone, em "Museums and the Public Understanding of Science", ed. John Durant,
Science Museum and Committee on the Public Understanding of Science, 1992;
15- "Clones, Hybrides ou Mutants?", Melanie Quin, em "AIIiage" nº 16-17, 1993;
16- "Tomorrow 's yesterdays: science museums and the future", Alan Morton em "The
Museum Time Machine", Robert Lumley, ed. Routledge, 1988;
-
161 -
0 FUTURO DA CULTURA CIENTÍFICA
17- "Exhibitions and the Public Understanding of Science", Roger Miles and Alan Tout, em
"Museums and the Public Understanding of Science", ed. John Durant, Science Museum
and Committee on the Public Understanding of Science, 1 992;
18- ibidem;
19- ibidem;
20- "Un Nouveau "Corps de Visiteurs": Musées et Changements Culturels", Sharon
Macdonald, "Publics et Musées", nº 3, 1 993;
21 - "Anthropologie du Corps et Modernité", David Le Breton, PUF, 1990;
22- "Exhibitions and the Public Understanding of Science", Roger Miles and Alan Tout, em
"Museums and the Public Understanding of Science", ed. John Durant, Science Museum
and Committee on the Public Understanding of Science, 1 992;
23- "The Ent�rtainment Economy", "Business Week", 1 4/3/94;
24 - "Virtual Theme Parks", "The Economist", 1 9/25 Set. 1 994;
25 - "Science et Culture dans le Nouveau Monde", Goery Delacôte, "AIIiage", nº 1 6-17, 1 993;
26- "Clones, Hybrides ou Mutants", Melanie Quin, "AIIiage", nº 1 6- 1 7, 1 993;
-
162
-
CIÊNCIA E ANTI-CIÊNCIA: 0 FUTURO
DA IGNORÂNCIA, DA SUPERSTIÇÃO E
DO CEPTICISMO
SCIENCE ANO ANTI-SCIENCE: THE
FUTURE OF IGNORANCE,
SUPERSTITION ANO SCEPTICISM
0 FUTURO DA CULTURA CIENTÍFICA
THE UNIVERSAL CREDULITY OF MAN
JAMES RANDI
FLORI DA,
USA
As an investigator of unusual claims, l'm accustomed to being confronted with
incredible examples of medieval thinking in the 20th centu ry, and I suspect
that it will conti nue into the third millennium. Everywhere we look, we find anti
-scientific bias and belief in the u nbelievable - from demons causing
susceptible serial killers to act up, to researchers who found top-secret code
words in former US President George Bush's speeches when they were
played backwards, leading them to the conclusion that the President and
others thereby have u nconsciously revealed this information. M i llions of
Americans believe diseases cause bacteria, and not the other way around,
and are convinced that death is an aberration; they are known as Ch ristian
Scientists.
Americans are certainly not alone in their credu l ity. l n China, a large
percentage of the public visits "Qi Gong" hospitais for diagnosis and
treatment by a mystic who never touches them ; he merely waves his hands
about. lf a patient cannot visit an expert in person , he merely mails in a slip
of paper with his name written on it, and the pra ctitioner performs both the
diagnosis and the cure - an exotic hand-and-body dance designed to " re­
establish the balance of yin and yang" - from any distance away. And
thousands of visitors pour into the Philippine lslands ann ually to have local
sleight-of-hand artists apparently d ip bare-handed into their bodies to remove
cancerous tumours. They dip into their ban k accounts rather d ramatically,
too.
Cu rrently, German science is agog with its exciting discovery of " E-Rays"
which are said to come from deep with in the earth , cause cancer and cannot
be detected by any known scientific instruments; fortunately, they can be
sensed by a dowser carrying a forked willow-stick. Trusting Russian viewers
place bottles of water atop their TV sets every morn ing so that a faith-healer
can "charge" the contents with cu rativa power via channel six. ln Fin land and
Sweden , the private, expensive and government-accredited Rudolph Steiner
schools teach children Anth roposophist notions to cast horoscopes and to
believe that sprites inhabit trees and rocks.
Local police departments ali over the world regu larly consult clairvoyants who
they believe give them supernatural clues in tough cases. l n Washington ,
DC, weekly parties of goggle-eyed believers sit about caressing spoons so
that their mind power can cause them to bend, paying thirty dollars a half-
-
165
-
0 FUTURO DA CULTURA CIENTÍFICA
hour for this mind-expanding instruction . Late night TV viewers i n the US can
cal l a toll nu mber to be advised on their futu res - for a price - by
soothsayers whom they wi ll meet only by telephone, introduced by lsraeli
"super-psychic" U ri Geller. Bl issful devotees of meditation techn iques sit for
endless hours in yogi positions in "ash rams" bouncing about on mattresses
and trying to fly with mental power. With my experiences of these and
hundreds of other shocking examples of human credulity, the notion of foreign
agents playing presidential speeches backwards is hardly surprising.
The score card for the crazies is not very impressive. The "police psychics"
have been investigated scientifically and found to be of absolutely no use , in
fact they impede investigations, yet they still flourish, are consu lted by law
officers and are promoted lavish ly in the international press.
Spoons
vigorously stroked ali the way to a high polish don't deform u nless a little
actual physical bending is applied , but that fact doesn't interfere with the
parties taking place in Washington. The "flyers" of Transcendental Meditation
each spend $5,000 and up to learn how to bou nce around on a rubber
mattress, but never get airborne. No amount of evidence against any
transcendental claims wi ll dampen the fervour of the believers.
Why are the popu laces of every culture so anxiously embracing claptrap that
should have been left behind with the superstitious and emotional burdens
that brought about the Dark Ages? Part, but not ali of the reason is to be
found in the u ncritical acceptance and promotion of these notions by the
media, prominent personalities and governmental agencies.
Those Washi ngton spoon-bending parties are regu larly attended by top brass
from the Pentagon . The German government paid out DM 400,000 in 1 990 to
hire dowsers to scan federal offices and hospitais so that desks and beds
cooted himself solely to such research , for a paycheque of $49 ,000 a year.
And, can we Americans ever forget, a US P resident and his First Lady
arranged even their official schedules on the advice of an astrologer in San
Francisco.
Even the respected TI M E magazine ran a cover story on
"alternate healing methods," in which it included the absu rd ity of "crystal
power" as a possible medical remedy and so mis-defined homeopathy that it
appeared to be based on reason .
There seems to b e a certain quality of the h uman mind that requires the
owner to get silly from time to time. Sometimes the condition becomes
permanent, a part of the victim's personality. Such an affliction might be
thought to be common to "foreigners" or to "the other" gender, to another age
or to another civil isation. Not so. ln ali of the recorded histories of every
culture, ali over the world, yesterday and today, we have excellent examples
of absu rd beliefs, practices, theories and attitudes that vary only in name,
magnitude or ·flavour.
-166-
0 FUTURO DA CULTURA CIENTÍFICA
UFOs- usually shown to be ordinary meteorological phenomena or common
optical illusions but supposed by the credulous to be extraterrestrial visitorswere reported in ancient China too, but they took on anything but the space­
ship configurations currently popular. The oriental version was a dragon, fiery
exhalations and ali; there was no Asian version of Jules Verne.
Vivid
descriptions of these giant monsters seem, to Westerners, to demonstrate the
charming ingenuousness of those credulous, strange folks with that curious
way of writing. Somehow, dragons seem to me more likely tl1an space-ships.
We seemingly have no problem listening seriously to tales told today in our
own newspapers, by eccentric ladies who run on about how thoroughly their
genitais were scrutinised by small Martians aboard a gleaming UFO on its
way to Alpha Centauri. But dragons?
American lndian tales of Sasquatch, a giant humanoid, are also told by
residents of the Himalayas, of China, Siberia, Wisconsin, Northern California
and Canada, in their regional versions. The beast might be called Yeti or the
Abominable Snowman, Bigfoot, Skunk Ape or even Gigantopithecus, but it
apparently never leaves evidence in its wake, nor organic remains when it
dies. Juvenile examples are never seen, and no shred of evidence has ever
been produced to prove its reality. Many hoaxes have been adrnitted and
exposed, but belief grows daily.
lt seems that certain natural phenomena have been independently discovered
by varied civilisations.
Fire walking has been known in Japan, Sri
Lanka/lndia, Hawaii and various parts of Africa long before those places were
in communication. The fact that this phenomenon has now been adequately
explained, has done nothing to take it out of the magic repertoires of those
cultures, and certain of today's popular "motivational" movements were
founded on just such discoveries.
lt is not difficult to imagine that a group of early Egyptian scholars had
discovered, through patient observation and record-keeping, that the Nile
would rise and inundate the land at certain dates, at intervals calculable by a
system known only to them. Assuming- quite safely, I believe- that these
clever men were driven by the sarne thirst for wealth and power that their
descendants world-wide experience today, a further extrapolation of their
probable actions rnight suggest that they then announced the alarming
probability that the f\lile's failure to rise and nourish the next season's crops
was imminent, unless the proper ceremonies were performed by them in the
ternples. What threat would more effectively elicit generous donations from
the farming community, if not from the very rulers of Egypt? ln this or in some
similar manner was born the first priesthood, and we've not yet recovered
'from the innovation.
Even today, when it might be expected that modern lndia, with its great
contributions to science and mathematics, would be free of belief in medieval
notions, there is an ubiquitous belief in astrology and other forms of magic in
-167-
0 FuTURO DA CULTURA CIENTÍFICA
general. (Americans, remember the White House!) There actually exists a
large international religious cult built u p around a "baba" i n l ndia who
performs - as a miracle - the sarne old "holy ash" trick which has always
been a part of the repertoire bf the street performers there .
He also
"materialises" wrist watches for especially important/generous spectators, and
films made of this wonder easily reveal the standard conjuring methods at
work. His "miracles" are accepted by persons of widely different educational
backgrounds and he is treated as an important politicai power by the
government of medieval Europe used to earn their pennies.
ln Africa, as they have for centu ries past, which doctors "pul l the thorn " from
wou nds and other afflicted areas of the body by simple trickery. On the other
side of the globe, Brazilians seek the sarne service from their "curanderos"
while rich Americans and Brits ·fly on chartered jets to the P�1il ippines to have
ch icken innards conju red from their over-fed tummies at astronomical hou rly
rates. lt's ali the sarne sleight-of-hand, with different pronunciations of the
mumbo-ju mbo that dresses it up. We in America like to call it chiropractic
and/or homeopathy, and _it's done with white coats and technical flamboyance
that adds considerably to the cost and believability.
Sometimes, packaged nonsense is impo rted and sold without much change.
From a cu rrent advertisement in an American Kung Fu magazine that is
headed, "Master the Power! " :
These cou rses i n miracles are sold by mai l order ali over the world. No
evidence exists that these feats have ever been demonstrated, but the
vendors know that customers never complain when they discover that they've
been swi ndled. The victims just look around for another, fresh way to
squander their money and time.
The Maharishi Mahesh Yogi Move objects with Chi Power without touching
them. Move objects with you r eyes only. Lift a bowl of water with Yin Chi.
Repel birds, dogs, with you r eyes on ly. has promised to teach his devotees
miraculous powers. Defiance of danger and death , as expressed in the
"siddhis" of ancient l ndian mythology, gave rise to a series of miracu lous
powers said to be granted to enlightened persons and now eagerly offered by
and embraced by the Transcendental Meditation movement. These include
not only the facu lty of Levitation, but of l nvulnerability as wel l . l've seen the
"levitation" at work, and it looks like young folks doing their impressions of
monstrous frogs. lt's lots of hopping in uncomfortable positions, but it's not
flying; trust me. As for the " invu l ne rability" matter, l've offered to test that
claim if and when it has been mastered by any TM'er. For my test, 1'11 use
simple equipment-just a basebal l bat. Th is is an application of common sense
to u ncommon credulity.
·
lt is evident that much of the blame for the public acceptance of pseudo
science and plain claptrap can be assigned to the ed ucational systems that
-
168
-
0 FUTURO DA CULTURA CIENTÍFICA
have failed to acquaint young people- at an early stage of the ed ucational
process-with the fundamentais of scientific thinking. Most persons have no
idea that science is simply a logical process of discovering truths about the
world we live in; the ill usion is that science is some sort of a set of strange
rules, a religion that speaks algebra or a magicai group of incantations and
spells. lt is not, and because it is misunderstood it is more feared than
respected .
Acceptance of nonsense as a harmless aberration can be dangerous to us.
We live in an international society that is en larging the bou ndaries of
knowledge at an unprecedented rate, and we cannot keep up with much more
than a smal l portion of what is made available to us. To mix our data input
with childish notions of magic and fantasy is to cripple our perception of the
world around us. We must reach for the truth , not for the ghosts of dead
absu rdities.
At the risk of being unbearably realistic, I must tell you that E lvis P resley is
really dead, the sky is not falling, the earth is not flat and the fault lies, not in
our stars, but in ourselves.
- 169-
1
,
0 FUTURO DA CULTURA CIENTÍFICA
l'APPROCHE ZÉTÉTIQUE DES PHÉNOMENES "PARANORMAUX":
UNE NÉCESSITÉ EN DIF FUSION DE LA CULTURE SCIENTIFIQUE
HENRIBROCH
LABORATOIRE DE BIOPHYSIQUE
N ICE, FRANCE
RÉSliMÉ
Un mal sournois frappe et, si l'on n'y prend garde, l'épidémie peut prendre
une ampleur insoupçonnée amenant cultura et société, dans leur ensemble, à
être trop affaiblies pour pouvoir réagi r.
SYNDROME:
Un constat - triste - montra que les croyances au paranormal de tout type
se développent três largement en Franca et que ce véritable virus intellectuel
touche toutes les catégories socio-professionnelles avec une prédilection
pou r les personnes ayant un niveau d'études . . . supérieur!
DIAGNOSTIC:
Une cause réelle à une telle maladie ne peut être que mu ltifactorielle mais un
point fort se dégage: le rôle spécifiq ue des médias par leur effet de caisse de
resonance allié à une déontologie jou rnalistique à la dérive.
REMEDE PRESCRIT:
Le développement de la Zététique via la paire "explication -action" et
l'uti lisation de nouvel les techniq ues d'information et de nouveaux modes de
communication. Quelques exemples vécus de l'approche Zététique des
phénomênes paranormaux - objectif: faire comprendre ce qu'est la
méthodologie scientifique - sont donnés.
Le traitement de cette maladie est une condition sine qua non au
redressement du malade et à sa possible irnprégnation de cultura
scienti'f ique. La prophylaxie des pseudo-sciences doit être u n des impératifs
des diffuseu rs de cette cultura scientifique et technique dont l'homme de la
Cité a besoin pour sa propre réflexion sur les enjeux et choix scientifiques qui
marqueront nécessairement son futur.
- 171-
0 FUTURO DA CULTURA CIENTÍFICA
ETAT DES LIEUX
Les croyances, et l'i rrationnel au sens large, fleurissent au pays de Descartes
d'u ne maniêre beaucoup plus forte que ce que l'on serait tenté de
présupposer et l'état des lieux est plus qu'alarmant.
En lieu et place d'un descriptif et de fortes périphrases voici quelques
résultats qui parleront d'eux mêmes.
Université de Nice. Premier cycle Sciences. 1982-83
N
�
�
�
=
.,...;�
Ql)
=
�
Q
�
�
=
=
�
·�
=
="
=
r.:l
'Torsion d e cuilleres
par le pouvoir de
l'esprit"
P sy c hokin e s e /Rela t ivit é
Pr ou vée se ien ti fiqucrnen t,
un a cquis sci en ti fique ?..
%
..· - - · · -
Rec onnue c<mtre acceptable,
pla usi b1 e 'L
__ ... ___ .. _______
P e u p r o babl e L
_____
- .. ____ .
P ur e spéculati on théor iqu e ?
.___
Inf irtree c ompl etcrnen t ?.- ...
___
"Dilatation
relativist e du
temp s"
G)
18
14
18
15
7
o
3
@
5
Ce tableau résume une enquête que j'ai menée ii y a plus de 1O ans sur les
crédits respectifs qu'accordaient les étudiants en premier cycle d'études
u niversitaires scientifiques à la torsion des métaux par le seu l pouvoir de
l'esprit - la psychokinêse dont les médias étaient si friands et à la dilatation
relativista du temps - expliquée par la théorie de la Relativité et observée en
laboratoire via la durée de vie des particu les.
Depuis plusieurs années on peut noter l'influence grandissante des idées
"parapsychologiq ues" chez les étudiants en matiêres scienti'f iques, in1'1 uence
se traduisant directement dans leur comportement par rapport au domaine
enseigné.
Ces constatations ne sont pas d u tout u n exemple isolé ou dues à un
contexte local particulier ou une formulation ambiguê des questions posées;
les résultats sont statistiquement significatifs et sont confortés par des
enquêtes d'envergu re nationale effectuées par des gens de métier.
Les trois tableaux suivants, bâtis sur l'étude sociologique de Boy & Michelat
(1986) , peuvent en témoigner.
-
172
-
0 FUTURO DA CULTURA CIENTÍFICA
Croyances I âge et sexe
�
%
Q
e 60
Q,l
·-
....
fi:J
<
44-40
6S+(lli)
20
rtl
....
p
�
40
20
-
�
I
<pala> I
I
I
I
!'e
Paran ormal
80%
60
48
�
Le niveau de croyance baisse avec l'âge de .maniere quasi contin u et, chose
al léguée depuis longtemps, la disparité Homme-Femme/croyances est três
clai rement confi rmée.
Croyances
�%
�60
e
.�
I niveau
.
d' études
g;
g
�
1
.
S econdarre
nmatr�1
@!)
supérieur k :r
p
....
--�
I
I
I
1
:
20
40
I
! ;::tt�:
- --n
s
48
],
�
�
�
€i)
I
I
para> I
<
I
20
::r
·
<
44 Õ- _<�te_?>_ Prl�ake-tJ4
-
I
Supérieur
scientifique
Pa ra norm al
60
80%
- 173 -
0 FUTURO DA CULTURA CIENTÍFICA
Contrai rement à ce que l'on pouvait supposer a priori, le degré de croyance
au paranormal est directement
proportionnel au niveau des études
effectuées, avec une petite exception pour I e Supérieur scientifique . .. dont Ie
degré de croyance au paranormal reste toutefois supérieur a la moyenne !
Croyances I profession
.�
,
%
Oil
�
60
.!:
�
44
_____
4()
·
Ou v. spec·
.
I
p
4t
ers. setvtce
.Cadres moy.
1
1
O Instituteurs
� . §n!P�é�
"l'
Eelitli Ç,O!.Il._etar.t
. .
Techmctens
<astro>
•
Agriculteurs
_
1
1
•
•
U
__ _
Etudiants
: _. Cadres sup.
1 U
Professeurs
20
<par..t>l
I
20
Ouv qual
40
o
Paranormal
80%
En ce qui concerne le niveau de croyances en fonction des catégories
socioprofessionnelles, les résultats sont tout aussi eloquents et Boy et
Michelat notaient même que "les instituteurs sont un groupe pivot puisqu'ils
se défi nissent cornme le groupe qui croit le plus fréquemment à l'astrologie et
au paranormal " .
niveau d e
croyance en l'astrologie "faible" (pràs de 30% tout d e même ! ) , o n t u n niveau
de croyance au paranormal supérieur à la moyenne.
On peut noter sur ce graphe que les professeurs, bien qu'ayant un
Le résu ltat qui se dégage d'ailleurs de l'ensernble de ces travaux est ancore
plus su rprenant: le milieu éducatif - et l'ensemble de ses acteu rs:
instituteurs, professeurs, étudiants - est particu l iàrement caractérisé par son
niveau élevé de croyance au paranormal.
Et ces données ne vont pas en s'améliorant au cou rs du temps. La
dégrade.tion depuis une dizaine d'années a même été exception nel lement
rapide (quelques décisions et prises de position officielles ont d'ai lleurs peut­
être ancore facilité le développement des para et pseudo-sciences) .
- 174-
0 FuTURO DA CULTURA CIENTÍFICA
Les données chiffrées les plus récentes (enquête de janvier 1993) qui ont été
présentées au Col loque " La pensée scientifiq ue, les citoyens et les para­
sciences" des 24 et 25 fevrier 1 993 a la Cité des Sciences et de !'Industrie
(France) par divers intervenants montrent une nette aggravation des
constatations précédentes et le milieu éducatif ne fait pas exception à la
ràgle. Quelques données:
�
.....
"'"'
�
·...
c
�
!�
QC
.....
/\1
�
�
Q.
8
ln
"Les Français, la pensée scientiflque et les para-sciences"
%
Guérisons par nngnétiseur: impos it io n des mai ns
Trangnis sio n de p ensée
- ···----- ·· ···------- ··· ··---
Exp licatio n des caracteres par les signes astrol ogiq ues
Rêves qui p rédisent l'a ve ni r
P rédicti ons parles signesastrol ogiques, horoscop es .. .
P rédic ti on s 'des voyante s
•••••... ••••••- ·
- ---•• • .
ln scri p tion de la desti née dans les lign es de la main ... ..... .
Env outcments, sorcellerie
�
�
Passages sur Terre d'ext raterrestres.... ....... .......
�
o
00
35
29
·24
23
19
18
16
11
-······--------·-···-·· ·
.....
1:15
55
55
46
.•••
Table s tour nante s
·---- ··------- ··-------
.•••••• -·-
Fan t ômes, re venant s
-
--
_ • • • •• __
- _ ... . . .. . _ ..... .
. ..... . ... .... .
_
..
.. .
.
�'
Q.
-·
Ou i No n
Croyance?
(i
sans
avis
40
42
49
62
68
72
72
79
77
81
87
5
3
5
3
3
4
5
2
5
3
2
1l
\n
t')
-·
B
t')
�
�
�
=
Q.
�
�
=
Q.
�
8
�
o
"!j
"Les Français, la pensée scientifiq ue et l es para-sciences"
SOFRES.
ja.Jtrier 1993
Pou r chacune des choses suivanles,
pouvez-vous me d ire si la sci ence en
admettra un jour la réali té?
%
Oui
Non
sans
avis
La transmis sion de p ensée .... ...... ........
53
41
6
Les <JVNI .......... .. ......................
51
36
13
L' inf luence des astres s ur l e caractere
50
43
7
39
51
10
Les maisons h a ntées ...... ............ ........
19
75
6
La c<nlmu nication d es v i vant s ava: le s rnorts --
17
77
6
.•••••••
L' i nflu ence desastres sur le d es ti n de cha:un
.•.
-175-
0 FUTURO DA CULTURA CIENTÍFICA
"Les Français, l a pensée scientifi que et les para-sciences"
SOFRES.
jan'ri.er ltt3
dire si v ous êtes tou t à f ait d'ac cord ,
plutôt d' accord, plutôt pas d'a ccord ou pas d'ac cord du t out ?
P our c hacu ne de ce s phrases, p o uvez- vous me
%
sans
a vis
D' acc o rd
Pas d'occ or d
21 (7 + 14)
76 (17+59)
3
En définiti v e, 1 e développerrent de
la sciencl! e ntrnine le progres de
l 'hlDllanité
81 (45+36)
16 (lO+ 6)
3
Il y a des réali tés q u e la science
n e parvi endrajarmis à expl iquer
•.
82 (51+31)
14 (8+6)
4
.• _ •• .
58 (27 +31)
35 (15+20)
7
27 (12+15)
67 (32+35)
6
Les es p rits des morts peuve nt
comnuniquer avec le s vivants
-·-·
· ----··· ··------····· · ·--
L' a strolo gi e es t u ne s c i ence
Les scientifi q u es q ui f ont d es
recherches su r la t él ép athie
perdent leur temp s
·---·--------
Remarq uons dans ce dernier tableau quOOOOOOOOOe, simu ltanément, 8 1 %
des Français pensent q ue le développement de la science entraine le
progres de l'hu manité et 58% pensent que l'astrologie . . . est u n e science !
Si les croyances sont en pleine expansion, ii faut bien se rendre compte que
les phénomenes paranormaux, eux, ne croissent n i en nombre, ni en
intensité . Au contraire même, le corpus va en se rétrécissant comme une
peau de chagri n et l'intensité décroit tres rapidement.
A titre d'exemple, voici la variation de la "pu issance" de guérison de l'eau de
Lourdes en fonction du temps, rapportée à un nombre de péleri ns de un
millio n :
-
176
-
0 FUTURO DA CULTURA CIENTÍFICA
4
Nb guérisons s ur
1.000.000 pelerins
Une même puissance divine
au cours des âges...
5.000
Eff.
eaude
Lourdes
58
1900
f(t)
-
1930
1950
Date
La chute est assez claire et cette variation est con-firmée par l'examen de tout
autre phénomêne "paranormal" . Ainsi , pou r la psychokinêse nous avons:
Mass e
(g)
10
Un même phénomene au cours
des âges...
7
6
10
5
10
10
lO
lO
.c
;..!
i::
!:0
::r:
4
PK
3
'2
-
f(t)
1400
1600
-
10
1000
1200
I 925 2000
1850
1980
I SOO
-177-
0 FUTURO DA CULTURA CIENTÍFICA
L'intensité des "faits" paranormaux chute évidemment parallàlement a la
soph istication accrue des moyens de contrôle.
Le paradoxe apparent que pose la comparaison des premiers graphes et
tableaux (forte croissance des croyances au paranormal) avec les deux
derniers (chute de l'intensité des phénomànes) trouve bien vite son
explication: les médias et leur effet ampl ificateu r.
Le corpus des phénomànes paranormaux reçoit en effet aide et soutien de
cette caisse de résonance sans équ ivalent pour les generations passées .
La diffusion sans cesse croissante des pseudo-sciences et leur émergence
au rang de véritables stars médiatiq ues pose en fait le problàme de l'efficacité
de la diffusion de la culture scientifique et tech nique - et de son corollaire
immédiat, la prophylaxie des pseudo-sciences - d'une maniàre. beaucoup
plus prégnante que par le passé.
PAS DE TABOUS
11 faut "dénoncer" non les parasciences mais bien pl utôt ceux qui organisent
et uti lisent la diffusion de ces véritables ru ines de la conscience. Et pour cela,
ii faut non point "dénoncer" mais expliquer le fondement ou les prétendues
bases desdites parasciences.
Dans ce cadre, ii faud ra peut-être parfois consacrer quelques lignes à des
personnes particuliàres, nommément designées. Non que les attaques ad
hominen relàvent particuliàrement de l'éthique mais parce qu'il pou rra s'agi r
ici d'une réelle nécessité.
11 faut mettre en lumiàre la complicité de certains - que ce soit par action
consciente ou par na·ive incompétence - dans l'entreprise d'obscurcissement
du cerveau de nos concitoyens et de crétin isation de notre cu ltu re !
Dans un domaine ou ii est de bon ton de présupposer la compétence et
l'honnêteté sans faille des intervenants ii est d'autant plus nécessaire de dire
ce qui est, y compris que l'on peut douter de l'honnêteté intel lectuelle d'un
cardinal-archévêque qui uti lise un "mi racle", de celle du producteur d'une
émission de télévision qui diffuse une information délétàre et l'util ise comme
argument en en connaissant le mal-fondé, de celle d'u n parapsychologue
présenté comme "scientifiq ue" mais dont on chercherait en vain les titres, de
celle d'u n docteu r métabiologiste au vu de ses exploits, . . .
Ceux qui désirent informer correctement mais qui hésitent, pour d e mu ltiples
raisons, à écri re ou prononcer ce type de ph rases commettent à mon avis
une erreu r car, contrairement à ce qui est prétendu, cela apporte quelque
chose au débat.
- 178 -
0 FUTURO DA CULTURA CIENTÍFICA
Juste quelq ues lignes afin que ma démarche soit bien perçue.
Si je désire vous entretenir sur la physique, je peux vous parler de Jean
Perrin ou d'Henri Becquerel et de leurs expériences.
Si je dési re vous parler de torsion métallique par le pouvoir de l'esprit ou de
l'action molécu laire sans molécula, je vous parle des découvreurs de ces
effets et de leurs expériences.
Mais la grande différence entre les deux, c'est que je peux vous entretenir
d'expériences faites sur les mêmes propriétés atorniques sans avoi r recours
à Perrin ou Becquerel, alors qu'en ce qui concerne le paranormal, l'occulte,
les pseudo-sciences, . . Ie phénomêne disparaH avec l'individu ! Que seraient
en effet de três nombreux phénomênes "paranormaux" sans leurs inventeurs
(au sens latin du terme, bien sOr) ou leurs médiums et hérauts ?
.
Pou r parler de ces phénomênes, ii est dane nécessai re de parler des
personnes (précisons qu'il ne s'agit en aucu n cas de chercher à juger u n
individu en tant q u e tel, mais uniquement d e donner des éléments particuliers
et souvent occultés permettant de se fai re une idée sur la crédibilité du
personnage qui lance certaines affirmations).
Que l'on ne vienne pas parle r de "terrorisme intel lectuel", " robespierrisme" (je
cite de mémoire) ou autres billevesées. Que l'on n'i ntervertisse pas les rôles.
Je désire seu lement que l'on examine tous les aspects du dossier, que l'on ne
cache rien, afin que tout le monde puisse se fai re une opinion mais une
opinion sur. .. piêces, et piêces contrôlables !
"INTELLECTUEL INTELLIGENT" EST-IL UN PLÉONASME?
Noam Chomsky écrit en 1987 à propos des jou rnalistes: "lls ont crée l'i mage
d'une masse stupide qui doit être dirigée par des intellectuels intelligents. En
fait, ce que nous avons souvent découvert c'est que ces intellectuels, ces
classes éduquées, forment la partie la plus endoctrinée, la plus ignorante, la
plus stupide de la population . 11 y a de três bonnes raisons à cela.
Fondamentalement deux raisons. D'abord, en tant que population '"lettrée", ils
sont les premiers soumis à la propaganda massive . 11 y a une deuxiême
raison, plus importante et plus subtile. l ls sont des organisateurs idéologiques
(ideological managers). Par conséquent, ils doivent intérioriser la propaganda
et y croire . " (cité par G. de Selys dans sa concl usion à l'ouvrage collectif
"Médiamensonges", E PO 1991).
Ne croyez pas que la découverte de Chomsky soit sirnplement due au fait
qu'il ait enquêté chez les néo-primates intellectuels du Nouveau Monde aux
racines cu ltu relles cou rtes et étriquées (c'est a peu prês la vision qu'en ont
certains depuis le pays de Descartes) .
- 17 9-
0 FUTURO DA CULTURA CIENTÍFICA
Dans notre bon vieux pays de France, "'flarnbeau du monde" , les enquêtes
dont j'ai parlé lors de l'état des lieux nous ont révélé que la croyance aux
phénomenes paranormaux augmente avec le niveau culturel !
S'il fallait démontrer que culture et intell igence ne sont pas forcément
synonymes . . .
U n intellectuel est une personne dont la profession comporte essentiellement
une activité de l'esprit; certes, mais cela n'implique en rien que cette activité
soit intel ligente.
Les lucifériens - au sens étymologique, bien sOr - ne sont point ceux que
l'on pense.
LE RÔLE DES MÉDIAS
Non , les médias - la généralisation est abusive et ii faudra entendre ici "de
três nombreux médias" - via les producteurs et journalistes qui en font le
contenu ne sont point le_? porteu rs de lu miere qu'espéraient leurs propres
fondateurs . l ls ne donnent pas non plus aux lecteu rs-auditeursvisionneurs ce
que ces derniers attendent; ils ne sont pas les "traducteurs", les
"intermédiaires", les," mediums " (!) d'une demande. l ls créent cette demande
et font, ensuite, mine de simplement y répondre.
Les médias ne sont pas neutres mais au contraire accentuent les
phénomenes de retour à la religiosité, à une religiosité de pacottile.
" Dans ce sens, alors qu'ils semblent fonctionner comme un thermometre qui
enregistre une hausse de températu re, les médias font au contrai re partie du
combustible qui ali mente la chaudiere " . Le seuI probleme avec cette jolie
description d'Umberto Eco, c'est qu'elle est encore beaucoup trop . . . optimiste!
Un combustible se consu mant et disparaissant dans la chaudiere.
Les médias sont bien plutôt un des chauffeurs qui alimentent en combustible
la chaudiere.
C'est cela qu'il faut changer.
Dans cette action, les hommes de médias devraient prendre leur place, toute
leur place, et réfléchir sérieusement aux notions de neutralité et de
responsabilité. De nombreux acteu rs desdits médias ont, en effet, une
fâcheuse tendance à se retrancher derriere leur "nécessaire" neutralité pour
nous présenter des reportages sans enquête sérieuse, des informations sans
commentaire, sous le prétexte que l'auditeu r sau ra j uger de lui-même.
-
180 -
0 FUTURO DA CULTURA CIENTÍFICA
l ls oublient simplement - ou feignent d'oublier - qu'un esprit critique
s'exerce à vide s'il n'est pas suffisamment informé et informé de façon
suffisamment objective .
Dire - à bon escient - des choses aussi simples que "cela n'est vraiment
pas concluant" ou "ii semble s'agir d'un faux" oblige déjà un petit peu à
prendre parti c'est-à-dire, en fait, à se comportar en zétête . Et ces acteu rs­
prêtres tremblent alors car leur religion stipule que cette attitude provoque le
courroux du grand dieu Audimat. D'ou le fallacieux recou rs à la "neutralité".
Dont la distance à la lâcheté devient alors vraiment minime.
'
11 est d'autant plus nécessaire que cela change que nous vivons actuellement
une phase particuliêre de modification des processus d'acquisition des
con naissances. L'expansion de l'information est en effet essentiellement,
sinon seulement, caractérisée par une enflure de l'image visuelle et de la
sensation immédiate au détriment du symbole écrit et de l'analyse étayée.
En tant que moyen de communication , le symbole écrit permet l'analyse
détaillée, construite, critique, et disponible sur un intervalle de temps
conséquent, alors que les médias actueis font une place grandissante à
l'image instantanée et aux stimuli q u'elle déclenche.
Cette substitution du couple "symbole écrit-analyse étayée" par le couple
"image visuel le-sensation
immédiate " ,
ce
progressif et sou rnois
remplacement de la raison par la sensation mériterait d'être étudié de
maniêre globale, au-delà même de sa conséquence pour le sujet q ui nous
concerne ici: le confortement du type de pensée q ui sous-tend le
"paranormal".
11 est ancore d'autant plus nécessaire que cela change que, dans notre
monde, la réalité commence à devenir u n peu trop . . . virtuelle.
" Mensongêres, ces images [celles du pseudo-charnier de Timisoara] étaient
vraiment logiques. Et venaient rati'fier la fonction de la télévision dans u n
monde ou l'on tend à remplacer l a réalité par s a mise en scêne." Ces lignes
d'l gnacio Ramonet (Le Monde Diplomatique, mars 1990) doivent éveiller
notre attention et nous aider à la garder soutenue. Car c'est aussi de mise en
scêne qu'il s'agit dans de nombreuses émissions consacrées au paranormal;
mise en scêne présentée comme la réalité (l'émission " Mystêres" de. TF1 est
un bon exemple de la re-construction , de la mise en scene - vraiment três
bien faite, au demeurant - de [ce qui est présenté comme] la réalité) .
QuE FAIRE CONCRETEMENT?
Prôner le développement de la Zététique, " méthode dont or se sert
pénétrer la raison des choses" (Littre) .
pour
- 18 1-
0 FUTURO DA CULTURA CIENTÍFICA
C'est évidernment le souhait et l'u n des objectifs majeurs de tout systàme
éducatif au sens large. Encore faut-il utiliser des concepts, ràgles ou aspects
qui puissent permettre à tout un chacun de s'approprier cette méthode et
surtout de l'appliquer en situation. Car là est l'essentiel, bien au-delà de toute
discussion épistémologique. Quel serait, en effet, l'intérêt d'u n pouvoir ou d'u n
savoi r uniq uement discursif, sans aucune capacitá opératoi re ?
11 faut effectivement prendre garde de perdre le contact avec la matiàre, avec
la réalité; le rôle de l'observation - de l'expérimentation - est fondamental.
Surtout dans notre type de société ou l'on enseigne et/ou vulgarise trop
souvent les résultats de la science au lieu d'expliquer la maniere dont ces
résultats ont été obtenus. Surtout dans notre type de société ou la rançon de
l'un ivers médiatique se nomme superficialité.
EXPLICATION-ACTION
Afin d'éviter cet écueil, ii me paralt plus que nécessaire que les différents
diffuseu rs de la culture scientifique soient aussi des agents-acteu rs de cette
même culture afin que le maltre-mot devienne la pai re "explication-action " . Le
gain en efficacité devrait être alors au rendez-vous .
Trois exemples concrets d'explications-actions tirés de ma propre pratique
pour montrer qu'il peut en être ainsi (pour plus de détails, cf. Broch 1 991 ) :
extraterrestres revendiq ués comme nécessaires à l a résolution
des énigmes posées par des sites archéologiques "hors de
l'ordinaire" . . . permettent, parallàlement à l'explication "terrienne" que
nous apportons, de faire con naltre des tech niques et savoi rs anciens
comme les mécanismes de Héron d'Aiexandrie ou de reconstituer
une pile électrique mésopotamienne vieille·de . . . plus de 2000 ans !
- Les
- L'explication que l'on peut donner d u fameux m i racle de la
liquéfaction du sang de Saint Janvier à Naples se fait parallàlement à
la rep roduction dudit miracle via une recette chimique três simple. Et
cette action a amené, par exemple, de nombreux téléspectateurs essentiellement des adolescents - à me demandar plus de détails
afin de pouvoi r experimentar eux-mêmes.
- Expliquer qu'il n'est nul besoin de posséder des pouvoirs psi ou de
participar à un séminaire payant (2.500 FF + les trais ! ) pour pouvoir
marcher pieds nus sur des charbons ardents. La physique y suffit
largement. Et l'action de la marche se prouvant en marchant. . . (cf
photo) .
- 182 -
0 FUTURO DA CULTURA CIENTÍFICA
NOUVEAUX MODES ET TECHNIQUES DE COMMUNICATION
De la même maniàre, nous devons uti liser les nouveax modes de
communication et nouvelles techniques d'information afin de " mieux dire la
Science" (selon l'expression d u professeur Tubiana) .
En n'oubliant pas toutefois d e faire tràs attention à c e q u i pou rrait passer via
u n nouveau systàme de diffusion-communication-information: le multimédia
(qu'il me parait préférable pour l'instant de nommer multi-médias tant la
séparabilité des divers éléments est encare forte). U n média, ça va; le multi­
médias . . .
C'est pourquoi ii est nécessaire d e rappeler que s'il est évidemment
souhaitable de discuter des "tuyaux" dans lesquels on va fai re circu ler
l'information et de sophistiquer ceux-ci à la fois dans leur technicité et dans
leur présentation, ii ne faut jamais oublier qu'il est encare plus i mportant de
s'assurer de la qualité du "fluide" qui circule à l'intérieur desdits tuyaux.
Faisons bien attention à ne pas confondre le contenant avec le contenu; car
si l'on pense réellement que "Ie médium est Ie message", imaginons alors la
cacophonie du message lorsque ce médium (média) subit une mé"iose tràs
peu contrôlée . . .
C e garde-fou étant posé, examinons l e résultat concret du transfert d'un fluide
au niveau du grand public via un nouveau mode - le Minitel - de
communication: le service 36. 1 5 ZET de I'U niversité de Nice-Sophia Antipolis.
ZET dont le logo présente le serpent de la con naissance et u n g uéridon qui
tourne, est l'abréviation de Zététique ou Art du Doute . Le service est constitué
de nombreux dossiers tenus à jour et dont le but est de fou rnir à toute
personne intéressée par quelque phénomàne i nexpliqué que ce soit u n
ensemble d'informations rigoureuses afi n qu'elle puisse s e forger, en toute
connaissance de cause, sa propre opinion.
- code deposé: ZET
- I ntitulá: "Les Dossiers Scientifiques du Paranormal et de I'Occulte " Mise en service: novembre 1 986
- Volume actuei: plus de 3500 écrans, 800 références et adresses
- Responsable de la Rédaction : M. Henri Broch
- Représentant légal et Directeur de la Publication : M . /e Président de
/'Université de Nice-Sophia Antipolis
La structu re de ZET est arborescente. Tous les dossiers q uelle que soit leur
taille (variable de quelques pages-écrans a plusieurs dizaines) sont bâtis sur
le schéma suivant: (a) présentation des allégations "paranormales"; (b)
-
183
-
0 FUTURO DA CULTURA CIENTÍFICA
analyse de ces revendications avec ce que les données scientifiques
actuel les permettent d'en dire; (c) références qui ont servi à l'élaboration de
ce dossier spécifique.
Les déplacements peuvent se faire soit "classiquement" par menus soit par
mots-clefs avec trace du chemin et retour direct possible. Un index présentant
l'ensemble des mots-clefs (plusieurs milliers avec les synonymes) est
disponible à tout instant. . .
Le bilan provisoire de cette expérience originale de diffusion de la culture
scientifique, qui du re depuis plus de 7 ans mai ntenant, est assez éloq uent et
possàde une réelle "sig nificativité" , pu isque, à l'heure actuelle, Ie nombre de
connexions doit atteindre les 1 00.000.
- ZET a déjà repondu à plus de 4.500 questions et a été classé parmi
les 300 meilleurs services télématiques. La qualité de l'information
contenue dans le service est largement reconnue et même des
professionnels l'apprécient et s'en servent comme référence.
- U n point positif particuliàrement gratifiant: ZET a reçu et reçoit des
messages de " remerciement" de person nes - essentiellement des
jeunes - qui ont modifié leur attitude apràs lecture des Dossiers et
ont ainsi affiné leur démarche vers une approche zététique globale.
Le besoin d'informations correctes, que ces intervenants savent j uger
eux-mêmes, est clai rement affirmé.
- Le fait que ZET soit ouvert publiquement et di rectement, via la
messagerie , à la contradiction et au débat étayé a été manifestement
un élément "moteur" , les intervenants venant "frotter" , au vu et au su
de tout le monde, leurs arguments à ceux de ZET ou d'autres
intervenants .
.Oans u n domaine ou l'on a vu diverses organisations connaitre des échecs
retentissants alors que des moyens conséquents tant en matériel qu'en
personnel étaient mis en oeuvre (exemple: le service lnterroSciences crée en
1 988 a l'initiative du Ministàre de la Recherche et de la Technologie et de la
Fédération des Boütiques de Sciences et qui se voulait "la premiare
encyclopédie télématique française" ! ) , l'expérience du service 36. 1 5 ZET de
I'U niversité de N ice..;Sophia Antipolis démontre que, sur la du rée, ce qui
compte c'est la teneur, quantité et q ualité , du tluide que l'on dési re faire
circuler dans le média plus que la sophistication de la présentation dudit
fluide.
A l'heure d'un saut q ualitatif - comme celui d'une approche "multimédias"
des problàmes de communication et/ou information et/ou formation - i i
semble nécessaire de veiller u n peu plus à definir clairement et concràtement
les objectifs à atteindre et de disserter un peu moins sur la beauté de
l'embal lage à la derniàre mode du moment.
-
1 84
-
0 FUTURO DA CULTURA CIENTÍFICA
Plus ponctuellement, l'expérience du 36.15 ZET démonstre également que le
média Minitel - par ses spécificités comme l'interactivité, la rapidité et le
volume de la docu mentation accessible - peut être un vecteu r essentiel de
diffusion de la Zététique.
C'est ainsi que les capacités propres à cette nouvelle technique de
communication et d'information ont permis l'accês - quasi immédiat ! - d'un
public à une information démystificatrice sur les derniêres nouveautés
"paranormales".
Trois exemples:
- Alors que I e battage médiatique su r la " memoire de l'eau", qual i'fiée
de révolution scientifique du siêcle, se déchainait tout azi muth, le
service ZET diffusait dês le 6 juil let 1988 une analyse critique mettant
en évidence, entre autres, une fai lle méthodologique ôtant toute
valeu r aux travaux du Dr. Benven iste et col l . publiés dans la revue
Natu re; et cela, moins de 24 heures aprês réception de cette revue !
- Su ite à la premiare emission Mystêres de TF1 présentant, en juil let
1992, la Sai nte Tombe d'Arles-sur-Tech (un sarcophage se
remplissá nt "miracu leusement" d'u ne eau pure) comme une énigme
insol uble à laq uelle les scientifiques se seraient heurtés, le service
36.15 ZET a mis rapidement à disposition un dossier complet
expl icitant que la solution de l'énigme était connue - et publiée depuis plus de 30 ans !
ILm1 (}(} §mlfiliDü� li «DTiliDllix:e;(}(}
(�&LI!"�<!Djp)Jln1m�® cdl O AIT'll��c�UJllf' "'ll ��Jln}
ª
5 60
:::1
�
-o­
o
•
;:r:
hauteur de pluie cumulée
"';�-D_/
varíation du níveau dans le sarcophage
tromformée de � oomb<
0:1
_,.lJ
'"t
o
g.
�
.§
t.
ª'
r
�
:I:
g
.... .
�
0:1
�
:::1
g.
.:
�
�
r
-
10
11
12
13
14
15
16
17
18
19
20
21
22
23
\0
0'1
-
- 1 85 -
0 FUTURO DA CULTURA CIENTÍFICA
Le présent graphique montre clairement que c'est l'eau de pluie qui remplit le
sarcophage, que cette eau met en moyenne 5 jours pour en traverser le
couvercle et que ce dernier capte environ 30% de l'eau de pluie !
- L'ouvrage paru en mars 1 992 et se présentant comme le travail d'une
scientifique (Mme. Fuzeau-Braesch, Directeur de Recherches au C. N . R.S.)
prouvant l'astrologie par l'étude des j u meaux a été ana.lysé sur 36.15 ZET et
Ie dossier public explique clairement - preuves à l'appui - que ce travaiI. . .
n'a strictement aucune rigueur et que les données sont erronées, trafiquées
ou inventées !
Les réactions et remerciements suite aux types d'informations rapides qui
précedent montrent bien que le support télématique est une voie d'avenir
pou r une large diffusion des résultats d ' enquêtes scientifiques.
Afin d'augmenter l'impact de ce service M initel, ii serait sou haitable que
I'U niversité de N ice-Sophia Antipolis, en tant que telle, se donne maintenant
véritablement les moyens d'entretenir et de développer ce véritable vecteu r
d e culture scientifique.
Le média Minitel devrait en effet prendre toute sa place dans le nécessaire
développement de la culture et de l'information scientifique et technique et les
possibilités offertes par un service comme 36.15 ZET vers l'ensemble de la
population devraient être mieux con nues et mieux prises en considération par
les différents responsables et acteu rs de notre systeme éducatif et de
recherche.
Une retombée "originale" (le succes d'un média moderne sur "Zététique et
paranormal" provoq uant l'uti lisation . . . d'un média "classique" j usque-là plutôt
fermé à ce sujet) de l'initiative du service Minitel a été la création à
I'Un iversité de Nice, à la rentrée u niversitai re 1 993-94, du premier cou rs de
Zététique dans une un iversité 'française. Ce cou rs, qui s'intitu le "Phénomenes
Paranormaux et Méthodologie $cientifique "
et consiste en une option
transdisciplinaire à l'usage des étudiants de 1ere année en Sciences, compte
déjà plus de 200 étudiants inscrits.
POUR CONCLURE
•••
Les tenants du paranormal contribuent à une mystification de la
con naissance qui a, en particulier, pour résu ltat une conception du monde
dans laquelle de nombreux phénomenes échappent irrémédiablement a la
compréhension - donc au contrôle - de la majorité des individus. De plus, les
croyances au paranormal sont intri nsequement discréditrices de la science.
C'est pourquoi la prophylaxie des pseudo-sciences
responsabilité tant sociale que professionnelle.
- 1 86 -
releve
de
notre
0 FuTURO DA CULTURA CIENTÍFICA
U n objectif essentiel des organ ismes de diffusion de la culture scientifique
doit être de former des person nes aptes à la réflexion, réceptives aux
nouvelles idées et capables d'avoir une attitude critique. Nous ne devons pas
nous borner à la transmission nécessai rement finie d'une matiere , d'u n sujet
ou d'une discipline. La relation enseignants-enseignés, diffuseu rs-récepteu rs
ne prend sa pleine signi'fication que si elle stimule un processus dynamique
de recherche d'informations.
Le constat des enquêtes sociologiq ues dont j'ai parlé en présentation illustre
en fait les conséquences des lacunas de notre systeme d'éducation/diffusion
scientifique. La plus importante de ces lacunes étant peut-être que la science
est rarement enseignée cornme un outil cognitif.
La science est en effet enseignée/diffusée dans le contexte d'une matiere
spécifique, ce qui, au mieux, encou rage le receveur à la compartimenter en
un ensemble de techniques brutes valables uniq uement dans des domaines
spécifiques, sinon étroits.
La diffusion de la culture scientifique est la condition sine qua non du
rapprochement de ceux qui "font" la science et ceux qui la "subissent" . Avec
toutes les connotations et i mpl ications - y compris sociales - que ce
dernier vocable transporte . Le dialogue est plus qu'urgent si l'on dési re que la
société ne soit point recouverte, dans sa large majorité , d'u n voile
d'obscurantisme et déraison.
Mais /'appropriation d'une culture scientifique nécessite d'abord la
compréhension de ce qu'est la démarche scientifique. Avec toutes ses
facettes dont ses débats et remises en question internes constantes qui en
font réellement un processus auto-correctif de découverte , à l'opposé de tous
les dogmes, à l'opposé de toutes les "para-sciences".
C'est dans cet exercice d'explication de la démarche et de l'esprit de la
science que, paradoxalement, les pseudo-sciences ont un rôle positif à
jouer.
Les fausses sciences ont en effet un pouvoir de performance nul, c'est-à-di re
qu'aucu n progrês ne peut leur être attribué et pourtant l'on pourrait faire en
sorte que, par l'exemple de leur déraison, les fausses sciences abo utissent: · ·
,
a u progres d e la raison et à une diffusion plus large d e l a methodolog1e
scientifique au niveau de nos concitoyens.
Sans oublier qu'offrir à chaque homme de la Cité les outils nécessai res à une
réflexion sur le "paranormal" c'est permettre, via ce support motivant, une
reflexion sur les enjeux et choix scientifiq ues et tech nologiques qui
marqueront nécessairement son futu r .
- 1 87 -
0 FUTURO DA CULTURA CIENTÍFICA
RÉFÉRENCES
Boy D., Michelat G. (1986), Revue Française de Sociologie vol. XXVII, p. 175
Broch H. (1985), European Journal of Science Education vol. 7,
No
4, p. 353
Broch H. ( 1 989), "Le Paranormal", Points Science, Seuil, Paris
Broch H. (1991 )
56.31 .36.39)
,
"Au Creur de I'Extra-Ordinaire ",
Horizon Chimérique, Bordeaux (tél.
Broch H. ( 1 994), Encyclopédie Actuei Quillet, article "Science et pseudo-sciences ", s.p.
Valot T. , Valot G. ( 1 957), "Lourdes et l'il/usion ", Maloine, Paris
- 188 -
0 FUTURO DA CULTURA CIENTÍFICA
CIÊNCIA E ANTI-CIÊNCIA: 0 FUTURO DA IGNORÂNCIA, DA SUPERSTIÇÃO
E DO CEPTICISMO
FERNANDO G I L
UNL, LISBOA - E H ESS, PARIS
INTRODUÇÃO
1.
Se a ciência se tornou uma empresa irreversível , há também todas as
razões para pensar que o futu ro da anti-ciência não está menos
garantido. Aquilo a que de uma maneira rápida chamamos credu lidade
tem mu itos estratos - psicológicos, sociais, ideológicos - e alimenta-se
de coisas diversas. Entre estas conta-se a própria ciência: não apenas
nos seus resultados como ainda nas suas exigências de inteligibilidade,
ou seja nos seus modos de explicação e de compreensão. E decerto por
isso que não repugna a muitos cientistas aceitar fenómenos como a
psicokinése de que se vai falar esta noite , como exemplo de ignorância
ou de superstição. A psicokinése é a capacidade atribuída à mente de
agir sobre outras mentes ou sobre as coisas. Por outro lado, credu lidade
e ainda crença, . e a crença participa das "estrutu ras profu ndas" do
psiquismo. Como se situam os fenómenos para-normais em relação à
inteligibilidade e à crença? O seu interesse vem de participarem da
superstição e da crença e de serem ao mesmo tempo considerados por
alguns como compatíveis com a explicação científica. Esse.s fenómenos
fazem ver que crença e inteligibilidade se podem encontrar: pois a crença
consiste aqui n uma certa maneira de entender o mundo. Saliento que a
explicação científica em questão é a mais "dura". N u ma disciplina como a
psicanálise , de que falava ontem o Prof. J . Jesuino, as ligações para não
dizer as afin idades, são quase evidentes. O tratamento psicanal ítico
funda-se na " transferência"; ora o transporte de qualidades é a operação
mágica por excelência. Quer tudo isto dizer que a relação entre ciência e
anti-ciência conduz a uma reflexão com vários patamares. Comecemos
pelas diferenças.
2.
Num estudo recente (" La science et l'irration nel" , Science au p résent, 1 1 ,
1 992), o filósofo francês Pierre Livet i nventariou a�guns dos erros lógicos
e semânticos q ue viciam as interpretações " i rracionais" da ciência. O seu
denominador comum reside em colocarem no mesmo plano, por um lado
noções constru ídas, formalismos, teorias científicas, por outro lado
noções comuns, i magens e a inteligibilidade associada à experiência
natural do mundo. A derrapagem reside na aplicação daqueles
formalismos a estas noções não elaboradas, fazendo-se funcionar os
formalismos de maneira a " reencontrar <Cito> à saída resultados q ue se
-
189 -
0 FuTURO DA CULTURA CIENTÍFICA
retraduzirão nas noções comuns, o que nos fará descobrir capacidades
surpreendentes". As metodologias científicas são postas ao serviço do
senso comum. Falta-nos é perceber porque tal derrapage m se faz porque parece ela ser uma tentação constante. No mesmo arUgo, Pierre
Livet evoca as teses do célebre colóquio de Córdova de 1979 (Science et
conscience, Stock) . Elas abrem caminho à psicokinése: e a psicokinése é
um excelente revelador desse fundo arcaico de credu l idad e . O arcaico
não é um outrora deixado defin itivamente para trás. Como diz um livro
recente de Bruno Latour, "nu nca fomos modernos" .
3.
Tal fundo que é o da magia e do maná anima ainda, e do mesmo modo
como opera na magia, certas interpretações da mecân ica quântica e em
particular o chamado paradoxo EPR (Einstein, Podolsky, Rosen). O maná
dos Melanésios e outras figuras equ ivalentes apresentam-se como uma
força difusa no mundo, ou condensada em sacerdotes e chefes. O maná
é uma eficácia material , psíquica e vital, ligando invisivelmente tudo, por
efeito da simpatia universal que é o fundamento da magia. Duas reg ras
caracterizam o maná: tudo é possível
é a mesma expressão que
Umberto Eco emprega para descrever as teorias contemporâneas do
paranormal (La guerre du faux, 1 985)
e tudo está em tudo. As duas
regras estão ligadas. A capacidade de infl uir passa ao acto porque não
há distinção entre o local e o global. As coisas co-pertencem-se nu ma só
unidade e podem por isso interagir à distância. A ciência assenta no
procedimento inverso: ela distingue-se da magia na medida em que se
obriga a um "constrangimento de localidade", como escreve René Thom.
A explicação científica é local. Entre outras coisas, isto significa que ela
recusa a acção à distância.
-
-
4.
Precisamente , uma mente dotada de uma força actuante sobre as outras
mentes ou sobre a matéria, e o que define a psicoki nése: por exemplo
torcer uma colher com o ol har. A psicokinése ignora o constrangi mento
de localidade e os obstácu los às faculdades do espírito . Mas, se a mente
é capaz de influenciar outras mentes (embora isso, se bem reparamos,
seja em si já bastante enigmático) , como poderá agir sobre as coisas? O
maná é uma resposta a esta pergu nta. E é este apetite de comunhão
generalizada e de poder sobre a matéria que certas leituras da física
quântica vem caucionar. Vejamos como.
5.
Os dois pri ncípios que para esse efeito será necessário estabelecer são,
justamente , primeiro a possibilidade da acção à distância e a negação do
constrangimento de localidade. Como na magia, só dentro do "todo"
poderá a consciência comunicar com a matéria: esta comu nicação é o
segundo princípio. Ambos encontram uma perfeita expressão na "ordem
impliêada" segu ndo David Boh m . (Outras h ipóteses há que vão na
mesma direcção) . Uma experiência muito simples - uma pequena gota
de tinta que em certas condições experi mentais se torna filiforme e
invisível , para depois se reconstituir quando o dispositivo experimental
- 1 90 -
0 FUTURO DA CULTURA CIENTÍFICA
funciona em sentido inverso - ilustrará a tese geral de que <cito,
sublinhando> "cada partícula pertence a um certo conjunto e, neste
conjunto, acha-se ligada aos outros elementos pela força de u ma
necessidade geral inerente à situação global que os encaminha para a
finalidade comum, a saber a reconstituição da gota. Em li nguagem
corrente é permitido dizer que todas estas partículas estão conju ntamente
implicadas nessa finalidade comum" (p. 1 01 : sublinhei quase tudo ! ) . Um
pequeno esforço suplementar far-nos-á passar ao esp írito. A goti n ha de
tinta inscreve-se num equ ílibrio cósmico pilotado pela consciência: "A
consciência é um factor activo no seio do conjunto da realidade. u nida a
matéria em geral por uma necessidade mais profunda, cuja força <como
a do maná> suscita uma serie de finalidades as quais ambas colaboraram
inseparavelmente" (p. 1 1 O). Esta consciência cósmica não conhece
travões, ela desdobrar-se-á, até , num corpo astral, como afirmou no
mesmo colóqu io Brian Josephson, prémio Nobel de serviço (nestas
ocasiões um prémio Nobel é indispensável no g rupo de referência) . O
corpo astral "estende-se através do tempo e do espaço" , ele explicaria
<cito ainda> "fenómenos que relevam de uma metapsicologia sem
engendrar a menor contradição".
6.
Os biólogos presentes recordar-se-ão de que o etologista Remy Chauvin
" refuta" o darwinismo - para ele a evolução não vai até ao corpo astral
- a partir de postulados análogos: uma "orientação programada" da
evolução, conforme com " u ma di recção geral que se assemelha a uma
vontade difusa em todos os seres animais e vegetais". Chauvin pensa
também que "a maneira como o nosso cérebro age sobre o nosso corpo é
provavelmente , no fim de contas , a mesma maneira como a vontade
evolutiva age sobre a matéria animada" . Pelo seu lado, Richard Mattuck,
na sua contribuição ao mesmo colóquio chama-se ela, modestamente,
" U ma teoria quântica da interacção entre a consciência e a matéria" - ,
põe o "postulado de q u e a consciência é não-local, ou seja, e l a pode
alargar-se para lá dos limites espaciais do cérebro" (ibid . , p. 80) . Este
postulado é prolongado por u m outro: "graças a um esforço da vontade, a
consciência pode funcionar activamente" nas operações de medida (ibid . ,
p. 86) .
.
7.
Chegamos ao paradoxo E P R ( 1 935) que é uma experiência i magi nária
destinada a evidenciar a incompletude da teoria quântica. (O P rof. José
Mariano Gago que me corrija alguma eventual imprecisão).
Segundo a teoria quântica, duas partículas em interacção e q ue depois
se separam são descritas por uma função de onda global . Sendo assim,
quando se mede a posição (ou a velocidade) de u ma das partículas,
obter-se-á automaticamente a medida .da posição (ou da velocidade) da
outra sem que ela tenha sido directamente submetida a qualquer
operação de medida. Nisto consiste o paradoxo, que Ei nstein julgava
intolerável. Para o nosso propósito, basta acrescentar que duas séries de
- 1
H-
0 FUTURO DA CULTURA CIENTÍFICA
experiências conduzidas entre 1 965 e 1 982 - passou-se da experiência
imaginária à experimentação - confi rmaram a não separabilidade./\.das
partícu las. U ma fu nção de onda ún ica descreve os dois sistemas
quânticos que interagi ram; quando um é medido, o resu ltado obtido no
aparelho de medida fixa instantaneamente o resultado que será
encontrado no segundo aparelho.
8.
Aqui se enxertam as interpretações que vão desembocar na psicokinése .
Elas afirmam que a não separabi lidade das partícu las sign i'fica
necessariamente que· há . uma transmissão de informação entre as
partículas. A medida da posição ou da velocidade de u ma partícula
transmite-se a outra por uma acção à distância. De acordo com Olivier
Costa de Beauregard , sempre no mesmo colóq uio, a não separabilidade
assegura a possibilidade de "telegrafar indirectamente para u m além", tal
como pretende a psicokinése e a precognição, que se tornariam portanto
"viáveis" . O telegrama acaba no inevitável apelo à sabedoria oriental: " lê­
se no Veda que a separabilidade é uma ilusão decorrente da nossa
abordagem pragmática" dos problemas (Se. et Consc. , pp. 69-70).
Simplesmente, essas experiências, em particular uma delas feita com
fotões ou seja operando com a velocidade da luz, vieram também
estabelecer que os fotões não podem comunicar entre si, a não ser que
a informqção transmitida circulasse a uma velocidade superior à da luz e
fosse veiculada por ·um suporte físico completamente · descon hecido. A
correlação das partículas permanece por explicar - mas supor u m
trânsito d e informação entre a s partículas é altamente improvável . Parece
temerário admitir velocidades superiores à da l uz e postular o sinal físico
que transmiti ria a informação.
·
9.
Para terminar, q uero marcar duas coisas. � acção à distância pode ser
"domesticada" pelo pen�amento científico. E o que fez Newton e é o que
almejam outras hipóteses que não desistem de procu rar maneira de fazer
"comunicar" as partículas, sem q ualquer atracção pela psicokinése e por
uma mística de pacotilha! Em segu ndo l ugar, a exigência de explicações
não locais e anal íticas pode ser leg ítima: porém, para não delirar - e
delirar quer sobretudo dizer privarmo-nos dos procedimentos conduzindo
a uma investigação real -, o conhecimento tem de se contentar com ,
digamos assim, metáforas desse todo. Por exemplo, o pensamento da
forma é um pensamento local de algo que por natu reza é global. A
história do paradoxo E P R faz ver como as derrapagens se produzem. O
salto torna-se mortal q uando uma correlação inexplicada é explicada por
uma hipótese quase mágica: outra coisa não parece ser uma
"transmissão sem suporte de informação". Mas a mesma história mostra
ao mesmo tempo que as derrapagens· podem fazer-se, não contra a
i nteligibilidade científica enquanto tal , mas em nome de princípios
explicativos que se acham também no cerne desta inteligibi lidade.
'
-
192 -
APÊNDICE
ANNEX
CONFERÊNCIA - CONFERENCE
O Futuro da C u ltu ra Científica
The Future of Scientific Cu ltu re
Edifício-sede da Caixa Geral de Depósitos (ao Campo Pequeno)
- entrada pela rua do Arco do Cego - entrance by rua do Arco do Cego Lisboa, 22-23 Novembro
Lisbon, 22-23 November
1 993
1 993
PROGRAMA - PROGRAMME
2ª feira, 22 de Novembro
monday, November 22
09.30h - 1 0.00
Chegada dos participantes - Arrival of the participants
1O.OOh - 10.40h
Sessão de abertura - Opening session
José Mariano Gago
(Organizing Committee)
Antonio Ru berti
(European Commissaire in charge of Education and Science)
Mário Soares
(President of the Portuguese Republic)
1 1 .00h - 1 3.00h
O Futuro da Compreensão das Ciências pelo Público
The Future of the Public Understanding of Science
John Ziman
. (Professor Emeritus, University of Bristol, UK)
John Durant
(Assistant Director of the Science Museum; Visiting Professor in History a:1d Public Understanding of Science, Imperial College, UK)
Jon Miller .
(Vice President of the Chicago Academy of Sciences
and Director of its lnternational Center for the Advancement of Scientific Literacy, USA)
Comentadores - Commentators:
Paul Caro
(CSI, Paris)
Correia Jesuíno
(ISCTE, Lisboa)
José Mariano Gago
(IP, Lisboa)
15.00h - 1 8.00h
Novas Perspectivas para o Ensino das Ciências
New Trends in Science Education
Joan Salomon
(University of Oxford, UK)
Raul Gagliardi
(Bureau International d'Education - UNESCO;
Laboratoire de Didactique et d'Épistémologie des Sciences - Université de Geneve, Switzerland)
Martine Méheut
(LIREST - Cachan, France)
Gil-Perez
(Department de Didactica de las Ciencias, Universidad de Valencia, Spain)
Comentadores - Commentators:
António Cachapuz
(Universidade de Aveiro)
Ana Maria Morais
(Universidade de Lisboa)
Cuiça Sequeira
(Universidade do Minho)
Odete Valente
(Universidade de Lisboa)
3§ feira, 23 de Novembro
Tuesday, November 23
1O.OOh - 13.00h
Significado e Problemas da Divulgação Científica
Meaning and Problems of Popularizing Science
Anne-Marie Laurian
(CNRS, Paris)
Roger Lesgards
(Former Director of CSI - La Villette; College de Philosophie, Paris)
Michel C rozon
(Directeur à l'Information Scientifique du CNRS, Paris)
Paul Caro
(Délégué aux Affaires Scientifiques, CSI - La Villette, Paris)
1 5.00h 18 .OOh
Práticas Correntes e Novos Meios de Comunicação das Ciências
Current Practice and New Trends of Communicating Science to the Public
-
Luigi Campanella
(President of MUSIS, ltaly)
Siegfried Hermann
(Direktor, Osterreiches Institut für den Wissenschsften Film, Wien, Austria)
Jean-Marcel Schorderet
(Radio-Télévision Suisse Romande, Geneve, Suisse)
Peter Anderson
(Technologie Museum NINT, Amsterdam)
Rui Trindade
(Instituto de Prospectiva, Lisboa; Jornal Expresso, Lisboa)
José Vitor Malheiros
(Editor Secção Ciência, Jornal Público, Lisboa)
Moderador - Chainnan:
José Sasportes
(Directo( do Serviço ACARTE, Fundação Calouste Gulbenkian, Lisboa)
21.30h - 24.00h
Ciência e Anti-Ciência: O Futuro da Ignorância, da Superstição e do Cepticismo
Science and Anti-Science: The Future of lgnorance, Superstition and Scepticism
James Randi
(USA)
Henri Broch
(Université de Nice, France)
Introdução - Introduction:
Fernando Gil
(Ecole de Hautes Études en Sciences Sociales, Paris; Faculdade de Ciências Sociais e Humanas da Univ. de Lisboa);
Comentador - Commentator:
Joaquim Pais de Brito
(Director do Museu de Etnologia, Lisboa)

Documentos relacionados