Monografia - IME

Transcrição

Monografia - IME
MINISTÉRIO DA DEFESA
EXÉRCITO BRASILEIRO
DEPARTAMENTO DE CIÊNCIA E TECNOLOGIA
INSTITUTO MILITAR DE ENGENHARIA
CURSO DE GRADUAÇÃO EM ENGENHARIA CARTOGRÁFICA
1º Ten GUSTAVO FLUMINENSE CARNEIRO
Al MARIELLE DEVAUX
Al NATÁLIA CURADO CARNEIRO
TESTE DO MÓDULO DE RESTITUIÇÃO FOTOGRAMÉTRICA DIGITAL
EDUCACIONAL E-FOTO
Rio de Janeiro
2008
INSTITUTO MILITAR DE ENGENHARIA
1º Ten GUSTAVO FLUMINENSE CARNEIRO
Al MARIELLE DEVAUX
Al NATÁLIA CURADO CARNEIRO
TESTE DO MÓDULO DE RESTITUIÇÃO FOTOGRAMÉTRICA
DIGITAL EDUCACIONAL E-FOTO
Iniciação à Pesquisa apresentada ao Curso de
Graduação em Engenharia Cartográfica no Instituto
Militar de Engenharia, como requisito parcial para a
obtenção do título de Graduado em Engenharia
Cartográfica.
Orientador: Cel R/1 Walter da Silva Prado - M.C.
Co-orientador: Cel R/1 Jorge Luís Nunes e Silva
Brito - Ph.D.
Rio de Janeiro
2008
2
INSTITUTO MILITAR DE ENGENHARIA
1º Ten GUSTAVO FLUMINENSE CARNEIRO
Al MARIELLE DEVAUX
Al NATÁLIA CURADO CARNEIRO
TESTE DO MÓDULO DE RESTITUIÇÃO FOTOGRAMÉTRICA
DIGITAL EDUCACIONAL E-FOTO
Iniciação à Pesquisa apresentada ao Curso de Graduação em Engenharia
Cartográfica no Instituto Militar de Engenharia, como requisito parcial para a
obtenção do título de Graduado em Engenharia Cartográfica.
Orientador: Cel R/1 Walter da Silva Prado
Co-orientador: Cel R/1 Jorge Luís Nunes e Silva Brito
Aprovada em 06 de junho de 2008 pela seguinte Banca Examinadora:
___________________________________________________________________
Cel R/1 Walter da Silva Prado – M.C.
___________________________________________________________________
Cel R/1 Jorge Luís Nunes e Silva Brito – Ph.D.
___________________________________________________________________
Maj José Wilson Cavalcante Parente Junior – M.C.
Rio de Janeiro
2008
3
SUMÁRIO
LISTA DE SIGLAS E ABREVIATURAS .................................................................. 06
LISTA DE ILUSTRAÇÕES....................................................................................... 07
LISTA DE TABELAS ............................................................................................... 08
RESUMO .................................................................................................................. 09
ABSTRACT .............................................................................................................. 10
1
INTRODUÇÃO ............................................................................................... 11
1.1
OBJETIVO ..................................................................................................... 11
1.2
JUSTIFICATIVA ............................................................................................. 11
1.3
HISTÓRICO ................................................................................................... 11
1.3.1 FOTOGRAMETRIA PIONEIRA ..................................................................... 11
1.3.2 FOTOGRAMETRIA ANALÓGICA ................................................................. 13
1.3.3 FOTOGRAMETRIA ANALÍTICA ................................................................... 14
1.3.4 FOTOGRAMETRIA DIGITAL ........................................................................ 14
1.4
O PROJETO E-FOTO .................................................................................... 16
1.5
ESTRUTURAÇÃO DO TRABALHO ............................................................... 18
2
FUNDAMENTAÇÃO TEÓRICA..................................................................... 20
2.1
SEQÜÊNCIA DE TRABALHO E REVISÃO DE CONCEITOS ....................... 20
2.2
O PROCESSO DE RESTITUIÇÃO ANALÓGICO .......................................... 21
2.2.1 PREPARO ..................................................................................................... 21
2.2.2 EXECUÇÃO ................................................................................................... 23
2.2.3 REVISÃO ....................................................................................................... 23
2.3
O PROCESSO DE RESTITUIÇÃO DIGITAL ................................................. 24
2.4
PROCEDIMENTOS OPERACIONAIS EMPREGADOS PELA DSG .............. 25
2.4.1 RESTITUIÇÃO DA ALTIMETRIA ................................................................... 25
2.4.2 RESTITUIÇÃO DA PLANIMETRIA ................................................................ 26
4
2.5
O PROCESSO ANALÓGICO X O PROCESSO DIGITAL ............................. 27
3
METODOLOGIA ............................................................................................ 28
3.1
DESCRIÇÃO GERAL..................................................................................... 28
3.2
MATERIAL UTILIZADO ................................................................................. 28
3.2.1 IMAGENS AÉREAS ....................................................................................... 28
3.2.2 CERTIFICADO DE CALIBRAÇÃO ................................................................. 29
3.2.3 PONTOS DE CONTROLE ............................................................................. 30
3.3
EXPERIMENTOS REALIZADOS ................................................................... 31
3.3.1 AMBIENTE E-FOTO ...................................................................................... 31
3.3.2 SOLUÇÃO INTERGRAPH (IMAGESTATION SSK)....................................... 32
4
RESULTADOS OBTIDOS ............................................................................. 34
4.1
AMBIENTE E -FOTO ..................................................................................... 34
4.2
SOLUÇÃO INTERGRAPH (IMAGESTATION SSK)....................................... 38
5
ANÁLISE DOS RESULTADOS ..................................................................... 39
5.1
DIFICULDADES ENCONTRADAS ................................................................ 39
5.2
COMPARAÇÃO DOS RESULTADOS ........................................................... 39
5.2.1 PADRÃO DE EXATIDÃO CARTOGRÁFICA ................................................. 42
5.2.2 ANÁLISE VISUAL .......................................................................................... 46
5.3
SUGESTÕES PARA MELHORIAS DO APLICATIVO.................................... 49
6
CONCLUSÕES .............................................................................................. 51
7
SUGESTÕES PARA TRABALHOS FUTUROS ............................................ 52
REFERÊNCIAS BIBLIOGRÁFICAS ........................................................................ 53
ANEXO A– CERTIFICADO DE CALIBRAÇÃO DA CÂMARA ................................ 55
ANEXO B – FICHAS DE OCUPAÇÃO E DESCRIÇÃO DOS PONTOS.................. 57
APÊNDICE A – CÓDIGO FONTE DO PROGRAMA DE CONVERSÃO ................. 64
5
LISTA DE SIGLAS E ABREVIATURAS
1ª DL
1ª Divisão de Levantamento
5ª DL
5ª Divisão de Levantamento
BMP
Bitmap
CAD
Computer-Aided Design
DPI
Dots Per Inch
DSG
Diretoria de Serviço Geográfico
DXF
AutoDesk Drawing Interchange Format
E-Book
Eletronic Book
EFD
Estação Fotogramétrica Digital
GNU/FDL
GNU Free Documentation License
GNU/GPL
GNU General Public License
GUI
Graphical User Interface
IBGE
Instituto Brasileiro de Geografia e Estatística
LISP
List Processing
IPP
Instituto Municipal De Urbanismo Pereira Passos
MDT
Modelo Digital do Terreno
PEC
Padrão de Exatidão Cartográfica
SIG
Sistema de Informações Geográficas
SSK
Stereo Softcopy Kit
TBCD
Tabela da Base Cartográfica Digital
TIN
Triangulated Irregular Network
UERJ
Universidade do Estado do Rio de Janeiro
6
LISTA DE ILUSTRAÇÕES
FIG. 3.1
Pontos de controle............................................................................... 30
FIG. 5.1
Ferramenta de zoom do E-FOTO ........................................................ 39
FIG. 5.2
Função “Add” dentro do Editor ............................................................ 40
FIG. 5.3
Exemplo da dificuldade de suavização de linhas na restituição
fotogramétrica digital no E-FOTO ........................................................ 41
FIG. 5.4
Pontos de Teste para o PEC planimétrico........................................... 43
FIG. 5.5
Resultado da análise visual da restituicao fotogrametrica digital no EFOTO sobreposta à base vetorial do IPP ............................................ 49
7
LISTA DE TABELAS
TAB. 1.1
Histórico da Fotogrametria .................................................................. 15
TAB. 2.1
Comparação entre os processos analógico e digital ........................... 27
TAB. 5.1
Classificação das cartas (PEC) ........................................................... 42
TAB. 5.2
Coordenadas dos pontos de teste para o PEC ................................... 44
TAB. 5.3
Erros planimétricos dos pontos de teste para o PEC .......................... 45
TAB. 5.4
Resultado do PEC ............................................................................... 46
8
RESUMO
Este trabalho tem por objetivo avaliar o módulo de restituição fotogramétrica
digital da plataforma educacional E-FOTO de software livre, com vistas à sua
utilização num ambiente de produção de mapeamento fotogramétrico digital. Para
tal, realizou-se a restituição fotogramétrica de um modelo estereoscópico obtido a
partir de fotogramas aéreos em escala 1:8.000, digitalizados com resolução de 300
DPI. Este material encontra-se disponível na página de internet do projeto E-FOTO
(www.efoto.eng.uerj.br). A área geográfica restituída situa-se nas proximidades do
Campus principal da Universidade do Estado do Rio de Janeiro (UERJ). A
verificação da correção do trabalho foi efetuada por comparação com uma base
vetorial planimétrica do Instituto Pereira Passos. Foi também efetuado o teste do
Padrão de exatidão cartográfica do IBGE (PEC). A restituição fotogramétrica
apresentou qualidade planimétrica mínima compatível com a classe “C” para a
escala 1:10.000. O trabalho relata as dificuldades encontradas na execução do
trabalho e apresenta sugestões de melhorias para o aperfeiçoamento do aplicativo
ora em questão.
9
ABSTRACT
The goal of this work is to evaluate the digital photogrammetric stereo plotter
module of the educational platform E-FOTO of free software. This evaluation aims to
study the feasibility of its use in a digital photogrammetric mapping production
environment. A pair of airborne photograms, in the scale of 1:8.000, digitized with
resolution of 300 DPI was used in the photogrammetric compilation. Such material is
available on the homepage of the E-FOTO project (www.efoto.eng.uerj.br). The
geographic area of interest is located in the neighborhoods of the main Campus of
the University of the State of Rio de Janeiro (UERJ). The verification of the correction
of the work was performed by comparison with a planimetric vector database of the
Instituto Pereira Passos, of the Rio de Janeiro County Management. We also
performed the testing of the Cartographic Accuracy of the work. For doing so, it was
used the Brazilian National Map Accuracy Standards. The photogrammetric
planimetric compilation has proven to be compatible with the minimum quality of
class “C” for the 1:10.000 scale. This paper also reports the main difficulties found in
the execution of the work, and proposes suggestions for improvements in the stereo
plotter module of the E-FOTO software.
10
1 INTRODUÇÃO
1.1 OBJETIVO
O presente trabalho tem por finalidade avaliar o módulo de restituição
estereoscópica digital da plataforma E-FOTO de software livre para fotogrametria
digital, sugerir melhorias para as funcionalidades existentes e propor novas
funcionalidades para esse módulo.
1.2 JUSTIFICATIVA
O potencial interesse por parte da DSG na utilização de uma nova Estação
Fotogramétrica Digital (EFD) não-comercial pode ser citado como a principal
motivação para a realização deste trabalho. Isso porque as EFDs comerciais
apresentam elevado custo de aquisição, o que dificulta o acesso aos interessados
no assunto. Outra justificativa é a de se conhecer o potencial de utilização do
modulo de restituição fotogramétrica digital do E-FOTO.
1.3 HISTÓRICO
1.3.1 FOTOGRAMETRIA PIONEIRA
O fenômeno da estereoscopia foi descrito pela primeira vez no ano de 1838 pelo
físico inglês Sir Charles Wheatstone num trabalho de titulo “ Contributions to the
Physioligy of vision...phenomena of binocular vision”. Neste trabalho o autor
11
apresentou o estereoscópio de espelhos que projetou e construiu, no qual utilizava
figuras desenhadas para ilustrar o fenômeno da estereoscopia.
Em 1839 Danguerre tornou publico e acessível o processo da Danguerreotipia.
O geodesista francês Dominique François Jean Arago, estando ciente dos
acontecimentos da época, incentivou o uso destes novos instrumentos nos
levantamentos topográficos. Ao mesmo tempo em que a componente química da
fotografia evoluía, a componente óptica também se desenvolvia. Carl Zeiss, em
1846, fundou uma oficina mecânica de pequeno porte de precisão suficiente para
construir equipamentos para o laboratório da Universidade de Jena. Mais tarde tal
oficina tornou-se uma importante empresa de fabricação de equipamentos
topográficos e fotogramétricos.
Em 1849, Aimé Laussedat, um oficial do Corpo de Engenheiros do Exército
Francês, deu o salto principal para o nascimento da fotogrametria. Laussedat
utilizou fotografias auxiliando a confecção de mapas baseado nos princípios de
Carpeller. A Academia de Ciência de Madrid reconheceu o uso de fotografias em
levantamentos topográficos em 1862.
As
aplicações
das fotografias
aumentaram
e
muitos
trabalhos foram
desenvolvidos, como por exemplo a primeira fotografia aérea, obtida por Nadar
Gaspard Felix Tournachon, em 1855, em um balão a 80 metros de altura sobre a
cidade de Bièvre, na França e a de James Wallace Black, em 1860, sobre a cidade
de Boston, nos Estados Unidos.
Em 1889, o alemão Carl Koppe escreveu o Manual de Fotogrametria, primeiro
livro escrito sobre tal ciência.
12
1.3.2 FOTOGRAMETRIA ANALÓGICA
Em 1901, o alemão Carl Pulfrich, com a invenção do estereocomparador,
passou a observar pares de fotografias diferentes e superpostas, que analisadas em
conjunto formam o que é conhecido como par estereoscópico. Este foi o primeiro
aparelho produzido pela Zeiss. Pulfrich ficou assim conhecido como o pai da
Estereofotogrametria.
Em 1911, o austríaco Theodore Scheimpflug desenvolve um novo método de
retificação de fotografias aéreas e utiliza tais fotografias para mapeamento de
extensas superfícies. A partir deste momento, os retificadores analógicos passam a
ser empregados com maior freqüência, sendo substituídos mais tarde por
restituidores analógicos que permitem a visão estereoscópica.
Com a chegada do avião, a Fotogrametria deu um grande salto. A partir daí,
poderiam ser obtidas fotografias aéreas muito mais amplas. Ainda assim, a
plataforma
aérea
não
foi
adotada
tão
rapidamente,
visto
que
vários
aperfeiçoamentos foram necessários. O primeiro registro de fotografia aérea foi
obtido em 1913 e apresentada na Sociedade Internacional de Fotogrametria,
fundada em 1910, por Eduard Dolezal, na Áustria. A tomada de fotografias aéreas
tornou-se extremamente importante durante a Primeira Guerra Mundial.
Em 1921, a Wild Heerbrugg foi criada e logo se tornou líder mundial na
fabricação de instrumentos para mapeamento em geral, incluindo o desenvolvimento
de câmaras aéreas. Em 1924, Otto Von Gruber realizou a primeira aerotriangulação
analógica da História usando o estereoplanígrafo de Zeiss.
Em 1945, Harry T. Kelsh desenvolveu o restituidor Kelsh, para uma maior
economia e praticidade nos processos fotogramétricos. Porém, sua maior
contribuição foi o uso do processo anaglifo. Esse processo ocorre através da
inserção de filtros de cores complementares entre os dispositivos e a fonte de luz,
obtendo-se a estereoscopia.
13
1.3.3 FOTOGRAMETRIA ANALÍTICA
Em 1957, Uki Vilho Helava apresentou o restituidor analítico, utilizando de
servomecanismos, deixando
de
lado
as
construções mecânicas
e óticas
tradicionalmente usadas pelo restituidor analógico, com o objetivo de medir as
coordenadas das marcas fiduciais nas imagens.
No ano de 1968, durante a realização do Congresso Internacional de
Fotogrametria, na Suíça, Gerhart Schut propôs o Procedimento por Modelos
Independentes. Este é um processo semi-analítico que faz uso do computador para
a montagem da faixa ou de um bloco de faixas.
Em 1988, as empresas Wild-Leitz e Kern se juntaram para formar, em 1990, a
Leica, revolucionando o mercado fotogramétrico.
1.3.4 FOTOGRAMETRIA DIGITAL
Nos anos 80, a fotogrametria sofreu uma grande inovação com o surgimento das
imagens digitais, que podem ser obtidas de uma câmara digital ou por digitalização
de uma imagem analógica. Nos anos 90, a Fotogrametria digital ganhou impulso
com o uso de computadores para o processamento interativo de imagens digitais,
gerando um volume muito maior de dados.
O restante do processamento assemelha-se ao da fotogrametria analítica, sendo
possível não só a elaboração das cartas digitais mas também de produtos que
necessitam de processamento computacional extremamente elaborado, como as
ortoimagens ou imagens ortorretificadas e mosaicos digitais. Os aparelhos
empregados são as estações fotogramétricas digitais, isto é, estações de trabalho
inteiramente
voltadas
para
a
fotogrametria.
Pode-se
também
aproveitar
computadores comuns adaptando-os com hardware e software específicos para este
14
fim, sendo chamados de computadores repotencializados. A tabela abaixo facilita a
comparação entre os tipos de fotogrametria.
TAB. 1.1 - Histórico da Fotogrametria
FOTOGRAMETRIA
ENTRADA
PROCESSAMENTO
Analógica
Foto analógica
(em filme)
Analógico (óptico
mecânico)
Analítica
Foto analógica
(em filme)
Analítico
(computacional)
Digital
Imagem digital
(obtida de câmara
digital, por
exemplo) ou
digitalizada (foto
analógica
submetida a um
scanner)
Analítico
(computacional)
SAÍDA
Analógica
(scribes/fotolitos)
no passado ou
digital (CAD, por
exemplo) no
presente
Analógica
(scribes/fotolitos)
no passado ou
digital (CAD, por
exemplo) no
presente
Digital
Fonte: COELHO FILHO & BRITO, 2007
A fotogrametria digital tem como seu objetivo principal a reconstrução
automática do espaço tridimensional (espaço objeto), a partir de imagens
bidimensionais (espaço imagem) (COELHO FILHO & BRITO, 2007). O ideal seria a
criação de uma “máquina de mapeamento automático” com a capacidade de
reconhecer automaticamente as feições do terreno tais como prédios, pontes e
outras construções e extrair a forma do relevo da região a ser mapeada. Entretanto,
este ideal proposto não é simples, já que o relevo da superfície da Terra apresentase com inúmeras descontinuidades, tornando praticamente impossível o seu
mapeamento automático. Surgem então várias condições de contorno para sua
solução, o que exige a interação do homem em vários processos. Pode-se dizer
15
que, atualmente, o estado da arte em fotogrametria digital é o mapeamento semiautomático, ou seja, os processos implementados tentam ser automáticos, porém,
ainda exigem a supervisão e eventual intervenção humana nos mesmos (COELHO
FILHO & BRITO, 2007).
1.4 O PROJETO E-FOTO
O projeto E-FOTO, que envolve o desenvolvimento e gerenciamento de uma
Estação Fotogramétrica Digital, é um conjunto de programas que tem por objetivo
auxiliar o aprendizado dos princípios de fotogrametria e está direcionado para a
familiarização de estudantes e leigos com os principais conceitos desta diciplina. Os
objetivos do projeto E-FOTO são a pesquisa, o desenvolvimento e a implementação
de um ambiente para o ensino, a auto-aprendizagem e a pesquisa de fotogrametria
digital. E o que torna esses objetivos possíveis são dois grandes pilares: a liberdade
dos programas componentes, conseqüência da utilização da licença GNU/GPL e; do
livre uso da documentação associada, sob licença GNU/FDL – tudo disponível no
endereço eletrônico [http://www.efoto.eng.uerj.br]. Nesta página, ainda, é possível
encontrar arquivos de vídeo com demonstrações do módulo de Retificação,
Estereoplotter, Orientação Interior e Orientação Exterior. Também são conteúdo
desta página vários artigos que foram publicados pelo projeto e o e-book, um
conjunto de dez documentos no formato pdf contendo material didático.
O “Software livre”, paradigma no qual o E-FOTO está inserido, refere-se à
liberdade dos usuários manipularem o software. Essa manipulação refere-se mais
especificamente a quatro tipos de liberdade:
•
Execução do programa, para qualquer fim;
•
Estudo do funcionamento do programa e a possibilidade de adaptá-lo de
acordo com as suas necessidades. Para isso acontecer, é necessário o
acesso ao código fonte .
16
•
Redistribuição de cópias visando ajudar os outros usuários.
•
Aperfeiçoamentos do programa e difusão desses aperfeiçoamentos com o
objetivo de beneficiar todos aqueles que fazem uso da plataforma. Para
isto também se faz necessário o acesso ao código fonte.
O código fonte, mencionado anteriormente, é o código de construção do
programa. Serve para adaptar o programa a qualquer estação. É recomendado o
uso deste código para análise, modificações e geração de um executável que
funcione corretamente até em distribuições mais antigas do sistema operacional,
tanto em Linux quanto no Windows.
Atualmente o E-FOTO está em sua versão 0.1, possuindo versões tanto
para Linux quanto para Windows. A versão 0.1 foi lançada em 18 de janeiro de
2008, e é primeira versão beta do E-FOTO. O código fonte foi completamente
migrado para o Qt4, pois a versão 3 do Qt perdeu o suporte da Trolltech em julho de
2007. Qt é uma biblioteca C++ para construção de programas multiplataforma GUI
(Graphical User Interface - Interface Gráfica do Usuário). A empresa responsável
pela criação é a norueguesa Trolltech. Esta versão 0.1 já
inclui um instalador
atualizado para Windows, as instruções de compilação e o código fonte. A versão
1.0 ainda não foi disponibilizada em conseqüência da não-integração entre os
módulos funcionais. A equipe de desenvolvimento está trabalhando para lançar a
primeira versão integrada ainda no ano de 2008.
As funcionalidades disponíveis no E-FOTO são: Orientação Interior, Orientação
Exterior, Fototriangulação, Modelo Numérico de Elevações, Orto-retificação,
Restituição Fotogramétrica Digital, Retificação e Normalização.
Outro aspecto importante do projeto é a sua filosofia de auto-aprendizado,
considerando três níveis de interação entre o usuário e o sistema. O nível 1 é
compostos por usuários que querem apenas utilizar os executáveis a fim de realizar
alguma tarefa fotogramétrica. Para ajudar estes usuários, foram criados documentos
17
(tutoriais) de ajuda. Tais documentos explicam sua utilização e os conceitos básicos
de fotogrametria necessários.
Já o nível 2 engloba usuários que desejam entender o funcionamento dos
algoritmos. Como ajuda para a realização desta tarefa, os usuários fazem uso de um
livro eletrônico, o e-book, que aborda os principais temas da fotogrametria. Seu
entendimento independe de qualquer conhecimento dos princípios de fotogrametria.
O conteúdo do livro possui princípios teóricos, equações, algoritmos e comparações
entre métodos e resultados.
O nível 3 engloba os interessados em melhorar o código, sendo essa melhora
por meio apenas de sugestões ou por desenvolvimento de novos módulos, textos e
algoritmos. Após este nível, os usuários estão aptos para entender todo o processo
de produção em um ambiente digital e não serão apenas meros utilizadores da
plataforma, mas sim usuários capazes de contribuir para o desenvolvimento da
estação, colocando em prática os conhecimentos adquiridos.
1.5 ESTRUTURAÇÃO DO TRABALHO
O presente trabalho será estruturado em sete capítulos, incluindo-se o capitulo
introdutório, a saber:
O Capítulo 2 trata da fundamentação teórica, onde os conceitos fundamentais
ao desenvolvimento do trabalho são apresentados.
O Capítulo 3 apresenta os equipamentos, materiais e a metodologia
desenvolvida no trabalho propriamente dito.
O Capítulo 4 apresenta os resultados obtidos.
18
O Capítulo 5 trata da análise dos resultados obtidos em ambas as plataformas.
Este capítulo aborda também as dificuldades encontradas para a realização do
experimento bem como sugere melhorias ao aplicativo E-FOTO.
O Capítulo 6 dispõe sobre as conclusões que se pôde obter durante e após a
realização do trabalho.
O Capítulo 7 apresenta sugestões para trabalhos futuros que possam, utilizando
os resultados obtidos neste trabalho, dar continuidade ao mesmo
Por fim, as referências bibliográficas que auxiliaram na realização deste
trabalho, os apêndices e anexos completam este volume.
19
2 FUNDAMENTAÇÃO TEÓRICA
2.1 SEQÜÊNCIA DE TRABALHO E REVISÃO DE CONCEITOS
De uma forma resumida, pode-se dizer que a seqüência de trabalho tem início
com a cobertura aerofotogramétrica para a aquisição de fotografias, de maneira
meticulosamente
planejada.
Para
cada
par
de
fotogramas
é
obtido
um
estereograma, segundo o IBGE(2007) define-se fotograma como “(...) a fotografia
obtida através de câmaras especiais, cujas características óticas e geométricas
permitem a retratação acurada dos dados do terreno, de forma que os pormenores
topográficos e planimétricos possam ser identificados e projetados na carta (...)”. De
posse destas fotografias é possível mandar uma equipe a campo para obtenção das
coordenadas dos pontos de controle que serão utilizados e também realizar a
reambulação, a fim de diminuir os custos da produção fotogramétrica,.
As fotografias aéreas, depois de digitalizadas (no caso do processo digital),
sofrem tratamento adequado de forma que as condições geométricas do instante da
tomada das mesmas sejam mantidas. Isso se dá através da orientação interior
(reconstrução da posição exata de cada fotografia no momento da tomada da foto) e
da orientação exterior (orientação do fotograma em relação ao terreno). Nas
fotogrametrias analógica e analítica, a orientação exterior era dividida em duas
etapas: orientação relativa e orientação absoluta. Esta é a orientação do feixe
perspectivo em relação ao seu homólogo, através de cinco parâmetros de
orientação, e aquela é a localização de ambas as fotografias em relação ao terreno.
Nessa etapa, afirma WOLF(1983), é preciso verificar o registro dos pontos de apoio
de campo, quer dizer os pontos de controles vertical e horizontal do modelo.
Após as orientações, o conjunto de fotografias segue para a aerotriangulação, a
fim de se obter coordenadas de vários pontos no terreno a partir da interpolação de
20
alguns pontos de campo. Cabe ressaltar que, nas estações fotogramétricas digitais,
após a realização da orientação interior, segue-se para a fototriangulação. Neste
caso, ajusta-se um bloco inteiro, simultaneamente. O resultado final são os
parâmetros da orientação exterior para todas as imagens do bloco, mais as
coordenadas tridimensionais dos diversos pontos fotogramétricos medidos. Feito
isto, inicia-se a restituição fotogramétrica, operação pela qual se pretende obter o
original fotogramétrico que se trata de uma carta ou mapa obtido através de
fotografias.
O técnico em restituição fotogramétrica, graças ao fenômeno da estereoscopia,
é capaz de “tocar” o terreno com a marca índice, também conhecida como marca
flutuante ou estereoscópica. A estereoscopia é um processo de ilusão ótica que
combina duas imagens de um mesmo objeto visto de centros de perspectiva
diferentes, produzindo a sensação da visão em três dimensões. O observador vê
duas imagens da marca índice que se fundem quando a referida marca toca no
ponto do modelo colimado e traçará os pormenores planimétricos e altimétricos
através das fotos e dos dados provenientes do processo de reambulação “(...) fase
da elaboração cartográfica, na qual são levantadas em campo as denominações dos
acidentes naturais e artificiais que complementarão as cartas a serem impressas.”
IBGE (2007).
Depois disto, tem-se a etapa da edição cartográfica cujo objetivo é adicionar a
carta símbolos cartográficos, legenda, escala e toponímia, entre outros. Por fim, a
restituição fotogramétrica digital passa por um processo de controle da qualidade
conhecido como revisão, onde o revisor verifica a coerência topológica do terreno,
verifica a presença de todos os elementos compatíveis com a escala e uniformiza o
conjunto.
21
2.2 O PROCESSO DE RESTITUIÇÃO ANALÓGICO
A metodologia para a execução da restituição fotogramétrica analógica encontrase referenciada no Manual Técnico de Restituição Fotogramétrica T 34-303. Podese dividir o processo de restituição analógica em três etapas principais, sendo elas:
o preparo, a execução propriamente dita e a revisão. Essas etapas devem seguir
rigorosamente as normas prescritas por este manual. Para descrever a restituição,
cada um dos passos deve ser descrito detalhadamente em sua ordem cronológica.
2.2.1 PREPARO
O processo é iniciado com uma fase de preparo. Esta fase é resumida em
operações que visam fornecer e preparar todo o material que será necessário na
execução da restituição em si. Os materiais necessários são:
•
Duas folhas bases para a cada carta a ser restituída, que posteriormente
virão a ser, respectivamente, os originais de planimetria e vegetação e de
altimetria e hidrografia;
•
Coleção de fotografias reambuladas e de pontos de apoio, bom como dos
diapositivos que recobrem a área a ser restituída;
•
Gráfico de recobrimento de folha, indicando as faixas de vôo e
respectivas fotografias;
•
Gráfico de articulação da folha;
•
Pasta C-101, contendo a documentação técnica relativa à folha.
22
A segunda fase do preparo, que é normalmente chamada de preparo das folhas
bases, consiste de três etapas: procedimento inicial, locação de pontos e trabalhos
complementares. A execução da restituição é composta pelo recebimento e
conferência do material, e pela seqüência do trabalho. Após a fase de recebimento e
conferência do material, uma série de procedimentos deve ser efetuada para a
execução. Primeiramente, o restituidor deve copiar os pormenores cartográficos das
folhas vizinhas numa faixa externa, ao longo do paralelo ou meridiano limite de sua
folha (passagem das ligações). Posteriormente é feito o teste dos modelos que
permite a visualização da qualidade do ajuste de aerotriangulação em relação ao
terreno. A seguir é escolhida uma faixa de modelos para ser trabalhada até o fim, o
que evita constantes mudanças na distância focal do aparelho, diminui o número de
centragens de diapositivos e permite melhor sistematização.
2.2.2 EXECUÇÃO
Após essa etapa, começa a restituição propriamente dita, fazendo-se a
orientação dos modelos. Essa operação constitui-se essencialmente da colocação
dos diapositivos nos aparelhos. Para isso são feitas as orientações interior, relativa e
absoluta. Ao término da fase de orientação, o erro total, causado pelos inevitáveis
erros acidentais, deve ser distribuído em cada fase da orientação – relativa e
absoluta. Depois de orientado o modelo inicia-se a restituição seguindo a ordem
hidrografia, altimetria, planimetria e vegetação.
2.2.3 REVISÃO
Uma vez concluída a restituição, procede-se a entrega do material para a
revisão.
23
2.3 O PROCESSO DE RESTITUIÇÃO DIGITAL
A restituição digital nada mais é que a restituição executada em ambiente digital
(COELHO FILHO & BRITO, 2007). A alma do modo de operação é basicamente a
mesma da restituição tradicional: o restituidor colima a marca estereoscópica no
terreno, definindo as coordenadas de um ponto nas duas imagens. Sabidos os
parâmetros da orientação interior e exterior, estas coordenadas são transformadas
em coordenadas métricas de câmara e, desta forma, encontram-se as coordenadas
de terreno graças às equações de colinearidade e através da interseção espacial
(COELHO FILHO & BRITO, 2007).
As coordenadas de terreno das feições cartográficas são armazenadas em
arquivos digitais vetoriais, cuja principal característica deste tipo de arquivo é a
representação dos objetos por suas coordenadas inicial e final. Esses objetos
podem ser pontos, linhas e áreas, e para cada um destes, pode-se atribuir
características como cor, espessura, estilo e nível, o que permite uma melhor
organização do arquivo obtido. Isso porque há a possibilidade de se colocar em
cada nível feições que se relacionam entre si, tais como hidrografia, vegetação,
altimetria ou transportes. Esses níveis, muito conhecidos também por camadas, são
exibidos de acordo com a necessidade de trabalho do operador, que pode visualizar
apenas as camadas de seu interesse.
O arquivo resultante da restituição fotogramétrica é então encaminhado para os
processos de edição e revisão com o objetivo de padronizá-lo de acordo com as
normas para a base cartográfica e de eliminar erros cometidos durante o processo
de restituição. O produto final é a carta no formato digital que tanto pode ser
impressa (em papel) ou integrada a um sistema de informações geográficas (SIG).
24
2.4 PROCEDIMENTOS OPERACIONAIS ATUALMENTE EMPREGADOS PELA
DSG
Com base nas Normas Provisórias para Fotogrametria Digital da 1ª DL, a
restituição digital é executada pela solução Intergraph (ImageStation SSK) por duas
equipes de trabalho: a equipe de restituição altimétrica e a equipe de restituição
planimétrica. A divisão dos trabalhos em equipes agiliza a execução de tarefas,
melhora a qualidade e homogeneidade dos produtos, facilita o controle e diminui a
incidência de erros grosseiros e sistemáticos.
2.4.1 RESTITUIÇÃO DA ALTIMETRIA
A equipe de restituição altimétrica é responsável pela aquisição das categorias
Hidrografia e Altimetria previstas nas TBCD. Esta aquisição pode se dar de três
formas:
a. Restituição manual da altimetria: indicado para terrenos planos. Como o
processo digital permite ao restituidor refinar a curva de nível adquirida, a
correção primária tornou-se mais rápida, sendo assim adotada como modo
padrão de operação.
b. Restituição semi-automática da altimetria: indicada para terrenos acidentados.
Define-se uma malha regular e espaçamento entre os pontos atendendo os
seguintes valores:
•
Escala 1/25.000 : espaçamento de 50m.
•
Escala 1/50.000 : espaçamento de 75m.
Os pontos da grade são medidos automaticamente, por intermédio de algoritmos
para a correlação de imagens.
25
c. Restituição automática da altimetria: Os softwares que utilizam a correlação
de imagens para a obtenção das coordenadas altimétricas da malha, não são
utilizados, pois os resultados práticos obtidos demonstraram-se insatisfatórios.
A escolha da forma de aquisição de dados é baseada no relevo da área de
interesse e no tempo gasto na correção primária.
A equipe de restituição altimétrica tem ainda como incumbência a geração de
um Modelo Digital do Terreno (MDT), que será confeccionado em duas vias. A
primeira via (em 2D) fornecerá a base de dados para a execução da restituição
altimétrica e hidrográfica, após ter passado pela verificação da correção primária. A
outra via (3D) fornece o MDT para a criação da Rede de Triângulos Irregulares
(TIN).
Deve-se restituir, primeiramente, a hidrografia, pois esta serve de base para a
restituição planimétrica. Desta forma, assim que for finalizada, uma cópia será
fornecida à equipe de restituição planimétrica.
2.4.2 RESTITUIÇÃO DA PLANIMETRIA
A restituição planimétrica compreende a aquisição das seguintes categorias
previstas nas TBCD: Limites, Vegetação, Edificações, Infra-estrutura, Sistema de
Transportes, Pontos de Referência e Localidades.
A equipe de restituição planimétrica gerará o arquivo relativo à planimetria. Após
a sua execução, o arquivo seguirá para a Finalização. Esse arquivo não é utilizado
na confecção do arquivo da TIN, pois não permite um controle efetivo da altimetria
das feições.
Cabe ressaltar que, muitas vezes, a equipe de restituição da planimetria e a
equipe de restituição da altimetria em muitas situações práticas são a mesma equipe
26
2.5 O PROCESSO ANALÓGICO X O PROCESSO DIGITAL
Após o estudo do processo analógico e digital, torna-se perceptível as
diferenças de cada método. Todas estas mudanças são devidas à evolução da
computação, fato que foi mais intensamente observado a partir da década de 80. A
TAB. 2.1 mostra as principais diferenças entre os dois processos.
TAB. 2.1 – Comparação entre os processos analógico e digital
ANALÓGICO
DIGITAL
Predominância da arte
Predominância da ciência
Gerenciamento de arquivo mais simples
Gerenciamento de arquivo mais complexo
Dificuldade de verificar o trabalho do Facilidade de verificar o trabalho do
restituidor
restituidor
Menor agilidade na produção
Maior agilidade na produção
Visão menos detalhada
Visão mais detalhada
Dificuldade de atualização
Facilidade de atualização
É interessante observar que o mapeamento fotogramétrico digital tornou mais
dinâmico todo o processo. Cópias de arquivos podem ser transferidas entre as
plataformas sem maiores dificuldades. A facilidade de inserir e remover dados
facilitou sobremaneira a atualização de cartas. Enfim, estas e outras características
apresentadas mostram a vantagem do processo digital sobre o analógico, refletindo
assim emprego daquele em substituição ao analógico na produção cartográfica.
27
3 METODOLOGIA
3.1 DESCRIÇÃO GERAL
Para cumprir o objetivo do trabalho na proposta executar-se-á a restituição
fotogramétrica digital de um modelo estereoscópico.
A restituição será dividida em três categorias, a saber: vegetação, vias de
circulação e edificações.
Primeiramente, o experimento será realizado no ambiente E-FOTO (Versão
0.0.8.1, disponível no site www.efoto.uerj.eng.br) e, posteriormente, pela solução
Intergraph (ImageStation SSK). Depois de realizados os dois experimentos, os
resultados obtidos em ambos os programas aplicativos serão listados no capítulo 4.
Esses resultados, juntamente com os seus processos, serão
analisados e
comparados entre si (capítulo 5). Parâmetros tais como o tempo de execução, as
facilidades e as dificuldades encontradas em cada processo serão o alvo dessa
comparação.
3.2 MATERIAL UTILIZADO
3.2.1 IMAGENS AÉREAS
As imagens analógicas foram provenientes de um vôo aerofotogramétrico
realizado em 09/12/1995, cujas características estão listadas a seguir:
28
•
Escala: 1:8000
•
Número de fotografias: 17
As imagens utilizadas são as fotografias 016 e 017. Estas fotos foram
digitalizadas com uma resolução de 300 DPI, tendo sido armazenadas em arquivos
de imagem no formato bitmap (extensão.bmp).
A área de superposição das imagens trabalhadas abrange a região da UERJ e
do Maracanã. Trata-se de uma área tipicamente urbana, incluindo-se áreas de
ocupação irregular de favelas, cujos contornos foram restituídos como contornos de
vegetação.de feições urbanas. A partir da prévia orientação interior e exterior das
imagens obteve-se o arquivo “01617.txt” dos parâmetros de tais orientações para
cada imagem integrante do par estereoscópico.
3.2.2 CERTIFICADO DE CALIBRAÇÃO DA CÂMARA
Os dados constantes do certificado de calibração da câmara são:
•
Fabricante: Zeiss
•
Modelo da câmara: RMK A
•
Número de série da câmara: 137474
•
Tipo de lentes: PLEOGON A2
•
Número de série das lentes: 137504
•
Distância focal nominal: 153mm
•
Máxima abertura: F/14
•
Instrumento utilizado na calibração: PLANICOMP C120
•
Distância focal calibrada: 153.528mm (desvio-padrão de 0.043mm)
•
Coordenadas do ponto principal calibrado:
x0: -0.063mm (desvio-padrão de 0.016mm)
y0: -0.037mm (desvio-padrão de 0.017mm)
29
Os demais dados podem ser encontrados no certificado de calibração da
câmara, constante do “Anexo A” ao presente trabalho.
3.2.3 PONTOS DE CONTROLE
Na FIG. 3.1 estão representados os pontos de controle utilizados.
FIG. 3.1 – Pontos de controle
As fichas de ocupação e descrição dos pontos de controle presentes na FIG. 3.1
encontram-se no “Anexo B”.
30
3.3 EXPERIMENTOS REALIZADOS
3.3.1 AMBIENTE E-FOTO
De início há ainda se ressaltar que a versão 0.0.8.1 utilizada, apesar de estável,
não apresenta a integração das diversas funcionalidades e módulos de
processamento fotogramétrico tais que permitam o trabalho no contexto de um
projeto fotogramétrico integrado. Assim, para o trabalho de restituição fotogramétrica
é necessária a execução das seguintes etapas preliminares:
•
Orientação interior;
•
Orientação exterior.
Para a realização do experimento utilizando o ambiente E-FOTO, visando a
preparação do modelo para o início da restituição, serão seguidos os seguintes
procedimentos:
1º) Carregar o módulo denominado “stereoplotter”,
2º) Abrir os arquivos 016 e 017 que corresponderão às fotos no lado esquerdo e
direito, respectivamente através dos comandos “Open Left” e “Open Right” ;
3º) Carregar o arquivo “01617.txt”, que contém os parâmetros das orientações
interior e exterior, de ambas as imagens do modelo estereoscópico, pelo
comando “Image Data”;
4º) Centralizar as imagens (“Center Imgs”);
5º) Colocar as imagens no modo anaglifo (“Anaglyph”);
31
6º) Realizar os ajustes adicionais porventura necessários, visando-se à obtenção
da visão estereoscópica.
Após os procedimentos supracitados, começa a restituição propriamente dita, por
meio do comando de adicionar feições (“Add new feature”), que cria uma nova
feição. Esta feição pode ser um ponto, linha ou polígono, de acordo com a geometria
que se deseja restituir. Nesse mesmo comando também ocorre a nomeação da
feição.
Para desenhar cada feição, com o botão direito do mouse clica-se no lugar onde
se deseja iniciar a feição e com o botão esquerdo realiza-se o comando de adicionar
ponto (“Add Pt.”). Repete-se esse procedimento assim sucessivamente até o termino
da restituição fotogramétrica da feição. No caso das feições cuja geometria é um
polígono, em particular, após capturar o último ponto da feição, executa-se o
comando de fechar a feição (“Close Ft.”).
Por fim, é necessário encerrar o procedimento de criação da feição através do
comando término da feição (“End Ft.”). Caso o programa indique que não há feição
selecionada, deve-se
selecioná-la pela ferramenta “Select”. Após restituir cada
feição, recomenda-se salvá-la com o comando de salvar seguindo a seqüência:
“Editor”, “Save”. É também aconselhável salvar uma cópia de segurança (“back-up”),
ao final de cada jornada de trabalho.
3.3.2 SOLUÇÃO INTERGRAPH (IMAGESTATION SSK)
O kit SSK (Stereo Softcopy Kit) é formado pelo hardware e software necessário
à emulação de uma estação ImageStation: óculos de visualização estereoscópica,
mouse de precisão, placa de vídeo e programas fotogramétricos.
Para a execução dessa etapa foi necessária a realização da orientação interior e
da fototriangulação do modelo. Para isso procedeu-se, primeiramente, da forma
32
tradicional realizada pela 5ª DL, através das coordenadas das marcas fiduciais para
a orientação interior e das coordenadas dos pontos de controle para a
fototriangulação. Porém não foi obtida a precisão necessária para solução Intergraph
para concluir essa etapa. Em seguida tentou-se fornecer para o programa os
parâmetros das orientações interior e exterior que foram utilizados no E-FOTO mas
os mesmos também não conseguiram atingir a precisão mínima dos erros para o
fechamento dessa etapa. Dessa maneira, não foi possível prosseguir com esse
experimento.
33
4
RESULTADOS OBTIDOS
4.1 AMBIENTE E – FOTO
Os resultados obtidos da restituição fotogramétrica pelo ambiente E-FOTO são
arquivos texto com as coordenadas em pixel e de terreno das feições restituídas. As
coordenadas de terreno são dadas em relação ao sistema de referência geodésica
SAD-69. Um exemplo de um ponto restituído no E-FOTO é mostrado a seguir.
1 - Número da feição restituída do arquivo
1 - Número do ponto na feição
1410 - Coordenada da linha da imagem da direita (em pixel)
335 - Coordenada da coluna da imagem da direita (em pixel)
389 - Coordenada da linha da imagem da esquerda (em pixel)
302 - Coordenada da coluna da imagem da esquerda (em pixel)
680616.125000 - Coordenada X de terreno do ponto (em metros)
7465873.000000 - Coordenada Y de terreno do ponto (em metros)
37.225727 - Coordenada Z de terreno do ponto (em metros)
Se a geometria da feição fosse uma linha teríamos a seguinte lista de pontos,
por exemplo:
1
1
1410
335
389
302
680616.125000
7465873.000000
37.225727
1
2
1504
442
483
409
680682.062500
34
7465792.500000
41.114693
...
1
8
1758
618
751
602
680863.125000
7465660.000000
32.738041
Se a geometria da feição fosse um polígono teríamos a seguinte lista de pontos,
por exemplo:
2
1
2271
927
1287
900
681.235.250.000
7.465.436.500.000
14.589.153
2
2
2266
958
1282
931
681.230.875.000
7.465.414.000.000
14.294.598
...
2
C1
2271
927
1287
900
681.235.250.000
7.465.436.500.000
35
C1 significa que o polígono foi fechado e são repetidas as coordenadas do primeiro
ponto da geometria. Um extrato de um arquivo texto de restituição do E-FOTO é
mostrado a seguir:
1
1
1410
335
389
302
680616.125000
7465873.000000
37.225727
1
2
1504
442
483
409
680682.062500
7465792.500000
41.114693
...
1
8
1758
618
751
602
680863.125000
7465660.000000
32.738041
2
1
2271
927
1287
900
681.235.250.000
7.465.436.500.000
14.589.153
2
2
2266
958
1282
931
681.230.875.000
36
7.465.414.000.000
14.294.598
...
2
C1
2271
927
1287
900
681.235.250.000
7.465.436.500.000
4
1
1277
460
272
437
680517.375000
7465794.000000
12.683384
4
2
1367
508
362
485
680582.562500
7465756.000000
16.334028
...
4
16
2798
1060
1820
1029
681618.187500
7465333.500000
17.595623
...
Neste exemplo o arquivo pula da feição dois para a feição quatro. Isto acontece
pois o operador restituiu a feição dois e adicionou a próxima feição a ser restituída
(feição três) mas devido a algum erro cometido pelo mesmo durante a restituição
desta feição a mesma teve de ser apagada pelo restituidor. Ao ser adicionada uma
37
nova feição o programa adiciona a feição quatro e não a feição três novamente,
mesmo a feição três não tendo sido restituída.
4.2 INTERGRAPH (IMAGESTATION SSK)
Não foram obtidos resultados para a solução Intergraph, pelos motivos
anteriormente expostos na seção 3.3.2.
38
5 ANÁLISE DOS RESULTADOS
5.1 DIFICULDADES ENCONTRADAS
Durante o experimento do módulo de restituição do E-FOTO,
algumas
dificuldades foram detectadas.
•
Inicialmente percebeu-se que a ferramenta de zoom não favorece o trabalho
do restituidor, tanto na precisão das medidas quanto na visão geral do
modelo estereoscópico, como pode ser visto na FIG. 5.1.
FIG. 5.1 – Ferramenta de zoom do E-FOTO
39
•
Há problemas na função “Add” dentro do Editor. Esta função, quando
solicitada, não executa qualquer tipo de ação.
FIG. 5.2 – Função “Add” dentro do Editor
•
Há dificuldade de suavização da linhas para feições curvas devendo-se
utilizar muitos pontos a restituição das mesmas. Isto pode ser visualizado na
FIG. 5.3 na restituição de uma obra de arte
40
FIG. 5.3 – Exemplo da dificuldade de suavização de linhas na restituição fotogramétrica digital no
E-FOTO
5.2 COMPARAÇÃO DOS RESULTADOS
A comparação entre os resultados obtidos pelo E-FOTO com os resultados
obtidos pela solução Intergraph (ImageStation SSK) não foi possível, já que não se
realizou a restituição do modelo neste último ambiente. Neste sentido, a solução
adotada foi a de comparar os resultados do E-FOTO com a base vetorial 2D da
cidade do Rio de Janeiro, em escala 1:2000, do Instituto Municipal De Urbanismo
Pereira Passos (IPP). Esta comparação se dará de duas maneiras, a saber: através
do Padrão de Exatidão Cartográfica (PEC) e; por uma análise visual.
41
5.2.1 PADRÃO DE EXATIDÃO CARTOGRÁFICA
De acordo com o decreto nº 89817, de 20/06/1984 - Instruções Reguladoras das
Normas Técnicas da Cartografia - a classificação de uma carta quanto à exatidão é
feita da seguinte maneira:
Art 8º - As cartas, quanto à sua exatidão, devem obedecer ao Padrão de Exatidão
Cartográfica – PEC, segundo o critério abaixo indicado:
•
90% dos pontos bem definidos numa carta, quando testados no terreno, não
deverão apresentar erro superior ao PEC Planimétrico estabelecido.
•
90% dos pontos isolados de altitude, obtidos por interpolação de curvas-denível,
quando testados no terreno, não deverão apresentar erro superior ao PEC
Altimétrico estabelecido.
O PEC é um indicador estatístico de dispersão, relativo a 90% de probabilidade,
que define a exatidão de trabalhos cartográficos. A probabilidade de 90%
corresponde a 1,6449 vezes o Erro-Padrão.
A classificação das cartas é dada da seguinte maneira:
TAB. 5.1 – Classificação das cartas (PEC)
PEC
ERRO PEC
ERRO CLASSE
PLANIMÉTRICO
PADRÃO
ALTIMÉTRICO
PADRÃO
metade da
0,3 mm na
eqüidistância
um terço
0,5 mm, na
A
escala da
entre as
desta
escala da carta
carta
curvas de
eqüidistância
nível
três quintos da
0,5 mm, na
eqüidistância
dois quintos
0,8 mm, na
B
escala da
entre as
desta
escala da carta
carta
curvas de
eqüidistância
nível
42
CLASSE
PEC
PLANIMÉTRICO
ERRO PADRÃO
C
1,0 mm, na
escala da carta
0,6 mm, na
escala da
carta
PEC
ERRO ALTIMÉTRICO
PADRÃO
três quartos da
eqüidistância
metade
entre as
desta
curvas de
eqüidistância
nível
Fonte: BRASIL. Decreto nº 89817, de 20 de junho de 1984
Como a base do IPP só apresenta as coordenadas de planimetria só será
analisado o PEC planimétrico. Para isso foram escolhidos trinta pontos bem
distribuídos na área do modelo estereoscópico que também pertencessem a base
do IPP. Os pontos são mostrados na figura abaixo e suas coordenadas na TAB. 5.2.
FIG. 5.4 – Pontos de Teste para o PEC planimétrico
43
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
TAB. 5.2 – Coordenadas dos pontos de teste para o PEC
EFOTO
IPP
E
N
E
N
680849,25
7465652,5
680841,25
7465652,29
681383,25
7465547
681383,59
7465560,86
681096,06
7465556,5
681097,76
7465557
681247,93
7465525,5
681248,36
7465523,49
680686,75
7465517,5
680688,23
7465525,35
680745,87
7465500,5
680744,14
7465503
681164,31
7465418,5
681165,64
7465416,74
681517,18
7465383,5
681517,93
7465378,03
680745,31
7465316
680745,54
7465315,69
680575,5
7465204,5
680584,84
7465207,86
680449,25
7465384
680456,3
7465383,35
680798
7465282,5
680815,02
7465273,29
681019,56
7465067
681020,3
7465065,63
681128,75
7465147
681126,37
7465144,17
680836,5
7464970
680836,05
7464969,62
680666,81
7464929,5
680666,58
7464928,8
681174,12
7464983
681173,58
7464984,27
681030,81
7464761,5
681032,06
7464763,72
681050,31
7464615,5
681063,99
7464621,5
681211,37
7464915
681202,77
7464919,43
681244,62
7465097
681245,13
7465097,7
681451,75
7464958,5
681453,9
7464960
681570,06
7464884,5
681572,44
7464883,53
681477,31
7464751,5
681475,91
7464748,06
681359,5
7464791
681355,91
7464787,41
681252
7464897
681252,67
7464889,7
681117,37
7464436
681117,76
7464439,2
681069,18
7464382
681070,32
7464380,65
681212,43
7464560,5
681208,45
7464561,74
680954,25
7464470
680957,08
7464475,21
44
Os erros planimétricos dos pontos estão listados na tabela abaixo.
TAB. 5.3 – Erros planimétricos dos pontos de teste para o PEC
Erro Planimétrico (m) Pontos Erro Planimétrico (m)
Pontos
1
8,002755775
16
0,736817481
2
13,86416965
17
1,380036231
3
1,772004515
18
2,547724475
4
2,055480479
19
14,93795167
5
7,988297691
20
9,673928881
6
3,040213808
21
0,866083137
7
2,206014506
22
2,621545346
8
5,52117741
23
2,57007782
9
0,386005181
24
3,713973614
10
9,925986097
25
5,077026689
11
7,079901129
26
7,330682096
12
19,35211875
27
3,223678024
13
1,557080602
28
1,766946518
14
3,697742555
29
4,168692841
15
0,588982173
30
5,928996542
Comparando-se os erros planimétricos constantes na TAB. 5.3 com a TAB. 5.4,
conclui-se que 27 pontos, num total de 30, ou seja 90%, contém erro inferior ao
limite do PEC planimétrico para classe “C” da escala 1:10.000.
45
TAB. 5.4 – Resultado do PEC
CADASTRAIS
1:1000
1:2000
1:5000
1:10000
CLASSE A
CLASSE B
CLASSE C
PEC
PLANIMÉTRICO
ERRO-PADRÃO
PEC
PLANIMÉTRICO
ERRO-PADRÃO
PEC
PLANIMÉTRICO
ERRO-PADRÃO
1:15000
0,5m
1m
2,5m
5m
7,5m
0,3m
0,6m
1,5m
3m
4,5m
0,8m
1,6m
4m
8m
12m
0,5m
1m
2,5m
5m
7,5m
1m
2m
5m
10m
15m
0,6m
1,2m
3m
6m
9m
TOPOGRÁFICAS
1:25000 1:50000 1:100000 1:250000
CLASSE A
CLASSE B
CLASSE C
PEC
PLANIMÉTRICO
ERRO-PADRÃO
PEC
PLANIMÉTRICO
ERRO-PADRÃO
PEC
PLANIMÉTRICO
ERRO-PADRÃO
12,5m
25m
50m
125m
7,5m
15m
30m
75m
20m
40m
80m
200m
12,5m
25m
50m
125m
25m
50m
100m
250m
15m
30m
60m
150m
A média dos erros foi de 5,119403056m e o desvio-padrão foi de
4,641555813m. Assim, o intervalo de confiança de 90% para a média dos erros
planimétricos da restituição fotogramétrica digital executada é de: 3,4m ≤ erro
planimétrico médio
≤ 6,8m, o que confirma o texto do PEC planimétrico acima
descrito.
5.2.2 ANÁLISE VISUAL
Como o E-FOTO não possui qualquer ferramenta que exporte os resultados da
restituição fotogramétrica para algum formato de CAD, a solução foi converter o
arquivo de pontos gerado pelo E-FOTO para um arquivo de texto com extensão .lsp
em Autolisp, que é baseado na linguagem Lisp. O AutoCAD possui um interpretador
46
de Lisp embutindo, o que permite a interpretação automática de expressões/funções
AutoLisp Cabe ressaltar que as rotinas AutoLisp devem ser carregadas para o
ambiente AutoCAD para que as mesmas possam ser executadas. Isto pode ser feito
na linha de comando, pelo menu Tools/Applications ou de forma automática
incluindo-as no arquivo acad.lsp. Assim será possível visualizar a restituição
fotogramétrica digital realizada no E-FOTO. O arquivo em Autolisp segue o padrão:
(defun nome ()
(command
"view"
"seiso"
"POINT" (list X1 Y1 Z1) *Cancel*
"LINE" (list X2 Y2 Z2) (list X3 Y3 Z3) (list X4 Y4 Z4) (list X5 Y5 Z5) *Cancel*
"ZOOM"
"E"
)
)
A palavra defun é utilizada para definir uma função na linguagem Lisp. Para
definir essa função, deve-se fornecer três parâmetros. O primeiro deles é o nome da
função, o segundo é a lista de variáveis que serão utilizadas na função e o terceiro é
o corpo da função, isto é, as instruções
em linguagem Lisp que vão dizer ao
interpretador Lisp o que fazer quando a função for chamada. Esquematicamente
temos: (defun <nome da função> <lista de variáveis> <corpo da função> ). O termo
command permite dar comandos de AutoCAD dentro do Autolisp, os comandos de
AutoCAD devem vir entre aspas. O termo list é uma função Lisp que cria uma lista;
no caso do programa em questão cria-se uma lista de coordenadas, por exemplo
(list X2 Y2 Z2) (list X3 Y3 Z3) (list X4 Y4 Z4) (list X5 Y5 Z5) cria a lista ((X2 Y2 Z2)
(X3 Y3 Z3) (X4 Y4 Z4)( X5 Y5 Z5)).
Os comandos do AutoCAD utilizados foram:
•
view: permite modificar a posição do observador, ou seja, alterar o ângulo de
visão ou o ponto de onde o modelo está sendo visualizado. O comando view
seguido do comando seiso modifica a visualização para uma vista isométrica
sudeste.
47
•
POINT: desenha um ponto.
•
LINE: desenha linhas simples. Este comando desenha uma linha de um ponto
a outro, e aguarda mais um outro ponto para continuar o desenho da linha.
Finaliza-se o comando com Enter ou Esc.
•
Cancel: ESC cancela o comando ativo
•
ZOOM: zoom em “tempo real”, aumenta o desenho facilitando a visualização
de detalhes.
•
E: Apaga uma entidade ou um grupo de entidades selecionadas.
Ao carregar o arquivo do exemplo acima no AutoCAD o software desenha um
ponto e uma linha. Para desenhar um polígono bastaria escrever a expressão do
comando LINE repetindo o primeiro ponto da geometria no final da lista de
coordenadas da seguinte maneira: "LINE" (list X2 Y2 Z2) (list X3 Y3 Z3) (list X4 Y4
Z4) (list X5 Y5 Z5) (list X2 Y2 Z2)*Cancel*. Isto facilitou sobremaneira os trabalhos,
pois o E-FOTO repete o primeiro ponto da geometria polígono ao final da lista de
suas coordenadas (C1). O programa utilizado para a conversão do arquivo texto foi
implementado em Java e seu código fonte encontra-se no “Apêndice A” do presente
relatório.
Após carregar o arquivo Lisp no AutoCAD salvou-se os resultados na extensão
.dxf. Por fim, carregou-se a base do IPP e os resultados da restituição fotogramétrica
digital no ambiente E-FOTO no software ArcGIS, conforme pode ser visto na FIG.
5.2.
48
FIG. 5.5 – Resultado da análise visual da restituição fotogramétrica digital no E-FOTO sobreposta à
base vetorial do IPP
5.3 SUGESTÕES PARA MELHORIA DO APLICATIVO
Visando-se ao aprimoramento do E-FOTO em função da experiência prática de
trabalho com o modulo de restituição fotogramétrica digital (“stereoplotter”),
apresentam-se, a seguir as seguintes sugestões para a sua melhoria:
•
A medição (inserção) dos pontos que materializam as feições cartográficas
poderia ser feita de forma mais intuitiva, utilizando somente o mouse, sem a
necessidade de recorrer sempre ao menu main.
•
Ao carregar uma feição salva, isto é, previamente restituída, o programa
poderia abrir o desenho automaticamente, sem a obrigatoriedade de ter que
recarregar as fotos e as orientações interior e exterior de cada fotograma.
49
•
O módulo de restituição deveria permitir ao usuário sobrescrever um arquivo
por cima de uma versão anterior já com todas as feições atualizadas,
evitando assim dezenas de arquivos que, inevitavelmente, são gerados
durante a restituição.
•
No processo de se restituir uma nova feição, ao selecionar o “Add new
feature”, o ícone “Hand” poderia ser ativado automaticamente e desativado na
opção “End Feature”, ao termino da restituição da feição.
•
Julga-se interessante aprimorar a ferramenta de zoom já existente no
programa, aumentando ou diminuindo a área a ser restituída.
•
Outra ferramenta que poderia ser útil à plataforma é a implementação de um
algoritmo
que possibilitasse ao operador obter medidas de distâncias e
áreas.
•
Uma ferramenta imprescindível não só para o módulo de restituição mas
também para a plataforma como um todo é o desenvolvimento de um módulo
de exibição que facilitaria, entre outras coisas, a visualização da restituição
propriamente dita.
•
O trabalho também seria facilitado se fosse possível que cada feição pudesse
ser diferenciada das demais através de cores e diferentes espessuras de
linhas, de acordo com a sua respectiva classe (vide a TBCD).
50
6 CONCLUSÕES
Baseado nos resultados obtidos pelo PEC e por uma análise visual com a base
vetorial do IPP, conclui-se que o módulo de restituição fotogramétrica digital da
plataforma E-FOTO de software livre, no atual estágio em que se encontra, é capaz
de gerar dados de qualidade satisfatória para a produção cartográfica de
documentos nas escalas topográficas e menores. Isso levando em consideração que
os trabalhos foram realizados em imagens digitalizadas a 300 DPI possuindo um
tamanho de pixel de aproximadamente 80µm. A escola alemã recomenda a
utilização de um pixel de 20µm, isto é, dezesseis vezes melhor do que o trabalhado
no E-FOTO. Além disso deve-se considerar que os trabalhos foram realizados por
operadores sem experiência de restituição e, mesmo assim, os resultados obtidos
são satisfatórios. No entanto acredita-se que o E-FOTO não apresenta condições
necessárias para ser utilizado na produção no âmbito da DSG, já que ainda precisa
de melhoramentos na sua interface com o usuário e funcionalidades para otimizar
sua utilização a fim de que possa vir a ser efetivamente empregado com essa
finalidade.
Espera-se que estas sugestões vir a contribuir com o desenvolvimento do projeto
E-FOTO.
51
7 SUGESTÕES PARA TRABALHOS FUTUROS
Além das propostas apresentadas na seção 5.3, crê-se que uma possível
proposta para trabalhos futuros seria a de testar o padrão de exatidão cartográfica
relativo a altimetria, já que isto não foi possível neste trabalho. Seria também de
grande valia testar o módulo de restituição fotogramétrica digital do E-FOTO
utilizando fotos de digitalizadas numa resolução maior que a de 300 DPI.
52
REFERÊNCIAS BIBLIOGRÁFICAS
BRASIL. Decreto nº 89817, de 20 de junho de 1984. Instruções Reguladoras das
Normas Técnicas da Cartografia Nacional. Diário Oficial da União, Brasília, 27
jun.1984. Disponível em: http://www.presidencia.gov.br/ccivil=03/decreto/19801989/D89817.htm [capturado em 5 maio 2007]
COELHO FILHO, L.C.T. e Jorge Luís N.S. BRITO, Fotogrametria Digital. Editora
da Universidade do Rio de Janeiro. Rio de Janeiro, Brasil: 2007.
Command - CUI Cross Reference. Ralph Grabowski. Disponível em:
http://www.upfrontezine.com/eBooks/cuixref.pdf [capturado em 20 abr. 2008]
DCC-FEC-UNICAMP. Programando em Autolisp – Introdução. R.C. Ruschel,
1997 Disponível em: http://www.fec.unicamp.br/~regina/alisp1.html [capturado
em 20 abr. 2008]
EXÉRCITO BRASILEIRO. 1ª Divisão de Levantamento. Normas Provisórias para
Fotogrametria Digital. Porto Alegre, Brasil: 2000.
EXÉRCITO BRASILEIRO. Restituição Fotogramétrica – T34-303 – Manual
Técnico. 1ª Edição. Brasília, Brasil: 1976.
The GNU Operating System. Disponível em: http://www.gnu.org/ [capturado em 10
jun. 2008]
INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Departamento de
Cartografia. Apostila de Noções Básicas de Cartografia,1998. Disponível em:
www.geografia.fflch.usp.br/graduacao/apoio/Apoio/Apoio_Raffo/pdf/T3.pdf
[capturado em 2 set. 2007]
INSTITUTO MUNICIPAL DE URBANISMO PEREIRA PASSOS. Base Vetorial
Planimétrica. Conjunto de arquivos. 1 CD-ROM.
Licenses – GNU GPL, GNU LGPL, GNU FDL, General Public License, Lesser
General Public License, Free Documentation License, List of Free Software
licenses. Disponível em: http://www.gnu.org/licenses/licenses.html [capturado
em 10 jun. 2008]
Projeto E-FOTO. Disponível em: http://www.efoto.eng.uerj.br [capturado em 15 jan.
2008]
Qt
Cross-Platform Application Framework – Trolltech.
http://trolltech.com/products/qt [capturado em 13 jun. 2008]
Disponível
em:
ROCHA, Carlos Henrique Oliveira da, PIORNO, José Lauro, FREIRE, Ricardo
Ramos. UMA DISCUSSÃO HISTÓRICA SOBRE A FOTOGRAMETRIA.
Universidade do Estado do Rio de Janeiro, Departamento de Engenharia
Cartográfica
53
Lisp
Primer.
Colin
Allen
&
Mneesh
Dhagat.
Disponível
http://mypage.iu.edu/~colallen/lp / [capturado em 20 abr. 2008]
em:
U.S. ARMY CORPS of ENGINEERS – Department of the army. Engineering and
Design PHOTOGRAMMETRIC MAPPING – EM 1110-1-1000 –Washington,
USA: 2002
WOLF, P. R. Elements of photogrammetry. N. York, Mac Graw Hill. 1983. 626pp
54
ANEXO A– CERTIFICADO DE CALIBRAÇÃO DA CÂMARA
Fonte: http://www.efoto.eng.uerj.br/pt-br:download
55
56
ANEXO B – FICHAS DE OCUPAÇÃO E DESCRIÇÃO DOS PONTOS
Fonte: http://www.efoto.eng.uerj.br/pt-br:download
57
58
59
60
61
62
63
APÊNDICE A – CÓDIGO FONTE DO PROGRAMA DE CONVERSÃO
package pacote;
import com.jgoodies.forms.layout.CellConstraints;
import com.jgoodies.forms.layout.FormLayout;
import java.awt.BorderLayout;
import java.awt.Container;
import java.awt.Dimension;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.io.BufferedReader;
import java.io.FileNotFoundException;
import java.io.FileOutputStream;
import java.io.FileReader;
import java.io.IOException;
import java.io.PrintStream;
import javax.swing.Box;
import javax.swing.ImageIcon;
import javax.swing.JFileChooser;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JTextField;
import javax.swing.JToggleButton;
public class Layout extends JPanel
{
JToggleButton m_jtogglebutton1 = new JToggleButton();
JTextField m_jtextfield1 = new JTextField();
JTextField m_jtextfield2 = new JTextField();
JToggleButton m_jtogglebutton2 = new JToggleButton();
/**
* Default constructor
*/
public Layout()
{
initializePanel();
}
/**
* Main method for panel
*/
public static void main(String[] args)
{
JFrame frame = new JFrame();
frame.setSize(300, 200);
frame.setLocation(100, 100);
frame.getContentPane().add(new Layout());
frame.setVisible(true);
64
frame.addWindowListener( new WindowAdapter()
{
public void windowClosing( WindowEvent evt )
{
System.exit(0);
}
});
}
/**
* Adds fill components to empty cells in the first row and first column of the grid.
* This ensures that the grid spacing will be the same as shown in the designer.
* @param cols an array of column indices in the first row where fill components
should be added.
* @param rows an array of row indices in the first column where fill components
should be added.
*/
void addFillComponents( Container panel, int[] cols, int[] rows )
{
Dimension filler = new Dimension(10,10);
boolean filled_cell_11 = false;
CellConstraints cc = new CellConstraints();
if ( cols.length > 0 && rows.length > 0 )
{
if ( cols[0] == 1 && rows[0] == 1 )
{
/** add a rigid area */
panel.add( Box.createRigidArea( filler ), cc.xy(1,1) );
filled_cell_11 = true;
}
}
for( int index = 0; index < cols.length; index++ )
{
if ( cols[index] == 1 && filled_cell_11 )
{
continue;
}
panel.add( Box.createRigidArea( filler ), cc.xy(cols[index],1) );
}
for( int index = 0; index < rows.length; index++ )
{
if ( rows[index] == 1 && filled_cell_11 )
{
continue;
}
panel.add( Box.createRigidArea( filler ), cc.xy(1,rows[index]) );
}
65
}
/**
* Helper method to load an image file from the CLASSPATH
* @param imageName the package and name of the file to load relative to the
CLASSPATH
* @return an ImageIcon instance with the specified image file
* @throws IllegalArgumentException if the image resource cannot be loaded.
*/
public ImageIcon loadImage( String imageName )
{
try
{
ClassLoader classloader = getClass().getClassLoader();
java.net.URL url = classloader.getResource( imageName );
if ( url != null )
{
ImageIcon icon = new ImageIcon( url );
return icon;
}
}
catch( Exception e )
{
e.printStackTrace();
}
throw new IllegalArgumentException( "Unable to load image: " + imageName );
}
public JPanel createPanel()
{
JPanel jpanel1 = new JPanel();
FormLayout
formlayout1
=
new
FormLayout("FILL:DEFAULT:NONE,FILL:DEFAULT:NONE,FILL:171PX:NONE,F
ILL:DEFAULT:NONE,FILL:DEFAULT:NONE,FILL:DEFAULT:NONE,FILL:DEFAU
LT:NONE","CENTER:DEFAULT:NONE,CENTER:DEFAULT:NONE,CENTER:DE
FAULT:NONE,CENTER:DEFAULT:NONE,CENTER:DEFAULT:NONE,CENTER:
DEFAULT:NONE,CENTER:DEFAULT:NONE");
CellConstraints cc = new CellConstraints();
jpanel1.setLayout(formlayout1);
m_jtogglebutton1.setActionCommand("Abrir");
m_jtogglebutton1.setText("Abrir");
jpanel1.add(m_jtogglebutton1,cc.xy(4,5));
jpanel1.add(m_jtextfield1,cc.xy(3,5));
jpanel1.add(m_jtextfield2,cc.xy(3,6));
JLabel jlabel1 = new JLabel();
jlabel1.setText("Selecione a entrada e insira nome da saida");
jlabel1.setHorizontalAlignment(JLabel.CENTER);
jpanel1.add(jlabel1,cc.xywh(3,3,4,1));
m_jtogglebutton2.setActionCommand("Calcular");
66
m_jtogglebutton2.setText("Converter");
jpanel1.add(m_jtogglebutton2,cc.xy(3,7));
addFillComponents(jpanel1,new int[]{ 1,2,3,4,5,6,7 },new int[]{ 1,2,3,4,5,6,7 });
return jpanel1;
}
/**
* Initializer
*/
protected void initializePanel()
{
setLayout(new BorderLayout());
add(createPanel(), BorderLayout.CENTER);
m_jtogglebutton1.addActionListener(new java.awt.event.ActionListener()
{
public void actionPerformed(java.awt.event.ActionEvent e)
{
JFileChooser abrir = new JFileChooser();
abrir.showOpenDialog(null);
if (abrir.getSelectedFile() != null)
m_jtextfield1.setText(abrir.getSelectedFile().getAbsolutePath());
}
});
m_jtogglebutton2.addActionListener(new java.awt.event.ActionListener()
{
public void actionPerformed(java.awt.event.ActionEvent e)
{
String str , str_aux = null;
String path = m_jtextfield1.getText() ,nome = m_jtextfield2.getText();
FileReader reader = null;
try
{
reader = new FileReader(path);
}
catch (FileNotFoundException e1)
{
// TODO Auto-generated catch block
e1.printStackTrace();
}
BufferedReader leitor = new BufferedReader(reader) ;
FileOutputStream saida = null;
PrintStream fileSaida = null;
try
{
saida = new FileOutputStream(nome+".LSP");
fileSaida = new PrintStream(saida);
}
catch (FileNotFoundException e2)
{
67
e2.printStackTrace();
}
fileSaida.println("(defun " + nome + " ()");
fileSaida.println(" (command");
fileSaida.println(" \"view\"");
fileSaida.println(" \"seiso\"");
int i[],cont=0,cont_line=0,cond=1;
i = new int[2];
double x=0,y=0,z=0;
try
{
while( cond == 1 )
{
if (cont == 0)
{
str = leitor.readLine();
i[0] = Integer.parseInt(str.substring(0,1));
str_aux = leitor.readLine();
str = leitor.readLine();
str = leitor.readLine();
str = leitor.readLine();
str = leitor.readLine();
str = leitor.readLine();
x = Double.parseDouble(str);
str = leitor.readLine();
y = Double.parseDouble(str);
str = leitor.readLine();
z = Double.parseDouble(str);
cont ++;
}
else
{
str = leitor.readLine();
if ( str!=null )
{
i[1] = Integer.parseInt(str.substring(0,str.length()));
if (i[0] == i[1])
{
if ( cont_line == 0 )
fileSaida.print("\"LINE\" (list " + x + " " + y + " " + z + ") ");
else
fileSaida.print("(list " + x + " " + y + " " + z + ") ");
cont_line++;
}
else
{
68
if ( cont_line != 0 )
fileSaida.println("(list " + x + " " + y + " " + z + ") *Cancel*");
else
fileSaida.println("\"POINT\" (list " + x + " " + y + " " + z + ") ");
i[0]=i[1];
cont_line = 0;
}
str_aux = leitor.readLine();
str = leitor.readLine();
str = leitor.readLine();
str = leitor.readLine();
str = leitor.readLine()
str = leitor.readLine();
x = Double.parseDouble(str);
str = leitor.readLine();
y = Double.parseDouble(str);
str = leitor.readLine();
z = Double.parseDouble(str);
}
else
{
if ( cont_line == 0 )
fileSaida.print("\"POINT\" (list " + x + " " + y + " " + z + ")");
else
fileSaida.println("(list " + x + " " + y + " " + z + ") *Cancel*");
}
}
}
}
});
}
}
fileSaida.println(" \"ZOOM\"");
fileSaida.println(" \"E\"");
fileSaida.println(" )");
fileSaida.println(")");
cond = 0;
}
catch (IOException e1)
{
// TODO Auto-generated catch block
e1.printStackTrace();
}
69